S22 PRENTIEE
«¢ HALL

0

'l
L

C
C
C

if

0O 0 0 O

0

t

ME

=
Lo |

O

1

S

er]

0
0
Jonathan Margulies

0

0

0
0
N

In,
=
I

t

U

=
j —
o o
ﬂ:m
a
E.F
T
a 3
o e
v j
=
= ®©
a .L
h —
I =
e

uri

€
Co

o

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and
its many features varies across reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings that you can customize often
include font, font size, single or double column, landscape or portrait mode, and figures
that you can click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the
presentation of these elements, view the eBook in single-column, landscape mode and
adjust the font size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the reflowable format
may compromise the presentation of the code listing, you will see a “Click here to view
code image” link. Click the link to view the print-fidelity code image. To return to the
previous page viewed, click the Back button on your device or app.

Security in Computing
978-1-4614-9277-1

FIFTH EDITION

Charles P. Pfleeger
Shari Lawrence Pfleeger
Jonathan Margulies

PRENTICE
HALL

Upper Saddle River, NJ « Boston ¢ Indianapolis ¢ San Francisco
New York ¢ Toronto * Montreal * London ¢« Munich ¢ Paris « Madrid
Capetown * Sydney ¢ Tokyo * Singapore * Mexico City

pg
Typewriter
978-1-4614-9277-1

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and content
particular to your business, training goals, marketing focus, or branding interests), please
contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data
Pfleeger, Charles P., 1948—
Security in computing / Charles P. Pfleeger, Shari Lawrence Pfleeger, Jonathan
Margulies.—
Fifth edition.
pages cm
Includes bibliographical references and index.
ISBN 978-0-13-408504-3 (hardcover : alk. paper)—ISBN 0-13-408504-3 (hardcover :
alk.
paper)
1. Computer security. 2. Data protection. 3. Privacy, Right of. 1. Pfleeger, Shari
Lawrence.
I1. Margulies, Jonathan. III. Title.
QA76.9.A25P45 2015
005.8—dc23 2014038579

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-408504-3
ISBN-10: 0-13-408504-3
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, January 2015

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/ph

Executive Editor
Bernard Goodwin

Editorial Assistant
Michelle Housley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Mary Lou Nohr

Proofreader
Linda Begley

Cover Designer
Alan Clements

Compositor
Shepherd, Inc.

To Willis Ware, a hero of
computer security and privacy.

Contents

Foreword
Preface

Acknowledgments
About the Authors

Chapter 1 Introduction
1.1 What Is Computer Security?
Values of Assets
The Vulnerability—Threat—Control Paradigm
1.2 Threats

Confidentiality
Integrity
Availability
Types of Threats

Types of Attackers
1.3 Harm

Risk and Common Sense

Method—Opportunity—Motive
1.4 Vulnerabilities

1.5 Controls
1.6 Conclusion
1.7 What’s Next?

1.8 Exercises

Chapter 2 Toolbox: Authentication, Access Control, and Cryptography
2.1 Authentication
Identification Versus Authentication

Authentication Based on Phrases and Facts:
Something You Know

Authentication Based on Biometrics: Something You
Are

Authentication Based on Tokens: Something You
Have

Federated Identity Management
Multifactor Authentication

Secure Authentication

2.2 Access Control
Access Policies

Implementing Access Control

Procedure-Oriented Access Control

Role-Based Access Control

2.3 Cryptograph
Problems Addressed by Encryption

Terminology
DES: The Data Encryption Standard
AES: Advanced Encryption System

Public Key Cryptography

Public Key Cryptography to Exchange Secret Keys
Error Detecting Codes

Trust

Certificates: Trustable Identities and Public Keys
Digital Signatures—All the Pieces

2.4 Exercises

Chapter 3 Programs and Programming

3.1 Unintentional (Nonmalicious) Programming
Oversights
Buffer Overflow

Incomplete Mediation
Time-of-Check to Time-of-Use
Undocumented Access Point
Off-by-One Error

Integer Overflow

Unterminated Null-Terminated String

Parameter Length, Type, and Number
Unsafe Utility Program
Race Condition
3.2 Malicious Code—Malware
Malware—Viruses, Trojan Horses, and Worms

Technical Details: Malicious Code

3.3 Countermeasures

Countermeasures for Users

Countermeasures for Developers

Countermeasure Specifically for Security

Countermeasures that Don’t Work

Conclusion
Exercises

Chapter 4 The Web—User Side
4.1 Browser Attacks

Browser Attack Types

How Browser Attacks Succeed: Failed Identification
and Authentication

4.2 Web Attacks Targeting Users
False or Misleading Content
Malicious Web Content
Protecting Against Malicious Web Pages
4.3 Obtaining User or Website Data
Code Within Data
Website Data: A User’s Problem, Too
Foiling Data Attacks
4.4 Email Attacks
Fake Email
Fake Email Messages as Spam
Fake (Inaccurate) Email Header Data
Phishing
Protecting Against Email Attacks

4.5 Conclusion

4.6 Exercises

Chapter 5 Operating Systems
5.1 Security in Operating Systems

Background: Operating System Structure

Security Features of Ordinary Operating Systems
A Bit of History
Protected Objects

Operating System Tools to Implement Security
Functions

5.2 Security in the Design of Operating Systems
Simplicity of Design
Layered Design

Kernelized Design

Reference Monitor

Correctness and Completeness

Secure Design Principles

Trusted Systems

Trusted System Functions

The Results of Trusted Systems Research
5.3 Rootkit

Phone Rootkit

Rootkit Evades Detection

Rootkit Operates Unchecked

Sony XCP Rootkit

TDSS Rootkits

Other Rootkits

5.4 Conclusion

5.5 Exercises

Chapter 6 Networks

6.1 Network Concepts
Background: Network Transmission Media

Background: Protocol Layers
Background: Addressing and Routing

Part I—War on Networks: Network Security Attacks
6.2 Threats to Network Communications

Interception: Eavesdropping and Wiretapping

Modification, Fabrication: Data Corruption

Interruption: Loss of Service

Port Scanning

Vulnerability Summary

6.3 Wireless Network Security
WiFi Background
Vulnerabilities in Wireless Networks
Failed Countermeasure: WEP (Wired Equivalent

Privacy)
Stronger Protocol Suite: WPA (WiFi Protected

Access)

6.4 Denial of Service

Example: Massive Estonian Web Failure

How Service Is Denied

Flooding Attacks in Detail
Network Flooding Caused by Malicious Code
Network Flooding by Resource Exhaustion

Denial of Service by Addressing Failures

Traffic Redirection
DNS Attacks
Exploiting Known Vulnerabilities

Physical Disconnection

6.5 Distributed Denial-of-Service
Scripted Denial-of-Service Attacks
Bots
Botnets

Malicious Autonomous Mobile Agents

Autonomous Mobile Protective Agents
Part I1I—Strategic Defenses: Security

Countermeasures

6.6 Cryptography in Network Security
Network Encryption

Browser Encryption
Onion Routing
IP Security Protocol Suite (IPsec
Virtual Private Networks
System Architecture
6.7 Firewalls
What Is a Firewall?
Design of Firewalls

Types of Firewalls

Personal Firewalls

Comparison of Firewall Types

Example Firewall Configurations
Network Address Translation (NAT)
Data Loss Prevention

6.8 Intrusion Detection and Prevention Systems
Types of IDSs
Other Intrusion Detection Technology

Intrusion Prevention Systems

Intrusion Response

Gouals for Intrusion Detection Systems
IDS Strengths and Limitations

6.9 Network Management
Management to Ensure Service

Security Information and Event Management (SIEM)

6.10 Conclusion

6.11 Exercises

Chapter 7 Databases
7.1 Introduction to Databases

Concept of a Database

Components of Databases

Advantages of Using Databases

7.2 Security Requirements of Databases
Integrity of the Database

Element Integrity

Auditabili
Access Control

User Authentication
Availability
Integrity/Confidentiality/Availabili
7.3 Reliability and Integrity
Protection Features from the Operating System
Two-Phase Update
Redundancy/Internal Consistency

Recovery
Concurrency/Consistency

7.4 Database Disclosure

Sensitive Data

Types of Disclosures

Preventing Disclosure: Data Suppression and
Modification

Security Versus Precision
7.5 Data Mining and Big Data
Data Mining

Big Data
7.6 Conclusion

Exercises

Chapter 8 Cloud Computing

8.1 Cloud Computing Concepts
Service Models

Deployment Models
8.2 Moving to the Cloud
Risk Analysis

Cloud Provider Assessment

Switching Cloud Providers
Cloud as a Security Control

8.3 Cloud Security Tools and Techniques
Data Protection in the Cloud
Cloud Application Security
Logging and Incident Response

8.4 Cloud Identity Management

Security Assertion Markup Language
OAuth

OAuth for Authentication

8.5 Securing TaaS
Public IaaS Versus Private Network Security

8.6 Conclusion
Where the Field Is Headed
To Learn More

8.7 Exercises

Chapter 9 Privacy

9.1 Privacy Concepts

Aspects of Information Privacy

Computer-Related Privacy Problems

9.2 Privacy Principles and Policies

Eair Information Practices

U.S. Privacy Laws

Controls on U.S. Government Websites

Controls on Commercial Websites

Non-U.S. Privacy Principles

Individual Actions to Protect Privacy

Governments and Privacy
Identity Theft

9.3 Authentication and Privacy

What Authentication Means
Conclusions

9.4 Data Mining
Government Data Mining

Privacy-Preserving Data Mining
9.5 Privacy on the Web
Understanding the Online Environment

Payments on the Web

Site and Portal Registrations
Whose Page Is This?
Precautions for Web Surfing
Spyware

Shopping on the Internet

9.6 Email Security
Where Does Email Go, and Who Can Access It?

Interception of Email

Monitoring Email

Anonymous, Pseudonymous, and Disappearing

Email
Spoofing and Spamming
Summary
9.7 Privacy Impacts of Emerging Technologies

Radio Frequency Identification

Electronic Voting
VoIP and Skype
Privacy in the Cloud

Conclusions on Emerging Technologies
9.8 Where the Field Is Headed

9.9 Conclusion

9.10 Exercises

Chapter 10 Management and Incidents
10.1 Security Planning
Organizations and Security Plans
Contents of a Security Plan
Security Planning Team Members

Assuring Commitment to a Security Plan

10.2 Business Continuity Planning

Assess Business Impact

Develop Strategy
Develop the Plan

10.3 Handling Incidents
Incident Response Plans

Incident Response Teams
10.4 Risk Analysis

The Nature of Risk

Steps of a Risk Analysis

Arguments For and Against Risk Analysis

10.5 Dealing with Disaster
Natural Disasters

Power Loss
Human Vandals

Interception of Sensitive Information

Contingency Planning
Physical Security Recap
10.6 Conclusion

10.7 Exercises

Chapter 11 I .egal Issues and Ethics

11.1 Protecting Programs and Data

Copyrights
Patents

Trade Secrets

Special Cases

11.2 Information and the Law

Information as an Object

Legal Issues Relating to Information

The Legal System

Summary of Protection for Computer Artifacts

11.3 Rights of Employees and Employers

Ownership of Products

Employment Contracts

11.4 Redress for Software Failures

Selling Correct Software

Reporting Software Flaws

11.5 Computer Crime

Why a Separate Category for Computer Crime Is
Needed

Why Computer Crime Is Hard to Define

Why Computer Crime Is Hard to Prosecute
Examples of Statutes

International Dimensions

Why Computer Criminals Are Hard to Catch
What Computer Crime Does Not Address
Summary of Legal Issues in Computer Security

11.6 Ethical Issues in Computer Security
Differences Between the Law and Ethics

Studying Ethics
Ethical Reasoning

11.7 Incident Analysis with Ethics
Situation I: Use of Computer Services

Situation II: Privacy Rights

Situation II1: Denial of Service

Situation IV: Ownership of Programs

Situation V: Proprietary Resources
Situation VI: Fraud

Situation VII: Accuracy of Information
Situation VIII: Ethics of Hacking or Cracking

Situation IX: True Representation

Conclusion of Computer Ethics

Conclusion
Exercises

Chapter 12 Details of Cryptography
12.1 Cryptology

Cryptanalysis

Cryptographic Primitives
One-Time Pads
Statistical Analysis

What Makes a “Secure” Encryption Algorithm?
12.2 Symmetric Encryption Algorithms

DES

AES

RC2, RC4, RC5, and RC6

12.3 Asymmetric Encryption with RSA
The RSA Algorithm

Strength of the RSA Algorithm

12.4 Message Digests
Hash Functions

One-Way Hash Functions
Message Digests

12.5 Digital Signatures

Elliptic Curve Cryptosystems
El Gamal and Digital Signature Algorithms

The NSA—Cryptography Controversy of 2012
12.6 Quantum Cryptography

Quantum Physics

Photon Reception

Cryptography with Photons
Implementation

12.7 Conclusion

Chapter 13 Emerging Topics

13.1 The Internet of Things
Medical Devices

Mobile Phones
Security in the Internet of Things

13.2 Economics

Making a Business Case

Quantifying Security

Current Research and Future Directions

13.3 Electronic Voting
What Is Electronic Voting?
What Is a Fair Election?
What Are the Critical Issues?
13.4 Cyber Warfare
What Is Cyber Warfare?
Possible Examples of Cyber Warfare

Critical Issues

13.5 Conclusion

Bibliography

Foreword

From the authors: Willis Ware kindly wrote the foreword that we published in
both the third and fourth editions of Security in Computing. In his foreword he
covers some of the early days of computer security, describing concerns that are
as valid today as they were in those earlier days.

Willis chose to sublimate his name and efforts to the greater good of the
projects he worked on. In fact, his thoughtful analysis and persuasive leadership
contributed much to the final outcome of these activities. Few people recognize
Willis’s name today; more people are familiar with the European Union Data
Protection Directive that is a direct descendant of the report [WAR73a] from his
committee for the U.S. Department of Human Services. Willis would have
wanted it that way: the emphasis on the ideas and not on his name.

Unfortunately, Willis died in November 2013 at age 93. We think the lessons
he wrote about in his Foreword are still important to our readers. Thus, with
both respect and gratitude, we republish his words here.

In the 1950s and 1960s, the prominent conference gathering places for practitioners and
users of computer technology were the twice yearly Joint Computer Conferences (JCCs)
—initially called the Eastern and Western JCCs, but later renamed the Spring and Fall
JCCs and even later, the annual National (AFIPS) Computer Conference. From this
milieu, the topic of computer security—Ilater to be called information system security and
currently also referred to as “protection of the national information infrastructure”—
moved from the world of classified defense interests into public view.

A few people—Robert L. Patrick, John P. Haverty, and myself among others—all then
at The RAND Corporation (as its name was then known) had been talking about the
growing dependence of the country and its institutions on computer technology. It
concerned us that the installed systems might not be able to protect themselves and their
data against intrusive and destructive attacks. We decided that it was time to bring the
security aspect of computer systems to the attention of the technology and user
communities.

The enabling event was the development within the National Security Agency (NSA) of
a remote-access time-sharing system with a full set of security access controls, running on
a Univac 494 machine, and serving terminals and users not only within the headquarters
building at Fort George G. Meade, Maryland, but also worldwide. Fortuitously, I knew
details of the system.

Persuading two others from RAND to help—Dr. Harold Peterson and Dr. Rein Turn—
plus Bernard Peters of NSA, I organized a group of papers and presented it to the SJCC
conference management as a ready-made additional paper session to be chaired by me. [1]
The conference accepted the offer, and the session was presented at the Atlantic City (INJ)
Convention Hall in 1967.

Soon thereafter and driven by a request from a defense contractor to include both
defense classified and business applications concurrently in a single mainframe machine
functioning in a remote-access mode, the Department of Defense, acting through the
Advanced Research Projects Agency (ARPA) and later the Defense Science Board (DSB),
organized a committee, which I chaired, to study the issue of security controls for
computer systems. The intent was to produce a document that could be the basis for
formulating a DoD policy position on the matter.

The report of the committee was initially published as a classified document and was
formally presented to the sponsor (the DSB) in January 1970. It was later declassified and
republished (by The RAND Corporation) in October 1979. [2] It was widely circulated
and became nicknamed “the Ware report.” The report and a historical introduction are
available on the RAND website. [3]

Subsequently, the United States Air Force (USAF) sponsored another committee
chaired by James P. Anderson. [4] Its report, published in 1972, recommended a 6-year
R&D security program totaling some $8M. [5] The USAF responded and funded several
projects, three of which were to design and implement an operating system with security
controls for a specific computer.

Eventually these activities led to the “Criteria and Evaluation” program sponsored by
the NSA. It culminated in the “Orange Book” [6] in 1983 and subsequently its supporting
array of documents, which were nicknamed “the rainbow series.” [7] Later, in the 1980s
and on into the 1990s, the subject became an international one leading to the ISO standard
known as the “Common Criteria.” [8]

It is important to understand the context in which system security was studied in the
early decades. The defense establishment had a long history of protecting classified
information in document form. It had evolved a very elaborate scheme for
compartmenting material into groups, sub-groups and super-groups, each requiring a
specific personnel clearance and need-to-know as the basis for access. [9] It also had a
centuries-long legacy of encryption technology and experience for protecting classified
information in transit. Finally, it understood the personnel problem and the need to
establish the trustworthiness of its people. And it certainly understood the physical
security matter.

Thus, the computer security issue, as it was understood in the 1960s and even later, was
how to create in a computer system a group of access controls that would implement or
emulate the processes of the prior paper world, plus the associated issues of protecting
such software against unauthorized change, subversion and illicit use, and of embedding
the entire system in a secure physical environment with appropriate management
oversights and operational doctrine and procedures. The poorly understood aspect of
security was primarily the software issue with, however, a collateral hardware aspect;
namely, the risk that it might malfunction—or be penetrated—and subvert the proper
behavior of software. For the related aspects of communications, personnel, and physical
security, there was a plethora of rules, regulations, doctrine and experience to cover them.
It was largely a matter of merging all of it with the hardware/software aspects to yield an
overall secure system and operating environment.

However, the world has now changed and in essential ways. The desk-top computer and
workstation have appeared and proliferated widely. The Internet is flourishing and the
reality of a World Wide Web is in place. Networking has exploded and communication
among computer systems is the rule, not the exception. Many commercial transactions are
now web-based; many commercial communities—the financial one in particular—have
moved into a web posture. The “user” of any computer system can literally be anyone in
the world. Networking among computer systems is ubiquitous; information-system
outreach is the goal.

The net effect of all of this has been to expose the computer-based information system
—its hardware, its software, its software processes, its databases, its communications—to
an environment over which no one—not end-user, not network administrator or system
owner, not even government—has control. What must be done is to provide appropriate
technical, procedural, operational and environmental safeguards against threats as they
might appear or be imagined, embedded in a societally acceptable legal framework.

And appear threats did—from individuals and organizations, national and international.
The motivations to penetrate systems for evil purpose or to create malicious software—
generally with an offensive or damaging consequence—vary from personal intellectual
satisfaction to espionage, to financial reward, to revenge, to civil disobedience, and to
other reasons. Information-system security has moved from a largely self-contained
bounded environment interacting with a generally known and disciplined user community
to one of worldwide scope with a body of users that may not be known and are not
necessarily trusted. Importantly, security controls now must deal with circumstances over
which there is largely no control or expectation of avoiding their impact. Computer
security, as it has evolved, shares a similarity with liability insurance; they each face a
threat environment that is known in a very general way and can generate attacks over a
broad spectrum of possibilities; but the exact details or even time or certainty of an attack
is unknown until an event has occurred.

On the other hand, the modern world thrives on information and its flows; the
contemporary world, society and institutions cannot function without their computer-
communication-based information systems. Hence, these systems must be protected in all
dimensions—technical, procedural, operational, environmental. The system owner and its
staff have become responsible for protecting the organization’s information assets.

Progress has been slow, in large part because the threat has not been perceived as real or
as damaging enough; but also in part because the perceived cost of comprehensive
information system security is seen as too high compared to the risks—especially the
financial consequences—of not doing it. Managements, whose support with appropriate
funding is essential, have been slow to be convinced.

This book addresses the broad sweep of issues above: the nature of the threat and
system vulnerabilities (Chapter 1); cryptography (Chapters 2 and 12); software
vulnerabilities (Chapter 3); the Common Criteria (Chapter 5); the World Wide Web and
Internet (Chapters 4 and 6); managing risk (Chapter 10); and legal, ethical and privacy
issues (Chapter 11). The book also describes security controls that are currently available
such as encryption protocols, software development practices, firewalls, and intrusion-
detection systems. Overall, this book provides a broad and sound foundation for the

information-system specialist who is charged with planning and/or organizing and/or
managing and/or implementing a comprehensive information-system security program.

Yet to be solved are many technical aspects of information security—R&D for
hardware, software, systems, and architecture; and the corresponding products.
Notwithstanding, technology per se is not the long pole in the tent of progress.
Organizational and management motivation and commitment to get the security job done
is. Today, the collective information infrastructure of the country and of the world is
slowly moving up the learning curve; every mischievous or malicious event helps to push
it along. The terrorism-based events of recent times are helping to drive it. Is it far enough
up the curve to have reached an appropriate balance between system safety and threat?
Almost certainly, the answer is “no, not yet; there is a long way to go.” [10]

—Willis H. Ware
RAND
Santa Monica, California

Citations

1. “Security and Privacy in Computer Systems,” Willis H. Ware; RAND, Santa
Monica, CA; P-3544, April 1967. Also published in Proceedings of the 1967
Spring Joint Computer Conference (later renamed to AFIPS Conference
Proceedings), pp 279 seq, Vol. 30, 1967.

“Security Considerations in a Multi-Programmed Computer System,”
Bernard Peters; Proceedings of the 1967 Spring Joint Computer Conference
(later renamed to AFIPS Conference Proceedings), pp 283 seq, vol 30,
1967.

“Practical Solutions to the Privacy Problem,” Willis H. Ware; RAND,
Santa Monica, CA; P-3544, April 1967. Also published in Proceedings of
the 1967 Spring Joint Computer Conference (later renamed to AFIPS
Conference Proceedings), pp 301 seq, Vol. 30, 1967.

“System Implications of Information Privacy,” Harold E. Peterson and Rein
Turn; RAND, Santa Monica, CA; P-3504, April 1967. Also published in
Proceedings of the 1967 Spring Joint Computer Conference (later renamed
to AFIPS Conference Proceedings), pp 305 seq, vol. 30, 1967.

2. “Security Controls for Computer Systems,” (Report of the Defense Science
Board Task Force on Computer Security), RAND, R-609-1-PR. Initially
published in January 1970 as a classified document. Subsequently, declassified
and republished October 1979.

3. http://rand.org/publications/R/R609.1/R609.1.html, “Security Controls for
Computer Systems”; R-609.1, RAND, 1979
http://rand.org/publications/R/R609.1/intro.html, Historical setting for R-609.1

4. “Computer Security Technology Planning Study,” James P. Anderson; ESD-
TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, MA; October 1972.

5. All of these documents are cited in the bibliography of this book. For images
of these historical papers on a CDROM, see the “History of Computer Security
Project, Early Papers Part 1,” Professor Matt Bishop; Department of Computer

http://rand.org/publications/R/R609.1/R609.1.html
http://rand.org/publications/R/R609.1/intro.html

Science, University of California at Davis.

http://seclab.cs.ucdavis.edu/projects/history

6. “DoD Trusted Computer System Evaluation Criteria,” DoD Computer
Security Center, National Security Agency, Ft George G. Meade, Maryland;
CSC-STD-001-83; Aug 15, 1983.

7. So named because the cover of each document in the series had a unique and
distinctively colored cover page. For example, the “Red Book” is “Trusted
Network Interpretation,” National Computer Security Center, National Security
Agency, Ft. George G. Meade, Maryland; NCSC-TG-005, July 31, 1987.
USGPO Stock number 008-000-00486-2.

8. “A Retrospective on the Criteria Movement,” Willis H. Ware; RAND, Santa

Monica, CA; P-7949, 1995. http://rand.org/pubs/papers/P7949/
9. This scheme is nowhere, to my knowledge, documented explicitly. However,
its complexity can be inferred by a study of Appendices A and B of R-609.1
(item [2] above).
10. “The Cyberposture of the National Information Infrastructure,” Willis H. Ware;
RAND, Santa Monica, CA; MR-976-OSTP, 1998. Available online at:

http://www.rand.org/publications/MR/MR976/mr976.html.

http://seclab.cs.ucdavis.edu/projects/history
http://rand.org/pubs/papers/P7949/
http://www.rand.org/publications/MR/MR976/mr976.html

Preface

Tablets, smartphones, TV set-top boxes, GPS navigation devices, exercise monitors,
home security stations, even washers and dryers come with Internet connections by which
data from and about you go to places over which you have little visibility or control. At
the same time, the list of retailers suffering massive losses of customer data continues to
grow: Home Depot, Target, T.J. Maxx, P.F. Chang’s, Sally Beauty. On the one hand people
want the convenience and benefits that added connectivity brings, while on the other hand,
people are worried, and some are seriously harmed by the impact of such incidents.
Computer security brings these two threads together as technology races forward with
smart products whose designers omit the basic controls that can prevent or limit
catastrophes.

To some extent, people sigh and expect security failures in basic products and complex
systems. But these failures do not have to be. Every computer professional can learn how
such problems occur and how to counter them. Computer security has been around as a
field since the 1960s, and it has developed excellent research, leading to a good
understanding of the threat and how to manage it.

One factor that turns off many people is the language: Complicated terms such as
polymorphic virus, advanced persistent threat, distributed denial-of-service attack,
inference and aggregation, multifactor authentication, key exchange protocol, and
intrusion detection system do not exactly roll off the tongue. Other terms sound intriguing
but opaque, such as worm, botnet, rootkit, man in the browser, honeynet, sandbox, and
script kiddie. The language of advanced mathematics or microbiology is no less
confounding, and the Latin terminology of medicine and law separates those who know it
from those who do not. But the terms and concepts of computer security really have
straightforward, easy-to-learn meaning and uses.

Vulnerability: weakness
Threat: condition that exercises vulnerability
Incident: vulnerability + threat
Control: reduction of threat or vulnerablity

The premise of computer security is quite simple: Vulnerabilities are weaknesses in
products, systems, protocols, algorithms, programs, interfaces, and designs. A threat is a
condition that could exercise a vulnerability. An incident occurs when a threat does exploit
a vulnerability, causing harm. Finally, people add controls or countermeasures to prevent,
deflect, diminish, detect, diagnose, and respond to threats. All of computer security is built
from that simple framework. This book is about bad things that can happen with
computers and ways to protect our computing.

Why Read This Book?

Admit it. You know computing entails serious risks to the privacy of your personal data,
the integrity of your data, or the operation of your computer. Risk is a fact of life: Crossing
the street is risky, perhaps more so in some places than others, but you still cross the street.
As a child you learned to stop and look both ways before crossing. As you became older

you learned to gauge the speed of oncoming traffic and determine whether you had the
time to cross. At some point you developed a sense of whether an oncoming car would
slow down or yield. We hope you never had to practice this, but sometimes you have to
decide whether darting into the street without looking is the best means of escaping
danger. The point is all these matters depend on knowledge and experience. We want to
help you develop comparable knowledge and experience with respect to the risks of secure
computing.

The same thing can be said about computer security in everything from personal
devices to complex commercial systems: You start with a few basic terms, principles, and
concepts. Then you learn the discipline by seeing those basics reappear in numerous
situations, including programs, operating systems, networks, and cloud computing. You
pick up a few fundamental tools, such as authentication, access control, and encryption,
and you understand how they apply in defense strategies. You start to think like an
attacker, predicting the weaknesses that could be exploited, and then you shift to selecting
defenses to counter those attacks. This last stage of playing both offense and defense
makes computer security a creative and challenging activity.

Uses for and Users of This Book

This book is intended for people who want to learn about computer security; if you have
read this far you may well be such a person. This book is intended for three groups of
people: college and university students, computing professionals and managers, and users
of all kinds of computer-based systems. All want to know the same thing: how to control
the risk of computer security. But you may differ in how much information you need about
particular topics: Some readers want a broad survey, while others want to focus on
particular topics, such as networks or program development.

This book should provide the breadth and depth that most readers want. The book is
organized by general area of computing, so that readers with particular interests can find
information easily.

Organization of This Book

The chapters of this book progress in an orderly manner, from general security concerns
to the particular needs of specialized applications, and then to overarching management
and legal issues. Thus, this book progresses through six key areas of interest:

1. Introduction: threats, vulnerabilities, and controls

2. The security practitioner’s “toolbox”: identification and authentication, access
control, and encryption

3. Application areas of computer security practice: programs, user—Internet
interaction, operating systems, networks, data and databases, and cloud
computing

4. Cross-cutting disciplines: privacy, management, law and ethics

5. Details of cryptography

6. Emerging application domains

The first chapter begins like many other expositions: by laying groundwork. In Chapter

1 we introduce terms and definitions, and give some examples to justify how these terms
are used. In Chapter 2 we begin the real depth of the field by introducing three concepts
that form the basis of many defenses in computer security: identification and
authentication, access control, and encryption. We describe different ways of
implementing each of these, explore strengths and weaknesses, and tell of some recent
advances in these technologies.

Then we advance through computing domains, from the individual user outward. In
Chapter 3 we begin with individual programs, ones you might write and those you only
use. Both kinds are subject to potential attacks, and we examine the nature of some of
those attacks and how they could have been prevented. In Chapter 4 we move on to a type
of program with which most users today are quite familiar: the browser, as a gateway to
the Internet. The majority of attacks today are remote, carried from a distant attacker
across a network, usually the Internet. Thus, it makes sense to study Internet-borne
malicious code. But this chapter’s focus is on the harm launched remotely, not on the
network infrastructure by which it travels; we defer the network concepts to Chapter 6. In
Chapter 5 we consider operating systems, a strong line of defense between a user and
attackers. We also consider ways to undermine the strength of the operating system itself.
Chapter 6 returns to networks, but this time we do look at architecture and technology,
including denial-of-service attacks that can happen only in a network. Data, their
collection and protection, form the topic of Chapter 7, in which we look at database
management systems and big data applications. Finally, in Chapter 8 we explore cloud
computing, a relatively recent addition to the computing landscape, but one that brings its
own vulnerabilities and protections.

In Chapters 9 through 11 we address what we have termed the intersecting disciplines:
First, in Chapter 9 we explore privacy, a familiar topic that relates to most of the six
domains from programs to clouds. Then Chapter 10 takes us to the management side of
computer security: how management plans for and addresses computer security problems.
Finally, Chapter 11 explores how laws and ethics help us control computer behavior.

We introduced cryptography in Chapter 2. But the field of cryptography involves entire
books, courses, conferences, journals, and postgraduate programs of study. And this book
needs to cover many important topics in addition to cryptography. Thus, we made two
critical decisions: First, we treat cryptography as a tool, not as a field of study. An
automobile mechanic does not study the design of cars, weighing such factors as
aerodynamics, fuel consumption, interior appointment, and crash resistance; a mechanic
accepts a car as a given and learns how to find and fix faults with the engine and other
mechanical parts. Similarly, we want our readers to be able to use cryptography to quickly
address security problems; hence we briefly visit popular uses of cryptography in Chapter
2. Our second critical decision was to explore the breadth of cryptography slightly more in
a later chapter, Chapter 12. But as we point out, entire books have been written on
cryptography, so our later chapter gives an overview of more detailed work that interested
readers can find elsewhere.

Our final chapter detours to four areas having significant computer security hazards.
These are rapidly advancing topics for which the computer security issues are much in
progress right now. The so-called Internet of Things, the concept of connecting many

devices to the Internet, raises potential security threats waiting to be explored. Economics
govern many security decisions, so security professionals need to understand how
economics and security relate. Convenience is raising interest in using computers to
implement elections; the easy steps of collecting vote totals have been done by many
jurisdictions, but the hard part of organizing fair online registration and ballot-casting have
been done in only a small number of demonstration elections. And the use of computers in
warfare is a growing threat. Again, a small number of modest-sized attacks on computing
devices have shown the feasibility of this type of campaign, but security professionals and
ordinary citizens need to understand the potential—both good and bad—of this type of
attack.

How to Read This Book

What background should you have to appreciate this book? The only assumption is an
understanding of programming and computer systems. Someone who is an advanced
undergraduate or graduate student in computing certainly has that background, as does a
professional designer or developer of computer systems. A user who wants to understand
more about how programs work can learn from this book, too; we provide the necessary
background on concepts of operating systems or networks, for example, before we address
the related security concerns.

This book can be used as a textbook in a one- or two-semester course in computer
security. The book functions equally well as a reference for a computer professional or as
a supplement to an intensive training course. And the index and extensive bibliography
make it useful as a handbook to explain significant topics and point to key articles in the
literature. The book has been used in classes throughout the world; instructors often
design one-semester courses that focus on topics of particular interest to the students or
that relate well to the rest of a curriculum.

What Is New in This Book

This is the fifth edition of Security in Computing, first published in 1989. Since then,
the specific threats, vulnerabilities, and controls have changed, as have many of the
underlying technologies to which computer security applies. However, many basic
concepts have remained the same.

Most obvious to readers familiar with earlier editions will be some new chapters,
specifically, on user—web interaction and cloud computing, as well as the topics we raise
in the emerging topics chapter. Furthermore, pulling together the three fundamental
controls in Chapter 2 is a new structure. Those are the big changes, but every chapter has
had many smaller changes, as we describe new attacks or expand on points that have
become more important.

One other feature some may notice is the addition of a third coauthor. Jonathan
Margulies joins us as an essential member of the team that produced this revision. He is
currently director of the security practice at Qmulos, a newly launched security consulting
practice. He brings many years of experience with Sandia National Labs and the National
Institute for Standards and Technology. His focus meshes nicely with our existing skills to
extend the breadth of this book.

Acknowledgments

It is increasingly difficult to acknowledge all the people who have influenced this book.
Colleagues and friends have contributed their knowledge and insight, often without
knowing their impact. By arguing a point or sharing explanations of concepts, our
associates have forced us to question or rethink what we know.

We thank our associates in at least two ways. First, we have tried to include references
to their written works. References in the text cite specific papers relating to particular
thoughts or concepts, but the bibliography also includes broader works that have played a
more subtle role in shaping our approach to security. So, to all the cited authors, many of
whom are friends and colleagues, we happily acknowledge your positive influence on this
book.

Rather than name individuals, we thank the organizations in which we have interacted
with creative, stimulating, and challenging people from whom we learned a lot. These
places include Trusted Information Systems, the Contel Technology Center, the Centre for
Software Reliability of the City University of London, Arca Systems, Exodus
Communications, The RAND Corporation, Sandia National Lab, Cable & Wireless, the
National Institute of Standards and Technology, the Institute for Information Infrastructure
Protection, Qmulos, and the Editorial Board of IEEE Security & Privacy. If you worked
with us at any of these locations, chances are high that your imprint can be found in this
book. And for all the side conversations, debates, arguments, and light moments, we are
grateful.

About the Authors

Charles P. Pfleeger is an internationally known expert on computer and
communications security. He was originally a professor at the University of Tennessee,
leaving there to join computer security research and consulting companies Trusted
Information Systems and Arca Systems (later Exodus Communications and Cable and
Wireless). With Trusted Information Systems he was Director of European Operations and
Senior Consultant. With Cable and Wireless he was Director of Research and a member of
the staff of the Chief Security Officer. He was chair of the IEEE Computer Society
Technical Committee on Security and Privacy.

Shari Lawrence Pfleeger is widely known as a software engineering and computer
security researcher, most recently as a Senior Computer Scientist with the Rand
Corporation and as Research Director of the Institute for Information Infrastructure
Protection. She is currently Editor-in-Chief of IEEE Security & Privacy magazine.

Jonathan Margulies is the CTO of Qmulos, a cybersecurity consulting firm. After
receiving his master’s degree in Computer Science from Cornell University, Mr. Margulies
spent nine years at Sandia National Labs, researching and developing solutions to protect
national security and critical infrastructure systems from advanced persistent threats. He
then went on to NIST’s National Cybersecurity Center of Excellence, where he worked
with a variety of critical infrastructure companies to create industry-standard security
architectures. In his free time, Mr. Margulies edits the “Building Security In” section of
IEEE Security & Privacy magazine.

1. Introduction

In this chapter:
 Threats, vulnerabilities, and controls
* Confidentiality, integrity, and availability
» Attackers and attack types; method, opportunity, and motive
* Valuing assets

On 11 February 2013, residents of Great Falls, Montana received the following warning
on their televisions [INF13]. The transmission displayed a message banner on the bottom
of the screen (as depicted in Figure 1-1).

FIGURE 1-1 Emergency Broadcast Warning
And the following alert was broadcast:

[Beep Beep Beep: the sound pattern of the U.S. government Emergency
Alert System. The following text then scrolled across the screen:]

Civil authorities in your area have reported that the bodies of the dead are
rising from their graves and attacking the living. Follow the messages on
screen that will be updated as information becomes available.

Do not attempt to approach or apprehend these bodies as they are
considered extremely dangerous. This warning applies to all areas
receiving this broadcast.

[Beep Beep Beep]

The warning signal sounded authentic; it had the distinctive tone people recognize for
warnings of serious emergencies such as hazardous weather or a natural disaster. And the
text was displayed across a live broadcast television program. On the other hand, bodies
rising from their graves sounds suspicious.

What would you have done?

Only four people contacted police for assurance that the warning was indeed a hoax. As
you can well imagine, however, a different message could have caused thousands of
people to jam the highways trying to escape. (On 30 October 1938 Orson Welles
performed a radio broadcast of the H. G. Wells play War of the Worlds that did cause a
minor panic of people believing that Martians had landed and were wreaking havoc in
New Jersey.)

The perpetrator of this hoax was never caught, nor has it become clear exactly how it
was done. Likely someone was able to access the system that feeds emergency broadcasts
to local radio and television stations. In other words, a hacker probably broke into a
computer system.

You encounter computers daily in countless situations, often in cases in which you are
scarcely aware a computer is involved, like the emergency alert system for broadcast
media. These computers move money, control airplanes, monitor health, lock doors, play
music, heat buildings, regulate hearts, deploy airbags, tally votes, direct communications,
regulate traffic, and do hundreds of other things that affect lives, health, finances, and
well-being. Most of the time these computers work just as they should. But occasionally
they do something horribly wrong, because of either a benign failure or a malicious attack.

This book is about the security of computers, their data, and the devices and objects to
which they relate. In this book you will learn some of the ways computers can fail—or be
made to fail—and how to protect against those failures. We begin that study in the way
any good report does: by answering the basic questions of what, who, why, and how.

1.1 What Is Computer Security?

Computer security is the protection of the items you value, called the assets of a
computer or computer system. There are many types of assets, involving hardware,
software, data, people, processes, or combinations of these. To determine what to protect,
we must first identify what has value and to whom.

A computer device (including hardware, added components, and accessories) is
certainly an asset. Because most computer hardware is pretty useless without programs,
the software is also an asset. Software includes the operating system, utilities and device
handlers; applications such as word processing, media players or email handlers; and even
programs that you may have written yourself. Much hardware and software is off-the-
shelf, meaning that it is commercially available (not custom-made for your purpose) and
that you can easily get a replacement. The thing that makes your computer unique and
important to you is its content: photos, tunes, papers, email messages, projects, calendar
information, ebooks (with your annotations), contact information, code you created, and
the like. Thus, data items on a computer are assets, too. Unlike most hardware and
software, data can be hard—if not impossible—to recreate or replace. These assets are all
shown in Figure 1-2.

Hardware: Software: Data:
« Computer * Operating system * Documents
* Devices (disk « Utilities (antivirus) * Photos
drives, memory, * Commercial ¢ Music, videos
printer) applications (word * Email
¢ Network gear processing, photo * Class projects
editing)

* Individual applications
FIGURE 1-2 Computer Objects of Value

These three things—hardware, software, and data—contain or express things like the
design for your next new product, the photos from your recent vacation, the chapters of
your new book, or the genome sequence resulting from your recent research. All of these
things represent intellectual endeavor or property, and they have value that differs from
one person or organization to another. It is that value that makes them assets worthy of
protection, and they are the elements we want to protect. Other assets—such as access to
data, quality of service, processes, human users, and network connectivity—deserve
protection, too; they are affected or enabled by the hardware, software, and data. So in
most cases, protecting hardware, software, and data covers these other assets as well.

Computer systems—hardware, software, and data—have value and
deserve security protection.

In this book, unless we specifically distinguish between hardware, software, and data,
we refer to all these assets as the computer system, or sometimes as the computer. And
because processors are embedded in so many devices, we also need to think about such
variations as mobile phones, implanted pacemakers, heating controllers, and automobiles.
Even if the primary purpose of the device is not computing, the device’s embedded
computer can be involved in security incidents and represents an asset worthy of
protection.

Values of Assets

After identifying the assets to protect, we next determine their value. We make value-
based decisions frequently, even when we are not aware of them. For example, when you
go for a swim you can leave a bottle of water and a towel on the beach, but not your wallet
or cell phone. The difference relates to the value of the assets.

The value of an asset depends on the asset owner’s or user’s perspective, and it may be
independent of monetary cost, as shown in Figure 1-3. Your photo of your sister, worth
only a few cents in terms of paper and ink, may have high value to you and no value to
your roommate. Other items’ value depends on replacement cost; some computer data are
difficult or impossible to replace. For example, that photo of you and your friends at a
party may have cost you nothing, but it is invaluable because there is no other copy. On
the other hand, the DVD of your favorite film may have cost a significant portion of your
take-home pay, but you can buy another one if the DVD is stolen or corrupted. Similarly,
timing has bearing on asset value. For example, the value of the plans for a company’s
new product line is very high, especially to competitors. But once the new product is
released, the plans’ value drops dramatically.

Off the shelf:
easily replaceable

Sy

Hardware: Software: Data:

e Computer * Operating system * Documents

* Devices (disk » Utilities (antivirus) * Photos
drives, memory, * Commercial * Music, videos
printer) applications (word * Email

» Network gear processing, photo » Class projects

editing) T
e Individual

R <+—— Unique; irreplaceable
applications

FIGURE 1-3 Values of Assets

Assets’ values are personal, time dependent, and often imprecise.

The Vulnerability—-Threat—Control Paradigm

The goal of computer security is protecting valuable assets. To study different ways of
protection, we use a framework that describes how assets may be harmed and how to
counter or mitigate that harm.

A vulnerability is a weakness in the system, for example, in procedures, design, or
implementation, that might be exploited to cause loss or harm. For instance, a particular
system may be vulnerable to unauthorized data manipulation because the system does not
verify a user’s identity before allowing data access.

A vulnerability is a weakness that could be exploited to cause harm.

A threat to a computing system is a set of circumstances that has the potential to cause
loss or harm. To see the difference between a threat and a vulnerability, consider the
illustration in Figure 1-4. Here, a wall is holding water back. The water to the left of the
wall is a threat to the man on the right of the wall: The water could rise, overflowing onto
the man, or it could stay beneath the height of the wall, causing the wall to collapse. So the
threat of harm is the potential for the man to get wet, get hurt, or be drowned. For now, the
wall is intact, so the threat to the man is unrealized.

FIGURE 1-4 Threat and Vulnerability

A threat is a set of circumstances that could cause harm.

However, we can see a small crack in the wall—a vulnerability that threatens the man’s
security. If the water rises to or beyond the level of the crack, it will exploit the
vulnerability and harm the man.

There are many threats to a computer system, including human-initiated and computer-
initiated ones. We have all experienced the results of inadvertent human errors, hardware
design flaws, and software failures. But natural disasters are threats, too; they can bring a
system down when the computer room is flooded or the data center collapses from an
earthquake, for example.

A human who exploits a vulnerability perpetrates an attack on the system. An attack
can also be launched by another system, as when one system sends an overwhelming flood
of messages to another, virtually shutting down the second system’s ability to function.
Unfortunately, we have seen this type of attack frequently, as denial-of-service attacks
deluge servers with more messages than they can handle. (We take a closer look at denial
of service in Chapter 6.)

How do we address these problems? We use a control or countermeasure as

protection. That is, a control is an action, device, procedure, or technique that removes or
reduces a vulnerability. In Figure 1-4, the man is placing his finger in the hole, controlling
the threat of water leaks until he finds a more permanent solution to the problem. In
general, we can describe the relationship between threats, controls, and vulnerabilities in
this way:

Controls prevent threats from exercising vulnerabilities.

A threat is blocked by control of a vulnerability.

Before we can protect assets, we need to know the kinds of harm we have to protect
them against, so now we explore threats to valuable assets.

1.2 Threats

We can consider potential harm to assets in two ways: First, we can look at what bad
things can happen to assets, and second, we can look at who or what can cause or allow
those bad things to happen. These two perspectives enable us to determine how to protect
assets.

Think for a moment about what makes your computer valuable to you. First, you use it
as a tool for sending and receiving email, searching the web, writing papers, and
performing many other tasks, and you expect it to be available for use when you want it.
Without your computer these tasks would be harder, if not impossible. Second, you rely
heavily on your computer’s integrity. When you write a paper and save it, you trust that
the paper will reload exactly as you saved it. Similarly, you expect that the photo a friend
passes you on a flash drive will appear the same when you load it into your computer as
when you saw it on your friend’s computer. Finally, you expect the “personal” aspect of a
personal computer to stay personal, meaning you want it to protect your confidentiality.
For example, you want your email messages to be just between you and your listed
recipients; you don’t want them broadcast to other people. And when you write an essay,
you expect that no one can copy it without your permission.

These three aspects, confidentiality, integrity, and availability, make your computer
valuable to you. But viewed from another perspective, they are three possible ways to
make it less valuable, that is, to cause you harm. If someone steals your computer,
scrambles data on your disk, or looks at your private data files, the value of your computer
has been diminished or your computer use has been harmed. These characteristics are both
basic security properties and the objects of security threats.

We can define these three properties as follows.
« availability: the ability of a system to ensure that an asset can be used by any

authorized parties

* integrity: the ability of a system to ensure that an asset is modified only by
authorized parties

« confidentiality: the ability of a system to ensure that an asset is viewed only
by authorized parties

These three properties, hallmarks of solid security, appear in the literature as early as
James P. Anderson’s essay on computer security [AND73] and reappear frequently in
more recent computer security papers and discussions. Taken together (and rearranged),
the properties are called the C-I-A triad or the security triad. ISO 7498-2 [ISO89] adds
to them two more properties that are desirable, particularly in communication networks:

« authentication: the ability of a system to confirm the identity of a sender

* nonrepudiation or accountability: the ability of a system to confirm that a
sender cannot convincingly deny having sent something

The U.S. Department of Defense [DOD85] adds auditability: the ability of a system to
trace all actions related to a given asset. The C-I-A triad forms a foundation for thinking
about security. Authenticity and nonrepudiation extend security notions to network
communications, and auditability is important in establishing individual accountability for
computer activity. In this book we generally use the C-I-A triad as our security taxonomy
so that we can frame threats, vulnerabilities, and controls in terms of the C-I-A properties
affected. We highlight one of these other properties when it is relevant to a particular
threat we are describing. For now, we focus on just the three elements of the triad.

C-I-A triad: confidentiality, integrity, availability

What can happen to harm the confidentiality, integrity, or availability of computer
assets? If a thief steals your computer, you no longer have access, so you have lost
availability; furthermore, if the thief looks at the pictures or documents you have stored,
your confidentiality is compromised. And if the thief changes the content of your music
files but then gives them back with your computer, the integrity of your data has been
harmed. You can envision many scenarios based around these three properties.

The C-I-A triad can be viewed from a different perspective: the nature of the harm
caused to assets. Harm can also be characterized by four acts: interception, interruption,
modification, and fabrication. These four acts are depicted in Figure 1-5. From this point
of view, confidentiality can suffer if someone intercepts data, availability is lost if
someone or something interrupts a flow of data or access to a computer, and integrity can
fail if someone or something modifies data or fabricates false data. Thinking of these four
kinds of acts can help you determine what threats might exist against the computers you
are trying to protect.

Interception Interruption —

Modification Fabrication
FIGURE 1-5 Four Acts to Cause Security Harm

To analyze harm, we next refine the C-I-A triad, looking more closely at each of its
elements.

Confidentiality

Some things obviously need confidentiality protection. For example, students’ grades,
financial transactions, medical records, and tax returns are sensitive. A proud student may
run out of a classroom screaming “I got an A!” but the student should be the one to choose
whether to reveal that grade to others. Other things, such as diplomatic and military
secrets, companies’ marketing and product development plans, and educators’ tests, also
must be carefully controlled. Sometimes, however, it is not so obvious that something is
sensitive. For example, a military food order may seem like innocuous information, but a
sudden increase in the order could be a sign of incipient engagement in conflict. Purchases
of food, hourly changes in location, and access to books are not things you would
ordinarily consider confidential, but they can reveal something that someone wants to be
kept confidential.

The definition of confidentiality is straightforward: Only authorized people or systems
can access protected data. However, as we see in later chapters, ensuring confidentiality
can be difficult. For example, who determines which people or systems are authorized to
access the current system? By “accessing” data, do we mean that an authorized party can
access a single bit? the whole collection? pieces of data out of context? Can someone who
is authorized disclose data to other parties? Sometimes there is even a question of who
owns the data: If you visit a web page, do you own the fact that you clicked on a link, or
does the web page owner, the Internet provider, someone else, or all of you?

In spite of these complicating examples, confidentiality is the security property we
understand best because its meaning is narrower than that of the other two. We also
understand confidentiality well because we can relate computing examples to those of

preserving confidentiality in the real world.

Confidentiality relates most obviously to data, although we can think of the
confidentiality of a piece of hardware (a novel invention) or a person (the whereabouts of
a wanted criminal). Here are some properties that could mean a failure of data
confidentiality:

* An unauthorized person accesses a data item.
* An unauthorized process or program accesses a data item.

* A person authorized to access certain data accesses other data not authorized
(which is a specialized version of “an unauthorized person accesses a data
item”).

* An unauthorized person accesses an approximate data value (for example, not
knowing someone’s exact salary but knowing that the salary falls in a particular
range or exceeds a particular amount).

* An unauthorized person learns the existence of a piece of data (for example,
knowing that a company is developing a certain new product or that talks are
underway about the merger of two companies).

Notice the general pattern of these statements: A person, process, or program is (or is
not) authorized to access a data item in a particular way. We call the person, process, or
program a subject, the data item an object, the kind of access (such as read, write, or
execute) an access mode, and the authorization a policy, as shown in Figure 1-6. These
four terms reappear throughout this book because they are fundamental aspects of
computer security.

Policy:
Who + What + How = Yes/No

Object
Mode of access {what)

(how) /\\\\ /

Subject
(who)

FIGURE 1-6 Access Control

One word that captures most aspects of confidentiality is view, although you should not
take that term literally. A failure of confidentiality does not necessarily mean that someone

sees an object and, in fact, it is virtually impossible to look at bits in any meaningful way
(although you may look at their representation as characters or pictures). The word view
does connote another aspect of confidentiality in computer security, through the
association with viewing a movie or a painting in a museum: look but do not touch. In
computer security, confidentiality wusually means obtaining but not modifying.
Modification is the subject of integrity, which we consider in the next section.

Integrity

Examples of integrity failures are easy to find. A number of years ago a malicious
macro in a Word document inserted the word “not” after some random instances of the
word “is;” you can imagine the havoc that ensued. Because the document was generally
syntactically correct, people did not immediately detect the change. In another case, a
model of the Pentium computer chip produced an incorrect result in certain circumstances
of floating-point arithmetic. Although the circumstances of failure were rare, Intel decided
to manufacture and replace the chips. Many of us receive mail that is misaddressed
because someone typed something wrong when transcribing from a written list. A worse
situation occurs when that inaccuracy is propagated to other mailing lists such that we can
never seem to correct the root of the problem. Other times we find that a spreadsheet
seems to be wrong, only to find that someone typed “space 123” in a cell, changing it from
a numeric value to text, so the spreadsheet program misused that cell in computation.
Suppose someone converted numeric data to roman numerals: One could argue that IV is
the same as 4, but IV would not be useful in most applications, nor would it be obviously
meaningful to someone expecting 4 as an answer. These cases show some of the breadth
of examples of integrity failures.

Integrity is harder to pin down than confidentiality. As Stephen Welke and Terry
Mayfield [WEL90, MAY91, NCS91a] point out, integrity means different things in
different contexts. When we survey the way some people use the term, we find several
different meanings. For example, if we say that we have preserved the integrity of an item,
we may mean that the item is

* precise

* accurate

 unmodified

» modified only in acceptable ways

» modified only by authorized people

» modified only by authorized processes

* consistent

* internally consistent

» meaningful and usable

Integrity can also mean two or more of these properties. Welke and Mayfield recognize

three particular aspects of integrity—authorized actions, separation and protection of
resources, and error detection and correction. Integrity can be enforced in much the same

way as can confidentiality: by rigorous control of who or what can access which resources
in what ways.

Availability

A computer user’s worst nightmare: You turn on the switch and the computer does
nothing. Your data and programs are presumably still there, but you cannot get at them.
Fortunately, few of us experience that failure. Many of us do experience overload,
however: access gets slower and slower; the computer responds but not in a way we
consider normal or acceptable.

Availability applies both to data and to services (that is, to information and to
information processing), and it is similarly complex. As with the notion of confidentiality,
different people expect availability to mean different things. For example, an object or
service is thought to be available if the following are true:

« It is present in a usable form.

« It has enough capacity to meet the service’s needs.

« It is making clear progress, and, if in wait mode, it has a bounded waiting time.
» The service is completed in an acceptable period of time.

We can construct an overall description of availability by combining these goals.
Following are some criteria to define availability.

* There is a timely response to our request.

* Resources are allocated fairly so that some requesters are not favored over
others.

* Concurrency is controlled; that is, simultaneous access, deadlock management,
and exclusive access are supported as required.

* The service or system involved follows a philosophy of fault tolerance,
whereby hardware or software faults lead to graceful cessation of service or to
work-arounds rather than to crashes and abrupt loss of information. (Cessation
does mean end; whether it is graceful or not, ultimately the system is
unavailable. However, with fair warning of the system’s stopping, the user may
be able to move to another system and continue work.)

* The service or system can be used easily and in the way it was intended to be
used. (This is a characteristic of usability, but an unusable system may also
cause an availability failure.)

As you can see, expectations of availability are far-reaching. In Figure 1-7 we depict
some of the properties with which availability overlaps. Indeed, the security community is
just beginning to understand what availability implies and how to ensure it.

Performance

FIGURE 1-7 Availability and Related Aspects

A person or system can do three basic things with a data item: view it, modify it, or use
it. Thus, viewing (confidentiality), modifying (integrity), and using (availability) are the
basic modes of access that computer security seeks to preserve.

Computer security seeks to prevent unauthorized viewing
(confidentiality) or modification (integrity) of data while preserving access
(availability).

A paradigm of computer security is access control: To implement a policy, computer
security controls all accesses by all subjects to all protected objects in all modes of access.
A small, centralized control of access is fundamental to preserving confidentiality and
integrity, but it is not clear that a single access control point can enforce availability.
Indeed, experts on dependability will note that single points of control can become single
points of failure, making it easy for an attacker to destroy availability by disabling the
single control point. Much of computer security’s past success has focused on
confidentiality and integrity; there are models of confidentiality and integrity, for example,
see David Bell and Leonard La Padula [BEL73, BEL.76] and Kenneth Biba [BIB77].
Availability is security’s next great challenge.

We have just described the C-I-A triad and the three fundamental security properties it
represents. Our description of these properties was in the context of things that need
protection. To motivate your understanding we gave some examples of harm and threats to
cause harm. Our next step is to think about the nature of threats themselves.

Types of Threats
For some ideas of harm, look at Figure 1-8, taken from Willis Ware’s report [WAR70].

Although it was written when computers were so big, so expensive, and so difficult to
operate that only large organizations like universities, major corporations, or government
departments would have one, Ware’s discussion is still instructive today. Ware was
concerned primarily with the protection of classified data, that is, preserving
confidentiality. In the figure, he depicts humans such as programmers and maintenance
staff gaining access to data, as well as radiation by which data can escape as signals. From
the figure you can see some of the many kinds of threats to a computer system.

COMPUTER NETWORK VULNERABILITIES

RADIATION
TAPS
RADIATION TAPS RADIATION ~ RADIATION r ﬁ
I RADIATION l cmlmm I :mmuT /
—— COMMUNICATION :
a— M s ﬂz SWITCHING
4 * & o
| 3 Q ﬁ ﬁ \\ . :
HARDWARE
= FET!'L-Eﬁ ' h ’;,\ "\ IMPROPER CONNECTIONS \t
i | | opeRaTOR \ CROSS COUPLING
UNAUTHORIZED ACCESS | | REPLACE SUPERVISOR SYSTEMS PROGRAMMER REMOTE
‘REVEAL PROTECTIVE ', DISABLE PROTECTIVE FEATURES CONSOLES
| | MEASURES ; PROVIDE “INS™
H:AED“I'NEE—J "."‘ REVEAL PROTECTIVE MEASURES |".
FAILURE OF PROTECTION CIRCUITS " MM”HTP'M u:::lt:i ACCESS /
CONTRIBUTE T0 SOFTWARE FAILURES, DISABLE HARDWARE ATTACHMENT OF RECORDERS /
S0F TWARE — USE STAND-ALONE UTILITY PROGRAMS) —_—
FAILURE OF FROTECTION FEATURES IDENTIFICATION
ACCESS CONTROL AUTHENTICATION
BOUNDS CONTROL SUBTLE SOFTWARE
ETC. MODIFICATIONS

FIGURE 1-8 Computer [Network] Vulnerabilities (from [WAR70])

One way to analyze harm is to consider the cause or source. We call a potential cause of
harm a threat. Harm can be caused by either nonhuman events or humans. Examples of
nonhuman threats include natural disasters like fires or floods; loss of electrical power;
failure of a component such as a communications cable, processor chip, or disk drive; or
attack by a wild boar.

Threats are caused both by human and other sources.

Human threats can be either benign (nonmalicious) or malicious. Nonmalicious kinds
of harm include someone’s accidentally spilling a soft drink on a laptop, unintentionally
deleting text, inadvertently sending an email message to the wrong person, and carelessly
typing “12” instead of “21” when entering a phone number or clicking “yes” instead of
“no” to overwrite a file. These inadvertent, human errors happen to most people; we just
hope that the seriousness of harm is not too great, or if it is, that we will not repeat the
mistake.

Threats can be malicious or not.

Most computer security activity relates to malicious, human-caused harm: A

malicious person actually wants to cause harm, and so we often use the term attack for a
malicious computer security event. Malicious attacks can be random or directed. In a
random attack the attacker wants to harm any computer or user; such an attack is
analogous to accosting the next pedestrian who walks down the street. An example of a
random attack is malicious code posted on a website that could be visited by anybody.

In a directed attack, the attacker intends harm to specific computers, perhaps at one
organization (think of attacks against a political organization) or belonging to a specific
individual (think of trying to drain a specific person’s bank account, for example, by
impersonation). Another class of directed attack is against a particular product, such as
any computer running a particular browser. (We do not want to split hairs about whether
such an attack is directed—at that one software product—or random, against any user of
that product; the point is not semantic perfection but protecting against the attacks.) The
range of possible directed attacks is practically unlimited. Different kinds of threats are
shown in Figure 1-9.

Threats
Natural Human
causes causes
Examples: Fire, : i3
pres ' Benign Malicious
power failure A 2
intent intent

Example:
Human error

Random Directed

Example: Malicious Example:

code on a general [mpersonation
web site

FIGURE 1-9 Kinds of Threats

Threats can be targeted or random.

Although the distinctions shown in Figure 1-9 seem clear-cut, sometimes the nature of
an attack is not obvious until the attack is well underway, or perhaps even ended. A
normal hardware failure can seem like a directed, malicious attack to deny access, and
hackers often try to conceal their activity to look like ordinary, authorized users. As
computer security experts we need to anticipate what bad things might happen, instead of
waiting for the attack to happen or debating whether the attack is intentional or accidental.

Neither this book nor any checklist or method can show you all the kinds of harm that
can happen to computer assets. There are too many ways to interfere with your use of
these assets. Two retrospective lists of known vulnerabilities are of interest, however. The
Common Vulnerabilities and Exposures (CVE) list (see http://cve.mitre.org/) is a
dictionary of publicly known security vulnerabilities and exposures. CVE’s common
identifiers enable data exchange between security products and provide a baseline index
point for evaluating coverage of security tools and services. To measure the extent of
harm, the Common Vulnerability Scoring System (CVSS) (see
http://nvd.nist.gov/cvss.cfm) provides a standard measurement system that allows accurate
and consistent scoring of vulnerability impact.

Advanced Persistent Threat

Security experts are becoming increasingly concerned about a type of threat called
advanced persistent threat. A lone attacker might create a random attack that snares a
few, or a few million, individuals, but the resulting impact is limited to what that single
attacker can organize and manage. A collection of attackers—think, for example, of the
cyber equivalent of a street gang or an organized crime squad—might work together to
purloin credit card numbers or similar financial assets to fund other illegal activity. Such
attackers tend to be opportunistic, picking unlucky victims’ pockets and moving on to
other activities.

Advanced persistent threat attacks come from organized, well financed, patient
assailants. Often affiliated with governments or quasi-governmental groups, these
attackers engage in long term campaigns. They carefully select their targets, crafting
attacks that appeal to specifically those targets; email messages called spear phishing
(described in Chapter 4) are intended to seduce their recipients. Typically the attacks are
silent, avoiding any obvious impact that would alert a victim, thereby allowing the
attacker to exploit the victim’s access rights over a long time.

The motive of such attacks is sometimes unclear. One popular objective is economic
espionage. A series of attacks, apparently organized and supported by the Chinese
government, was used in 2012 and 2013 to obtain product designs from aerospace
companies in the United States. There is evidence the stub of the attack code was loaded
into victim machines long in advance of the attack; then, the attackers installed the more
complex code and extracted the desired data. In May 2014 the Justice Department indicted
five Chinese hackers in absentia for these attacks.

In the summer of 2014 a series of attacks against J.P. Morgan Chase bank and up to a
dozen similar financial institutions allowed the assailants access to 76 million names,
phone numbers, and email addresses. The attackers—and even their country of origin—
remain unknown, as does the motive. Perhaps the attackers wanted more sensitive
financial data, such as account numbers or passwords, but were only able to get the less
valuable contact information. It is also not known if this attack was related to an attack a
year earlier that disrupted service to that bank and several others.

To imagine the full landscape of possible attacks, you may find it useful to consider the
kinds of people who attack computer systems. Although potentially anyone is an attacker,
certain classes of people stand out because of their backgrounds or objectives. Thus, in the

http://cve.mitre.org/
http://nvd.nist.gov/cvss.cfm

following sections we look at profiles of some classes of attackers.
Types of Attackers

Who are attackers? As we have seen, their motivations range from chance to a specific
target. Putting aside attacks from natural and benign causes, we can explore who the
attackers are and what motivates them.

Most studies of attackers actually analyze computer criminals, that is, people who have
actually been convicted of a crime, primarily because that group is easy to identify and
study. The ones who got away or who carried off an attack without being detected may
have characteristics different from those of the criminals who have been caught. Worse, by
studying only the criminals we have caught, we may not learn how to catch attackers who
know how to abuse the system without being apprehended.

What does a cyber criminal look like? In television and films the villains wore shabby
clothes, looked mean and sinister, and lived in gangs somewhere out of town. By contrast,
the sheriff dressed well, stood proud and tall, was known and respected by everyone in
town, and struck fear in the hearts of most criminals.

To be sure, some computer criminals are mean and sinister types. But many more wear
business suits, have university degrees, and appear to be pillars of their communities.
Some are high school or university students. Others are middle-aged business executives.
Some are mentally deranged, overtly hostile, or extremely committed to a cause, and they
attack computers as a symbol. Others are ordinary people tempted by personal profit,
revenge, challenge, advancement, or job security—Ilike perpetrators of any crime, using a
computer or not. Researchers have tried to find the psychological traits that distinguish
attackers, as described in Sidebar 1-1. These studies are far from conclusive, however, and
the traits they identify may show correlation but not necessarily causality. To appreciate
this point, suppose a study found that a disproportionate number of people convicted of
computer crime were left-handed. Does that result imply that all left-handed people are
computer criminals or that only left-handed people are? Certainly not. No single profile
captures the characteristics of a “typical” computer attacker, and the characteristics of
some notorious attackers also match many people who are not attackers. As shown in
Figure 1-10, attackers look just like anybody in a crowd.

Terrorist

Hacker

Individual

Organized
crime member

FIGURE 1-10 Attackers

|

Criminal-
for-hire

Loosely
connected

group

No one pattern matches all attackers.

Sidebar 1-1 An Attacker’s Psychological Profile?

Temple Grandin, a professor of animal science at Colorado State University and
a sufferer from a mental disorder called Asperger syndrome (AS), thinks that
Kevin Mitnick and several other widely described hackers show classic
symptoms of Asperger syndrome. Although quick to point out that no research
has established a link between AS and hacking, Grandin notes similar behavior
traits among Mitnick, herself, and other AS sufferers. An article in USA Today

(29 March 2001) lists the following AS traits:

» poor social skills, often associated with being loners during childhood; the

classic “computer nerd”

» fidgeting, restlessness, inability to make eye contact, lack of response to
cues in social interaction, such as facial expressions or body language

* exceptional ability to remember long strings of numbers

» ability to focus on a technical problem intensely and for a long time,
although easily distracted on other problems and unable to manage several

tasks at once
* deep honesty and respect for laws

Donn Parker [PAR98] has studied hacking and computer crime for many

years. He states “hackers are characterized by an immature, excessively
idealistic attitude ... They delight in presenting themselves to the media as
idealistic do-gooders, champions of the underdog.”

Consider the following excerpt from an interview [SHAO0Q] with “Mixter,” the
German programmer who admitted he was the author of a widespread piece of
attack software called Tribal Flood Network (TFN) and its sequel TFN2K:

Q: Why did you write the software?

A: T first heard about Trin00 [another piece of attack software] in July 99
and I considered it as interesting from a technical perspective, but also
potentially powerful in a negative way. I knew some facts of how Trin00
worked, and since I didn’t manage to get Trin00 sources or binaries at that
time, I wrote my own server-client network that was capable of performing
denial of service.

Q: Were you involved ... in any of the recent high-profile attacks?

A: No. The fact that I authored these tools does in no way mean that I
condone their active use. I must admit I was quite shocked to hear about the
latest attacks. It seems that the attackers are pretty clueless people who
misuse powerful resources and tools for generally harmful and senseless
activities just “because they can.”

Notice that from some information about denial-of-service attacks, he wrote
his own server-client network and then a sophisticated attack. But he was “quite
shocked” to hear they were used for harm.

More research is needed before we can define the profile of a hacker. And
even more work will be needed to extend that profile to the profile of a
(malicious) attacker. Not all hackers become attackers; some hackers become
extremely dedicated and conscientious system administrators, developers, or
security experts. But some psychologists see in AS the rudiments of a hacker’s
profile.

Individuals

Originally, computer attackers were individuals, acting with motives of fun, challenge,
or revenge. Early attackers acted alone. Two of the most well known among them are
Robert Morris Jr., the Cornell University graduate student who brought down the Internet
in 1988 [SPA89], and Kevin Mitnick, the man who broke into and stole data from dozens
of computers, including the San Diego Supercomputer Center [MARO95].

Organized, Worldwide Groups

More recent attacks have involved groups of people. An attack against the government
of the country of Estonia (described in more detail in Chapter 13) is believed to have been
an uncoordinated outburst from a loose federation of attackers from around the world.
Kevin Poulsen [POUO0O5] quotes Tim Rosenberg, a research professor at George
Washington University, warning of “multinational groups of hackers backed by organized
crime” and showing the sophistication of prohibition-era mobsters. He also reports that
Christopher Painter, deputy director of the U.S. Department of Justice’s computer crime

section, argues that cyber criminals and serious fraud artists are increasingly working in
concert or are one and the same. According to Painter, loosely connected groups of
criminals all over the world work together to break into systems and steal and sell
information, such as credit card numbers. For instance, in October 2004, U.S. and
Canadian authorities arrested 28 people from 6 countries involved in an international,
organized cybercrime ring to buy and sell credit card information and identities.

Whereas early motives for computer attackers such as Morris and Mitnick were
personal, such as prestige or accomplishment, recent attacks have been heavily influenced
by financial gain. Security firm McAfee reports “Criminals have realized the huge
financial gains to be made from the Internet with little risk. They bring the skills,
knowledge, and connections needed for large scale, high-value criminal enterprise that,
when combined with computer skills, expand the scope and risk of cybercrime.” [MCAOQ5]

Organized Crime

Attackers’ goals include fraud, extortion, money laundering, and drug trafficking, areas
in which organized crime has a well-established presence. Evidence is growing that
organized crime groups are engaging in computer crime. In fact, traditional criminals are
recruiting hackers to join the lucrative world of cybercrime. For example, Albert Gonzales
was sentenced in March 2010 to 20 years in prison for working with a crime ring to steal
40 million credit card numbers from retailer TJMaxx and others, costing over $200
million (Reuters, 26 March 2010).

Organized crime may use computer crime (such as stealing credit card numbers or bank
account details) to finance other aspects of crime. Recent attacks suggest that professional
criminals have discovered just how lucrative computer crime can be. Mike Danseglio, a
security project manager with Microsoft, said, “In 2006, the attackers want to pay the rent.
They don’t want to write a worm that destroys your hardware. They want to assimilate
your computers and use them to make money.” [NARO06a] Mikko Hypponen, Chief
Research Officer with Finnish security company f-Secure, agrees that today’s attacks often
come from Russia, Asia, and Brazil; the motive is now profit, not fame [BRA06]. Ken
Dunham, Director of the Rapid Response Team for VeriSign says he is “convinced that
groups of well-organized mobsters have taken control of a global billion-dollar crime
network powered by skillful hackers.” [NAROG6bD]

Organized crime groups are discovering that computer crime can be
lucrative.

McAfee also describes the case of a hacker-for-hire: a businessman who hired a 16-
year-old New Jersey hacker to attack the websites of his competitors. The hacker barraged
the site for a five-month period and damaged not only the target companies but also their
Internet service providers (ISPs) and other unrelated companies that used the same ISPs.
By FBI estimates, the attacks cost all the companies over $2 million; the FBI arrested both
hacker and businessman in March 2005 [MCAUOQ5].

Brian Snow [SNOO5] observes that hackers want a score or some kind of evidence to
give them bragging rights. Organized crime wants a resource; such criminals want to stay
under the radar to be able to extract profit from the system over time. These different

objectives lead to different approaches to computer crime: The novice hacker can use a
crude attack, whereas the professional attacker wants a neat, robust, and undetectable
method that can deliver rewards for a long time.

Terrorists

The link between computer security and terrorism is quite evident. We see terrorists
using computers in four ways:

» Computer as target of attack: Denial-of-service attacks and website
defacements are popular activities for any political organization because they
attract attention to the cause and bring undesired negative attention to the object
of the attack. An example is the massive denial-of-service attack launched
against the country of Estonia, detailed in Chapter 13.

» Computer as method of attack: Launching offensive attacks requires the use of
computers. Stuxnet, an example of malicious computer code called a worm, is
known to attack automated control systems, specifically a model of control
system manufactured by Siemens. Experts say the code is designed to disable
machinery used in the control of nuclear reactors in Iran [MAR10]. The persons
behind the attack are unknown, but the infection is believed to have spread
through USB flash drives brought in by engineers maintaining the computer
controllers. (We examine the Stuxnet worm in more detail in Chapters 6 and 13.)

» Computer as enabler of attack: Websites, web logs, and email lists are
effective, fast, and inexpensive ways to allow many people to coordinate.
According to the Council on Foreign Relations, the terrorists responsible for the
November 2008 attack that killed over 200 people in Mumbai used GPS systems
to guide their boats, Blackberries for their communication, and Google Earth to
plot their routes.

» Computer as enhancer of attack: The Internet has proved to be an invaluable
means for terrorists to spread propaganda and recruit agents. In October 2009
the FBI arrested Colleen LaRose, also known as JihadJane, after she had spent
months using email, YouTube, MySpace, and electronic message boards to
recruit radicals in Europe and South Asia to “wage violent jihad,” according to a
federal indictment.

We cannot accurately measure the degree to which terrorists use computers, because
terrorists keep secret the nature of their activities and because our definitions and
measurement tools are rather weak. Still, incidents like the one described in Sidebar 1-2
provide evidence that all four of these activities are increasing.

Sidebar 1-2 The Terrorists, Inc., I'T Department

In 2001, a reporter for the Wall Street Journal bought a used computer in
Afghanistan. Much to his surprise, he found that the hard drive contained what
appeared to be files from a senior al Qaeda operative. The reporter, Alan
Cullison [CULO04], reports that he turned the computer over to the FBI. In his
story published in 2004 in The Atlantic, he carefully avoids revealing anything
he thinks might be sensitive.

The disk contained over 1,000 documents, many of them encrypted with
relatively weak encryption. Cullison found draft mission plans and white papers
setting forth ideological and philosophical arguments for the attacks of 11
September 2001. Also found were copies of news stories on terrorist activities.
Some of the found documents indicated that al Qaeda was not originally
interested in chemical, biological, or nuclear weapons, but became interested
after reading public news articles accusing al Qaeda of having those capabilities.

Perhaps most unexpected were email messages of the kind one would find in
a typical office: recommendations for promotions, justifications for petty cash
expenditures, and arguments concerning budgets.

The computer appears to have been used by al Qaeda from 1999 to 2001.
Cullison notes that Afghanistan in late 2001 was a scene of chaos, and it is
likely the laptop’s owner fled quickly, leaving the computer behind, where it fell
into the hands of a secondhand goods merchant who did not know its contents.

But this computer’s contents illustrate an important aspect of computer
security and confidentiality: We can never predict the time at which a security
disaster will strike, and thus we must always be prepared to act immediately if it
suddenly happens.

If someone on television sneezes, you do not worry about the possibility of catching a
cold. But if someone standing next to you sneezes, you may become concerned. In the
next section we examine the harm that can come from the presence of a computer security
threat on your own computer systems.

1.3 Harm

The negative consequence of an actualized threat is harm; we protect ourselves against
threats in order to reduce or eliminate harm. We have already described many examples of
computer harm: a stolen computer, modified or lost file, revealed private letter, or denied
access to data. These events cause harm that we want to avoid.

In our earlier discussion of assets, we noted that value depends on owner or outsider
perception and need. Some aspects of value are immeasurable, such as the value of the
paper you need to submit to your professor tomorrow; if you lose the paper (that is, if its
availability is lost), no amount of money will compensate you for it. Items on which you
place little or no value might be more valuable to someone else; for example, the group
photograph taken at last night’s party can reveal that your friend was not where he told his
wife he would be. Even though it may be difficult to assign a specific number as the value
of an asset, you can usually assign a value on a generic scale, such as moderate or
minuscule or incredibly high, depending on the degree of harm that loss or damage to the
object would cause. Or you can assign a value relative to other assets, based on
comparable loss: This version of the file is more valuable to you than that version.

In their 2010 global Internet threat report, security firm Symantec surveyed the kinds of
goods and services offered for sale on underground web pages. The item most frequently
offered in both 2009 and 2008 was credit card numbers, at prices ranging from $0.85 to
$30.00 each. (Compare those prices to an individual’s effort to deal with the effect of a

stolen credit card or the potential amount lost by the issuing bank.) Second most frequent
was bank account credentials, at $15 to $850; these were offered for sale at 19% of
websites in both years. Email accounts were next at $1 to $20, and lists of email addresses
went for $1.70 to $15.00 per thousand. At position 10 in 2009 were website administration
credentials, costing only $2 to $30. These black market websites demonstrate that the
market price of computer assets can be dramatically different from their value to rightful
owners.

The value of many assets can change over time, so the degree of harm (and therefore
the severity of a threat) can change, too. With unlimited time, money, and capability, we
might try to protect against all kinds of harm. But because our resources are limited, we
must prioritize our protection, safeguarding only against serious threats and the ones we
can control. Choosing the threats we try to mitigate involves a process called risk
management, and it includes weighing the seriousness of a threat against our ability to
protect.

Risk management involves choosing which threats to control and what
resources to devote to protection.

Risk and Common Sense

The number and kinds of threats are practically unlimited because devising an attack
requires an active imagination, determination, persistence, and time (as well as access and
resources). The nature and number of threats in the computer world reflect life in general:
The causes of harm are limitless and largely unpredictable. Natural disasters like
volcanoes and earthquakes happen with little or no warning, as do auto accidents, heart
attacks, influenza, and random acts of violence. To protect against accidents or the flu, you
might decide to stay indoors, never venturing outside. But by doing so, you trade one set
of risks for another; while you are inside, you are vulnerable to building collapse. There
are too many possible causes of harm for us to protect ourselves—or our computers—
completely against all of them.

In real life we make decisions every day about the best way to provide our security. For
example, although we may choose to live in an area that is not prone to earthquakes, we
cannot entirely eliminate earthquake risk. Some choices are conscious, such as deciding
not to walk down a dark alley in an unsafe neighborhood; other times our subconscious
guides us, from experience or expertise, to take some precaution. We evaluate the
likelihood and severity of harm, and then consider ways (called countermeasures or
controls) to address threats and determine the controls’ effectiveness.

Computer security is similar. Because we cannot protect against everything, we
prioritize: Only so much time, energy, or money is available for protection, so we address
some risks and let others slide. Or we consider alternative courses of action, such as
transferring risk by purchasing insurance or even doing nothing if the side effects of the
countermeasure could be worse than the possible harm. The risk that remains uncovered
by controls is called residual risk.

A basic model of risk management involves a user’s calculating the value of all assets,
determining the amount of harm from all possible threats, computing the costs of

protection, selecting safeguards (that is, controls or countermeasures) based on the degree
of risk and on limited resources, and applying the safeguards to optimize harm averted.
This approach to risk management is a logical and sensible approach to protection, but it
has significant drawbacks. In reality, it is difficult to assess the value of each asset; as we
have seen, value can change depending on context, timing, and a host of other
characteristics. Even harder is determining the impact of all possible threats. The range of
possible threats is effectively limitless, and it is difficult (if not impossible in some
situations) to know the short- and long-term impacts of an action. For instance, Sidebar 1-
3 describes a study of the impact of security breaches over time on corporate finances,
showing that a threat must be evaluated over time, not just at a single instance.

Sidebar 1-3 Short- and Long-term Risks of Security Breaches

It was long assumed that security breaches would be bad for business: that
customers, fearful of losing their data, would veer away from insecure
businesses and toward more secure ones. But empirical studies suggest that the
picture is more complicated. Early studies of the effects of security breaches,
such as that of Campbell [CAMO3], examined the effects of breaches on stock
price. They found that a breach’s impact could depend on the nature of the
breach itself; the effects were higher when the breach involved unauthorized
access to confidential data. Cavusoglu et al. [CAV04] discovered that a breach
affects the value not only of the company experiencing the breach but also of
security enterprises: On average, the breached firms lost 2.1 percent of market
value within two days of the breach’s disclosure, but security developers’ market
value actually increased 1.36 percent.

Myung Ko and Carlos Dorantes [KOO06] looked at the longer-term financial
effects of publicly announced breaches. Based on the Campbell et al. study, they
examined data for four quarters following the announcement of unauthorized
access to confidential data. Ko and Dorantes note many types of possible
breach-related costs:

“Examples of short-term costs include cost of repairs, cost of replacement of the system, lost
business due to the disruption of business operations, and lost productivity of employees.
These are also considered tangible costs. On the other hand, long-term costs include the loss
of existing customers due to loss of trust, failing to attract potential future customers due to
negative reputation from the breach, loss of business partners due to loss of trust, and
potential legal liabilities from the breach. Most of these costs are intangible costs that are
difficult to calculate but extremely important in assessing the overall security breach costs to
the organization.”

Ko and Dorantes compared two groups of companies: one set (the treatment
group) with data breaches, and the other (the control group) without a breach but
matched for size and industry. Their findings were striking. Contrary to what
you might suppose, the breached firms had no decrease in performance for the
quarters following the breach, but their return on assets decreased in the third
quarter. The comparison of treatment with control companies revealed that the
control firms generally outperformed the breached firms. However, the breached
firms outperformed the control firms in the fourth quarter.

These results are consonant with the results of other researchers who conclude

that there is minimal long-term economic impact from a security breach. There
are many reasons why this is so. For example, customers may think that all
competing firms have the same vulnerabilities and threats, so changing to
another vendor does not reduce the risk. Another possible explanation may be a
perception that a breached company has better security since the breach forces
the company to strengthen controls and thus reduce the likelihood of similar
breaches. Yet another explanation may simply be the customers’ short attention
span; as time passes, customers forget about the breach and return to business as
usual.

All these studies have limitations, including small sample sizes and lack of
sufficient data. But they clearly demonstrate the difficulties of quantifying and
verifying the impacts of security risks, and point out a difference between short-
and long-term effects.

Although we should not apply protection haphazardly, we will necessarily protect
against threats we consider most likely or most damaging. For this reason, it is essential to
understand how we perceive threats and evaluate their likely occurrence and impact.
Sidebar 1-4 summarizes some of the relevant research in risk perception and decision-
making. Such research suggests that, for relatively rare instances such as high-impact
security problems, we must take into account the ways in which people focus more on the
impact than on the actual likelihood of occurrence.

Sidebar 1-4 Perception of the Risk of Extreme Events

When a type of adverse event happens frequently, we can calculate its likelihood
and impact by examining both frequency and nature of the collective set of
events. For instance, we can calculate the likelihood that it will rain this week
and take an educated guess at the number of inches of precipitation we will
receive; rain is a fairly frequent occurrence. But security problems are often
extreme events: They happen infrequently and under a wide variety of
circumstances, so it is difficult to look at them as a group and draw general
conclusions.

Paul Slovic’s work on risk addresses the particular difficulties with extreme
events. He points out that evaluating risk in such cases can be a political
endeavor as much as a scientific one. He notes that we tend to let values,
process, power, and trust influence our risk analysis [SLO99].

Beginning with Fischoff et al. [FIS78], researchers characterized extreme risk
along two perception-based axes: the dread of the risk and the degree to which
the risk is unknown. These feelings about risk, called daffects by psychologists,
enable researchers to discuss relative risks by placing them on a plane defined
by the two perceptions as axes. A study by Loewenstein et al. [LOEO1]
describes how risk perceptions are influenced by association (with events
already experienced) and by affect at least as much if not more than by reason.
In fact, if the two influences compete, feelings usually trump reason.

This characteristic of risk analysis is reinforced by prospect theory: studies of
how people make decisions by using reason and feeling. Kahneman and Tversky

[KAH79] showed that people tend to overestimate the likelihood of rare,
unexperienced events because their feelings of dread and the unknown usually
dominate analytical reasoning about the low likelihood of occurrence. By
contrast, if people experience similar outcomes and their likelihood, their feeling
of dread diminishes and they can actually underestimate rare events. In other
words, if the impact of a rare event is high (high dread), then people focus on
the impact, regardless of the likelihood. But if the impact of a rare event is
small, then they pay attention to the likelihood.

Let us look more carefully at the nature of a security threat. We have seen that one
aspect—its potential harm—is the amount of damage it can cause; this aspect is the
impact component of the risk. We also consider the magnitude of the threat’s likelihood.
A likely threat is not just one that someone might want to pull off but rather one that could
actually occur. Some people might daydream about getting rich by robbing a bank; most,
however, would reject that idea because of its difficulty (if not its immorality or risk). One
aspect of likelihood is feasibility: Is it even possible to accomplish the attack? If the
answer is no, then the likelihood is zero, and therefore so is the risk. So a good place to
start in assessing risk is to look at whether the proposed action is feasible. Three factors
determine feasibility, as we describe next.

Spending for security is based on the impact and likelihood of potential
harm—both of which are nearly impossible to measure precisely.

Method-Opportunity—Motive

A malicious attacker must have three things to ensure success: method, opportunity, and
motive, depicted in Figure 1-11. Roughly speaking, method is the how; opportunity, the
when; and motive, the why of an attack. Deny the attacker any of those three and the
attack will not succeed. Let us examine these properties individually.

Opportunity

L

fl“a nce o”‘tﬂ Motive

Method

FIGURE 1-11 Method—Opportunity—Motive
Method

By method we mean the skills, knowledge, tools, and other things with which to
perpetrate the attack. Think of comic figures that want to do something, for example, to
steal valuable jewelry, but the characters are so inept that their every move is doomed to
fail. These people lack the capability or method to succeed, in part because there are no
classes in jewel theft or books on burglary for dummies.

Anyone can find plenty of courses and books about computing, however. Knowledge of
specific models of computer systems is widely available in bookstores and on the Internet.
Mass-market systems (such as the Microsoft or Apple or Unix operating systems) are
readily available for purchase, as are common software products, such as word processors
or database management systems, so potential attackers can even get hardware and
software on which to experiment and perfect an attack. Some manufacturers release
detailed specifications on how the system was designed or how it operates, as guides for
users and integrators who want to implement other complementary products. Various

attack tools—scripts, model programs, and tools to test for weaknesses—are available
from hackers’ sites on the Internet, to the degree that many attacks require only the
attacker’s ability to download and run a program. The term script kiddie describes
someone who downloads a complete attack code package and needs only to enter a few
details to identify the target and let the script perform the attack. Often, only time and
inclination limit an attacker.

Opportunity

Opportunity is the time and access to execute an attack. You hear that a fabulous
apartment has just become available, so you rush to the rental agent, only to find someone
else rented it five minutes earlier. You missed your opportunity.

Many computer systems present ample opportunity for attack. Systems available to the
public are, by definition, accessible; often their owners take special care to make them
fully available so that if one hardware component fails, the owner has spares instantly
ready to be pressed into service. Other people are oblivious to the need to protect their
computers, so unattended laptops and unsecured network connections give ample
opportunity for attack. Some systems have private or undocumented entry points for
administration or maintenance, but attackers can also find and use those entry points to
attack the systems.

Motive

Finally, an attacker must have a motive or reason to want to attack. You probably have
ample opportunity and ability to throw a rock through your neighbor’s window, but you do
not. Why not? Because you have no reason to want to harm your neighbor: You lack
motive.

We have already described some of the motives for computer crime: money, fame, self-
esteem, politics, terror. It is often difficult to determine motive for an attack. Some places
are “attractive targets,” meaning they are very appealing to attackers. Popular targets
include law enforcement and defense department computers, perhaps because they are
presumed to be well protected against attack (so they present a challenge and a successful
attack shows the attacker’s prowess). Other systems are attacked because they are easy to
attack. And some systems are attacked at random simply because they are there.

Method, opportunity, and motive are all necessary for an attack to
succeed; deny any of these and the attack will fail.

By demonstrating feasibility, the factors of method, opportunity, and motive determine
whether an attack can succeed. These factors give the advantage to the attacker because
they are qualities or strengths the attacker must possess. Another factor, this time giving
an advantage to the defender, determines whether an attack will succeed: The attacker
needs a vulnerability, an undefended place to attack. If the defender removes
vulnerabilities, the attacker cannot attack.

1.4 Vulnerabilities

As we noted earlier in this chapter, a vulnerability is a weakness in the security of the

computer system, for example, in procedures, design, or implementation, that might be
exploited to cause loss or harm. Think of a bank, with an armed guard at the front door,
bulletproof glass protecting the tellers, and a heavy metal vault requiring multiple keys for
entry. To rob a bank, you would have to think of how to exploit a weakness not covered by
these defenses. For example, you might bribe a teller or pose as a maintenance worker.

Computer systems have vulnerabilities, too. In this book we consider many, such as
weak authentication, lack of access control, errors in programs, finite or insufficient
resources, and inadequate physical protection. Paired with a credible attack, each of these
vulnerabilities can allow harm to confidentiality, integrity, or availability. Each attack
vector seeks to exploit a particular vulnerability.

Vulnerabilities are weaknesses that can allow harm to occur.

Security analysts speak of a system’s attack surface, which is the system’s full set of
vulnerabilities—actual and potential. Thus, the attack surface includes physical hazards,
malicious attacks by outsiders, stealth data theft by insiders, mistakes, and impersonations.
Although such attacks range from easy to highly improbable, analysts must consider all
possibilities.

Our next step is to find ways to block threats by neutralizing vulnerabilities.

1.5 Controls

A control or countermeasure is a means to counter threats. Harm occurs when a threat
is realized against a vulnerability. To protect against harm, then, we can neutralize the
threat, close the vulnerability, or both. The possibility for harm to occur is called risk. We
can deal with harm in several ways:

* prevent it, by blocking the attack or closing the vulnerability

* deter it, by making the attack harder but not impossible

* deflect it, by making another target more attractive (or this one less so)
* mitigate it, by making its impact less severe

* detect it, either as it happens or some time after the fact

* recover from its effects

Of course, more than one of these controls can be used simultaneously. So, for example,
we might try to prevent intrusions—but if we suspect we cannot prevent all of them, we
might also install a detection device to warn of an imminent attack. And we should have in

place incident-response procedures to help in the recovery in case an intrusion does
succeed.

Security professionals balance the cost and effectiveness of controls with
the likelihood and severity of harm.

To consider the controls or countermeasures that attempt to prevent exploiting a
computing system’s vulnerabilities, we begin by thinking about traditional ways to
enhance physical security. In the Middle Ages, castles and fortresses were built to protect

the people and valuable property inside. The fortress might have had one or more security
characteristics, including

* a strong gate or door to repel invaders

* heavy walls to withstand objects thrown or projected against them
* a surrounding moat to control access

* arrow slits to let archers shoot at approaching enemies

« crenellations to allow inhabitants to lean out from the roof and pour hot or vile
liquids on attackers

* a drawbridge to limit access to authorized people
« a portcullis to limit access beyond the drawbridge
« gatekeepers to verify that only authorized people and goods could enter

Similarly, today we use a multipronged approach to protect our homes and offices. We
may combine strong locks on the doors with a burglar alarm, reinforced windows, and
even a nosy neighbor to keep an eye on our valuables. In each case, we select one or more
ways to deter an intruder or attacker, and we base our selection not only on the value of
what we protect but also on the effort we think an attacker or intruder will expend to get
inside.

Computer security has the same characteristics. We have many controls at our disposal.
Some are easier than others to use or implement. Some are cheaper than others to use or
implement. And some are more difficult than others for intruders to override. Figure 1-12
illustrates how we use a combination of controls to secure our valuable resources. We use
one or more controls, according to what we are protecting, how the cost of protection
compares with the risk of loss, and how hard we think intruders will work to get what they
want.

Preemption . :
System Perimeter

~

External Internal Syslem
Prevention Prevention Eesource

= =

- 4 v ,
\\i—-'- _ I‘.k'.h‘u'l.in? P [o ;
|I"|[|'l|.\iu|'|& — : 6 |]|\ f

R— . i -—{‘q
Altempts ﬁ f i xplg'—-* Response
—_—_—
//'(' Deflection
External | Internal
Deterrence '_ Deterrence Faux !
Environment

FIGURE 1-12 Effects of Controls

In this section, we present an overview of the controls available to us. In the rest of this
book, we examine how to use controls against specific kinds of threats.

We can group controls into three largely independent classes. The following list shows
the classes and several examples of each type of control.

* Physical controls stop or block an attack by using something tangible too,

such as walls and fences
— locks
— (human) guards
— sprinklers and other fire extinguishers
* Procedural or administrative controls use a command or agreement that
— requires or advises people how to act; for example,
— laws, regulations
— policies, procedures, guidelines
— copyrights, patents
— contracts, agreements
* Technical controls counter threats with technology (hardware or software),
including
— passwords
— program or operating system access controls
— network protocols
— firewalls, intrusion detection systems
— encryption
— network traffic flow regulators
(Note that the term “logical controls” is also used, but some people use it to mean

administrative controls, whereas others use it to mean technical controls. To avoid
confusion, we do not use that term.)

As shown in Figure 1-13, you can think in terms of the property to be protected and the
kind of threat when you are choosing appropriate types of countermeasures. None of these
classes is necessarily better than or preferable to the others; they work in different ways
with different kinds of results. And it can be effective to use overlapping controls or
defense in depth: more than one control or more than one class of control to achieve
protection.

Kind of Threat

5
V b
® e, o
- (¢
T P E
Confidentiality A&
- | &
L] =
S| 27
Protects : =
Integrity &

N\

Availability

FIGURE 1-13 Types of Countermeasures

1.6 Conclusion

Computer security attempts to ensure the confidentiality, integrity, and availability of
computing systems and their components. Three principal parts of a computing system are
subject to attacks: hardware, software, and data. These three, and the communications
among them, are susceptible to computer security vulnerabilities. In turn, those people and
systems interested in compromising a system can devise attacks that exploit the
vulnerabilities.

In this chapter we have explained the following computer security concepts:

* Security situations arise in many everyday activities, although sometimes it
can be difficult to distinguish between a security attack and an ordinary human
or technological breakdown. Alas, clever attackers realize this confusion, so
they may make their attack seem like a simple, random failure.

* A threat is an incident that could cause harm. A vulnerability is a weakness
through which harm could occur. These two problems combine: Either without
the other causes no harm, but a threat exercising a vulnerability means damage.
To control such a situation, we can either block or diminish the threat, or close
the vulnerability (or both).

* Seldom can we achieve perfect security: no viable threats and no exercisable
vulnerabilities. Sometimes we fail to recognize a threat, or other times we may
be unable or unwilling to close a vulnerability. Incomplete security is not a bad
situation; rather, it demonstrates a balancing act: Control certain threats and
vulnerabilities, apply countermeasures that are reasonable, and accept the risk of
harm from uncountered cases.

* An attacker needs three things: method—the skill and knowledge to perform a
successful attack; opportunity—time and access by which to attack; and motive
—a reason to want to attack. Alas, none of these three is in short supply, which

means attacks are inevitable.

In this chapter we have introduced the notions of threats and harm, vulnerabilities,
attacks and attackers, and countermeasures. Attackers leverage threats that exploit
vulnerabilities against valuable assets to cause harm, and we hope to devise
countermeasures to eliminate means, opportunity, and motive. These concepts are the
basis we need to study, understand, and master computer security.

Countermeasures and controls can be applied to the data, the programs, the system, the
physical devices, the communications links, the environment, and the personnel.
Sometimes several controls are needed to cover a single vulnerability, but sometimes one
control addresses many problems at once.

1.7 What’s Next?

The rest of this book is organized around the major aspects or pieces of computer
security. As you have certainly seen in almost daily news reports, computer security
incidents abound. The nature of news is that failures are often reported, but seldom
successes. You almost never read a story about hackers who tried to break into the
computing system of a bank but were foiled because the bank had installed strong, layered
defenses. In fact, attacks repelled far outnumber those that succeed, but such good
situations do not make interesting news items.

Still, we do not want to begin with examples in which security controls failed. Instead,
in Chapter 2 we begin by giving you descriptions of three powerful and widely used
security protection methods. We call these three our security toolkit, in part because they
are effective but also because they are applicable. We refer to these techniques in probably
every other chapter of this book, so we want not only to give them a prominent position up
front but also to help lodge them in your brain. Our three featured tools are identification
and authentication, access control, and encryption.

After presenting these three basic tools we lead into domains in which computer
security applies. We begin with the simplest computer situations, individual programs, and
explore the problems and protections of computer code in Chapter 3. We also consider
malicious code, such as viruses and Trojan horses (defining those terms along with other
types of harmful programs). As you will see in other ways, there is no magic that can
make bad programs secure or turn programmers into protection gurus. We do, however,
point out some vulnerabilities that show up in computer code and describe ways to counter
those weaknesses, both during program development and as a program executes.

Modern computing involves networking, especially using the Internet. We focus first on
how networked computing affects individuals, primarily through browsers and other basic
network interactions such as email. In Chapter 4 we look at how users can be tricked by
skillful writers of malicious code. These attacks tend to affect the protection of
confidentiality of users’ data and integrity of their programs.

Chapter 5 covers operating systems, continuing our path of moving away from things

the user can see and affect directly. We see what protections operating systems can provide
to users’ programs and data, most often against attacks on confidentiality or integrity. We
also see how the strength of operating systems can be undermined by attacks, called
rootkits, that directly target operating systems and render them unable to protect
themselves or their users.

In Chapter 6 we return to networks, this time looking at the whole network and its
impact on users’ abilities to communicate data securely across the network. We also study
a type of attack called denial of service, just what its name implies, that is the first major
example of a failure of availability.

We consider data, databases, and data mining in Chapter 7. The interesting cases
involve large databases in which confidentiality of individuals’ private data is an
objective. Integrity of the data in the databases is also a significant concern.

In Chapter 8 we move even further from the individual user and study cloud computing,
a technology becoming quite popular. Companies are finding it convenient and cost
effective to store data “in the cloud,” and individuals are doing the same to have shared
access to things such as music and photos. There are security risks involved in this
movement, however.

You may have noticed our structure: We organize our presentation from the user
outward through programs, browsers, operating systems, networks, and the cloud, a
progression from close to distant. In Chapter 9 we return to the user for a different reason:
We consider privacy, a property closely related to confidentiality. Our treatment here is
independent of where the data are: on an individual computer, a network, or a database.
Privacy is a property we as humans deserve, and computer security can help preserve it, as
we present in that chapter.

In Chapter 10 we look at several topics of management of computing as related to
security. Security incidents occur, and computing installations need to be ready to respond,
whether the cause is a hacker attack, software catastrophe, or fire. Managers also have to
decide what controls to employ, because countermeasures cost money that must be spent
wisely. Computer security protection is hard to evaluate: When it works you do not know
it does. Performing risk analysis and building a case for security are important
management tasks.

Some security protections are beyond the scope an individual can address. Organized
crime from foreign countries is something governments must deal with, through a legal
system. In Chapter 11 we consider laws affecting computer security. We also look at
ethical standards, what is “right” in computing.

In Chapter 12 we return to cryptography, which we introduced in Chapter 2.
Cryptography merits courses and textbooks of its own, and the topic is detailed enough
that most of the real work in the field is done at the graduate level and beyond. We use
Chapter 2 to introduce the concepts enough to be able to apply them. In Chapter 12 we
expand upon that introduction and peek at some of the formal and mathematical
underpinnings of cryptography.

Finally, in Chapter 13 we raise four topic areas. These are domains with an important
need for computer security, although the areas are evolving so rapidly that computer

security may not be addressed as fully as it should. These areas are the so-called Internet
of Things (the interconnection of network-enabled devices from toasters to automobiles
and insulin pumps), computer security economics, electronic voting, and computer-
assisted terrorism and warfare.

We trust this organization will help you to appreciate the richness of an important field
that touches many of the things we depend on.

1.8 Exercises

1. Distinguish between vulnerability, threat, and control.

2. Theft usually results in some kind of harm. For example, if someone steals
your car, you may suffer financial loss, inconvenience (by losing your mode of
transportation), and emotional upset (because of invasion of your personal
property and space). List three kinds of harm a company might experience from
theft of computer equipment.

3. List at least three kinds of harm a company could experience from electronic
espionage or unauthorized viewing of confidential company materials.

4. List at least three kinds of damage a company could suffer when the integrity
of a program or company data is compromised.

5. List at least three kinds of harm a company could encounter from loss of
service, that is, failure of availability. List the product or capability to which
access is lost, and explain how this loss hurts the company.

6. Describe a situation in which you have experienced harm as a consequence of
a failure of computer security. Was the failure malicious or not? Did the attack
target you specifically or was it general and you were the unfortunate victim?

7. Describe two examples of vulnerabilities in automobiles for which auto
manufacturers have instituted controls. Tell why you think these controls are
effective, somewhat effective, or ineffective.

8. One control against accidental software deletion is to save all old versions of
a program. Of course, this control is prohibitively expensive in terms of cost of
storage. Suggest a less costly control against accidental software deletion. Is
your control effective against all possible causes of software deletion? If not,
what threats does it not cover?

9. On your personal computer, who can install programs? Who can change
operating system data? Who can replace portions of the operating system? Can
any of these actions be performed remotely?

10. Suppose a program to print paychecks secretly leaks a list of names of employees
earning more than a certain amount each month. What controls could be instituted to
limit the vulnerability of this leakage?

11. Preserving confidentiality, integrity, and availability of data is a restatement of the
concern over interruption, interception, modification, and fabrication. How do the
first three concepts relate to the last four? That is, is any of the four equivalent to one
or more of the three? Is one of the three encompassed by one or more of the four?

12. Do you think attempting to break in to (that is, obtain access to or use of) a

computing system without authorization should be illegal? Why or why not?

13. Describe an example (other than the ones mentioned in this chapter) of data
whose confidentiality has a short timeliness, say, a day or less. Describe an example
of data whose confidentiality has a timeliness of more than a year.

14. Do you currently use any computer security control measures? If so, what?
Against what attacks are you trying to protect?

15. Describe an example in which absolute denial of service to a user (that is, the user
gets no response from the computer) is a serious problem to that user. Describe
another example where 10 percent denial of service to a user (that is, the user’s
computation progresses, but at a rate 10 percent slower than normal) is a serious
problem to that user. Could access by unauthorized people to a computing system
result in a 10 percent denial of service to the legitimate users? How?

16. When you say that software is of high quality, what do you mean? How does
security fit in your definition of quality? For example, can an application be insecure
and still be “good”?

17. Developers often think of software quality in terms of faults and failures. Faults
are problems (for example, loops that never terminate or misplaced commas in
statements) that developers can see by looking at the code. Failures are problems,
such as a system crash or the invocation of the wrong function, that are visible to the
user. Thus, faults can exist in programs but never become failures, because the
conditions under which a fault becomes a failure are never reached. How do software
vulnerabilities fit into this scheme of faults and failures? Is every fault a
vulnerability? Is every vulnerability a fault?

18. Consider a program to display on your website your city’s current time and
temperature. Who might want to attack your program? What types of harm might
they want to cause? What kinds of vulnerabilities might they exploit to cause harm?

19. Consider a program that allows consumers to order products from the web. Who
might want to attack the program? What types of harm might they want to cause?
What kinds of vulnerabilities might they exploit to cause harm?

20. Consider a program to accept and tabulate votes in an election. Who might want
to attack the program? What types of harm might they want to cause? What kinds of
vulnerabilities might they exploit to cause harm?

21. Consider a program that allows a surgeon in one city to assist in an operation on a
patient in another city via an Internet connection. Who might want to attack the
program? What types of harm might they want to cause? What kinds of
vulnerabilities might they exploit to cause harm?

2. Toolbox: Authentication, Access Control, and
Cryptography

Chapter topics:
* Authentication, capabilities, and limitations
* The three bases of authentication: knowledge, characteristics, possessions
» Strength of an authentication mechanism
* Implementation of access control
* Employing encryption
* Symmetric and asymmetric encryption
* Message digests
* Signatures and certificates

Just as doctors have stethoscopes and carpenters have measuring tapes and squares,
security professionals have tools they use frequently. Three of these security tools are
authentication, access control, and cryptography. In this chapter we introduce these tools,
and in later chapters we use these tools repeatedly to address a wide range of security
issues.

In some sense, security hasn’t changed since sentient beings began accumulating things
worth protecting. A system owner establishes a security policy, formally or informally,
explicitly or implicitly—perhaps as simple as “no one is allowed to take my food”—and
begins taking measures to enforce that policy. The character of the threats changes as the
protagonist moves from the jungle to the medieval battlefield to the modern battlefield to
the Internet, as does the nature of the available protections, but their strategic essence
remains largely constant: An attacker wants something a defender has, so the attacker goes
after it. The defender has a number of options—fight, build a barrier or alarm system, run
and hide, diminish the target’s attractiveness to the attacker—and these options all have
analogues in modern computer security. The specifics change, but the broad strokes
remain the same.

In this chapter, we lay the foundation for computer security by studying those broad
strokes. We look at a number of ubiquitous security strategies, identify the threats against
which each of those strategies is effective, and give examples of representative
countermeasures. Throughout the rest of this book, as we delve into the specific technical
security measures used in operating systems, programming, websites and browsers, and
networks, we revisit these same strategies again and again. Years from now, when we’re
all using technology that hasn’t even been imagined yet, this chapter should be just as
relevant as it is today.

A security professional analyzes situations by finding threats and vulnerabilities to the
confidentiality, integrity, and/or availability of a computing system. Often, controlling
these threats and vulnerabilities involves a policy that specifies who (which subjects) can

access what (which objects) how (by which means). We introduced that framework in
Chapter 1. But now we want to delve more deeply into how such a policy works. To be
effective the policy enforcement must determine who accurately. That is, if policy says
Adam can access something, security fails if someone else impersonates Adam. Thus, to
enforce security policies properly, we need ways to determine beyond a reasonable doubt
that a subject’s identity is accurate. The property of accurate identification is called
authentication. The first critical tool for security professionals is authentication and its
techniques and technologies.

When we introduced security policies we did not explicitly state the converse: A subject
is allowed to access an object in a particular mode but, unless authorized, all other subjects
are not allowed to access the object. A policy without such limits is practically useless.
What good does it do to say one subject can access an object if any other subject can do so
without being authorized by policy. Consequently, we need ways to restrict access to only
those subjects on the yes list, like admitting theatre patrons to a play (with tickets) or
checking in invitees to a party (on a guest list). Someone or something controls access, for
example, an usher collects tickets or a host manages the guest list. Allowing exactly those
accesses authorized is called access control. Mechanisms to implement access control are
another fundamental computer security tool.

Suppose you were trying to limit access to a football match being held on an open park
in a populous city. Without a fence, gate, or moat, you could not limit who could see the
game. But suppose you had super powers and could cloak the players in invisibility
uniforms. You would issue special glasses only to people allowed to see the match; others
might look but see nothing. Although this scenario is pure fantasy, such an invisibility
technology does exist, called encryption. Simply put, encryption is a tool by which we can
transform data so only intended receivers (who have keys, the equivalent of anti-cloaking
glasses) can deduce the concealed bits. The third and final fundamental security tool in
this chapter is encryption.

In this chapter we describe these tools and then give a few examples to help you
understand how the tools work. But most applications of these tools come in later
chapters, where we elaborate on their use in the context of a more complete security
situation. In most of this chapter we dissect our three fundamental security tools:
authentication, access control, and encryption.

2.1 Authentication

Your neighbor recognizes you, sees you frequently, and knows you are someone who
should be going into your home. Your neighbor can also notice someone different,
especially if that person is doing something suspicious, such as snooping around your
doorway, peering up and down the walk, or picking up a heavy stone. Coupling these
suspicious events with hearing the sound of breaking glass, your neighbor might even call
the police.

Computers have replaced many face-to-face interactions with electronic ones. With no
vigilant neighbor to recognize that something is awry, people need other mechanisms to
separate authorized from unauthorized parties. For this reason, the basis of computer
security is controlled access: someone is authorized to take some action on something. We

examine access control later in this chapter. But for access control to work, we need to be
sure who the “someone” is. In this section we introduce authentication, the process of
ascertaining or confirming an identity.

A computer system does not have the cues we do with face-to-face communication that
let us recognize our friends. Instead computers depend on data to recognize others.
Determining who a person really is consists of two separate steps:

* Identification is the act of asserting who a person is.

» Authentication is the act of proving that asserted identity: that the person is
who she says she is.

Identification is asserting who a person is.

Authentication is proving that asserted identity.

We have phrased these steps from the perspective of a person seeking to be recognized,
using the term “person” for simplicity. In fact, such recognition occurs between people,
computer processes (executing programs), network connections, devices, and similar
active entities. In security, all these entities are called subjects.

The two concepts of identification and authentication are easily and often confused.
Identities, like names, are often well known, public, and not protected. On the other hand,
authentication is necessarily protected. If someone’s identity is public, anyone can claim
to be that person. What separates the pretenders from the real person is proof by
authentication.

Identification Versus Authentication

Identities are often well known, predictable, or guessable. If you send email to
someone, you implicitly send along your email account ID so the other person can reply to
you. In an online discussion you may post comments under a screen name as a way of
linking your various postings. Your bank account number is printed on checks you write;
your debit card account number is shown on your card, and so on. In each of these cases
you reveal a part of your identity. Notice that your identity is more than just your name:
Your bank account number, debit card number, email address, and other things are ways
by which people and processes identify you.

Some account IDs are not hard to guess. Some places assign user IDs as the user’s last
name followed by first initial. Others use three initials or some other scheme that outsiders
can easily predict. Often for online transactions your account ID is your email address, to
make it easy for you to remember. Other accounts identify you by telephone, social
security, or some other identity number. With too many accounts to remember, you may
welcome places that identify you by something you know well because you use it often.
But using it often also means other people can know or guess it as well. For these reasons,
many people could easily, although falsely, claim to be you by presenting one of your
known identifiers.

Identities are typically public or well known. Authentication should be
private.

Authentication, on the other hand, should be reliable. If identification asserts your
identity, authentication confirms that you are who you purport to be. Although identifiers
may be widely known or easily determined, authentication should be private. However, if
the authentication process is not strong enough, it will not be secure. Consider, for
example, how one political candidate’s email was compromised by a not-private-enough
authentication process as described in Sidebar 2-1.

Sidebar 2-1 Vice Presidential Candidate Sarah Palin’s Email Exposed

During the 2008 U.S. presidential campaign, vice presidential candidate Sarah
Palin’s personal email account was hacked. Contents of email messages and
Palin’s contacts list were posted on a public bulletin board. A 20-year-old
University of Tennessee student, David Kernell, was subsequently convicted of
unauthorized access to obtain information from her computer and sentenced to a
year and a day.

How could a college student have accessed the computer of a high-profile
public official who at the time was governor of Alaska and a U.S. vice
presidential candidate under protection of the U.S. Secret Service? Easy: He
simply pretended to be her. But surely nobody (other than, perhaps, comedian
Tina Fey) could successfully impersonate her. Here is how easy the attack was.

Governor Palin’s email account was gov.palin@yahoo.com. The account ID
was well known because of news reports of an earlier incident involving Palin’s
using her personal account for official state communications; even without the
publicity the account name would not have been hard to guess.

But the password? No, the student didn’t guess the password. All he had to do
was pretend to be Palin and claim she had forgotten her password. Yahoo asked
Kernell the security questions Palin had filed with Yahoo on opening the
account: birth date (found from Wikipedia), postcode (public knowledge,
especially because she had gotten public attention for not using the official
governor’s mansion), and where she met her husband (part of her unofficial
biography circulating during the campaign: she and her husband met in high
school). With those three answers, Kernell was able to change her password (to
“popcorn,” something appealing to most college students). From that point on,
not only was Kernell effectively Palin, the real Palin could not access her own
email account because did she not know the new password.

Authentication mechanisms use any of three qualities to confirm a user’s identity:

» Something the user knows. Passwords, PIN numbers, passphrases, a secret
handshake, and mother’s maiden name are examples of what a user may know.

» Something the user is. These authenticators, called biometrics, are based on a
physical characteristic of the user, such as a fingerprint, the pattern of a person’s
voice, or a face (picture). These authentication methods are old (we recognize
friends in person by their faces or on a telephone by their voices) but are just
starting to be used in computer authentications.

mailto:gov.palin@yahoo.com

» Something the user has. Identity badges, physical keys, a driver’s license, or a
uniform are common examples of things people have that make them
recognizable.

Two or more forms can be combined; for example, a bank card and a PIN combine
something the user has (the card) with something the user knows (the PIN).

Authentication is based on something you know, are, or have.

Although passwords were the first form of computer authentication and remain popular,
these other forms are becoming easier to use, less expensive, and more common. In the
following sections we examine each of these forms of authentication.

Authentication Based on Phrases and Facts: Something You Know

Password protection seems to offer a relatively secure system for confirming identity-
related information, but human practice sometimes degrades its quality. Let us explore
vulnerabilities in authentication, focusing on the most common authentication parameter,
the password. In this section we consider the nature of passwords, criteria for selecting
them, and ways of using them for authentication. As you read the following discussion of
password vulnerabilities, think about how well these identity attacks would work against
security questions and other authentication schemes with which you may be familiar. And
remember how much information about us is known—sometimes because we reveal it
ourselves—as described in Sidebar 2-2.

Sidebar 2-2 Facebook Pages Answer Security Questions

George Bronk, a 23-year-old resident of Sacramento, California, pleaded guilty
on 13 January 2011 to charges including computer intrusion, false
impersonation, and possession of child pornography. His crimes involved
impersonating women with data obtained from their Facebook accounts.

According to an Associated Press news story [THO11], Bronk scanned
Facebook pages for pages showing women’s email addresses. He then read their
Facebook profiles carefully for clues that could help him answer security
questions, such as a favorite color or a father’s middle name. With these profile
clues, Bronk then turned to the email account providers. Using the same
technique as Kernell, Bronk pretended to have forgotten his (her) password and
sometimes succeeded at answering the security questions necessary to recover a
forgotten password. He sometimes used the same technique to obtain access to
Facebook accounts.

After he had the women’s passwords, he perused their sent mail folders for
embarrassing photographs; he sometimes mailed those to a victim’s contacts or
posted them on her Facebook page. He carried out his activities from December
2009 to October 2010. When police confiscated his computer and analyzed its
contents, they found 3200 Internet contacts and 172 email files containing
explicit photographs; police sent mail to all the contacts to ask if they had been
victimized, and 46 replied that they had. The victims lived in England,
Washington, D.C., and 17 states from California to New Hampshire.

The California attorney general’s office advised those using email and social-
networking sites to pick security questions and answers that aren’t posted on
public sites, or to add numbers or other characters to common security answers.
Additional safety tips are on the attorney general’s website.

Password Use

The use of passwords is fairly straightforward, as you probably already know from
experience. A user enters some piece of identification, such as a name or an assigned user
ID; this identification can be available to the public or can be easy to guess because it does
not provide the real protection. The protection system then requests a password from the
user. If the password matches the one on file for the user, the user is authenticated and
allowed access. If the password match fails, the system requests the password again, in
case the user mistyped.

Even though passwords are widely used, they suffer from some difficulties of use:

» Use. Supplying a password for each access to an object can be inconvenient
and time consuming.

* Disclosure. If a user discloses a password to an unauthorized individual, the
object becomes immediately accessible. If the user then changes the password to
re-protect the object, the user must inform any other legitimate users of the new
password because their old password will fail.

* Revocation. To revoke one user’s access right to an object, someone must
change the password, thereby causing the same problems as disclosure.

* Loss. Depending on how the passwords are implemented, it may be impossible
to retrieve a lost or forgotten password. The operators or system administrators
can certainly intervene and provide a new password, but often they cannot
determine what password a user had chosen previously. If the user loses (or
forgets) the password, administrators must assign a new one.

Attacking and Protecting Passwords

How secure are passwords themselves? Passwords are somewhat limited as protection
devices because of the relatively small number of bits of information they contain. Worse,
people pick passwords that do not even take advantage of the number of bits available:
Choosing a well-known string, such as qwerty, password, or 123456 reduces an attacker’s
uncertainty or difficulty essentially to zero.

Knight and Hartley [KNI98] list, in order, 12 steps an attacker might try in order to
determine a password. These steps are in increasing degree of difficulty (number of
guesses), and so they indicate the amount of work to which the attacker must go in order
to derive a password. Here are their password guessing steps:

* no password
* the same as the user ID
* is, or is derived from, the user’s name

 on a common word list (for example, password, secret, private) plus common
names and patterns (for example, qwerty, aaaaaa)

* contained in a short college dictionary
» contained in a complete English word list
* contained in common non-English-language dictionaries

* contained in a short college dictionary with capitalizations (PaSsWorD) or
substitutions (digit O for letter O, and so forth)

* contained in a complete English dictionary with capitalizations or substitutions

* contained in common non-English dictionaries with capitalization or
substitutions

» obtained by brute force, trying all possible combinations of alphabetic
characters

» obtained by brute force, trying all possible combinations from the full
character set

Although the last step will always succeed, the steps immediately preceding it are so
time consuming that they will deter all but the most dedicated attacker for whom time is
not a limiting factor.

Every password can be guessed; password strength is determined by how
many guesses are required.

We now expand on some of these approaches.
Dictionary Attacks

Several network sites post dictionaries of phrases, science fiction character names,
places, mythological names, Chinese words, Yiddish words, and other specialized lists.
These lists help site administrators identify users who have chosen weak passwords, but
the same dictionaries can also be used by attackers of sites that do not have such attentive
administrators. The COPS [FAR90], Crack [MUF92], and SATAN [FAR95] utilities allow
an administrator to scan a system for weak passwords. But these same utilities, or other
homemade ones, allow attackers to do the same. Now Internet sites offer so-called
password recovery software as freeware or shareware for under $20. (These are password-
cracking programs.)

People think they can be clever by picking a simple password and replacing certain
characters, such as 0 (zero) for letter O, 1 (one) for letter I or L, 3 (three) for letter E or @
(at) for letter A. But users aren’t the only people who could think up these substitutions.

Inferring Passwords Likely for a User

If Sandy is selecting a password, she is probably not choosing a word completely at
random. Most likely Sandy’s password is something meaningful to her. People typically
choose personal passwords, such as the name of a spouse, child, other family member, or
pet. For any given person, the number of such possibilities is only a dozen or two. Trying
this many passwords by computer takes well under a second! Even a person working by
hand could try ten likely candidates in a minute or two.

Thus, what seemed formidable in theory is in fact quite vulnerable in practice, and the

likelihood of successful penetration is frighteningly high. Morris and Thompson [MOR79]
confirmed our fears in their report on the results of having gathered passwords from many
users, shown in Table 2-1. Figure 2-1 (based on data from that study) shows the
characteristics of the 3,289 passwords gathered. The results from that study are
distressing, and the situation today is likely to be the same. Of those passwords, 86 percent
could be uncovered in about one week’s worth of 24-hour-a-day testing, using the very
generous estimate of 1 millisecond per password check.

Number | Percentage Structure
15 <1% Single ASCII character
72 2% Two ASCII characters
464 14% Three ASCII characters
477 14% Four alphabetic letters
706 21% Five alphabetic letters, all the same case
605 18% Six lowercase alphabetic letters
492 15% Words in dictionaries or lists of names
2831 86% Total of all categories above

TABLE 2-1 Password Characteristics

One character
0%
Other good Two characters
passwords 26
14% Three characters

14%

Words in
dictionaries or
lists of names
15%

Four characters,
all letters
14%

Six letters,
lowercase Five letters,
195 all same case
229

FIGURE 2-1 Distribution of Password Types

Lest you dismiss these results as dated (they were reported in 1979), Klein repeated the
experiment in 1990 [KLE90] and Spafford in 1992 [SPA92a]. Each collected
approximately 15,000 passwords. Klein reported that 2.7 percent of the passwords were
guessed in only 15 minutes of machine time (at the speed of 1990s computers), and 21
percent were guessed within a week! Spafford found that the average password length was
6.8 characters and that 28.9 percent consisted of only lowercase alphabetic characters.

Then, in 2002 the British online bank Egg found its users still choosing weak passwords
[BUXO02]. A full 50 percent of passwords for their online banking service were family
members’ names: 23 percent children’s names, 19 percent a spouse or partner, and 9
percent their own. Alas, pets came in at only 8 percent, while celebrities and football
(soccer) stars tied at 9 percent each. And in 1998, Knight and Hartley [KINI98] reported
that approximately 35 percent of passwords are deduced from syllables and initials of the
account owner’s name. In December 2009 the computer security firm Imperva analyzed
34 million Facebook passwords that had previously been disclosed accidentally, reporting
that

» about 30 per cent of users chose passwords of fewer than seven characters.

* nearly 50 per cent of people used names, slang words, dictionary words or
trivial passwords—consecutive digits, adjacent keyboard keys and so on.

» most popular passwords included 12345, 123456, 1234567, password, and
iloveyou, in the top ten.

Two friends we know told us their passwords as we helped them administer their
systems, and their passwords would both have been among the first we would have
guessed. But, you say, these are amateurs unaware of the security risk of a weak password.
At a recent meeting, a security expert related this experience: He thought he had chosen a
solid password, so he invited a class of students to ask him questions and offer guesses as
to his password. He was amazed that they asked only a few questions before they had
deduced the password. And this was a security expert!

The conclusion we draw from these incidents is that people choose weak and easily
guessed passwords more frequently than some might expect. Clearly, people find
something in the password process that is difficult or unpleasant: Either people are unable
to choose good passwords, perhaps because of the pressure of the situation, or they fear
they will forget solid passwords. In either case, passwords are not always good
authenticators.

Guessing Probable Passwords

Think of a word. Is the word you thought of long? Is it uncommon? Is it hard to spell or
to pronounce? The answer to all three of these questions is probably no.

Penetrators searching for passwords realize these very human characteristics and use
them to their advantage. Therefore, penetrators try techniques that are likely to lead to
rapid success. If people prefer short passwords to long ones, the penetrator will plan to try
all passwords but to try them in order by length. There are only 26! + 262 + 263 = 18,278
(not case sensitive) passwords of length 3 or less. Testing that many passwords would be
difficult but possible for a human, but repetitive password testing is an easy computer

application. At an assumed rate of one password per millisecond, all of these passwords
can be checked in 18.278 seconds, hardly a challenge with a computer. Even expanding
the tries to 4 or 5 characters raises the count only to 475 seconds (about 8 minutes) or
12,356 seconds (about 3.5 hours), respectively.

This analysis assumes that people choose passwords such as vxlag and msms as often as
they pick enter and beer. However, people tend to choose names or words they can
remember. Many computing systems have spelling checkers that can be used to check for
spelling errors and typographic mistakes in documents. These spelling checkers
sometimes carry online dictionaries of the most common English words. One contains a
dictionary of 80,000 words. Trying all of these words as passwords takes only 80 seconds
at the unrealistically generous estimate of one guess per millisecond.

Nobody knows what the most popular password is, although some conjecture it is
“password.” Other common ones are user, abc123, aaaaaa (or aaaaa or aaaaaaa), 123456,
and asdfg or qwerty (the arrangement of keys on a keyboard). Lists of common passwords
are easy to find (for example,

http://blog.jimmyr.com/Password_analysis_of_ databases_that were_hacked 28 2009.php

See also http://threatpost.com/password-is-no-longer-the-worst-password/103746 for a list
of the most common passwords, obtained in a data breach from Adobe, Inc. From these

examples you can tell that people often use anything simple that comes to mind as a
password, so human attackers might succeed by trying a few popular passwords.

Common passwords—such as qwerty, password, 123456—are used
astonishingly often.

Defeating Concealment

Easier than guessing a password is just to read one from a table, like the sample table
shown in Table 2-2. The operating system authenticates a user by asking for a name and
password, which it then has to validate, most likely by comparing to a value stored in a
table. But that table then becomes a treasure trove for evil-doers: Obtaining the table gives
access to all accounts because it contains not just one but all user IDs and their
corresponding passwords.

Identity Password
Jane gwerty
Pat 4a3aaa
Phillip oct31witch
Roz 4a3aaaa
Herman guessme
Claire ag3wm$oto!4

TABLE 2-2 Sample Password Table

http://blog.jimmyr.com/Password_analysis_of_databases_that_were_hacked_28_2009.php
http://threatpost.com/password-is-no-longer-the-worst-password/103746

Operating systems stymie that approach by storing passwords not in their public form
but in a concealed form (using encryption, which we describe later in this chapter), as
shown in Table 2-3. When a user creates a password, the operating system accepts and
immediately conceals it, storing the unreadable version. Later when the user attempts to
authenticate by entering a user ID and password, the operating system accepts whatever is
typed, applies the same concealing function, and compares the concealed version with
what is stored. If the two forms match, the authentication passes.

Identity Password
Jane Ox471aa2d2

Pat 0x13b9c32f

Phillip 0x01c142be

Roz 0x13b9c32f
Herman 0x5202aae2

Claire 0x488b8c27

TABLE 2-3 Sample Password Table with Concealed Password Values

Operating systems store passwords in hidden (encrypted) form so that
compromising the id—password list does not give immediate access to all
user accounts.

We used the term “conceal” in the previous paragraph because sometimes the operating
system performs some form of scrambling that is not really encryption, or sometimes it is
a restricted form of encryption. The only critical point is that the process be one-way:
Converting a password to its concealment form is simple, but going the other way (starting
with a concealed version and deriving the corresponding password) is effectively
impossible. (For this reason, on some websites if you forget your password, the system
can reset your password to a new, random value, but it cannot tell you what your forgotten
password was.)

For active authentication, that is, entering identity and authenticator to be able to access
a system, most systems lock out a user who fails a small number of successive login
attempts. This failure count prevents an attacker from attempting more than a few guesses.
(Note, however, that this lockout feature gives an attacker a way to prevent access by a
legitimate user: simply enter enough incorrect passwords to cause the system to block the
account.) However, if the attacker obtains an encrypted password table and learns the
concealment algorithm, a computer program can easily test hundreds of thousands of
guesses in a matter of minutes.

As numerous studies in this chapter confirmed, people often use one of a few
predictable passwords. The interceptor can create what is called a rainbow table, a list of
the concealed forms of the common passwords, as shown in Table 2-4. Searching for
matching entries in an intercepted password table, the intruder can learn that Jan’s

password is 123456 and Mike’s is gqwerty. The attacker sorts the table to make lookup fast.

Original Encrypted
Password Password
asdfg Ox023c94fc
p@55w0rd Ox041f38d9
aaaaaa Ox13b9c32f
password 0x2129£30d
gwerty Ox471aa2d2
12345678 Ox4f2c4dd8
123456 0x5903c34d
aaaaa Ox8384a8c8
etc.

TABLE 2-4 Sample Rainbow Table for Common Passwords

Rainbow table: precomputed list of popular values, such as passwords

Scrambled passwords have yet another vulnerability. Notice in Table 2-2 that Pat and
Roz both chose the same password. Both copies will have the same concealed value, so
someone who intercepts the table can learn that users Pat and Roz have the same
password. Knowing that, the interceptor can also guess that Pat and Roz both chose
common passwords, and start trying the usual ones; when one works, the other will, too.

To counter both these threats, some systems use an extra piece called the salt. A salt is
an extra data field different for each user, perhaps the date the account was created or a
part of the user’s name. The salt value is joined to the password before the combination is
transformed by concealment. In this way, Pat+aaaaaa has a different concealment value
from Roz+aaaaaa, as shown in Table 2-5. Also, an attacker cannot build a rainbow table
because the common passwords now all have a unique component, too.

ID+password Stored
(not stored Authentication

Identity in table) Value
Jane Jan+qwerty Ox1d46e346
Pat Pat+aaaaaa Ox2d5d3e44
Phillip Phi+oct31witch Oxc23c04d8
Roz Roz+aaaaaa Oxe30f4d27
Herman Her+guessme Ox8127148d
Claire Cla+aq3wm$oto!4 Ox5209d942

TABLE 2-5 Sample Password Table with Personalized Concealed Password Values

Salt: user-specific component joined to an encrypted password to
distinguish identical passwords

Exhaustive Attack

In an exhaustive or brute force attack, the attacker tries all possible passwords, usually
in some automated fashion. Of course, the number of possible passwords depends on the
implementation of the particular computing system. For example, if passwords are words
consisting of the 26 characters A—Z and can be of any length from 1 to 8 characters, there

are 26! passwords of 1 character, 26° passwords of 2 characters, and 268 passwords of 8

characters. Therefore, the system as a whole has 26! + 262 + ... + 268 =269 — 1~ 5 * 1012
or five million million possible passwords. That number seems intractable enough. If we
were to use a computer to create and try each password at a rate of checking one password
per millisecond, it would take on the order of 150 years to test all eight-letter passwords.
But if we can speed up the search to one password per microsecond, the work factor drops
to about two months. This amount of time is reasonable for an attacker to invest if the
reward is large. For instance, an intruder may try brute force to break the password on a
file of credit card numbers or bank account information.

But the break-in time can be made even more tractable in a number of ways. Searching
for a single particular password does not necessarily require all passwords to be tried; an
intruder need try only until the correct password is identified. If the set of all possible
passwords were evenly distributed, an intruder would likely need to try only half of the
password space: the expected number of searches to find any particular password.
However, an intruder can also use to advantage the uneven distribution of passwords.
Because a password has to be remembered, people tend to pick simple passwords;
therefore, the intruder should try short combinations of characters before trying longer
ones. This feature reduces the average time to find a match because it reduces the subset
of the password space searched before finding a match. And as we described earlier, the
attacker can build a rainbow table of the common passwords, which reduces the attack
effort to a simple table lookup.

All these techniques to defeat passwords, combined with usability issues, indicate that
we need to look for other methods of authentication. In the next section we explore how to
implement strong authentication as a control against impersonation attacks. For another
example of an authentication problem, see Sidebar 2-3.

Good Passwords

Chosen carefully, passwords can be strong authenticators. The term “password” implies
a single word, but you can actually use a nonexistent word or a phrase. So 2Brn2Bti?
could be a password (derived from “to be or not to be, that is the question™) as could
“PayTaxesApril15th.” Note that these choices have several important characteristics: The
strings are long, they are chosen from a large set of characters, and they do not appear in a
dictionary. These properties make the password difficult (but, of course, not impossible) to
determine. If we do use passwords, we can improve their security by a few simple
practices:

* Use characters other than just a—z. If passwords are chosen from the letters a—
z, there are only 26 possibilities for each character. Adding digits expands the
number of possibilities to 36. Using both uppercase and lowercase letters plus
digits expands the number of possible characters to 62. Although this change
seems small, the effect is large when someone is testing a full space of all
possible combinations of characters. It takes about 100 hours to test all 6-letter
words chosen from letters of one case only, but it takes about 2 years to test all
6-symbol passwords from upper- and lowercase letters and digits. Although 100
hours is reasonable, 2 years is oppressive enough to make this attack far less
attractive.

Sidebar 2-3 Will the Real Earl of Buckingham Please Step Forward?

A man claiming to be the Earl of Buckingham was identified as Charlie
Stopford, a man who had disappeared from his family in Florida in 1983 and
assumed the identity of Christopher Buckingham, an 8-month-old baby who
died in 1963. Questioned in England in 2005 after a check of passport details
revealed the connection to the deceased Buckingham baby, Stopford was
arrested when he didn’t know other correlating family details [PANO6]. (His
occupation at the time of his arrest? Computer security consultant.)

The British authorities knew he was not Christopher Buckingham, but what
was his real identity? The answer was discovered only because his family in the
United States thought it recognized him from photos and a news story: Stopford
was a husband and father who had disappeared more than 20 years earlier.
Because he had been in the U.S. Navy (in military intelligence, no less) and his
adult fingerprints were on file, authorities were able to make a positive
identification.

As for the title he appropriated for himself, there has been no Earl of
Buckingham since 1687.

In modern society we are accustomed to a full paper trail documenting events
from birth through death, but not everybody fits neatly into that model. Consider
the case of certain people who for various reasons need to change their identity.

When the government changes someone’s identity (for example, when a witness
goes into hiding), the new identity includes school records, addresses,
employment records, and so forth.

How can we authenticate the identity of war refugees whose home country
may no longer exist, let alone civil government and a records office? What
should we do to authenticate children born into nomadic tribes that keep no
formal birth records? How does an adult confirm an identity after fleeing a
hostile territory without waiting at the passport office for two weeks for a
document?

* Choose long passwords. The combinatorial explosion of password guessing
difficulty begins around length 4 or 5. Choosing longer passwords makes it less
likely that a password will be uncovered. Remember that a brute force
penetration can stop as soon as the password is found. Some penetrators will try
the easy cases—known words and short passwords—and move on to another
target if those attacks fail.

« Avoid actual names or words. Theoretically, there are 26°, or about 300 million
6-letter “words” (meaning any combination of letters), but there are only about
150,000 words in a good collegiate dictionary, ignoring length. By picking one
of the 99.95 percent nonwords, you force the attacker to use a longer brute-force
search instead of the abbreviated dictionary search.

* Use a string you can remember. Password choice is a double bind. To
remember the password easily, you want one that has special meaning to you.
However, you don’t want someone else to be able to guess this special meaning.
One easy-to-remember password is UcnB2s. That unlikely looking jumble is a
simple transformation of “you can never be too secure.” The first letters of
words from a song, a few letters from different words of a private phrase, or
something involving a memorable basketball score are examples of reasonable
passwords. But don’t be too obvious. Password-cracking tools also test
replacements like 0 (zero) for o or O (letter “oh™) and 1 (one) for I (letter “ell”)
or $ for S (letter “ess”). So I110v3U is already in the search file.

* Use variants for multiple passwords. With accounts, websites, and
subscriptions, an individual can easily amass 50 or 100 passwords, which is
clearly too many to remember. Unless you use a trick. Start with a phrase as in
the previous suggestion: Ih1b2s (I have one brother, two sisters). Then append
some patterns involving the first few vowels and consonants of the entity for the
password: Th1b2slvs for visa, Ih1b2sAfc for fAcebook, and so forth.

 Change the password regularly. Even if you have no reason to suspect that
someone has compromised the password, you should change it from time to
time. A penetrator may break a password system by obtaining an old list or
working exhaustively on an encrypted list.

* Don't write it down. Note: This time-honored advice is relevant only if
physical security is a serious risk. People who have accounts on many machines
and servers, and with many applications or sites, may have trouble remembering

all the access codes. Setting all codes the same or using insecure but easy-to-
remember passwords may be more risky than writing passwords on a reasonably
well-protected list. (Obviously, you should not tape your PIN to your bank card
or post your password on your computer screen.)

* Don't tell anyone else. The easiest attack is social engineering, in which the
attacker contacts the system’s administrator or a user to elicit the password in
some way. For example, the attacker may phone a user, claim to be “system
administration,” and ask the user to verify the user’s password. Under no
circumstances should you ever give out your private password; legitimate
administrators can circumvent your password if need be, and others are merely
trying to deceive you.

These principles lead to solid password selection, but they lead to a different problem:
People choose simple passwords because they have to create and remember so many
passwords. Bank accounts, email access, library services, numerous websites, and other
applications all seem to require a password. We cannot blame users for being tempted to
use one simple password for all of them when the alternative is trying to remember dozens
if not hundreds of strong passwords, as discussed in Sidebar 2-4.

Sidebar 2-4 Usability in the Small versus Usability in the Large

To an application developer seeking a reasonable control, a password seems to
be a straightforward mechanism for protecting an asset. But when many
applications require passwords, the user’s simple job of remembering one or two
passwords is transformed into the nightmare of keeping track of a large number
of them. Indeed, a visit to http://www.passwordbook.com suggests that users
often have difficulty managing a collection of passwords. The site introduces
you to a password and login organizer that is cheaply and easily purchased. In
the words of the vendor, it is “The complete password manager for the busy
Web master or network administrator ... Safe and easy, books don’t crash! Now
you can manage all your passwords in one hardbound book.”

Although managing one password or token for an application might seem
easy (we call it “usability in the small”), managing many passwords or tokens at
once becomes a daunting task (“usability in the large”). The problem of
remembering a large variety of items has been documented in the psychology
literature since the 1950s, when Miller [MIL56] pointed out that people
remember things by breaking them into memorable chunks, whether they are
digits, letters, words, or some other identifiable entity. Miller initially
documented how young adults had a memory span of seven (plus or minus two)
chunks. Subsequent research revealed that the memory span depends on the
nature of the chunk: longer chunks led to shorter memory spans: seven for
digits, six for letters, and five for words. Other factors affect a person’s memory
span, too. Cowan [COWO01] suggests that we assume a working memory span of
four chunks for young adults, with shorter spans for children and senior citizens.
For these reasons, usability should inform not only the choice of appropriate
password construction (the small) but also the security architecture itself (the
large).

http://www.passwordbook.com

Other Things Known

Passwords, or rather something only the user knows, are one form of strong
authentication. Passwords are easy to create and administer, inexpensive to use, and easy
to understand. However, users too often choose passwords that are easy for them to
remember, but not coincidentally easy for others to guess. Also, users can forget
passwords or tell them to others. Passwords come from the authentication factor of
something the user knows, and unfortunately people’s brains are imperfect.

Consequently, several other approaches to “something the user knows” have been
proposed. For example, Sidebar 2-5 describes authentication approaches employing a
user’s knowledge instead of a password. However, few user knowledge authentication
techniques have been well tested and few scale up in any useful way; these approaches are
still being researched.

Sidebar 2-5 Using Personal Patterns for Authentication

Lamandé [LAMI10] reports that the GrIDSure authentication system
(http://www.gridsure.com) has been integrated into Microsoft’s Unified Access
Gateway (UAG) platform. This system allows a user to authenticate herself with
a one-time passcode based on a pattern of squares chosen from a grid. When the
user wishes access, she is presented with a grid containing randomly assigned
numbers; she then enters as her passcode the numbers that correspond to her
chosen pattern. Because the displayed grid numbers change each time the grid is
presented, the pattern enables the entered passcode to be a one-time code.
GrIDSure is an attempt to scale a “user knowledge” approach from usability in
the small to usability in the large. Many researchers (see, for example, [SAS07,
BONO08, and BID09]) have examined aspects of GrIDSure’s security and
usability, with mixed results. It remains to be seen how the use of GrIDSure
compares with the use of a collection of traditional passwords.

Similarly, the ImageShield product from Confident Technologies
(www.confidenttechnologies.com) asks a user to enroll by choosing three
categories from a list; the categories might be cats, cars, and flowers, for
example. Then at authentication time, the user is shown a grid of pictures, some
from the user’s categories and others not. Each picture has a 1-character letter or
number. The user’s one-time access string is the characters attached to the
images from the user’s preselected categories. So, if the pictures included a cat
with label A, a flower with label 7, and seven other images, the user’s access
value would be A7. The images, characters and positions change for each
access, so the authenticator differs similarly.

Authentication schemes like this are based on simple puzzles that the user can
solve easily but that an imposter would be unable to guess successfully.
However, with novel authentication schemes, we have to be aware of the
phenomenon of usability in the small and the large: Can a user remember
squares on a grid and categories of pictures and a favorite vacation spot and the
formula 2a+c and many other nonobvious things?

http://www.gridsure.com
http://www.confidenttechnologies.com

Security Questions

Instead of passwords, some companies use questions to which (presumably) only the
right person would know the answer. Such questions include mother’s maiden name, street
name from childhood, model of first automobile, and name of favorite teacher. The user
picks relevant questions and supplies the answers when creating an identity.

The problem with such questions is that the answers to some can be determined with
little difficulty, as was the case for Sarah Palin’s email account. With the number of public
records available online, mother’s maiden name and street name are often available, and
school friends could guess a small number of possible favorite teachers. Anitra Babic and
colleagues [BAB09] documented the weakness of many of the supposedly secret question
systems in current use. Joseph Bonneau and Soren Preibusch [BON10] did a detailed
survey of website authentication methods and found little uniformity, many weaknesses,
and no apparent correlation between the value of a site’s data and its authentication
requirements.

Passwords are becoming oppressive as many websites now ask users to log in. But
when faced with a system that is difficult to handle, users often take the easy route:
choosing an easy password and reusing it on many sites. To overcome that weakness,
some systems use a form of authentication that cannot be stolen, duplicated, forgotten,
lent, or lost: properties of the user, as we discuss in the next section. The technology for
passing personal characteristics to a remote server requires more than a keyboard and
pointing device, but such approaches are becoming more feasible, especially as password
table breaches increase.

Authentication Based on Biometrics: Something You Are

Biometrics are biological properties, based on some physical characteristic of the
human body. The list of biometric authentication technologies is still growing. Now
devices can recognize the following biometrics:

» fingerprint
* hand geometry (shape and size of fingers)
* retina and iris (parts of the eye)
* voice
* handwriting, signature, hand motion
* typing characteristics
* blood vessels in the finger or hand
» face
» facial features, such as nose shape or eye spacing
Authentication with biometrics has advantages over passwords because a biometric

cannot be lost, stolen, forgotten, or shared and is always available, always at hand, so to
speak. These characteristics are difficult, if not impossible, to forge.

Examples of Biometric Authenticators

Many physical characteristics are possibilities as authenticators. In this section we

present examples of two of them, one for the size and shape of the hand, and one for the
patterns of veins in the hand.

Figure 2-2 shows a hand geometry reader. The user places a hand on the sensors, which
detect lengths and widths of fingers, curvature, and other characteristics.

FIGURE 2-2 Hand Geometry Reader (Graeme Dawes/Shutterstock)

An authentication device from Fujitsu reads the pattern of veins in the hand. This device
does not require physical contact between the hand and the reader, which is an advantage
for hygiene. The manufacturer claims a false acceptance rate of 0.00008 percent and false
rejection rate of 0.01 percent, with a response time of less than one second. Figure 2-3
shows this device embedded in a computer mouse, so the user is automatically

authenticated.

S—

——ll

FIGURE 2-3 Hand Vein Reader (Permission for image provided courtesy of Fujitsu

Frontech)
Problems with Use of Biometrics
Biometrics come with several problems:

* Biometrics are relatively new, and some people find their use intrusive. For
example, people in some cultures are insulted by having to submit to
fingerprinting, because they think that only criminals are fingerprinted. Hand
geometry and face recognition (which can be done from a camera across the
room) are scarcely invasive, but people have real concerns about peering into a
laser beam or sticking a finger into a slot. (See [SCHO06a] for some examples of
people resisting biometrics.)

* Biometric recognition devices are costly, although as the devices become more
popular, their cost per device should go down. Still, outfitting every user’s
workstation with a reader can be expensive for a large company with many
employees.

* Biometric readers and comparisons can become a single point of failure.
Consider a retail application in which a biometric recognition is linked to a
payment scheme: As one user puts it, “If my credit card fails to register, I can
always pull out a second card, but if my fingerprint is not recognized, I have
only that one finger.” (Fingerprint recognition is specific to a single finger; the
pattern of one finger is not the same as another.) Manual laborers can actually
rub off their fingerprints over time, and a sore or irritation may confound a
fingerprint reader. Forgetting a password is a user’s fault; failing biometric
authentication is not.

+ All biometric readers use sampling and establish a threshold for acceptance of
a close match. The device has to sample the biometric, measure often hundreds
of key points, and compare that set of measurements with a template. Features
vary slightly from one reading to the next, for example, if your face is tilted, if
you press one side of a finger more than another, or if your voice is affected by a
sinus infection. Variation reduces accuracy.

* Although equipment accuracy is improving, false readings still occur. We label
a false positive or false accept a reading that is accepted when it should be
rejected (that is, the authenticator does not match) and a false negative or false
reject one that rejects when it should accept. Often, reducing a false positive
rate increases false negatives, and vice versa. Sidebar 2-6 explains why we can
never eliminate all false positives and negatives. The consequences for a false
negative are usually less than for a false positive, so an acceptable system may
have a false positive rate of 0.001 percent but a false negative rate of 1 percent.
However, if the population is large and the asset extremely valuable, even these
small percentages can lead to catastrophic results.

False positive: incorrectly confirming an identity.

False negative: incorrectly denying an identity.

Sidebar 2-6 What False Positives and Negatives Really Mean

Screening systems must be able to judge the degree to which their matching
schemes work well. That is, they must be able to determine if they are
effectively identifying those people who are sought while not harming those
people who are not sought. When a screening system compares something it has
(such as a stored fingerprint) with something it is measuring (such as a finger’s
characteristics), we call this a dichotomous system or test: There either is a
match or there is not.

We can describe the dichotomy by using a Reference Standard, as depicted in
Table 2-6, below. The Reference Standard is the set of rules that determines
when a positive test means a positive result. We want to avoid two kinds of
errors: false positives (when there is a match but should not be) and false
negatives (when there is no match but should be).

Is the Person Claimed Is Not the Person Claimed
Test is Positive True Positive False Positive
{ There is a match.)
Test is Negative False Negative True Negative
{ There is no match.)

TABLE 2-6 Reference Standard for Describing Dichotomous Tests

We can measure the success of the screen by using four standard measures:
sensitivity, prevalence, accuracy, and specificity. To see how they work, we
assign variables to the entries in Table 2-6, as shown in Table 2-7.

Is the Person Claimed Is Not the Person Claimed
Test is Positive True Positive = a False Positive = b
Test is Negative False Negative = ¢ True Negative = d

TABLE 2-7 Reference Standard with Variables

Sensitivity measures the degree to which the screen selects those whose names
correctly match the person sought. It is the proportion of positive results among
all possible correct matches and is calculated as a / (a + ¢). Specificity measures
the proportion of negative results among all people who are not sought; it is
calculated as d / (b + d). Sensitivity and specificity describe how well a test
discriminates between cases with and without a certain condition.

Accuracy or efficacy measures the degree to which the test or screen correctly
flags the condition or situation; it is measured as (a + d) / (a + b + ¢ + d).
Prevalence tells us how common a certain condition or situation is. It is
measured as (a +c¢)/(a+ b+ c + d).

Sensitivity and specificity are statistically related: When one increases, the
other decreases. Thus, you cannot simply say that you are going to reduce or
remove false positives; such an action is sure to increase the false negatives.
Instead, you have to find a balance between an acceptable number of false

positives and false negatives. To assist us, we calculate the positive predictive
value of a test: a number that expresses how many times a positive match
actually represents the identification of the sought person. The positive
predictive value is a / (a + b). Similarly, we can calculate the negative predictive
value of the test as d / (c + d). We can use the predictive values to give us an
idea of when a result is likely to be positive or negative. For example, a positive
result of a condition that has high prevalence is likely to be positive. However, a
positive result for an uncommon condition is likely to be a false positive.

The sensitivity and specificity change for a given test, depending on the level
of the test that defines a match. For example, the test could call it a match only if
it is an exact match: only ‘Smith’ would match ‘Smith.” Such a match criterion
would have fewer positive results (that is, fewer situations considered to match)
than one that uses Soundex to declare that two names are the same: ‘Smith’ is
the same as ‘Smythe,” ‘Smeth,” ‘Smitt,” and other similarly sounding names.
Consequently, the two tests vary in their sensitivity. The Soundex criterion is
less strict and is likely to produce more positive matches; therefore, it is the
more sensitive but less specific test. In general, consider the range of
sensitivities that can result as we change the test criteria. We can improve the
sensitivity by making the criterion for a positive test less strict. Similarly, we can
improve the specificity by making the criterion for a positive test stricter.

A receiver operating characteristic (ROC) curve is a graphical representation
of the trade-off between the false negative and false positive rates. Traditionally,
the graph of the ROC shows the false positive rate (1 — specificity) on the x-axis
and the true positive rate (sensitivity or 1 — the false negative rate) on the y-axis.
The accuracy of the test corresponds to the area under the curve. An area of 1
represents the perfect test, whereas an area of 0.5 is a worthless test. Ideally, we
want a test to be as far left and as high on the graph as possible, representing a
test with a high rate of true positives and a low rate of false positives. That is,
the larger the area under the curve, the more the test is identifying true positives
and minimizing false positives. Figure 2-4 shows examples of ROC curves and
their relationship to sensitivity and specificity.

Sensitivity

00 01 02 03 04 05 06 07 08 09 1.0
I = Specificity

Good (0.774) e Poor (0.574)
---- V. Good (0.877)

FIGURE 2-4 ROC Curves

For a matching or screening system, as for any test, system administrators
must determine what levels of sensitivity and specificity are acceptable. The
levels depend on the intention of the test, the setting, the prevalence of the target
criterion, alternative methods for accomplishing the same goal, and the costs and
benefits of testing.

* The speed at which a recognition must be done limits accuracy. We might
ideally like to take several readings and merge the results or evaluate the closest
fit. But authentication is done to allow a user to do something: Authentication is
not the end goal but a gate keeping the user from the goal. The user
understandably wants to get past the gate and becomes frustrated and irritated if
authentication takes too long.

* Although we like to think of biometrics as unique parts of an individual,
forgeries are possible. Some examples of forgeries are described in Sidebar 2-7.

Biometrics depend on a physical characteristic that can vary from one day to the next or
as people age. Consider your hands, for example: On some days, the temperature, your
activity level, or other factors may cause your hands to swell, thus distorting your hands’
physical characteristics. But an authentication should not fail just because the day is hot.
Biometric recognition also depends on how the sample is taken. For hand geometry, for
example, you place your hand on a template, but measurements will vary slightly
depending on exactly how you position your hand.

Sidebar 2-7 Biometric Forgeries

The most famous fake was an artificial fingerprint produced by researchers in
Japan using cheap and readily available gelatin. The researchers used molds
made by pressing live fingers against them or by processing fingerprint images
from prints on glass surfaces. The resulting “gummy fingers” were frequently
accepted by 11 particular fingerprint devices with optical or capacitive sensors.

[MATO02]

According to another story from BBC news (13 Mar 2013) a doctor in Brazil
was caught with sixteen fingers: ten authentic and six made of silicone that she
used to log in to the hospital’s time-card system on behalf of fellow doctors.

In a study published in 2014 [BOW14], researchers looked at whether contact
lenses can be used to fool authentication devices that look at the pattern of the
iris (the colored ring of the eye). The goal of the research was to determine
whether iris recognition systems reliably detect true positives; that is, whether a
subject will be reliably authenticated by the system. The researchers
demonstrated that tinted contact lenses can fool the system into denying a match
when one really exists. A subject might apply contact lenses in order to not be
noticed as a wanted criminal, for example. Although difficult and uncommon,
forgery will be an issue whenever the reward for a false result is high enough.

Authentication with biometrics uses a pattern or template, much like a baseline, that
represents measurement of the characteristic. When you use a biometric for authentication,
a current set of measurements is taken and compared to the template. The current sample
need not exactly match the template, however. Authentication succeeds if the match is
“close enough,” meaning it is within a predefined tolerance, for example, if 90 percent of
the values match or if each parameter is within 5 percent of its expected value. Measuring,
comparing, and assessing closeness for the match takes time, certainly longer than the
“exact match or not” comparison for passwords. (Consider the result described in Sidebar
2-8.) Therefore, the speed and accuracy of biometrics is a factor in determining their
suitability for a particular environment of use.

Biometric matches are not exact; the issue is whether the rate of false
positives and false negatives is acceptable.

Remember that identification is stating an identity, whereas authentication is confirming
the identity, as depicted in Figure 2-5. Biometrics are reliable for authentication but are
much less reliable for identification. The reason is mathematical. All biometric readers
operate in two phases. First, a user registers with the reader, during which time a
characteristic of the user (for example, the geometry of the hand) is captured and reduced
to a set of data points. During registration, the user may be asked to present the hand
several times so that the registration software can adjust for variations, such as how the
hand is positioned. Registration produces a pattern, called a template, of the data points
particular to a specific user. In the second phase the user later seeks authentication from
the system, during which time the system remeasures the hand and compares the new
measurements with the stored template. If the new measurement is close enough to the
template, the system accepts the authentication; otherwise, the system rejects it. Sidebar 2-
9 points out the problem in confusing identification and authentication.

Right, sir. I'll
just have to
check your
fingerprints.

I am Aloysius
Biltmore Snowman.

Identification Authentication

FIGURE 2-5 Identification and Authentication (courtesy of Lfoxy/Shutterstock
[left]; Schotter Studio/Shutterstock [right])

Sidebar 2-8 Fingerprint Capture—Not So Fast!

Recording or capturing fingerprints should be a straightforward process. Some
countries use fingerprints to track foreign visitors who enter the country, and so
they want to know the impact on processing visitors at the border. On television
and in the movies it seems as if obtaining a good fingerprint image takes only a
second or two.

Researchers at the U.S. National Institute of Standards and Technology
(NIST) performed a controlled experiment involving over 300 subjects generally
representative of the U.S. population [THEOQ7]. They found that contrary to
television, obtaining a quality sample of all ten fingers takes between 45 seconds
and a minute.

Sidebar 2-9 DNA for Identification or Authentication

In December 1972, a nurse in San Francisco was sexually assaulted and brutally
murdered in her apartment. The landlady, who confronted a man as he rushed
out of the apartment, gave a physical description to the police. At the crime
scene, police collected evidence, including DNA samples of the assumed
murderer. After months of investigation, however, police were unable to focus in
on a suspect and the case was eventually relegated to the pile of unsolved cases.

Thirty years later, the San Francisco Police Department had a grant to use
DNA to solve open cases and, upon reopening the 1972 case, they found one
slide with a deteriorated DNA sample. For investigative purposes, scientists
isolate 13 traits, called markers, in a DNA sample. The odds of two different

people matching on all 13 markers is 1 in 1 quadrillion (1*10%). However, as

described in a Los Angeles Times story by Jason Felch and Maura Dolan
[FELO8], the old sample in this case had deteriorated and only 5% of 13 markers
were reliable. With only that many markers, the likelihood that two people
would match drops to 1 in 1.1 million, and remember that for the purpose here,
two people’s DNA matching means at least one sample is not the criminal’s.

Next, the police wanted to compare the sample with the California state
database of DNA samples of convicted criminals. But to run such a comparison,
administrators require at least 7 markers and police had only 5%. To search the
database, police used values from two other markers that were too faint to be
considered conclusive. With seven markers, police polled the database of
338,000 and came up with one match, a man subsequently tried and convicted of
this crime, a man whose defense attorneys strongly believe is innocent. He had
no connection to the victim, his fingerprints did not match any collected at the
crime scene, and his previous conviction for a sex crime had a different pattern.

The issue is that police are using the DNA match as an identifier, not an
authenticator. If police have other evidence against a particular suspect and the
suspect’s DNA matches that found at the crime scene, the likelihood of a correct
identification increases. However, if police are looking only to find anyone
whose DNA matches a sample, the likelihood of a false match rises
dramatically. Remember that with a 1 in 1.1 million false match rate, if you
assembled 1.1 million people, you would expect that one would falsely match
your sample, or with 0.5 million people you would think the likelihood of a
match to be approximately 1 in 2. The likelihood of a false match falls to 1 in
1.1 million people only if you examine just one person.

Think of this analogy: If you buy one lottery ticket in a 1.1 million ticket
lottery, your odds of winning are 1 in 1.1 million. If you buy two tickets, your
odds increase to 2 in 1.1 million, and if you buy 338,000 tickets your odds
become 338,000 in 1.1 million, or roughly 1 in 3. For this reason, when seeking
identification, not authentication, both the FBI’s DNA advisory board and a
panel of the National Research Council recommend multiplying the general
probability (1 in 1.1 million) by the number of samples in the database to derive
the likelihood of a random—innocent—match.

Although we do not know whether the person convicted in this case was
guilty or innocent, the reasoning reminds us to be careful to distinguish between
identification and authentication.

Accuracy of Biometrics

We think of biometrics—or any authentication technology—as binary: A person either
passes or fails, and if we just set the parameters correctly, most of the right people will
pass and most of the wrong people will fail. That is, the mechanism does not discriminate.
In fact, the process is biased, caused by the balance between sensitivity and selectivity:
Some people are more likely to pass and others more likely to fail. Sidebar 2-10 describes
how this can happen.

Until recently police and the justice system assumed that fingerprints are unique.

However, there really is no mathematical or scientific basis for this assumption. In fact,
fingerprint identification has been shown to be fallible, and both human and computerized
fingerprint comparison systems have also shown failures. Part of the comparison problem
relates to the fact that not an entire fingerprint is compared, only characteristics at
significant ridges on the print. Thus, humans or machines examine only salient features,
called the template of that print.

Biometric authentication means a subject matches a template closely
enough. “Close” is a system parameter that can be tuned.

Unless every template is unique, that is, no two people have the same values, the system
cannot uniquely identify subjects. However, as long as an imposter is unlikely to have the
same biometric template as the real user, the system can authenticate. In authentication we
do not look through all templates to see who might match a set of measured features; we
simply determine whether one person’s features match his stored template. Biometric
authentication is feasible today; biometric identification is largely still a research topic.

Measuring the accuracy of biometric authentication is difficult because the
authentication is not unique. In an experimental setting, for any one subject or collection
of subjects we can compute the false negative and false positive rates because we know
the subjects and their true identities. But we cannot extrapolate those results to the world
and ask how many other people could be authenticated as some person. We are limited
because our research population and setting may not reflect the real world. Product
vendors make many claims about the accuracy of biometrics or a particular biometric
feature, but few independent researchers have actually tried to substantiate the claims. In
one experiment described in Sidebar 2-11, expert fingerprint examiners, the people who
testify about fingerprint evidence at trials, failed some of the time.

Sidebar 2-10 Are There Unremarkable People?

Are there people for whom a biometric system simply does not work? That is,
are there people, for example, whose features are so indistinguishable they will
always pass as someone else?

Doddington et al. [DOD98] examined systems and users to find specific
examples of people who tend to be falsely rejected unusually often, those
against whose profiles other subjects tend to match unusually often, and those
who tend to match unusually many profiles.

To these classes Yager and Dunstone [YAG10] added people who are likely to
match and cause high rates of false positives and those people who are unlikely
to match themselves or anyone else. The authors then studied different biometric
analysis algorithms in relation to these difficult cases.

Yager and Dunstone cited a popular belief that 2 percent of the population
have fingerprints that are inherently hard to match. After analyzing a large
database of fingerprints (the US-VISIT collection of fingerprints from foreign
visitors to the United States) they concluded that few, if any, people are
intrinsically hard to match, and certainly not 2 percent.

They examined specific biometric technologies and found that some of the
errors related to the technology, not to people. For example, they looked at a
database of people iris recognition systems failed to match, but they found that
many of those people were wearing glasses when they enrolled in the system;
they speculate that the glasses made it more difficult for the system to extract the
features of an individual’s iris pattern. In another case, they looked at a face
recognition system. They found that people the system failed to match came
from one particular ethnic group and speculated that the analysis algorithm had
been tuned to distinctions of faces of another ethnic group. Thus, they concluded
that matching errors are more likely the results of enrollment issues and
algorithm weaknesses than of any inherent property of the people’s features.

Still, for the biometric systems they studied, they found that for a specific
characteristic and analysis algorithm, some users’ characteristics perform better
than other users’ characteristics. This research reinforces the need to implement
such systems carefully so that inherent limitations of the algorithm,
computation, or use do not disproportionately affect the outcome.

Sidebar 2-11 Fingerprint Examiners Make Mistakes

A study supported by the U.S. Federal Bureau of investigation [ULE11]
addressed the validity of expert evaluation of fingerprints. Experimenters
presented 169 professional examiners with pairs of fingerprints from a pool of
744 prints to determine whether the prints matched. This experiment was
designed to measure the accuracy (degree to which two examiners would reach
the same conclusion) and reliability (degree to which one examiner would reach
the same conclusion twice). A total of 4,083 fingerprint pairs were examined.

Of the pairs examined, six were incorrectly marked as matches, for a false
positive rate of 0.01 percent. Although humans are recognized as fallible,
frustratingly we cannot predict when they will be so. Thus, in a real-life setting,
these false positives could represent six noncriminals falsely found guilty. The
false negative rate was significantly higher, 7.5 percent, perhaps reflecting
conservatism on the part of the examiners: The examiners were more likely to
be unconvinced of a true match than to be convinced of a nonmatch.

The issue of false positives in fingerprint matching gained prominence after a
widely publicized error related to the bombings in 2004 of commuter trains in
Madrid, Spain. Brandon Mayfield, a U.S. lawyer living in Oregon, was arrested
because the FBI matched his fingerprint with a print found on a plastic bag
containing detonator caps at the crime scene. In 2006 the FBI admitted it had
incorrectly classified the fingerprints as “an absolutely incontrovertible match.”

Authentication is essential for a computing system because accurate user identification
is the key to individual access rights. Most operating systems and computing system
administrators have applied reasonable but stringent security measures to lock out
unauthorized users before they can access system resources. But, as reported in Sidebar 2-
12, sometimes an inappropriate mechanism is forced into use as an authentication device.

Losing or forgetting a biometric authentication is virtually impossible because
biometrics rely on human characteristics. But the characteristics can change over time
(think of hair color or weight); therefore, biometric authentication may be less precise than
knowledge-based authentication. You either know a password or you don’t. But a
fingerprint can be a 99 percent match or 95 percent or 82 percent, part of the variation
depending on factors such as how you position your finger as the print is read, whether
your finger is injured, and if your hand is cold or your skin is dry or dirty. Stress can also
affect biometric factors, such as voice recognition, potentially working against security.
Imagine a critical situation in which you need to access your computer urgently but your
being agitated affects your voice. If the system fails your authentication and offers you the
chance to try again, the added pressure may make your voice even worse, which threatens
availability.

Biometrics can be reasonably quick and easy, and we can sometimes adjust the
sensitivity and specificity to balance false positive and false negative results. But because
biometrics require a device to read, their use for remote authentication is limited. The third
factor of authentication, something you have, offers strengths and weaknesses different
from the other two factors.

Sidebar 2-12 Using Cookies for Authentication

On the web, cookies are often used for authentication. A cookie is a pair of data
items sent to the web browser by the visited website. The data items consist of a
key and a value, designed to represent the current state of a session between a
visiting user and the visited website. Once the cookie is placed on the user’s
system (usually in a directory with other cookies), the browser continues to use
it for subsequent interaction between the user and that website. Each cookie is
supposed to have an expiration date, but that date can be far in the future, and it
can be modified later or even ignored.

For example, The Wall Street Journal’s website, wsj.com, creates a cookie
when a user first logs in. In subsequent transactions, the cookie acts as an
identifier; the user no longer needs a password to access that site. (Other sites
use the same or a similar approach.)

Users must be protected from exposure and forgery. That is, users may not
want the rest of the world to know what sites they have visited. Neither will they
want someone to examine information or buy merchandise online by
impersonation and fraud. And furthermore, on a shared computer, one user can
act as someone else if the receiving site uses a cookie to perform automatic
authentication.

Sit and Fu [SITO1] point out that cookies were not designed for protection.
There is no way to establish or confirm a cookie’s integrity, and not all sites
encrypt the information in their cookies.

Sit and Fu also point out that a server’s operating system must be particularly
vigilant to protect against eavesdropping: “Most [web traffic] exchanges do not
use [encryption] to protect against eavesdropping; anyone on the network
between the two computers can overhear the traffic. Unless a server takes strong

precautions, an eavesdropper can steal and reuse a cookie, impersonating a user
indefinitely.” (In Chapter 6 we describe how encryption can be used to protect
against such eavesdropping.)

Authentication Based on Tokens: Something You Have

Something you have means that you have a physical object in your possession. One
physical authenticator with which you are probably familiar is a key. When you put your
key in your lock, the ridges in the key interact with pins in the lock to let the mechanism
turn. In a sense the lock authenticates you for authorized entry because you possess an
appropriate key. Of course, you can lose your key or duplicate it and give the duplicate to
someone else, so the authentication is not perfect. But it is precise: Only your key works,
and your key works only your lock. (For this example, we intentionally ignore master
keys.)

Other familiar examples of tokens are badges and identity cards. You may have an
“affinity card”: a card with a code that gets you a discount at a store. Many students and
employees have identity badges that permit them access to buildings. You must have an
identity card or passport to board an airplane or enter a foreign country. In these cases you
possess an object that other people recognize to allow you access or privileges.

Another kind of authentication token has data to communicate invisibly. Examples of
this kind of token include credit cards with a magnetic stripe, credit cards with an
embedded computer chip, or access cards with passive or active wireless technology. You
introduce the token into an appropriate reader, and the reader senses values from the card.
If your identity and values from your token match, this correspondence adds confidence
that you are who you say you are.

We describe different kinds of tokens next.
Active and Passive Tokens

As the names imply, passive tokens do nothing, and active ones take some action. A
photo or key is an example of a passive token in that the contents of the token never
change. (And, of course, with photos permanence can be a problem, as people change hair
style or color and their faces change over time.)

An active token can have some variability or interaction with its surroundings. For
example, some public transportation systems use cards with a magnetic strip. When you
insert the card into a reader, the machine reads the current balance, subtracts the price of
the trip and rewrites a new balance for the next use. In this case, the token is just a
repository to hold the current value. Another form of active token initiates a two-way
communication with its reader, often by wireless or radio signaling. These tokens lead to
the next distinction among tokens, static and dynamic interaction.

Passive tokens do not change. Active tokens communicate with a sensor.

Static and Dynamic Tokens

The value of a static token remains fixed. Keys, identity cards, passports, credit and

other magnetic-stripe cards, and radio transmitter cards (called RFID devices) are
examples of static tokens. Static tokens are most useful for onsite authentication: When a
guard looks at your picture badge, the fact that you possess such a badge and that your
face looks (at least vaguely) like the picture causes the guard to pass your authentication
and allow you access.

We are also interested in remote authentication, that is, in your being able to prove your
identity to a person or computer somewhere else. With the example of the picture badge, it
may not be easy to transmit the image of the badge and the appearance of your face for a
remote computer to compare. Worse, distance increases the possibility of forgery: A local
guard could tell if you were wearing a mask, but a guard might not detect it from a remote
image. Remote authentication is susceptible to the problem of the token having been
forged.

Tokens are vulnerable to an attack called skimming. Skimming is the use of a device to
copy authentication data surreptitiously and relay it to an attacker. Automated teller
machines (ATMs) and point-of-sale credit card readers are particularly vulnerable to

skimming.! At an ATM the thief attaches a small device over the slot into which you insert
your bank card. Because all bank cards conform to a standard format (so you can use your
card at any ATM or merchant), the thief can write a simple piece of software to copy and
retain the information recorded on the magnetic stripe on your bank card. Some skimmers
also have a tiny camera to record your key strokes as you enter your PIN on the keypad.
Either instantaneously (using wireless communication) or later (collecting the physical
device), the thief thus obtains both your account number and its PIN. The thief simply
creates a dummy card with your account number recorded and, using the PIN for
authentication, visits an ATM and withdraws cash from your account or purchases things
with a cloned credit card.

1. Note that this discussion refers to the magnetic-stripe cards popular in the United States. Most other countries
use embedded computer chip cards that are substantially less vulnerable to skimming.

Another form of copying occurs with passwords. If you have to enter or speak your
password, someone else can look over your shoulder or overhear you, and now that
authenticator is easily copied or forged. To overcome copying of physical tokens or
passwords, we can use dynamic tokens. A dynamic token is one whose value changes.
Although there are several different forms, a dynamic authentication token is essentially a
device that generates an unpredictable value that we might call a pass number. Some
devices change numbers at a particular interval, for example, once a minute; others change
numbers when you press a button, and others compute a new number in response to an
input, sometimes called a challenge. In all cases, it does not matter if someone else sees or
hears you provide the pass number, because that one value will be valid for only one
access (yours), and knowing that one value will not allow the outsider to guess or generate
the next pass number.

Dynamic tokens have computing power on the token to change their
internal state.

Dynamic token generators are useful for remote authentication, especially of a person to
a computer. An example of a dynamic token is the SecurID token from RSA Laboratories,

shown in Figure 2-6. To use a SecurID token, you enter the current number displayed on
the token when prompted by the authenticating application. Each token generates a
distinct, virtually unpredictable series of numbers that change every minute, so the
authentication system knows what number to expect from your token at any moment. In
this way, two people can have SecurID tokens, but each token authenticates only its
assigned owner. Entering the number from another token does not pass your
authentication. And because the token generates a new number every minute, entering the
number from a previous authentication fails as well.

Time-Based Token Authentication

Login: mcollings

Passcode: 2468159759

PASSCODE = PIN + TOKENCODE

Token code:
Changes every
60 seconds

e Clock
#1153 153) <— synchronized to

=Y vuct

Unique seed

FIGURE 2-6 SecurID Token (Photo courtesy of RSA, the security division of EMS
and copyright © RSA Corporation, all rights reserved.)

We have now examined the three bases of authentication: something you know, are, or
have. Used in an appropriate setting, each can offer reasonable security. In the next
sections we look at some ways of enhancing the basic security from these three forms.

Federated Identity Management

If these different forms of authentication seem confusing and overwhelming, they can
be. Consider that some systems will require a password, others a fingerprint scan, others
an active token, and others some combination of techniques. As you already know,
remembering identities and distinct passwords for many systems is challenging. People
who must use several different systems concurrently (email, customer tracking, inventory,
and sales, for example) soon grow weary of logging out of one, into another, refreshing a
login that has timed out, and creating and updating user profiles. Users rightly call for
computers to handle the bookkeeping.

A federated identity management scheme is a union of separate identification and
authentication systems. Instead of maintaining separate user profiles, a federated scheme
maintains one profile with one authentication method. Separate systems share access to
the authenticated identity database. Thus, authentication is performed in one place, and
separate processes and systems determine that an already authenticated user is to be
activated. Such a process is shown in Figure 2-7.

. Identity Manager
(pe rforms Authenticated

authentication) Identity
Application Application
(no authentication) (no authentication)
Application

(no authentication)

FIGURE 2-7 Federated Identity Manager

Federated identity management unifies the identification and
authentication process for a group of systems.

Closely related is a single sign-on process, depicted in Figure 2-8. Think of an umbrella
procedure to which you log in once per session (for example, once a day). The umbrella
procedure maintains your identities and authentication codes for all the different processes
you access. When you want to access email, for example, instead of your completing a
user ID and password screen, the single sign-on process passes those details to the email
handler, and you resume control after the authentication step has succeeded.

User)« * Sjng]‘: Sig"'{-}" Identification and
Shell Authentication
/ I Credentials
Password Token
|
/ v
|___Authentication | | Authentication | | . Authentication
-
Application Application
Application

FIGURE 2-8 Single Sign-On

The difference between these two approaches is that federated identity management

involves a single identity management module that replaces identification and
authentication in all other systems. Thus all these systems invoke the identity management
module. With single sign-on, systems still call for individual identification and
authentication, but the umbrella task performs those interactions on behalf of the user.

Single sign-on takes over sign-on and authentication to several
independent systems for a user.

Multifactor Authentication

The single-factor authentication approaches discussed in this chapter offer advantages
and disadvantages. For example, a token works only as long as you do not give it away (or
lose it or have it stolen), and password use fails if someone can see you enter your
password by peering over your shoulder. We can compensate for the limitation of one
form of authentication by combining it with another form.

Identity cards, such as a driver’s license, often contain a picture and signature. The card
itself is a token, but anyone seeing that card can compare your face to the picture and
confirm that the card belongs to you. Or the person can ask you to write your name and
can compare signatures. In that way, the authentication is both token based and biometric
(because your appearance and the way you sign your name are innate properties of you).
Notice that your credit card has a space for your signature on the back, but in the United
States few merchants compare that signature to the sales slip you sign. Having
authentication factors available does not necessarily mean we use them.

As long as the process does not become too onerous, authentication can use two, three,
four, or more factors. For example, to access something, you must type a secret code, slide
your badge, and hold your hand on a plate.

Combining authentication information is called multifactor authentication. Two forms
of authentication (which is, not surprisingly, known as two-factor authentication) are
presumed to be better than one, assuming of course that the two forms are strong. But as
the number of forms increases, so also does the user’s inconvenience. Each authentication
factor requires the system and its administrators and the users to manage more security
information. We assume that more factors imply higher confidence, although few studies
support that assumption. And two kinds of authentication imply two pieces of software
and perhaps two kinds of readers, as well as the time to perform two authentications.
Indeed, even if multifactor authentication is superior to single factor, we do not know
which value of n makes n-factor authentication optimal. From a usability point of view,
large values of n may lead to user frustration and reduced security, as shown in Sidebar 2-
13.

Secure Authentication

Passwords, biometrics, and tokens can all participate in secure authentication. Of
course, simply using any or all of them is no guarantee that an authentication approach
will be secure. To achieve true security, we need to think carefully about the problem we
are trying to solve and the tools we have; we also need to think about blocking possible
attacks and attackers.

Sidebar 2-13 When More Factors Mean Less Security

Dave Concannon’s blog at www.apeofsteel.com/tag/ulsterbank describes his
frustration at using Ulsterbank’s online banking system. The logon process
involves several steps. First, the user supplies a customer identification number
(the first authentication factor). Next, a separate user ID is required (factor 2).
Third, the PIN is used to supply a set of digits (factor 3), as shown in the figure
below: The system requests three different digits chosen at random (in the
figure, the third, second, and fourth digits are to be entered). Finally, the system
requires a passphrase of at least ten characters, some of which must be numbers
(factor 4).

e e
L ey f— |

0 v © cons
In his blog, Concannon rails about the difficulties not only of logging on but
also of changing his password. With four factors to remember, Ulsterbank users
will likely, in frustration, write down the factors and carry them in their wallets,
thereby reducing the banking system’s security.

Suppose we want to control access to a computing system. In addition to a name and
password, we can use other information available to authenticate users. Suppose Adams
works in the accounting department during the shift between 8:00 a.m. and 5:00 p.m.,
Monday through Friday. Any legitimate access attempt by Adams should be made during
those times, through a workstation in the accounting department offices. By limiting
Adams to logging in under those conditions, the system protects against two problems:

» Someone from outside might try to impersonate Adams. This attempt would be
thwarted by either the time of access or the port through which the access was
attempted.

» Adams might attempt to access the system from home or on a weekend,
planning to use resources not allowed or to do something that would be too risky
with other people around.

Limiting users to certain workstations or certain times of access can cause
complications (as when a user legitimately needs to work overtime, a person has to access
the system while out of town on business, or a particular workstation fails). However,
some companies use these authentication techniques because the added security they
provide outweighs inconvenience. As security analysts, we need to train our minds to
recognize qualities that distinguish normal, allowed activity.

As you have seen, security practitioners have a variety of authentication mechanisms
ready to use. None is perfect; all have strengths and weaknesses, and even combinations
of mechanisms are imperfect. Often the user interface seems simple and foolproof (what
could be easier than laying a finger on a glass plate?), but as we have described,
underneath that simplicity lies uncertainty, ambiguity, and vulnerability. Nevertheless, in
this section you have seen types and examples so that when you develop systems and

http://www.apeofsteel.com/tag/ulsterbank

applications requiring authentication, you will be able to draw on this background to pick
an approach that achieves your security needs.

2.2 Access Control

In this section we discuss how to protect general objects, such as files, tables, access to
hardware devices or network connections, and other resources. In general, we want a
flexible structure, so that certain users can use a resource in one way (for example, read-
only), others in a different way (for example, allowing modification), and still others not at
all. We want techniques that are robust, easy to use, and efficient.

We start with the basic access control paradigm, articulated by Scott Graham and Peter
Denning [GRA72]: A subject is permitted to access an object in a particular mode, and
only such authorized accesses are allowed.

* Subjects are human users, often represented by surrogate programs running on
behalf of the users.

* Objects are things on which an action can be performed: Files, tables,
programs, memory objects, hardware devices, strings, data fields, network
connections, and processors are examples of objects. So too are users, or rather
programs or processes representing users, because the operating system (a
program representing the system administrator) can act on a user, for example,
allowing a user to execute a program, halting a user, or assigning privileges to a
user.

* Access modes are any controllable actions of subjects on objects, including, but
not limited to, read, write, modify, delete, execute, create, destroy, copy, export,
import, and so forth.

Effective separation will keep unauthorized subjects from unauthorized access to
objects, but the separation gap must be crossed for authorized subjects and modes. In this
section we consider ways to allow all and only authorized accesses.

Access control: limiting who can access what in what ways

Access Policies

Access control is a mechanical process, easily implemented by a table and computer
process: A given subject either can or cannot access a particular object in a specified way.
Underlying the straightforward decision is a complex and nuanced decision of which
accesses should be allowed; these decisions are based on a formal or informal security
policy.

Access control decisions are (or should not be) made capriciously. Pat gets access to
this file because she works on a project that requires the data; Sol is an administrator and
needs to be able to add and delete users for the system. Having a basis simplifies making
similar decisions for other users and objects. A policy also simplifies establishing access
control rules, because they just reflect the existing policy.

Thus, before trying to implement access control, an organization needs to take the time
to develop a higher-level security policy, which will then drive all the access control rules.

Effective Policy Implementation
Protecting objects involves several complementary goals.

* Check every access. We may want to revoke a user’s privilege to access an
object. If we have previously authorized the user to access the object, we do not
necessarily intend that the user should retain indefinite access to the object. In
fact, in some situations, we may want to prevent further access immediately
after we revoke authorization, for example, if we detect a user being
impersonated. For this reason, we should aim to check every access by a user to
an object.

* Enforce least privilege. The principle of least privilege states that a subject
should have access to the smallest number of objects necessary to perform some
task. Even if extra information would be useless or harmless if the subject were
to have access, the subject should not have that additional access. For example,
a program should not have access to the absolute memory address to which a
page number reference translates, even though the program could not use that
address in any effective way. Not allowing access to unnecessary objects guards
against security weaknesses if a part of the protection mechanism should fail.

Least privilege: access to the fewest resources necessary to complete some
task

» Verify acceptable usage. Ability to access is a yes-or-no decision. But equally
important is checking that the activity to be performed on an object is
appropriate. For example, a data structure such as a stack has certain acceptable
operations, including push, pop, clear, and so on. We may want not only to
control who or what has access to a stack but also to be assured that all accesses
performed are legitimate stack accesses.

Tracking

Implementing an appropriate policy is not the end of access administration. Sometimes
administrators need to revisit the access policy to determine whether it is working as it
should. Has someone been around for a long time and so has acquired a large number of
no-longer-needed rights? Do so many users have access to one object that it no longer
needs to be controlled? Or should it be split into several objects so that individuals can be
allowed access to only the pieces they need? Administrators need to consider these kinds
of questions on occasion to determine whether the policy and implementation are doing
what they should. We explore the management side of defining security policies in
Chapter 10, but we preview some issues here because they have a technical bearing on
access control.

Granularity

By granularity we mean the fineness or specificity of access control. It is a spectrum:
At one end you can control access to each individual bit or byte, each word in a document,
each number on a spreadsheet, each photograph in a collection. That level of specificity is
generally excessive and cumbersome to implement. The finer the granularity, the larger

number of access control decisions that must be made, so there is a performance penalty.
At the other extreme you simply say Adam has complete access to computer C1. That
approach may work if the computer is for Adam’s use alone, but if computer C1 is shared,
then the system has no basis to control or orchestrate that sharing. Thus, a reasonable
midpoint must apply.

Typically a file, a program, or a data space is the smallest unit to which access is
controlled. However, note that applications can implement their own access control. So,
for example, as we describe in Chapter 7, a database management system can have access
to a complete database, but it then carves the database into smaller units and parcels out
access: This user can see names but not salaries, that user can see only data on employees
in the western office.

Hardware devices, blocks of memory, the space on disk where program code is stored,
specific applications, all these are likely objects over which access is controlled.

Access Log

After making an access decision, the system acts to allow that access and leaves the
user and the object to complete the transaction. Systems also record which accesses have
been permitted, creating what is called an audit log. This log is created and maintained by
the system, and it is preserved for later analysis. Several reasons for logging access
include the following:

* Records of accesses can help plan for new or upgraded equipment, by showing
which items have had heavy use.

« If the system fails, these records can show what accesses were in progress and
perhaps help identify the cause of failure.

« If a user misuses objects, the access log shows exactly which objects the user
did access.

* In the event of an external compromise, the audit log may help identify how
the assailant gained access and which data items were accessed (and therefore
revealed or compromised). These data for after-the-fact forensic analysis have
been extremely helpful in handling major incidents.

As part of the access control activity, the system builds and protects this audit log.
Obviously, granularity matters: A log that records each memory byte accessed is too
lengthy to be of much practical value, but a log that says “8:01 user turned on system;
17:21 user turned off system” probably contains too little detail to be helpful.

In the next section we consider protection mechanisms appropriate for general objects
of unspecified types, such as the kinds of objects listed above. To make the explanations
easier to understand, we sometimes use an example of a specific object, such as a file.
Note, however, that a general mechanism can be used to protect any of the types of objects
listed.

Limited Privilege

Limited privilege is the act of restraining users and processes so that any harm they can
do is not catastrophic. A system that prohibits all accesses to anything by anyone certainly

achieves both confidentiality and integrity, but it completely fails availability and
usefulness. Thus, we seek a midpoint that balances the need for some access against the
risk of harmful, inappropriate access. Certainly, we do not expect users or processes to
cause harm. But recognizing that not all users are ethical or even competent and that not
all processes function as intended, we want to limit exposure from misbehaving users or
malfunctioning processes. Limited privilege is a way to constrain that exposure.

Limited privilege is a management concept, not a technical control. The process of
analyzing users and determining the privileges they require is a necessary first step to
authorizing within those limits. After establishing the limits, we turn to access control
technology to enforce those limits. In Chapter 3 we again raise the concept of limited
privilege when we describe program design and implementation that ensures security.
Security design principles first written by Jerome Saltzer and Michael Schroeder [SAL75]
explain the advantage of limiting the privilege with which users and their programs run.

Implementing Access Control

Access control is often performed by the operating system. Only the operating system
can access primitive objects, such as files, to exercise control over them, and the operating
system creates and terminates the programs that represent users (subjects). However,
current hardware design does not always support the operating system in implementing
well-differentiated or fine-grained access control. The operating system does not usually
see inside files or data objects, for example, so it cannot perform row- or element-level
access control within a database. Also, the operating system cannot easily differentiate
among kinds of network traffic. In these cases, the operating system defers to a database
manager or a network appliance in implementing some access control aspects. With
limited kinds of privileges to allocate, the operating system cannot easily both control a
database manager and allow the database manager to control users. Thus, current
hardware design limits some operating system designs.

Reference Monitor

James Anderson and his study committee [AND72] gave name and structure to the
digital version of a concept that has existed for millennia. To protect their medieval
fortresses, rulers had one heavily protected gate as the sole means of ingress. Generals
surrounded troop emplacements with forts and sentry guards. Bankers kept cash and other
valuables in safes with impregnable doors to which only a select few trusted people had
the combinations. Fairy tale villains locked damsels away in towers. All these examples
show strong access control because of fail-safe designs.

In Anderson’s formulation for computers, access control depends on a combination of
hardware and software that is

« always invoked; validates every access attempt
 immune from tampering
» assuredly correct

Reference monitor: access control that is always invoked, tamperproof,
and verifiable

Anderson called this construct a reference monitor. It should be obvious why these
three properties are essential.

A reference monitor is a notion, not a tool you can buy to plug into a port. It could be
embedded in an application (to control the application’s objects), part of the operating
system (for system-managed objects) or part of an appliance. Still, you will see these same
three properties appear repeatedly in this book. To have an effective reference monitor, we
need to consider effective and efficient means to translate policies, the basis for validation,
into action. How we represent a policy in binary data has implications for how efficient
and even how effective the mediation will be.

In the next sections we present several models of how access rights can be maintained
and implemented by the reference monitor.

Access Control Directory

One simple way to protect an object is to use a mechanism that works like a file
directory. Imagine we are trying to protect files (the set of objects) from users of a
computing system (the set of subjects). Every file has a unique owner who possesses
“control” access rights (including the rights to declare who has what access) and to revoke
access of any person at any time. Each user has a file directory, which lists all the files to
which that user has access.

Clearly, no user can be allowed to write in the file directory, because that would be a
way to forge access to a file. Therefore, the operating system must maintain all file
directories, under commands from the owners of files. The obvious rights to files are the
common read, write, and execute that are familiar on many shared systems. Furthermore,
another right, owner, is possessed by the owner, permitting that user to grant and revoke
access rights. Figure 2-9 shows an example of a file directory.

User A Directory Files User B Directory

Access File Access File
File Name Rights Pointer File Name Rights Pointer

FROGI.C ORW Y~ BIBLIOG R L
.E’H{}ELL.IEXI'L “”f}.\‘.’ I-_.. TEST.TMP X L

= i BB : = --‘-H-‘_""'--._._‘_*

BIBLICH ORW - PRIVATE ORW L
HELPTXT [\\ HELETXT R o
TEMP ORW l\\ |:| -

A

FIGURE 2-9 Directory Access Rights

This approach is easy to implement because it uses one list per user, naming all the

objects that a user is allowed to access. However, several difficulties can arise. First, the
list becomes too large if many shared objects, such as libraries of subprograms or a
common table of users, are accessible to all users. The directory of each user must have
one entry for each such shared object, even if the user has no intention of accessing the
object. Deletion must be reflected in all directories.

A second difficulty is revocation of access. If owner A has passed to user B the right to
read file F, an entry for F is made in the directory for B. This granting of access implies a
level of trust between A and B. If A later questions that trust, A may want to revoke the
access right of B. The operating system can respond easily to the single request to delete
the right of B to access F, because that action involves deleting one entry from a specific
directory. But if A wants to remove the rights of everyone to access F, the operating
system must search each individual directory for the entry F, an activity that can be time
consuming on a large system. For example, large systems or networks of smaller systems
can easily have 5,000 to 10,000 active accounts. Moreover, B may have passed the access
right for F to another user C, a situation known as propagation of access rights, so A may
not know that C’s access exists and should be revoked. This problem is particularly
serious in a network.

A third difficulty involves pseudonyms. Owners A and B may have two different files
named F, and they may both want to allow access by S. Clearly, the directory for S cannot
contain two entries under the same name for different files. Therefore, S has to be able to
uniquely identify the F for A (or B). One approach is to include the original owner’s
designation as if it were part of the file name, with a notation such as A:F (or B:F).

Suppose, however, that S would like to use a name other than F to make the file’s
contents more apparent. The system could allow S to name F with any name unique to the
directory of S. Then, F from A could be called Q to S. As shown in Figure 2-10, S may
have forgotten that Q is F from A, and so S requests access again from A for F. But by
now A may have more trust in S, so A transfers F with greater rights than before. This
action opens up the possibility that one subject, S, may have two distinct sets of access
rights to F, one under the name Q and one under the name F. In this way, allowing
pseudonyms can lead to multiple permissions that are not necessarily consistent. Thus, the
directory approach is probably too simple for most object protection situations.

User A Directory Files User S Directory Conflicting

K ; Access!
i 2 Access File o e i e S

File Name Rights Pointer G E e AR A S e e A e R L
F ORWX | ® = 0 R -1 H
BIBLIOG ORW .\ F RW PR
PROMGT.C ORW ‘\ E TEMP ORW 3
HELFTXT R o \ HELFTXT R’ L
PROGLEXE |OX \ |

User B Direclory \

— Access File
FileName Rights Pointer

-

HELPTXT [R ®
F ORW e -
TEMP ORW ®

FIGURE 2-10 Ambiguous Access Rights
Access Control Matrix

We can think of the directory as a listing of objects accessible by a single subject, and
the access list as a table identifying subjects that can access a single object. The data in
these two representations are equivalent, the distinction being the ease of use in given
situations.

As an alternative, we can use an access control matrix, shown in Figure 2-11, a table in
which each row represents a subject, each column represents an object, and each entry is
the set of access rights for that subject to that object.

objects
< >
; System
File A Printer
Clock
A
Read
& User W Write Write Read
o)
2 O
é.., wn
2 (| Admin Wnte | control
’ Control

FIGURE 2-11 Access Control Matrix

A more detailed example representation of an access control matrix is shown in Table 2-
8. Access rights shown in that table are O, own; R, read; W, write; and X, execute. In
general, the access control matrix is sparse (meaning that most cells are empty): Most
subjects do not have access rights to most objects. The access matrix can be represented as

a list of triples, each having the form (subject, object, rights>, as shown in Table 2-9.

Help C
Bibliog | Temp F ot Comp | Linker | Clock | Printer
USER A ORW ORW ORW R X X R W
UsSER B R — - R x X R W
USER 5 W - R R X X B W
USERT — - R X X X 4 W
SYS MGR — — —_ EW Ox oxX ORW o
USER SVCS —_— e — O X X R w

TABLE 2-8 Access Control Matrix

Subject Object Right
USER A Bibliog ORW
USER B Bibliog R
USER. S Bibliog RW
USER. A Temp OFRW
USER A F ORW
USER 5 F R
efc.

TABLE 2-9 List of Access Control Triples
This representation may be more efficient than the access control matrix because there

is no triple for any empty cell of the matrix (such as (USER T, Bibliog, —>). Even though
the triples can be sorted by subject or object as needed, searching a large number of these
triples is inefficient enough that this implementation is seldom used.

Access Control List

An alternative representation is the access control list; as shown in Figure 2-12; this
representation corresponds to columns of the access control matrix. There is one such list
for each object, and the list shows all subjects who should have access to the object and
what their access is. This approach differs from the directory list because there is one
access control list per object; a directory is created for each subject. Although this
difference seems small, there are some significant advantages to this approach.

FileA | Printer | SYstem
Clock
Read
User W Write Write Read
Own
Admin Write Control
Control

FIGURE 2-12 Access Control List

The access control list representation can include default rights. Consider subjects A
and S, both of whom have access to object F. The operating system will maintain just one
access list for F, showing the access rights for A and S, as shown in Figure 2-13. The
access control list can include general default entries for any users. In this way, specific
users can have explicit rights, and all other users can have a default set of rights. With this
organization, all possible users of the system can share a public file or program without
the need for an entry for the object in the individual directory of each user.

Directory Access Lisis Files
. Access
Access List St
File Pointer sl Rags BIBLIOG
BIBLIOG - > USER_A ORW
T ISER_B R
TEMP | USER_
o !
F USER_S RW TEMP
HELPTXT .\ USER_A ORW
i
USER_A ORW
USER_S R
USER_A R HELETXT
USER_B R
USER_S R
USER_T R
SYSMGR RW
USER_SVCS O

FIGURE 2-13 Access Control List with Two Subjects

The Multics operating system used a form of access control list in which each user
belonged to three protection classes: a user, a group, and a compartment. The user
designation identified a specific subject, and the group designation brought together
subjects who had a common interest, such as their being coworkers on a project. The
compartment confined an untrusted object; a program executing in one compartment could
not access objects in another compartment without specific permission. The compartment
was also a way to collect objects that were related, such as all files for a single project.

To see how this type of protection might work, suppose every user who initiates access
to the system identifies a group and a compartment with which to work. If Adams logs in
as user Adams in group Decl and compartment Art2, only objects having Adams-Decl-
Art2 in the access control list are accessible in the session.

By itself, this kind of mechanism would be too restrictive to be usable. Adams cannot
create general files to be used in any session. Worse yet, shared objects would not only
have to list Adams as a legitimate subject but also have to list Adams under all acceptable
groups and all acceptable compartments for each group.

The solution is the use of wild cards, meaning placeholders that designate “any user”
(or “any group” or “any compartment”). An access control list might specify access by
Adams-Decl-Artl, giving specific rights to Adams if working in group Decl on
compartment Artl. The list might also specify Adams-*-Artl, meaning that Adams can
access the object from any group in compartment Artl. Likewise, a notation of *-Decl-*
would mean “any user in group Decl in any compartment.” Different placements of the
wildcard notation * have the obvious interpretations.

Unix uses a similar approach with user—group—world permissions. Every user belongs
to a group of related users—students in a common class, workers on a shared project, or
members of the same department. The access permissions for each object are a triple
(u,g,w) in which u is for the access rights of the user, g is for other members of the group,
and w is for all other users in the world.

The access control list can be maintained in sorted order, with * sorted as coming after
all specific names. For example, Adams-Decl-* would come after all specific
compartment designations for Adams. The search for access permission continues just
until the first match. In the protocol, all explicit designations are checked before wild
cards in any position, so a specific access right would take precedence over a wildcard
right. The last entry on an access list could be *-*-* specifying rights allowable to any
user not explicitly on the access list. With this wildcard device, a shared public object can
have a very short access list, explicitly naming the few subjects that should have access
rights different from the default.

Privilege List

A privilege list, sometimes called a directory, is a row of the access matrix, showing
all those privileges or access rights for a given subject (shown in Figure 2-14). One
advantage of a privilege list is ease of revocation: If a user is removed from the system,
the privilege list shows all objects to which the user has access so that those rights can be
removed from the object.

: System
File A Printe ”
ile rinter Clock
Read
|:> User W Write Write Read
Own
Admin w e Control
Control

FIGURE 2-14 Privilege Control List
Capability

So far, we have examined protection schemes in which the operating system must keep
track of all the protection objects and rights. But other approaches put some of the burden
on the user. For example, a user may be required to have a ticket or pass that enables
access, much like a ticket or identification card that cannot be duplicated.

More formally, we say that a capability is an unforgeable token that gives the possessor
certain rights to an object. The Multics [SAL74], CAL [LAMY6], and Hydra [WUL74]
systems used capabilities for access control. As shown in Figure 2-15, a capability is just
one access control triple of a subject, object, and right. In theory, a subject can create new
objects and can specify the operations allowed on those objects. For example, users can
create objects such as files, data segments, or subprocesses and can also specify the
acceptable kinds of operations, such as read, write, and execute. But a user can also create
completely new objects, such as new data structures, and can define types of accesses
previously unknown to the system.

File A Printer System
Clock

Read

User W Write Write Read
Own /7

-Jf Film
Admin Yie Control
Control

FIGURE 2-15 Capability

Capability: Single- or multi-use ticket to access an object or service

Think of capability as a ticket giving permission to a subject to have a certain type of
access to an object. For the capability to offer solid protection, the ticket must be

unforgeable. One way to make it unforgeable is to not give the ticket directly to the user.
Instead, the operating system holds all tickets on behalf of the users. The operating system
returns to the user a pointer to an operating system data structure, which also links to the
user. A capability can be created only by a specific request from a user to the operating
system. Each capability also identifies the allowable accesses.

Alternatively, capabilities can be encrypted under a key available only to the access
control mechanism. If the encrypted capability contains the identity of its rightful owner,
user A cannot copy the capability and give it to user B.

One possible access right to an object is transfer or propagate. A subject having this
right can pass copies of capabilities to other subjects. In turn, each of these capabilities
also has a list of permitted types of accesses, one of which might also be transfer. In this
instance, process A can pass a copy of a capability to B, who can then pass a copy to C. B
can prevent further distribution of the capability (and therefore prevent further
dissemination of the access right) by omitting the transfer right from the rights passed in
the capability to C. B might still pass certain access rights to C, but not the right to
propagate access rights to other subjects.

As a process executes, it operates in a domain or local name space. The domain is the
collection of objects to which the process has access. A domain for a user at a given time
might include some programs, files, data segments, and I/O devices such as a printer and a
terminal. An example of a domain is shown in Figure 2-16.

Code of
MAIN

Stored data
objects

FIGURE 2-16 Example of a Domain

As execution continues, the process may call a subprocedure, passing some of the
objects to which it has access as arguments to the subprocedure. The domain of the
subprocedure is not necessarily the same as that of its calling procedure; in fact, a calling
procedure may pass only some of its objects to the subprocedure, and the subprocedure
may have access rights to other objects not accessible to the calling procedure, as shown
in Figure 2-17. The caller may also pass only some of its access rights for the objects it
passes to the subprocedure. For example, a procedure might pass to a subprocedure the
right to read but not to modify a particular data value.

Domain of MAIN
Code of l=
=
|
|
Call SUB : I] :
1
: ru Stored data :
: ! objects |
| | 1 - |
| | | I
f T
L l
. T
Domain of SUB v _ I e
=l | =
Code of Ll '
SUB v :
L 4
Stored data
objects

FIGURE 2-17 Passing Objects to a Domain

Because each capability identifies a single object in a domain, the collection of
capabilities defines the domain. When a process calls a subprocedure and passes certain
objects to the subprocedure, the operating system forms a stack of all the capabilities of
the current procedure. The operating system then creates new capabilities for the
subprocedure.

Operationally, capabilities are a straightforward way to keep track of the access rights
of subjects to objects during execution. The capabilities are backed up by a more
comprehensive table, such as an access control matrix or an access control list. Each time
a process seeks to use a new object, the operating system examines the master list of
objects and subjects to determine whether the object is accessible. If so, the operating
system creates a capability for that object.

Capabilities must be stored in memory inaccessible to normal users. One way of
accomplishing this is to store capabilities in segments not pointed at by the user’s segment
table or to enclose them in protected memory as from a pair of base/bounds registers.
Another approach is to use a tagged architecture machine to identify capabilities as
structures requiring protection.

During execution, only the capabilities of objects that have been accessed by the current
process are kept readily available. This restriction improves the speed with which access
to an object can be checked. This approach is essentially the one used in Multics, as
described in [FAB74].

Capabilities can be revoked. When an issuing subject revokes a capability, no further
access under the revoked capability should be permitted. A capability table can contain
pointers to the active capabilities spawned under it so that the operating system can trace

what access rights should be deleted if a capability is revoked. A similar problem is
deleting capabilities for users who are no longer active.

These three basic structures, the directory, access control matrix and its subsets, and
capability, are the basis of access control systems implemented today. Quite apart from the
mechanical implementation of the access control matrix or its substructures, two access
models relate more specifically to the objective of access control: relating access to a
subject’s role or the context of the access. We present those models next.

Procedure-Oriented Access Control

One goal of access control is restricting not just what subjects have access to an object,
but also what they can do to that object. Read versus write access can be controlled rather
readily by most applications and operating systems, but more complex control is not so
easy to achieve.

By procedure-oriented protection, we imply the existence of a procedure that controls
access to objects (for example, by performing its own user authentication to strengthen the
basic protection provided by the basic operating system). In essence, the procedure forms
a capsule around the object, permitting only certain specified accesses.

Procedures can perform actions specific to a particular object in
implementing access control.

Procedures can ensure that accesses to an object be made through a trusted interface.
For example, neither users nor general operating system routines might be allowed direct
access to the table of valid users. Instead, the only accesses allowed might be through
three procedures: one to add a user, one to delete a user, and one to check whether a
particular name corresponds to a valid user. These procedures, especially add and delete,
could use their own checks to make sure that calls to them are legitimate.

Procedure-oriented protection implements the principle of information hiding because
the means of implementing an object are known only to the object’s control procedure. Of
course, this degree of protection carries a penalty of inefficiency. With procedure-oriented
protection, there can be no simple, fast access checking, even if the object is frequently
used.

Role-Based Access Control

We have not yet distinguished among kinds of users, but we want some users (such as
administrators) to have significant privileges, and we want others (such as regular users or
guests) to have lower privileges. In companies and educational institutions, this can get
complicated when an ordinary user becomes an administrator or a baker moves to the
candlestick makers’ group. Role-based access control lets us associate privileges with
groups, such as all administrators can do this or candlestick makers are forbidden to do
that. Administering security is easier if we can control access by job demands, not by
person. Access control keeps up with a person who changes responsibilities, and the
system administrator does not have to choose the appropriate access control settings for
someone. For more details on the nuances of role-based access control, see [FER03].

Access control by role recognizes common needs of all members of a set
of subjects.

In conclusion, our study of access control mechanisms has intentionally progressed
from simple to complex. Historically, as the mechanisms have provided greater flexibility,
they have done so with a price of increased overhead. For example, implementing
capabilities that must be checked on each access is far more difficult than implementing a
simple directory structure that is checked only on a subject’s first access to an object. This
complexity is apparent to both the user and implementer. The user is aware of additional
protection features, but the naive user may be frustrated or intimidated at having to select
protection options with little understanding of their usefulness. The implementation
complexity becomes apparent in slow response to users. The balance between simplicity
and functionality is a continuing struggle in security.

2.3 Cryptography

Next we introduce the third of our basic security tools, cryptography. In this chapter we
present only the rudiments of the topic, just enough so you can see how it can be used and
what it can achieve. We leave the internals for Chapter 12 at the end of this book. We do
that because most computer security practitioners would be hard-pressed to explain or
implement good cryptography from scratch, which makes our point that you do not need
to understand the internals of cryptography just to use it successfully. As you read this
chapter you may well ask why something is done in a particular way or how something
really works. We invite you to jump to Chapter 12 for the details. But this chapter focuses
on the tool and its uses, leaving the internal workings for the future.

Encryption or cryptography—the name means secret writing—is probably the strongest
defense in the arsenal of computer security protection. Well-disguised data cannot easily
be read, modified, or fabricated. Simply put, encryption is like a machine: you put data in
one end, gears spin and lights flash, and you receive modified data out the other end. In
fact, some encryption devices used during World War II operated with actual gears and
rotors, and these devices were effective at deterring (although not always preventing) the
opposite side from reading the protected messages. Now the machinery has been replaced
by computer algorithms, but the principle is the same: A transformation makes data
difficult for an outsider to interpret.

Cryptography conceals data against unauthorized access.

We begin by examining what encryption does and how it works. We introduce the basic
principles of encryption algorithms, introducing two types of encryption with distinct uses.
Because weak or flawed encryption creates only the illusion of protection, we also look at
how encryption can fail. We briefly describe techniques used to break through the
protective cover to void security. Building on these basic types of encryption, we show
how to combine them to securely address several general problems of computing and
communicating.

Problems Addressed by Encryption

Sometimes we describe encryption in the context of sending secret messages. This
framing is just for ease of description: The same concepts apply to protecting a file of data
or sensitive information in memory. So when we talk about sending a message, you should
also think of protecting any digital object for access only by authorized people.

Consider the steps involved in sending messages from a sender, S, to a recipient, R. If
S entrusts the message to T, who then delivers it to R, T then becomes the transmission
medium. If an outsider, O, wants to access the message (to read, change, or even destroy
it), we call O an interceptor or intruder. Any time after S transmits the message via T, it
is vulnerable to exploitation, and O might try to access it in any of the following ways:

* block it, by preventing its reaching R, thereby affecting the availability of the
message

* intercept it, by reading or listening to the message, thereby affecting the
confidentiality of the message

» modify it, by seizing the message and changing it in some way, affecting the
message’s integrity

* fabricate an authentic-looking message, arranging for it to be delivered as if it
came from S, thereby also affecting the integrity of the message

As you can see, a message’s vulnerabilities reflect the four possible security failures we
identified in Chapter 1. Fortunately, encryption is a technique that can address all these
problems. Encryption is a means of maintaining secure data in an insecure environment. In
this book, we study encryption as a security technique, and we see how it is used in
protecting programs, databases, networks, and electronic communications.

Terminology

Encryption is the process of encoding a message so that its meaning is not obvious;
decryption is the reverse process, transforming an encrypted message back into its
normal, original form. Alternatively, the terms encode and decode or encipher and

decipher are used instead of encrypt and decrypt.2 That is, we say we encode, encrypt, or
encipher the original message to hide its meaning. Then, we decode, decrypt, or decipher
it to reveal the original message. A system for encryption and decryption is called a
cryptosystem.
2. There are slight differences in the meanings of these three pairs of words, although they are not significant in
the context of this discussion. Strictly speaking, encoding is the process of translating entire words or phrases to

other words or phrases, whereas enciphering is translating letters or symbols individually; encryption is the
group term that covers both encoding and enciphering.

The original form of a message is known as plaintext, and the encrypted form is called
ciphertext. This relationship is shown in Figure 2-18. Think of encryption as a form of
opaque paint that obscures or obliterates the plaintext, preventing it from being seen or
interpreted accurately. Then, decryption is the process of peeling away the paint to reveal
the original plaintext again.

Key Key
(Optional) {Optional)

Plaintext Ciphertext D“_g“"“l
Plaintext

FIGURE 2-18 Plaintext and Ciphertext

Ciphertext: encrypted material; plaintext: material in intelligible form

We use a formal notation to describe the transformations between plaintext and
ciphertext. For example, we write C = E(P) and P = D(C), where C represents the
ciphertext, E is the encryption rule, P is the plaintext, and D is the decryption rule. What
we seek is a cryptosystem for which P = D(E(P)). In other words, we want to be able to
convert the plaintext message to ciphertext to protect it from an intruder, but we also want
to be able to get the original message back so that the receiver can read it properly.

Encryption Keys

A cryptosystem involves a set of rules for how to encrypt the plaintext and decrypt the
ciphertext. The encryption and decryption rules, called algorithms, often use a device
called a key, denoted by K, so that the resulting ciphertext depends on the original
plaintext message, the algorithm, and the key value. We write this dependence as C = E(K,
P). Essentially, E is a set of encryption algorithms, and the key K selects one specific
algorithm from the set.

This process is similar to using mass-produced locks in houses. As a homeowner, you
would pay dearly to contract with someone to invent and make a lock just for your house.
In addition, you would not know whether a particular inventor’s lock was really solid or
how it compared with those of other inventors. A better solution is to have a few well-
known, well-respected companies producing standard locks that differ according to the
(physical) key. Then, you and your neighbor might have the same brand and style of lock,
but your key will open only your lock. In the same way, it is useful to have a few well-
examined encryption algorithms for everyone to use, but differing keys would prevent
someone from breaking into data you are trying to protect.

Sometimes the encryption and decryption keys are the same, so P = D(K,E(K,P)),
meaning that the same key, K, is used both to encrypt a message and later to decrypt it.
This form is called symmetric or single-key or secret key encryption because D and E are
mirror-image processes. As a trivial example, the encryption algorithm might be to shift
each plaintext letter forward n positions in the alphabet. For n = 1, A is changed to b, B to
c,...Ptoq, ... and Z to a, so we say the key value is n, moving n positions forward for
encryption and backward for decryption. (You might notice that we have written the
plaintext in uppercase letters and the corresponding ciphertext in lowercase;
cryptographers sometimes use that convention to help them distinguish the two.)

Symmetric encryption: one key encrypts and decrypts.

At other times, encryption and decryption keys come in pairs. Then, a decryption key,
K, inverts the encryption of key K, so that P = D(Kp, E(K,P)). Encryption algorithms

of this form are called asymmetric or public key because converting C back to P involves
a series of steps and a key that are different from the steps and key of E. The difference
between symmetric and asymmetric encryption is shown in Figure 2-19.

Plaintexi Ciphertext

Original

E‘_

Plaintext
{a) Symmetric Cryptosystem
Encryption Decryption
Key Key
: e Original
Plaintext Ciphertext Plainians

(b} Asymmetric Cryptosysiem

FIGURE 2-19 Symmetric and Asymmetric Encryption

Asymmetric encryption: one key encrypts, a different key decrypts.

A key gives us flexibility in using an encryption scheme. We can create different
encryptions of one plaintext message just by changing the key. Moreover, using a key
provides additional security. If the encryption algorithm should fall into the interceptor’s
hands, future messages can still be kept secret because the interceptor will not know the
key value. Sidebar 2-14 describes how the British dealt with written keys and codes in
World War II. An encryption scheme that does not require the use of a key is called a
keyless cipher.

Sidebar 2-14 Silken Codes

Leo Marks [MAR98] describes his life as a code-maker in Britain during World
War II. That is, the British hired Marks and others to devise codes that could be
used by spies and soldiers in the field. In the early days, the encryption scheme
depended on poems that were written for each spy, and it relied on the spy’s
ability to memorize and recall the poems correctly.

Marks reduced the risk of error by introducing a coding scheme that was
printed on pieces of silk. Silk hidden under clothing could not be felt when the
spy was patted down and searched. And, unlike paper, silk burns quickly and
completely, so the spy could destroy incriminating evidence, also ensuring that
the enemy could not get even fragments of the valuable code. When pressed by
superiors as to why the British should use scarce silk (which was also needed for
war-time necessities like parachutes) for codes, Marks said that it was a choice

“between silk and cyanide.”

The history of encryption is fascinating; it is well documented in David Kahn’s book
[KAH96]. Claude Shannon is considered the father of modern cryptography because he
laid out a formal, mathematical foundation for information security and expounded on
several principles for secure cryptography at the naissance of digital computing [SHA49].
Encryption has been used for centuries to protect diplomatic and military communications,
sometimes without full success. The word cryptography refers to the practice of using
encryption to conceal text. A cryptanalyst studies encryption and encrypted messages,
hoping to find the hidden meanings. A cryptanalyst might also work defensively, probing
codes and ciphers to see if they are solid enough to protect data adequately.

Both a cryptographer and a cryptanalyst attempt to translate coded material back to its
original form. Normally, a cryptographer works on behalf of a legitimate sender or
receiver, whereas a cryptanalyst works on behalf of an unauthorized interceptor. Finally,
cryptology is the research into and study of encryption and decryption; it includes both
cryptography and cryptanalysis.

Cryptanalysis

A cryptanalyst’s chore is to break an encryption. That is, the cryptanalyst attempts to
deduce the original meaning of a ciphertext message. Better yet, the cryptanalyst hopes to
determine which decrypting algorithm, and ideally which key, matches the encrypting
algorithm to be able to break other messages encoded in the same way.

For instance, suppose two countries are at war and the first country has intercepted
encrypted messages of the second. Cryptanalysts of the first country want to decipher a
particular message so as to anticipate the movements and resources of the second. But
even better is to discover the actual decryption method; then the first country can penetrate
the encryption of all messages sent by the second country.

An analyst works with a variety of information: encrypted messages, known encryption
algorithms, intercepted plaintext, data items known or suspected to be in a ciphertext
message, mathematical or statistical tools and techniques, and properties of languages, as
well as plenty of ingenuity and luck. Each piece of evidence can provide a clue, and the
analyst puts the clues together to try to form a larger picture of a message’s meaning in the
context of how the encryption is done. Remember that there are no rules. An interceptor
can use any means available to tease out the meaning of the message.

Work Factor

An encryption algorithm is called breakable when, given enough time and data, an
analyst can determine the algorithm. However, an algorithm that is theoretically breakable
may in fact be impractical to try to break. To see why, consider a 25-character message

that is expressed in just uppercase letters. A given cipher scheme may have 26%°
(approximately 10%°) possible decipherments, so the task is to select the right one out of
the 26%°. If your computer could perform on the order of 10'° operations per second,

finding this decipherment would require on the order of 10%° seconds, or roughly 10!/
years. In this case, although we know that theoretically we could generate the solution,

determining the deciphering algorithm by examining all possibilities can be ignored as
infeasible with current technology.

The difficulty of breaking an encryption is called its work factor. Again, an analogy to
physical locks may prove helpful. As you know, physical keys have notches or other
irregularities, and the notches cause pins to move inside a lock, allowing the lock to open.
Some simple locks, such as those sold with suitcases, have only one notch, so these locks
can often be opened with just a piece of bent wire; worse yet, some manufacturers produce
only a few (and sometimes just one!) distinct internal pin designs; you might be able to
open any such lock with a ring of just a few keys. Clearly these locks are cosmetic only.

Common house locks have five or six notches, and each notch can have any of ten
depths. To open such a lock requires finding the right combination of notch depths, of
which there may be up to a million possibilities, so carrying a ring of that many keys is
infeasible. Even though in theory someone could open one of these locks by trying all
possible keys, in practice the number of possibilities is prohibitive. We say that the work
factor to open one of these locks without the appropriate key is large enough to deter most
attacks. So too with cryptography: An encryption is adequate if the work to decrypt
without knowing the encryption key is greater than the value of the encrypted data.

Work factor: amount of effort needed to break an encryption (or mount a
successful attack)

Two other important issues must be addressed when considering the breakability of
encryption algorithms. First, the cryptanalyst cannot be expected to try only the hard, long

way. In the example just presented, the obvious decryption might require 262> machine
operations, but a more ingenious approach might require only 10 operations. At the

speed of 10'Y operations per second, 10> operations take slightly more than one day. The
ingenious approach is certainly feasible. In fact, newspapers sometimes print cryptogram
puzzles that humans solve with pen and paper alone, so there is clearly a shortcut to our
computer machine time estimate of years or even one day of effort. The newspaper games
give hints about word lengths and repeated characters, so humans are solving an easier
problem. As we said, however, cryptanalysts also use every piece of information at their
disposal.

Some of the algorithms we study in this book are based on known “hard” problems that
take an unreasonably long time to solve. But the cryptanalyst does not necessarily have to
solve the underlying problem to break the encryption of a single message. Sloppy use of
controls can reveal likely words or phrases, and an analyst can use educated guesses
combined with careful analysis to generate all or much of an important message. Or the
cryptanalyst might employ a spy to obtain the plaintext entirely outside the system;
analysts might then use the pair of plaintext and corresponding ciphertext to infer the
algorithm or key used to apply to subsequent messages.

In cryptanalysis there are no rules: Any action is fair play.

Second, estimates of breakability are based on current technology. An enormous

advance in computing technology has occurred since 1950. Things that were infeasible in
1940 became possible by the 1950s, and every succeeding decade has brought greater
improvements. A conjecture known as “Moore’s Law” asserts that the speed of processors
doubles every 1.5 years, and this conjecture has been true for over three decades. We dare
not pronounce an algorithm secure just because it cannot be broken with current
technology, or worse, that it has not been broken yet.

In this book we write that something is impossible; for example, it is impossible to
obtain plaintext from ciphertext without the corresponding key and algorithm. Please
understand that in cryptography few things are truly impossible: infeasible or prohibitively
difficult, perhaps, but impossible, no.

Symmetric and Asymmetric Encryption Systems

Recall that the two basic kinds of encryptions are symmetric (also called “secret key”)
and asymmetric (also called “public key”). Symmetric algorithms use one key, which
works for both encryption and decryption. Usually, the decryption algorithm is closely
related to the encryption one, essentially running the encryption in reverse.

The symmetric systems provide a two-way channel to their users: A and B share a
secret key, and they can both encrypt information to send to the other as well as decrypt
information from the other. As long as the key remains secret, the system also provides
authenticity, proof that a message received was not fabricated by someone other than the

declared sender.2 Authenticity is ensured because only the legitimate sender can produce a
message that will decrypt properly with the shared key.
3. This being a security book, we point out that the proof is actually that the message was sent by someone who

had or could simulate the effect of the sender’s key. With many security threats there is a small, but non-zero, risk
that the message is not actually from the sender but is a complex forgery.

Symmetry is a major advantage of this type of encryption, but it also leads to a problem:
How do two users A and B obtain their shared secret key? And only A and B can use that
key for their encrypted communications. If A wants to share encrypted communication
with another user C, A and C need a different shared secret key. Managing keys is the
major difficulty in using symmetric encryption. In general, n users who want to
communicate in pairs need n * (n — 1)/2 keys. In other words, the number of keys needed
increases at a rate proportional to the square of the number of users! So a property of
symmetric encryption systems is that they require a means of key distribution.

Asymmetric or public key systems, on the other hand, typically have precisely matched
pairs of keys. The keys are produced together or one is derived mathematically from the
other. Thus, a process computes both keys as a set.

But for both kinds of encryption, a key must be kept well secured. Once the symmetric
or private key is known by an outsider, all messages written previously or in the future can
be decrypted (and hence read or modified) by the outsider. So, for all encryption
algorithms, key management is a major issue. It involves storing, safeguarding, and
activating keys.

Asymmetric systems excel at key management. By the nature of the public key
approach, you can send a public key in an email message or post it in a public directory.
Only the corresponding private key, which presumably is not disclosed, can decrypt what

has been encrypted with the public key.
Stream and Block Ciphers

One final characterization of encryption algorithms relates to the nature of the data to be
concealed. Suppose you are streaming video, perhaps a movie, from a satellite. The stream
may come in bursts, depending on such things as the load on the satellite and the speed at
which the sender and receiver can operate. For such application you may use what is
called stream encryption, in which each bit, or perhaps each byte, of the data stream is
encrypted separately. A model of stream enciphering is shown in Figure 2-20. Notice that
the input symbols are transformed one at a time. The advantage of a stream cipher is that it
can be applied immediately to whatever data items are ready to transmit. But most
encryption algorithms involve complex transformations; to do these transformations on
one or a few bits at a time is expensive.

Key
(Optional)

...ISSOPMI

wdhuw. ..
[]I:l { Encryption J [“:l Ciphertext 5

FIGURE 2-20 Stream Enciphering

To address this problem and make it harder for a cryptanalyst to break the code, we can
use block ciphers. A block cipher encrypts a group of plaintext symbols as a single block.
A block cipher algorithm performs its work on a quantity of plaintext data all at once. Like
a machine that cuts out 24 cookies at a time, these algorithms capitalize on economies of
scale by operating on large amounts of data at once. Blocks for such algorithms are
typically 64, 128, 256 bits or more. The block size need not have any particular
relationship to the size of a character. Block ciphers work on blocks of plaintext and
produce blocks of ciphertext, as shown in Figure 2-21. In the figure, the central box
represents an encryption machine: The previous plaintext pair is converted to po, the
current one being converted is IH, and the machine is soon to convert ES.

.. XN OI TP ES

Plaintext

Key
(Optional)

L

IH

Ciphertext

Encryption

£m

FIGURE 2-21 Block Cipher

Stream ciphers encrypt one bit or one byte at a time; block ciphers

encrypt a fixed number of bits as a single chunk.

Table 2-10 lists the advantages and disadvantages of stream and block encryption

algorithms.
Stream Block

Advantages + Speed of transformation. Because + High diffusion. Information from
each symbol is encrypted without the plaintext is diffused into several
regard for any other plaintext symbols, ciphertext symbols. One ciphertext
each symbol can be encrypted as block may depend on several plaintext
so0n as it is read. Thus, the time (o letters.
encrypt a symbol depends only on the = Immunity fo insertion of symbol.
encryption algorithm itself, not on the Because blocks of symbols are
time it takes to receive more plaintext. enciphered, it is impossible to insert

* Low error propagation. Because each a single symbol into one block. The

symbol is separately encoded, an error length of the block would then be
in the encryption process affects only incorrect, and the decipherment would
that character. quickly reveal the insertion.

Disadvantages | » Low diffusion. Each symbol is = Slowness of encryprion. The person

separately enciphered. Therefore,

all the information of that symbeol is
contained in one symbol of ciphertext.
Susceptibility to malicious insertions
and modifications. Because each
symbol is separately enciphered, an
active interceptor who has broken the
code can splice pieces of previous
messages and transmit a spurious new
message that may look authentic.

or machine doing the block ciphering
must wait until an entire block of
plaintext symbols has been received
before starting the encryplion process.
Padding. A final short block must be
filled with irrelevant data to make a
full-sized block.

Error propagation. An error will
affect the transformation of all other
characters in the same block.

TABLE 2-10 Stream and Block Encryption Algorithms

With this description of the characteristics of different encryption algorithms we can
now turn to some widely used encryption algorithms. We present how each works, a bit of
the historical context and motivation for each, and some strengths and weaknesses. We
identify these algorithms by name because these names appear in the popular literature.
We also introduce other symmetric algorithms in Chapter 12. Of course you should
recognize that these are just examples of popular algorithms; over time these algorithms
may be superseded by others. To a large degree cryptography has become plug-and-play,
meaning that in an application developers can substitute one algorithm for another of the
same type and similar characteristics. In that way advancements in the field of
cryptography do not require that all applications using cryptography be rewritten.

DES: The Data Encryption Standard

The Data Encryption Standard (DES) [NBS77], a system developed for the U.S.
government, was intended for use by the general public. Standards organizations have
officially accepted it as a cryptographic standard both in the United States and abroad.
Moreover, many hardware and software systems have been designed with DES. For many
years it was the algorithm of choice for protecting financial, personal, and corporate data;
however, researchers increasingly questioned its adequacy as it aged.

Overview of the DES Algorithm

The DES algorithm [NBS77] was developed in the 1970s by IBM for the U.S. National
Institute of Standards and Technology (NIST), then called the National Bureau of
Standards (NBS). DES is a careful and complex combination of two fundamental building
blocks of encryption: substitution and transposition. The algorithm derives its strength
from repeated application of these two techniques, one on top of the other, for a total of 16
cycles. The sheer complexity of tracing a single bit through 16 iterations of substitutions
and transpositions has so far stopped researchers in the public from identifying more than
a handful of general properties of the algorithm.

The algorithm begins by encrypting the plaintext as blocks of 64 bits. The key is 64 bits
long, but in fact it can be any 56-bit number. (The extra 8 bits are often used as check
digits but do not affect encryption in normal implementations. Thus we say that DES uses
a key, the strength of which is 56 bits.) The user can pick a new key at will any time there
is uncertainty about the security of the old key.

DES encrypts 64-bit blocks by using a 56-bit key.

DES uses only standard arithmetic and logical operations on binary data up to 64 bits
long, so it is suitable for implementation in software on most current computers.
Encrypting with DES involves 16 iterations, each employing replacing blocks of bits
(called a substitution step), shuffling the bits (called a permutation step), and mingling in
bits from the key (called a key transformation). Although complex, the process is table
driven and repetitive, making it suitable for implementation on a single-purpose chip. In
fact, several such chips are available on the market for use as basic components in devices
that use DES encryption in an application.

Double and Triple DES

As you know, computing power has increased rapidly over the last few decades, and it
promises to continue to do so. For this reason, the DES 56-bit key length is not long
enough for some people’s comfort. Since the 1970s, researchers and practitioners have
been interested in a longer-key version of DES. But we have a problem: The DES
algorithm design is fixed to a 56-bit key.

Double DES

To address the discomfort, some researchers suggest using a double encryption for
greater secrecy. The double encryption works in the following way. Take two keys, k; and

k,, and perform two encryptions, one on top of the other: E(k,, E(k;,m)). In theory, this

approach should multiply the difficulty of breaking the encryption, just as two locks are
harder to pick than one.

Unfortunately, that assumption is false. Ralph Merkle and Martin Hellman [MER81]
showed that two encryptions are scarcely better than one: two encryptions with different
56-bit keys are equivalent in work factor to one encryption with a 57-bit key. Thus, the
double encryption adds only a small amount of extra work for the attacker who is trying to
infer the key(s) under which a piece of ciphertext was encrypted. As we soon describe,
some 56-bit DES keys have been derived in just days; two times days is still days, when
the hope was to add months if not years of work for the second encryption. Alas, double
DES adds essentially no more security.

Triple DES

However, a simple trick does indeed enhance the security of DES. Using three keys
adds significant strength.

The so-called triple DES procedure is C = E(k3, E(k,, E(k;,;m))). That is, you encrypt

with one key, then with the second, and finally with a third. This process gives a strength
roughly equivalent to a 112-bit key (because the double DES attack defeats the strength of
one of the three keys, but it has no effect on the third key).

A minor variation of triple DES, which some people also confusingly call triple DES, is
C = E(k;, D(ky, E(k;,m))). That is, you encrypt with one key, decrypt with a second, and

encrypt with the first again. This version requires only two keys. (The second decrypt step
also makes this process work for single encryptions with one key: The decryption cancels
the first encryption, so the net result is one encryption. The encrypt—decrypt—encrypt form
is handy because one algorithm can produce results for both conventional single-key DES
and the more secure two-key method.) This two-key, three-step version is subject to
another tricky attack, so its strength is rated at only about 80 bits. Still, 80 bits is beyond
reasonable cracking capability for current hardware.

In summary, ordinary DES has a key space of 56 bits, double DES is scarcely better, but
two-key triple DES gives an effective length of 80 bits, and three-key triple DES gives a
strength of 112 bits. Remember why we are so fixated on key size: If no other way
succeeds, the attacker can always try all possible keys. A longer key means significantly
more work for this attack to bear fruit, with the work factor doubling for each additional

bit in key length. Now, roughly a half century after DES was created, a 56-bit key is
inadequate for any serious confidentiality, but 80- and 112-bit effective key sizes afford
reasonable security. We summarize these forms of DES in Table 2-11.

Form Operation Properties Strength
DES Encrypt with one key 56-bit key Inadequate for high-security
applications by today’s
computing capabilities
Double DES | Encrypt with first key; then Twao 56-bit keys Only doubles strength of
encrypd result with second key 56-bit key version
Two-key Encrypt with first key, then Two 56-bit keys Gives strength equivalent
triple DES encrypt (or decrypt) resull to about 80-bit key (about
with second key. then encrypt 16 million times as strong as
result with first key (E-D-E) 56-bit version)
Three-key Encrypt with first key, then Three 56-bit keys Gives strength equivalent to
triple DES encrypt or decrypt result with about 1 12-bit key about 72
second key, then encrypt result quintillion (72=10'%) times as
with third key (E-E-E) strong as 56-bit version

TABLE 2-11 Forms of DES
Security of DES

Since it was first announced, DES has been controversial. Many researchers have
questioned the security it provides. Because of its association with the U.S. government,
specifically the U.S. National Security Agency (NSA) that made certain unexplained
changes between what IBM proposed and what the NBS actually published, some people
have suspected that the algorithm was somehow weakened, to allow the government to
snoop on encrypted data. Much of this controversy has appeared in the open literature, but
certain DES features have neither been revealed by the designers nor inferred by outside
analysts.

Whitfield Diffie and Martin Hellman [DIF77] argued in 1977 that a 56-bit key is too

short. In 1977, it was prohibitive to test all 256 (approximately 10'°) keys on then current
computers. But they argued that over time, computers would become more powerful and
the DES algorithm would remain unchanged; eventually, the speed of computers would
exceed the strength of DES. Exactly that happened about 20 years later. In 1997,
researchers using a network of over 3,500 machines in parallel were able to infer a DES
key in four months’ work. And in 1998 for approximately $200,000 U.S. researchers built
a special “DES cracker” machine that could find a DES key in approximately four days, a
result later improved to a few hours [EFF98].

Does this mean DES is insecure? No, not exactly. No one has yet shown serious flaws
in the DES algorithm itself. The 1997 attack required a great deal of cooperation, and the
1998 machine is rather expensive. But even if conventional DES can be attacked, triple
DES is still well beyond the power of these attacks. Remember the impact of exponential
growth: Let us say, for simplicity, that single-key DES can be broken in one hour. The
simple double-key version could then be broken in two hours. But 280/256 = 224 which is
over 16,700,000, meaning it would take 16 million hours, nearly 2,000 years, to defeat a
two-key triple DES encryption, and considerably longer for the three-key version.

Nevertheless, the basic structure of DES with its fixed-length 56-bit key and fixed
number of iterations makes evident the need for a new, stronger, and more flexible
algorithm. In 1995, the NIST began the search for a new, strong encryption algorithm. The
response to that search has become the Advanced Encryption Standard, or AES.

AES: Advanced Encryption System

After a public competition and review, NIST selected an algorithm named Rijndael as
the new advanced encryption system; Rijndael is now known more widely as AES. AES
was adopted for use by the U.S. government in December 2001 and became Federal
Information Processing Standard 197 [NISO1]. AES is likely to be the commercial-grade
symmetric algorithm of choice for years, if not decades. Let us look at it more closely.

Overview of Rijndael

Rijndael is a fast algorithm that can easily be implemented on simple processors.
Although it has a strong mathematical foundation, it primarily uses substitution,
transposition, the shift, exclusive OR, and addition operations. Like DES, AES uses repeat
cycles.

There are 10, 12, or 14 cycles for keys of 128, 192, and 256 bits, respectively. In
Rijndael, the cycles are called “rounds.” Each round consists of four steps that substitute
and scramble bits. Bits from the key are frequently combined with intermediate result bits,
so key bits are also well diffused throughout the result. Furthermore, these four steps are
extremely fast. The AES algorithm is depicted in Figure 2-22.

S S S S | 1. Byte Sub

2. Shift Row

Repeat
n Times

\ 3. Mix Columns

I:k] H E‘} [k] 4. Add Round Key

—[_JIL_ 1L T/

FIGURE 2-22 AES Encryption Algorithm
Strength of the Algorithm

The characteristics and apparent strength of DES and AES are compared in Table 2-12.
Remember, of course, that these strength figures apply only if the implementation and use
are robust; a strong algorithm loses strength if used with a weakness that lets outsiders
determine key properties of the encrypted data.

DES AES
Date designed 1976 1999
Block size 64 bits 128 bits
Key length 56 bits (effective lengthy upto 112 bits | 128, 192, 256 (and possibly more) bits
with multiple keys
Operations 16 rounds 10, 12, 14 (depending on key length);
can be increased
Encryption Substitution, permutation Substimtion, shift, bit mixing
primitives
Cryplographic Confusion, diffusion Confusion, diffusion
primitives
Design Open Open
Design rationale | Closad Open
Selection Secret Secret, but open public comments and
process criticisms invited
Source IBEM., enhanced by NSA Independent Dutch cryptographers

TABLE 2-12 Comparison of DES and AES

Moreover, the number of cycles can be extended in a natural way. With DES the
algorithm was defined for precisely 16 cycles; to extend that number would require
substantial redefinition of the algorithm. The internal structure of AES has no a priori
limitation on the number of cycles. If a cryptanalyst ever concluded that 10 or 12 or 14
rounds were too low, the only change needed to improve the algorithm would be to change
the limit on a repeat loop.

A mark of confidence is that the U.S. government has approved AES for protecting
Secret and Top Secret classified documents. This is the first time the United States has
ever approved the use of a commercial algorithm derived outside the government (and
furthermore, outside the United States) to encrypt classified data.

However, we cannot rest on our laurels. No one can predict now what limitations
cryptanalysts might identify in the future. Fortunately, talented cryptologists continue to
investigate even stronger algorithms that will be able to replace AES when it becomes
obsolete. At present, AES seems to be a significant improvement over DES, and it can be
improved in a natural way if necessary. DES is still in widespread use, but AES is also
widely adopted, particularly for new applications.

Public Key Cryptography

So far, we have looked at encryption algorithms from the point of view of making the
scrambling easy for the sender (so that encryption is fast and simple) and the decryption
easy for the receiver but not for an intruder. But this functional view of transforming
plaintext to ciphertext is only part of the picture. We must also figure out how to distribute
encryption keys. We have noted how useful keys can be in deterring an intruder, but the
key must remain secret for it to be effective. The encryption algorithms we have presented
so far are called symmetric or secret-key algorithms. The two most widely used
symmetric algorithms, DES and AES, operate similarly: Two users have copies of the

same key. One user uses the algorithm to encrypt some plaintext under the key, and the
other user uses an inverse of the algorithm with the same key to decrypt the ciphertext.
The crux of this issue is that all the power of the encryption depends on the secrecy of the
key.

In 1976, Whitfield Diffie and Martin Hellman [DIF76] invented public key
cryptography, a new kind of encryption. With a public key encryption system, each user
has two keys, one of which does not have to be kept secret. Although counterintuitive, in
fact the public nature of the key does not compromise the secrecy of the system. Instead,
the basis for public key encryption is to allow the key to be divulged but to keep the
decryption technique secret. Public key cryptosystems accomplish this goal by using two
keys: one to encrypt and the other to decrypt. Although these keys are produced in
mathematically related pairs, an outsider is effectively unable to use one key to derive the
other.

In this section, we look at ways to allow the key to be public but still protect the
message. We also focus on the RSA algorithm, a popular, commercial-grade public key
system. Other algorithms, such as elliptic curve cryptosystems [MIL85, KOB87] and the
El Gamal algorithm [ELG85], both of which we cover in Chapter 12, operate similarly
(although the underlying mathematics are very different). We concentrate on RSA because
many applications use it. We also present a mathematical scheme by which two users can
jointly construct a secret encryption key without having any prior secrets.

Motivation

Why should making the key public be desirable? With a conventional symmetric key
system, each pair of users needs a separate key. But with public key systems, anyone using
a single public key can send a secret message to a user, and the message remains
adequately protected from being read by an interceptor. Let us investigate why this is so.

Recall that in general, an n-user system requires n * (n — 1)/2 keys, and each user must
track and remember a key for each other user with whom he or she wants to communicate.
As the number of users grows, the number of keys increases rapidly, as shown in Figure 2-
23. Determining and distributing these keys is a problem. A more serious problem is
maintaining security for the keys already distributed—we cannot expect users to
memorize so many keys. Worse, loss or exposure of one user’s keys requires setting up a
new key pair with each of that user’s correspondents.

B

New User

Existing Users

Mew KeystoBe Added - - == =—— E D
FIGURE 2-23 Explosion in Number of Keys
Characteristics

We can reduce the problem of key proliferation by using a public key approach. In a
public key or asymmetric encryption system, each user has two keys: a public key and
a private key. The user may freely publish the public key because each key does only
encryption or decryption, but not both. The keys operate as inverses, meaning that one key
undoes the encryption provided by the other key. But deducing one key from the other is
effectively impossible.

To see how, let kpgpy, be a user’s private key, and let kpy;z be the corresponding public

key. Then, encrypted plaintext using the public key is decrypted by application of the
private key; we write the relationship as

P = D(kpgyys E(kpyp,P))

That is, a user can decode with a private key what someone else has encrypted with the
corresponding public key. Furthermore, with some public key encryption algorithms,
including RSA, we have this relationship:

P = D(kpyp, E(kpgyy>P))

In other words, a user can encrypt a message with a private key, and the message can be
revealed only with the corresponding public key.

These two properties tell us that public and private keys can be applied in either order.
In particular, the decryption function D can be applied to any argument so that we can
decrypt before we encrypt. With conventional encryption, we seldom think of decrypting
before encrypting. But the concept makes sense with public keys, where it simply means
applying the private transformation first and then the public one.

We have noted that a major problem with symmetric encryption is the sheer number of
keys a single user has to store and track. With public keys, only two keys are needed per
user: one public and one private. Let us see what difference this makes in the number of
keys needed. Suppose we have three users, B, C, and D, who must pass protected

messages to user A as well as to each other. Since each distinct pair of users needs a key,
each user would need three different keys; for instance, A would need a key for B, a key
for C, and a key for D. But using public key encryption, each of B, C, and D can encrypt
messages for A by using A’s public key. If B has encrypted a message using A’s public
key, C cannot decrypt it, even if C knew it was encrypted with A’s public key. Applying
A’s public key twice, for example, would not decrypt the message. (We assume, of course,
that A’s private key remains secret.) Thus, the number of keys needed in the public key
system is only two per user.

The Rivest-Shamir-Adelman (RSA) Algorithm

The Rivest—-Shamir—Adelman (RSA) cryptosystem is a public key system. Based on
an underlying hard problem and named after its three inventors (Ronald Rivest, Adi
Shamir, and Leonard Adleman), this algorithm was introduced in 1978 [RIV78].
Cryptanalysts have subjected RSA to extensive cryptanalysis, but they have found no
serious flaws.

The two keys used in RSA, d and e, are used for decryption and encryption. They are
actually interchangeable: Either can be chosen as the public key, but one having been
chosen, the other one must be kept private. For simplicity, we call the encryption key e
and the decryption key d. We denote plaintext as P and its corresponding ciphertext as C.
C = RSA(P,e). Also, because of the nature of the RSA algorithm, the keys can be applied
in either order:

P = E(D(P)) = D(E(P))
or
P = RSA(RSA(P, e), d) = RSA(RSA(P, d), e)

(You can think of E and D as two complementary functions, each of which can “undo”
the other’s effect.)

RSA does have the unfortunate property that the keys are long: 256 bits is considered
the minimum usable length, but in most contexts experts prefer keys on the order of 1000
to 2000 bits. Encryption in RSA is done by exponentiation, raising each plaintext block to
a power; that power is the key e. In contrast to fast substitution and transposition of
symmetric algorithms, exponentiation is extremely time-consuming on a computer. Even
worse, the time to encrypt increases exponentially as the exponent (key) grows longer.
Thus, RSA is markedly slower than DES and AES.

The encryption algorithm is based on the underlying problem of factoring large
numbers in a finite set called a field. So far, nobody has found a shortcut or easy way to
factor large numbers in a field. In a highly technical but excellent paper, Dan Boneh
[BON99] reviews all the known cryptanalytic attacks on RSA and concludes that none is
significant. Because the factorization problem has been open for many decades, most
cryptographers consider this problem a solid basis for a secure cryptosystem.

To summarize, the two symmetric algorithms DES and AES provide solid encryption of
blocks of 64 to 256 bits of data. The asymmetric algorithm RSA encrypts blocks of
various sizes. DES and AES are substantially faster than RSA, by a factor of 10,000 or
more, and their rather simple primitive operations have been built into some computer

chips, making their encryption even more efficient than RSA. Therefore, people tend to
use DES and AES as the major cryptographic workhorses, and reserve slower RSA for
limited uses at which it excels.

The characteristics of secret key (symmetric) and public key (asymmetric) algorithms
are compared in Table 2-13.

Secret Key (Symmetric)

Public Key (Asymmetric)

MNumber of keys

|

-

Key size (bits)

Depends on the algorithm; 56-112
(DES), 128-256 (AES)

Unlimited: typically no less than 256,
1000 to 2000 currently considered
desirable for most uses

Protection of
key

Best uses

Must be kept secret

Cryptographic workhorse. Secrecy and

One key must be kept secret; the other
can be freely exposed

Key exchange, authentication, signing

integrity of data, from single characters
to blocks of data, messages and files

key distribution Must be out-of-hand Public key can be used to distribute

other keys

Speed Fast Slow, typically by a factor of up to
10,000 times slower than symmetric
algorithms

TABLE 2-13 Comparison of Secret Key and Public Key Encryption
Public Key Cryptography to Exchange Secret Keys

Encryption algorithms alone are not the answer to everyone’s encryption needs.
Although encryption implements protected communications channels, it can also be used
for other duties. In fact, combining symmetric and asymmetric encryption often capitalizes
on the best features of each.

Suppose you need to send a protected message to someone you do not know and who
does not know you. This situation is more common than you may think. For instance, you
may want to send your income tax return to the government. You want the information to
be protected, but you do not necessarily know the person who is receiving the information.
Similarly, you may want to purchase from a shopping website, exchange private
(encrypted) email, or arrange for two hosts to establish a protected channel. Each of these
situations depends on being able to exchange an encryption key in such a way that nobody
else can intercept it. The problem of two previously unknown parties exchanging
cryptographic keys is both hard and important. Indeed, the problem is almost circular: To
establish an encrypted session, you need an encrypted means to exchange keys.

Public key cryptography can help. Since asymmetric keys come in pairs, one half of the
pair can be exposed without compromising the other half. In fact, you might think of the
public half of the key pair as truly public—posted on a public website, listed in a public
directory similar to a telephone listing, or sent openly in an email message. That is the
beauty of public key cryptography: As long as the private key is not disclosed, a public
key can be open without compromising the security of the encryption.

Simple Key Exchange Protocol

Suppose that a sender, Amy, and a receiver, Bill, both have pairs of asymmetric keys for
a common encryption algorithm. We denote any public key encryption function as E(k, X),
meaning perform the public key encryption function on X by using key k. Call the keys
kpriveas kpus.as Kprrv-, @and kpyp.p, for the private and public keys for Amy and Bill,

respectively.
The problem we want to solve is for Amy and Bill to be able to establish a secret

(symmetric algorithm) encryption key that only they know. The simplest solution is for
Amy to choose any symmetric key K, and send E(kpgy.a, K) to Bill. Bill takes Amy’s

public key, removes the encryption, and obtains K.

This analysis is flawed, however. How does the sender know the public key really
belongs to the intended recipient? Consider, for example, the following scenario. Suppose
Amy and Bill do not have a convenient bulletin board. So, Amy just asks Bill for his key.
Basically, the key exchange protocol, depicted in Figure 2-24, would work like this:

1. Amy says: Bill, please send me your public key.
2. Bill replies: Here, Amy; this is my public key.

3. Amy responds: Thanks. I have generated a symmetric key for us to use for
this interchange. I am sending you the symmetric key encrypted under your
public key.

SR
&‘ig ©| Bill, give me your public key
T
] < Here is my key, Amy

®| Here 15 a symmetric key we can use

VvV v

FIGURE 2-24 Key Exchange Protocol

In the subversion shown in Figure 2-25, we insert an attacker, Malvolio, into this
communication.

1. Amy says: Bill, please send me your public key.
1a. Malvolio intercepts the message and fashions a new message to Bill, purporting
to come from Amy but with Malvolio’s return address, asking for Bill’s public key.

2. Bill replies: Here, Amy; this is my public key. (Because of the return address
in step 1a, this reply goes to Malvolio.)

2a. Malvolio holds Bill’s public key and sends Malvolio’s own public key to Amy,
alleging it is from Bill.
3. Amy responds: Thanks. I have generated a symmetric key for us to use for
this interchange. I am sending you the symmetric key encrypted under your
public key.

3a. Malvolio intercepts this message and obtains and holds the symmetric key Amy
has generated.

3b. Malvolio generates a new symmetric key and sends it to Bill, with a message
purportedly from Amy: Thanks. I have generated a symmetric key for us to use for
this interchange. I am sending you the symmetric key encrypted under your public
key.

Bill, give me
your public key

®| No, give it to rn-:>
<Hum is my key, Amy | @

<ch: is the middle’s kr::}fl
®| Here is the symmetric Ieu:}'>
| Here is another symmetric kc}r>

FIGURE 2-25 Key Exchange Protocol with a Man in the Middle

In summary, Malvolio now holds two symmetric encryption keys, one each shared with
Amy and Bill. Not only can Malvolio stealthily obtain all their interchanges, but Amy and
Bill cannot communicate securely with each other because neither shares a key with the
other.

From this point on, all communications pass through Malvolio. Having both symmetric
keys, Malvolio can decrypt anything received, modify it, encrypt it under the other key,
and transmit the modified version to the other party. Neither Amy nor Bill is aware of the
switch. This attack is a type of man-in-the-middle? failure, in which an unauthorized
third party intercedes in an activity presumed to be exclusively between two people. See
Sidebar 2-15 for an example of a real-world man-in-the-middle attack.

4. Alas, this terminology is hopelessly sexist. Even if we called these attacks person-in-the-middle or intruder-in-
the-middle in this book, you would find only the term man-in-the-middle used by other writers, who also use
terms like man-in-the-browser and man-in-the-phone, which arise in Chapter 4 of this book. Thus, we are
regrettably stuck with the conventional term.

Sidebar 2-15 Aspidistra, a WW II Man in the Middle

During World War 1II Britain used a man-in-the-middle attack to delude German
pilots and civilians. Aspidistra, the name of a common houseplant also known as
cast-iron plant for its seeming ability to live forever, was also the name given to
a giant radio transmitter the British War Office bought from RCA in 1942. The
transmitter broadcast at 500 kW of power, ten times the power allowed to any
U.S. station at the time, which meant Aspidistra was able to transmit signals
from Britain into Germany.

Part of the operation of Aspidistra was to delude German pilots by
broadcasting spurious directions (land, go here, turn around). Although the
pilots also received valid flight instructions from their own controllers, this
additional chatter confused them and could result in unnecessary flight and lost
time. This part of the attack was only an impersonation attack.

Certain German radio stations in target areas were turned off to prevent their
being beacons by which Allied aircraft could home in on the signal; bombers
would follow the signal and destroy the antenna and its nearby transmitter if the
stations broadcast continually. When a station was turned off, the British
immediately went on the air using Aspidistra on the same frequency as the
station the Germans just shut down. They copied and rebroadcast a program
from another German station, but they interspersed propaganda messages that
could demoralize German citizens and weaken support for the war effort.

The Germans tried to counter the phony broadcasts by advising listeners that
the enemy was transmitting and advising the audience to listen for the official
German broadcast announcement—which, of course, the British duly copied and

broadcast themselves. (More details and pictures are at
http://www.gsl.net/g0crw/Special%20Events/Aspidistra2.htm, and

http://bobrowen.com/nymas/radioproppaper.pdf.)

Revised Key Exchange Protocol

Remember that we began this discussion with a man-in-the-middle attack against a
simple key exchange protocol. The faulty protocol was
1. A says: B, please send me your public key.
2. B replies: Here, A; this is my public key.

3. A responds: Thanks. I have generated a symmetric key for us to use for this
interchange. I am sending you the symmetric key encrypted under your public
key.

At step 2 the intruder intercepts B’s public key and passes along the intruder’s. The
intruder can be foiled if A and B exchange half a key at a time. Half a key is useless to the
intruder because it is not enough to encrypt or decrypt anything. Knowing half the key
does not materially improve the intruder’s ability to break encryptions in the future.

Rivest and Shamir [RIV84] have devised a solid protocol as follows.

1. Amy sends her public key to Bill.

http://www.qsl.net/g0crw/Special%20Events/Aspidistra2.htm
http://bobrowen.com/nymas/radioproppaper.pdf

2. Bill sends his public key to Amy.

3. Amy creates a symmetric key, encrypts it using Bill’s public key, and sends
half of the result to Bill. (Note: half of the result might be the first n/2 bits, all
the odd numbered bits, or some other agreed-upon form.)

4. Bill responds to Amy that he received the partial result (which he cannot
interpret at this point, so he is confirming only that he received some bits). Bill
encrypts any random number with his private key and sends half the bits to
Amy.

5. Amy sends the other half of the encrypted result to Bill.

6. Bill puts together the two halves of Amy’s result, decrypts it using his private
key and thereby obtains the shared symmetric key. Bill sends the other half of
his encrypted random number to Amy.

7. Amy puts together the two halves of Bill’s random number, decrypts it using
her private key, extracts Bill’s random number, encrypts it using the now-shared
symmetric key, and sends that to Bill.

8. Bill decrypts Amy’s transmission with the symmetric key and compares it to
the random number he selected in step 6. A match confirms the validity of the
exchange.

To see why this protocol works, look at step 3. Malvolio, the intruder, can certainly
intercept both public keys in steps 1 and 2 and substitute his own. However, at step 3
Malvolio cannot take half the result, decrypt it using his private key, and reencrypt it under
Bill’s key. Bits cannot be decrypted one by one and reassembled.

At step 4 Bill picks any random number, which Amy later returns to Bill to show she
has successfully received the encrypted value Bill sent. Such a random value is called a
nonce, a value meaningless in and of itself, to show activity (liveness) and originality (not
a replay). In some protocols the receiver decrypts the nonce, adds 1 to it, reencrypts the
result, and returns it. Other times the nonce includes a date, time, or sequence number to
show that the value is current. This concept is used in computer-to-computer exchanges
that lack some of the characteristics of human interaction.

Authenticity

The problem of the person in the middle can be solved in another way: Amy should
send to Bill

E(kpyp.gs E(Kpgpy.as K))

This function ensures that only Bill, using kpgpy.p, can remove the encryption applied
with kpyp.p, and Bill knows that only Amy could have applied kpppy.4 that Bill removes
with kPUB- A

We can think of this exchange in terms of locks and seals. Anyone can put a letter into a
locked mailbox (through the letter slot), but only the holder of the key can remove it. In
olden days, important people had seals that they would impress into molten wax on a
letter; the seal’s imprint showed authenticity, but anyone could break the seal and read the
letter. Putting these two pieces together, a sealed letter inside a locked mailbox enforces

the authenticity of the sender (the seal) and the confidentiality of the receiver (the locked
mailbox).

If Amy wants to send something protected to Bill (such as a credit card number or a set
of medical records), then the exchange works something like this. Amy seals the protected
information with her private key so that it can be opened only with Amy’s public key. This
step ensures authenticity: only Amy can have applied the encryption that is reversed with
Amy’s public key. Amy then locks the information with Bill’s public key. This step adds
confidentiality because only Bill’s private key can decrypt data encrypted with Bill’s
public key. Bill can use his private key to open the letter box (something only he can do)
and use Amy’s public key to verify the inner seal (proving that the package came from
Amy).

Thus, as we have seen, asymmetric cryptographic functions are a powerful means for
exchanging cryptographic keys between people who have no prior relationship.
Asymmetric cryptographic functions are slow, but they are used only once, to exchange
symmetric keys. Furthermore, if the keys being exchanged are for a symmetric encryption
system such as AES or DES, the key length is relatively short, up to 256 bits for AES or
64 for DES. Even if we were to use an expanded form of AES with a key length of 1000
bits, the slow speed of public key cryptography would not be a significant problem
because it is performed only once, to establish shared keys.

Asymmetric cryptography is also useful for another important security construct: a
digital signature. A human signature on a paper document is a strong attestation: it
signifies both agreement (you agree to the terms in the document you signed) and
understanding (you know what you are signing). People accept written signatures as a
surrogate for an in-person confirmation. We would like a similarly powerful construct for
confirming electronic documents. To build a digital signature we introduce integrity codes,
key certificates, and, finally, signatures themselves.

Error Detecting Codes

Communications are notoriously prone to errors in transmission. You may have noticed
that occasionally a mobile phone conversation will skip or distort a small segment of the
conversation, and television signals sometimes show problems commonly called noise. In
these cases, complete and accurate reception is not important as long as the noise is
relatively slight or infrequent. You can always ask your phone partner to repeat a sentence,
and a winning goal on television is always rebroadcast numerous times.

With important data, however, we need some way to determine that the transmission is
complete and intact. Mathematicians and engineers have designed formulas called error
detection and correction codes to make transmission errors apparent and to perform minor
repairs.

Error detecting codes come under many names, such as hash codes, message digests,
checksums, integrity checks, error detection and correction codes, and redundancy tests.
Although these terms have fine differences of meaning, the basic purpose of all is to
demonstrate that a block of data has been modified. That sentence is worded carefully: A
message digest will (sometimes) signal that content has changed, but it is less solid at
demonstrating no modification, even though that is what we really want. We want

something to show no tampering—malicious or not; we get something that usually shows
tampering.

Sam writes a letter, makes and keeps a photocopy, and sends the original to Theresa.
Along the way, Fagin intercepts the letter and makes changes; being a skilled forger, Fagin
deceives Theresa. Only when Theresa and Sam meet and compare the (modified) original
do they detect the change.

The situation is different if Sam and Theresa suspect a forger is nigh. Sam carefully
counts the letters in his document, tallying 1 for an a, 2 for a b, and so on up to 26 for a z.
He adds those values and writes the sum in tiny digits at the bottom of the letter. When
Teresa receives the letter she does the same computation and compares her result to the
one written at the bottom. Three cases arise:

* the counts to do not agree, in which case Theresa suspects a change

* there is no count, in which case Theresa suspects either that Sam was lazy or
forgetful or that a forger overlooked their code

» Teresa’s count is the same as written at the bottom

The last case is the most problematic. Theresa probably concludes with relief that there
was no change. As you may have already determined, however, she may not be thinking
correctly. Fagin might catch on to the code and correctly compute a new sum to match the
modifications. Even worse, perhaps Fagin’s changes happen to escape detection. Suppose
Fagin removes one letter ¢ (value=3) and replaces it with three copies of the letter a
(value=1+1+1=3); the sum is the same, or if Fagin only permutes letters, the sum remains
the same, because it is not sensitive to order.

These problems all arise because the code is a many-to-one function: two or more
inputs produce the same output. Two inputs that produce the same output are called a
collision. In fact, all message digests are many-to-one functions, and thus when they
report a change, one did occur, but when they report no change, it is only likely—not
certain—that none occurred because of the possibility of a collision.

Collisions are usually not a problem for two reasons. First, they occur infrequently. If
plaintext is reduced to a 64-bit digest, we expect the likelihood of a collision to be 1 in 254,

or about 1 in 10'°, most unlikely, indeed. More importantly, digest functions are
unpredictable, so given one input, finding a second input that results in the same output is
infeasible. Thus, with good digest functions collisions are infrequent, and we cannot cause
or predict them.

We can use error detecting and error correcting codes to guard against modification of
data. Detection and correction codes are procedures or functions applied to a block of
data; you may be familiar with one type of detecting code: parity. These codes work as
their names imply: Error detecting codes detect when an error has occurred, and error
correcting codes can actually correct errors without requiring a copy of the original data.
The error code is computed and stored safely on the presumed intact, original data; later
anyone can recompute the error code and check whether the received result matches the
expected value. If the values do not match, a change has certainly occurred; if the values
match, it is probable—but not certain—that no change has occurred.

Parity

The simplest error detection code is a parity check. An extra bit, which we call a
fingerprint, is added to an existing group of data bits, depending on their sum. The two
kinds of parity are called even and odd. With even parity the fingerprint is O if the sum of
the data bits is even, and 1 if the sum is odd; that is, the parity bit is set so that the sum of
all data bits plus the parity bit is even. Odd parity is the same except the overall sum is
odd. For example, the data stream 01101101 would have an even parity bit of 1 (and an
odd parity bit of 0) because 0+1+1+0+1+1+0+1 =5+ 1 =6 (or 5 + 0 = 5 for odd parity).

One parity bit can reveal the modification of a single bit. However, parity does not
detect two-bit errors—cases in which two bits in a group are changed. One parity bit can
detect all single-bit changes, as well as changes of three, five and seven bits. Table 2-14
shows some examples of detected and undetected changes. The changed bits (each line
shows changes from the original value of 00000000) are in bold, underlined; the table
shows whether parity properly detected that at least one change occurred.

Parity Modification
Original Data Bit Modified Data Detected?
0O000OO0O0O0O 1 00000001 Yes
0O0O00O0O0O0O 1 10000000 Yes
0O000O0O0O0O 1 10000001 No
O0O0O0OO0OO0O0O 1 00000011 No
0O000OO0O0O0O 1 00000111 Yes
0000O0O0O0O 1 00001111 No
0O000O0O0O0O 1 01010101 No
O0O0O0OO0OO0O0O 1 1l 111311 No

TABLE 2-14 Changes Detected by Parity

Detecting odd numbers of changed bits leads to a change detection rate of about 50
percent, which is not nearly good enough for our purposes. We can improve this rate with
more parity bits (computing a second parity bit of bits 1, 3, 5, and 7, for example), but
more parity bits increase the size of the fingerprint; each time we increase the fingerprint
size we also increase the size of storing these fingerprints.

Parity signals only that a bit has been changed; it does not identify which bit has been
changed, much less when, how, or by whom. On hardware storage devices, a code called a
cyclic redundancy check detects errors in recording and playback. Some more complex
codes, known as error correction codes, can detect multiple-bit errors (two or more bits
changed in a data group) and may be able to pinpoint the changed bits (which are the bits
to reset to correct the modification). Fingerprint size, error detection rate, and correction
lead us to more powerful codes.

Hash Codes

In most files, the elements or components of the file are not bound together in any way.
That is, each byte or bit or character is independent of every other one in the file. This lack
of binding means that changing one value affects the integrity of the file but that one
change can easily go undetected.

What we would like to do is somehow put a seal or shield around the file so that we can
detect when the seal has been broken and thus know that something has been changed.
This notion is similar to the use of wax seals on letters in medieval days; if the wax was
broken, the recipient would know that someone had broken the seal and read the message
inside. In the same way, cryptography can be used to seal a file, encasing it so that any
change becomes apparent. One technique for providing the seal is to compute a function,
sometimes called a hash or checksum or message digest of the file.

The code between Sam and Theresa is a hash code. Hash codes are often used in
communications where transmission errors might affect the integrity of the transmitted
data. In those cases the code value is transmitted with the data. Whether the data or the
code value was marred, the receiver detects some problem and simply requests a
retransmission of the data block.

Such a protocol is adequate in cases of unintentional errors but is not intended to deal
with a dedicated adversary. If Fagin knows the error detection function algorithm, then he
can change content and fix the detection value to match. Thus, when a malicious
adversary might be involved, secure communication requires a stronger form of message
digest.

One-Way Hash Functions

As a first step in defeating Fagin, we have to prevent him from working backward from
the digest value to see what possible inputs could have led to that result. For instance,
some encryptions depend on a function that is easy to understand but difficult to compute.

For a simple example, consider the cube function, y = x3. Computing x> by hand, with

pencil and paper, or with a calculator is not hard. But the inverse function, \ﬁ , is much
more difficult to compute. And the function y = x° has no inverse function since there are

L tTe.s 21y
two possibilities for \E : + x and — x. Functions like these, which are much easier to
compute than their inverses, are called one-way functions.

File Change Detection

A one-way function can be useful in creating a change detection algorithm. The
function must depend on all bits of the file being sealed, so any change to even a single bit
will alter the checksum result. The checksum value is stored with the file. Then, each time
someone accesses or uses the file, the system recomputes the checksum. If the computed
checksum matches the stored value, the file is likely to be intact.

The one-way property guards against malicious modification: An attacker cannot
“undo” the function to see what the original file was, so there is no simple way to find a
set of changes that produce the same function value. (Otherwise, the attacker could find
undetectable modifications that also have malicious impact.)

Tripwire [KIM98] is a utility program that performs integrity checking on files. With
Tripwire a system administrator computes a hash of each file and stores these hash values
somewhere secure, typically offline. Later the administrator reruns Tripwire and compares
the new hash values with the earlier ones.

Cryptographic Checksum

Malicious modification must be handled in a way that also prevents the attacker from
modifying the error detection mechanism as well as the data bits themselves. One way to
handle this is to use a technique that shrinks and transforms the data according to the value
of the data bits.

A cryptographic checksum is a cryptographic function that produces a checksum. It is
a digest function using a cryptographic key that is presumably known only to the
originator and the proper recipient of the data. The cryptography prevents the attacker
from changing the data block (the plaintext) and also changing the checksum value (the
ciphertext) to match. The attacker can certainly change the plaintext, but the attacker does
not have a key with which to recompute the checksum. One example of a cryptographic
checksum is to first employ any noncryptographic checksum function to derive an n-bit
digest of the sensitive data. Then apply any symmetric encryption algorithm to the digest.
Without the key the attacker cannot determine the checksum value that is hidden by the
encryption. We present other cryptographic hash functions in Chapter 12.

Two major uses of cryptographic checksums are code-tamper protection and message-
integrity protection in transit. Code tamper protection is implemented in the way we just
described for detecting changes to files. Similarly, a checksum on data in communication
identifies data that have been changed in transmission, maliciously or accidentally. The
U.S. government defined the Secure Hash Standard or Algorithm (SHS or SHA),
actually a collection of algorithms, for computing checksums. We examine SHA in

Chapter 12.

Checksums are important countermeasures to detect modification. In this section we
applied them to the problem of detecting malicious modification to programs stored on
disk, but the same techniques are applicable to protecting against changes to data, as we
show later in this book.

A strong cryptographic algorithm, such as for DES or AES, is especially appropriate for
sealing values, since an outsider will not know the key and thus will not be able to modify
the stored value to match with data being modified. For low-threat applications,
algorithms even simpler than those of DES or AES can be used. In block encryption
schemes, chaining means linking each block to the previous block’s value (and therefore
to all previous blocks), for example, by using an exclusive OR to combine the encrypted
previous block with the current one. A file’s cryptographic checksum could be the last
block of the chained encryption of a file because that block will depend on all other
blocks. We describe chaining in more detail in Chapter 12.

As we see later in this chapter, these techniques address the non-alterability and non-
reusability required in a digital signature. A change or reuse will probably be flagged by
the checksum so the recipient can tell that something is amiss.

Signatures

The most powerful technique to demonstrate authenticity is a digital signature. Like its
counterpart on paper, a digital signature is a way by which a person or organization can
affix a bit pattern to a file such that it implies confirmation, pertains to that file only,
cannot be forged, and demonstrates authenticity. We want a means by which one party can
sign something and, as on paper, have the signature remain valid for days, months, years
—indefinitely. Furthermore, the signature must convince all who access the file. Of
course, as with most conditions involving digital methods, the caveat is that the assurance
is limited by the assumed skill and energy of anyone who would try to defeat the
assurance.

A digital signature often uses asymmetric or public key cryptography. As you just saw,
a public key protocol is useful for exchange of cryptographic keys between two parties
who have no other basis for trust. Unfortunately, the public key cryptographic protocols
involve several sequences of messages and replies, which can be time consuming if either
party is not immediately available to reply to the latest request. It would be useful to have
a technique by which one party could reliably precompute some protocol steps and leave
them in a safe place so that the protocol could be carried out even if only one party were
active. This situation is similar to the difference between a bank teller and an ATM. You
can obtain cash, make a deposit or payment, or check your balance because the bank has
pre-established steps for an ATM to handle those simple activities 24 hours a day, even if
the bank is not open. But if you need a certified check or foreign currency, you may need
to interact directly with a bank agent.

In this section we define digital signatures and compare their properties to those of
handwritten signatures on paper. We then describe the infrastructure surrounding digital
signatures that lets them be recognizable and valid indefinitely.

Components and Characteristics of Signatures

A digital signature is just a binary object associated with a file. But if we want that
signature to have the force of a paper-based signature, we need to understand the
properties of human signatures. Only then can we express requirements for our digital
version.

Properties of Secure Paper-Based Signatures

Consider a typical situation that parallels a common human need: an order to transfer
funds from one person to another. In other words, we want to be able to send the electronic
equivalent of a computerized check. We understand the properties of this transaction for a
conventional paper check:

* A check is a tangible object authorizing a financial transaction.

» The signature on the check confirms authenticity because (presumably) only
the legitimate signer can produce that signature.

* In the case of an alleged forgery, a third party can be called in to judge
authenticity.

* Once a check is cashed, it is canceled so that it cannot be reused.

* The paper check is not alterable. Or, most forms of alteration are easily
detected.

Transacting business by check depends on tangible objects in a prescribed form. But
tangible objects do not exist for transactions on computers. Therefore, authorizing
payments by computer requires a different model. Let us consider the requirements of
such a situation, from the standpoint both of a bank and of a user.

Properties of Digital Signatures

Suppose Sheila sends her bank a message authorizing it to transfer $100 to Rob.
Sheila’s bank must be able to verify and prove that the message really came from Sheila if
she should later disavow sending the message. (This property is called non-repudiation.)
The bank also wants to know that the message is entirely Sheila’s, that it has not been
altered along the way. For her part, Sheila wants to be certain that her bank cannot forge
such messages. (This property is called authenticity.) Both parties want to be sure that the
message is new, not a reuse of a previous message, and that it has not been altered during
transmission. Using electronic signals instead of paper complicates this process.

But we have ways to make the process work. A digital signature is a protocol that
produces the same effect as a real signature: It is a mark that only the sender can make but
that other people can easily recognize as belonging to the sender. Just like a real signature,
a digital signature confirms agreement to a message.

A digital signature must meet two primary conditions:
« It must be unforgeable. If person S signs message M with signature Sig(S,M),
no one else can produce the pair [M,Sig(S,M)].

« It must be authentic. If a person R receives the pair [M, Sig(S,M)] purportedly
from S, R can check that the signature is really from S. Only S could have
created this signature, and the signature is firmly attached to M.

These two requirements, shown in Figure 2-26, are the major hurdles in computer
transactions. Two more properties, also drawn from parallels with the paper-based
environment, are desirable for transactions completed with the aid of digital signatures:

« It is not alterable. After being transmitted, M cannot be changed by S, R, or an
interceptor.

* It is not reusable. A previous message presented again will be instantly

detected by R.

Mark only
the sender
can make

* N

@)

Authentic Unforgeable

FIGURE 2-26 Digital Signature Requirements

To see how digital signatures work, we first present a mechanism that meets the first
two requirements. We then add to that solution to satisfy the other requirements. We
develop digital signatures in pieces: first building a piece to address alterations, then

describing a way to ensure authenticity, and finally developing a structure to establish
identity. Eventually all these parts tie together in a conceptually simple framework.

We have just described the pieces for a digital signature: public key cryptography and
secure message digests. These two pieces together are technically enough to make a
digital signature, but they do not address authenticity. For that, we need a structure that
binds a user’s identity and public key in a trustworthy way. Such a structure is called a
certificate. Finally, we present an infrastructure for transmitting and validating certificates.

Public Keys for Signatures

Public key encryption systems are ideally suited to signing. For simple notation, let us
assume that the public key encryption for user U is accessed through E(M,Ky;) and that the
private key transformation for U is written as D(M,Ky;). We can think of E as the privacy

transformation (since only U can decrypt it) and D as the authenticity transformation
(since only U can produce it). Remember, however, that under some asymmetric
algorithms such as RSA, D and E are commutative and either one can be applied to any
message. Thus,

D(E(M, Ky), Ky) = M = E(D(M, Ky), Ky))

If S wishes to send M to R, S uses the authenticity transformation to produce D(M, Kj).
S then sends D(M, Kj) to R. R decodes the message with the public key transformation of
S, computing E(D(M, K), Kg) = M. Since only S can create a message that makes sense
under E(—Ks), the message must genuinely have come from S. This test satisfies the
authenticity requirement.

R will save D(M, K). If S should later allege that the message is a forgery (not really
from S), R can simply show M and D(M, Kg). Anyone can verify that since D(M, Kj) is

transformed to M with the public key transformation of S—but only S could have
produced D(M, Kg)—then D(M, Kg) must be from S. This test satisfies the unforgeable

requirement.
There are other approaches to signing; some use symmetric encryption, others use

asymmetric. The approach shown here illustrates how the protocol can address the
requirements for unforgeability and authenticity. To add secrecy, S applies E(M, Ky) as

shown in Figure 2-27.
~ i]

Signed M
< D(M, Kg) <

Encrypted for
confidentiality
EM, Kp)

L ;> Signature

FIGURE 2-27 Use of Two Keys in an Asymmetric Digital Signature

These pieces, a hash function, public key cryptography, and a protocol, give us the
technical pieces of a digital signature. However, we also need one nontechnical
component. Our signer S can certainly perform the protocol to produce a digital signature,
and anyone who has S’s public key can determine that the signature did come from S. But
who is S? We have no reliable way to associate a particular human with that public key.
Even if someone says “this public key belongs to S,” on what basis do we believe that
assertion? Remember the man-in-the-middle attack earlier in this chapter when Amy and
Bill wanted to establish a shared secret key? Next we explore how to create a trustworthy
binding between a public key and an identity.

Trust

A central issue of digital commerce is trust: How do you know that a Microsoft web
page really belongs to Microsoft, for example? This section is less about technology and
more about the human aspects of trust, because that confidence underpins the whole
concept of a digital signature.

In real life you may trust a close friend in ways you would not trust a new acquaintance.
Over time your trust in someone may grow with your experience but can plummet if the
person betrays you. You try out a person, and, depending on the outcome, you increase or
decrease your degree of trust. These experiences build a personal trust framework.

Web pages can be replaced and faked without warning. To some extent, you assume a
page is authentic if nothing seems unusual, if the content on the site seems credible or at
least plausible, and if you are not using the site for critical decisions. If the site is that of
your bank, you may verify that the URL looks authentic. Some sites, especially those of
financial institutions, have started letting each customer pick a security image, for
example, a hot red sports car or an iconic landmark; users are warned to enter sensitive
information only if they see the personal image they previously chose.

In a commercial setting, certain kinds of institutions connote trust. You may trust (the
officials at) certain educational, religious, or social organizations. Big, well-established
companies such as banks, insurance companies, hospitals, and major manufacturers have
developed a measure of trust. Age of an institution also inspires trust. Indeed, trust is the
basis for the notion of branding, in which you trust something’s quality because you know
the brand. As you will see shortly, trust in such recognized entities is an important
component in digital signatures.

Establishing Trust Between People

As humans we establish trust all the time in our daily interactions with people. We
identify people we know by recognizing their voices, faces, or handwriting. At other
times, we use an affiliation to convey trust. For instance, if a stranger telephones us and

we hear, “I represent the local government ...” or “I am calling on behalf of this charity
> or “I am calling from the school/hospital/police about your
mother/father/son/daughter/brother/sister ... ,” we may decide to trust the caller even if we

do not know him or her. Depending on the nature of the call, we may decide to believe the
caller’s affiliation or to seek independent verification. For example, we may obtain the

affiliation’s number from the telephone directory and call the party back. Or we may seek
additional information from the caller, such as “What color jacket was she wearing?” or
“Who is the president of your organization?” If we have a low degree of trust, we may
even act to exclude an outsider, as in “I will mail a check directly to your charity rather
than give you my credit card number.”

For each of these interactions, we have what we might call a “trust threshold,” a degree
to which we are willing to believe an unidentified individual. This threshold exists in
commercial interactions, too. When Acorn Manufacturing Company sends Big Steel
Company an order for 10,000 sheets of steel, to be shipped within a week and paid for
within ten days, trust abounds. The order is printed on an Acorn form, signed by someone
identified as Helene Smudge, Purchasing Agent. Big Steel may begin preparing the steel
even before receiving money from Acorn. Big Steel may check Acorn’s credit rating to
decide whether to ship the order without payment first. If suspicious, Big Steel might
telephone Acorn and ask to speak to Ms. Smudge in the purchasing department. But more
likely Big Steel will actually ship the goods without knowing who Ms. Smudge is,
whether she is actually the purchasing agent, whether she is authorized to commit to an
order of that size, or even whether the signature is actually hers. Sometimes a transaction
like this occurs by fax, so that Big Steel does not even have an original signature on file.
In cases like this one, which occur daily, trust is based on appearance of authenticity (such
as a printed, signed form), outside information (such as a credit report), and urgency
(Acorn’s request that the steel be shipped quickly).

Establishing Trust Electronically

For electronic communication to succeed, we must develop similar ways for two parties
to establish trust without having met. A common thread in our personal and business
interactions is the ability to have someone or something vouch for the existence and
integrity of one or both parties. The police, the Chamber of Commerce, or the Better
Business Bureau vouches for the authenticity of a caller. Acorn indirectly vouches for the
fact that Ms. Smudge is its purchasing agent by transferring the call to her in the
purchasing department when Big Steel calls for her. In a sense, the telephone company
vouches for the authenticity of a party by listing someone in the directory. This concept of
“vouching for” by a third party can be a basis for trust in commercial settings where two
parties do not know each other.

The trust issue we need to address for digital signatures is authenticity of the public key.
If Monique signs a document with her private key, anyone else can decrypt the signature
with her public key to verify that only Monique could have signed it. The only problem is
being able to obtain Monique’s public key in a way in which we can adequately trust that
the key really belongs to her, that is, that the key was not circulated by some evil actor
impersonating Monique. In the next section we present a trustworthy means to bind a
public key with an identity.

Trust Based On a Common Respected Individual

A large company may have several divisions, each division may have several
departments, each department may have several projects, and each project may have
several task groups (with variations in the names, the number of levels, and the degree of

completeness of the hierarchy). The top executive may not know by name or sight every
employee in the company, but a task group leader knows all members of the task group,
the project leader knows all task group leaders, and so on. This hierarchy can become the
basis for trust throughout the organization.

To see how, suppose two people meet: Ann and Andrew. Andrew says he works for the
same company as Ann. Ann wants independent verification that he does. She finds out
that Bill and Betty are two task group leaders for the same project (led by Camilla); Ann
works for Bill and Andrew for Betty. (The organizational relationships are shown in
Figure 2-28.) These facts give Ann and Andrew a basis for trusting each other’s identity.
The chain of verification might be something like this:

* Ann asks Bill who Andrew is.

» Bill either asks Betty, if he knows her directly, and if not, he asks Camilla.
* (If asked, Camilla then asks Betty.)

* Betty replies to Camilla or Bill that Andrew works for her.

* (Camilla tells Bill, if she was involved.)

* Bill tells Ann.

Camilla

I
I |

Bill Betty

Ann Andrew

FIGURE 2-28 Trust Relationships

If Andrew is in a different task group, it may be necessary to go higher in the
organizational tree before a common point is found.

We can use a similar process for cryptographic key exchange, as shown in Figure 2-29.
If Andrew and Ann want to communicate, Andrew can give his public key to Betty, who
passes it to Camilla, then Bill, or directly to Bill, who gives it to Ann. But this sequence is
not exactly the way it would work in real life. The key would probably be accompanied by
a note saying it is from Andrew, ranging from a bit of yellow paper to a form 947
Statement of Identity. And if a form 947 is used, then Betty would also have to attach a
form 632a Transmittal of Identity, Camilla would attach another 632a, and Bill would
attach a final one, as shown in Figure 2-29. This chain of forms 632a would say, in
essence, “I am Betty and I received this key and the attached statement of identity
personally from a person I know to be Andrew,” “I am Camilla and I received this key and
the attached statement of identity and the attached transmittal of identity personally from a
person I know to be Betty,” and so forth. When Ann receives the key, she can review the
chain of evidence and conclude with reasonable assurance that the key really did come
from Andrew. This protocol is a way of obtaining authenticated public keys, a binding of a

key and a reliable identity.

Camilla
Betty's Bill's
632a T 632

Betty’s . | -
iy : ‘ | Betty Bill
Betty's
T 6324
Andrew Ann -

FIGURE 2-29 Key Relationships in a Certificate

This model works well within a company because there is always someone common to
any two employees, even if the two employees are in different divisions so that the only
common person is the president. The process bogs down, however, if Ann, Bill, Camilla,
Betty, and Andrew all have to be available whenever Ann and Andrew want to
communicate. If Betty is away on a business trip or Bill is off sick, the protocol falters. It
also does not work well if the president cannot get any meaningful work done because
every day is occupied with handling forms 632a.

To address the first of these problems, Andrew can ask for his complete chain of forms
632a from the president down to him. Andrew can then give a copy of this full set to
anyone in the company who wants his key. Instead of working from the bottom up to a
common point, Andrew starts at the top and documents his full chain. He gets these
signatures any time his superiors are available, so they do not need to be available when
he wants to give away his authenticated public key.

We can resolve the second problem by reversing the process. Instead of starting at the
bottom (with task members) and working to the top of the tree (the president), we start at
the top. Andrew thus has a preauthenticated public key for unlimited use in the future.
Suppose the expanded structure of our hypothetical company, showing the president and
other levels, is as illustrated in Figure 2-30.

Edward
President

]
I []

Diana

Division Mgr Division Mgr Division Mgr
Debbie Delwyn
Department Mgr Department Mgr
Mukesh Mary
Project Manager Project Manager
Charles Camilla
Group Leader Group Leader
Bill Beuy

Task Leader Task Leader
Ann Andrew
Worker Worker

FIGURE 2-30 Delegation of Trust

The president creates a letter for each division manager saying “I am Edward, the
president, I attest to the identity of division manager Diana, whom I know personally, and
I trust Diana to attest to the identities of her subordinates.” Each division manager does
similarly, copying the president’s letter with each letter the manager creates, and so on.
Andrew receives a packet of letters, from the president down through his task group
leader, each letter linked by name to the next. If every employee in the company receives
such a packet, any two employees who want to exchange authenticated keys need only
compare each other’s packets; both packets will have at least Edward in common, perhaps
some other managers below Edward, and at some point will deviate. Andrew and Ann, for
example, could compare their chains, determine that they were the same through Camilla,
and trace just from Camilla down. Andrew knows the chain from Edward to Camilla is
authentic because it is identical to his chain, and Ann knows the same. Each knows the
rest of the chain is accurate because it follows an unbroken line of names and signatures.

Certificates: Trustable Identities and Public Keys

You may have concluded that this process works, but it is far too cumbersome to apply
in real life; perhaps you have surmised that we are building a system for computers. This
protocol is represented more easily electronically than on paper. With paper, people must

guard against forgeries, to prevent part of one chain from being replaced and to ensure that
the public key at the bottom is bound to the chain. The whole thing can be done
electronically with digital signatures and hash functions. Kohnfelder [KOH78] seems to
be the originator of the concept of using an electronic certificate with a chain of
authenticators; Merkle’s paper [MER80] expands the concept.

A public key and user’s identity are bound together in a certificate, which is then
signed by someone called a certificate authority, certifying the accuracy of the binding.
In our example, the company might set up a certificate scheme in the following way. First,
Edward selects a public key pair, posts the public part where everyone in the company can
retrieve it, and retains the private part. Then, each division manager, such as Diana, creates
her public key pair, puts the public key in a message together with her identity, and passes
the message securely to Edward. Edward signs it by creating a hash value of the message
and then encrypting the hash with his private key. By signing the message, Edward affirms
that the public key (Diana’s) and the identity (also Diana’s) in the message are for the
same person. This message is called Diana’s certificate.

All of Diana’s department managers create messages with their public keys, Diana
hashes and signs each, and returns them. She also appends to each a copy of the certificate
she received from Edward. In this way, anyone can verify a manager’s certificate by
starting with Edward’s well-known public key, decrypting Diana’s certificate to retrieve
her public key (and identity), and using Diana’s public key to decrypt the manager’s
certificate. Figure 2-31 shows how certificates are created for Diana and one of her
managers, Delwyn. This process continues down the hierarchy to Ann and Andrew. As
shown in Figure 2-32, Andrew’s certificate is really his individual certificate combined
with all certificates for those above him in the line to the president.

To create Diana’s certificate: To create Delwyn’s certificate:
Diana creates and delivers to Edward: Delwyn creates and delivers 1o Diana:
Mame: [Diana MName: Delwyn
Position: Division Manager Position: Dept Manager
Public key: ITEFS3CA, ... Public key: 3AB3882C .
Edward adds: Diana adds:
MName: Diana hash value Name: Delwyn hash value
Position: Division Manager 128C4 Position: Dept Manager 48CFA
Public key: 1TEFR3CA ... Public key: 3AB3RE2C ..,
Edward signs with his private key: Diana signs with her private key:
Name: Diana hash value Name: Delwyn hash value
Position: Division Manager 128C4 Position: Dept Manager 48CFA
Public key: 17EFS3CA ... Public key: 3AB3882C ...
Which is Diana’s certificate. And appends her certificate:
Name: Delwyn hash value
Position: Dept Manager 4RCFA
Public key: 3AB3882C ..
Name: Diana hash value
Position: Division Manager 128C4
Public key: 17TEF83CA ..,

Which is Delwyn’s certificate.

FIGURE 2-31 Creating Certificates

Mame: Andrew hash valuc
Position: Worker 60206
Public key: T013F82A ...

MName: Betty hash value
Position: Task Leader 00002
Public key: 2468ACED ...
Key 1o encryptions Name: Camilla hﬂﬂh vilue
Position: Group Leader 12346
]:| Encrypted under Beny's private key Public key: 44082CCA ...
1:' Encrypted under Camilla’s private key
D Encrypted under Mukesh's private key i
Name: Delwyn hash value
Encryptled under Delwyn’s private key Position: Dept Manager 48CFA
Public key: 3AB3RE2C ...
. Encrypred under Diana’s private key
MName: Diana hash value
. Encrypted under Edward’s private key Position: Division Manager 128C4

Public key: 1 TEF83CA ...

FIGURE 2-32 Certificate Hierarchy
Certificate Signing Without a Single Hierarchy

In our examples, certificates were issued on the basis of the managerial structure. But
we do not require such a structure nor do we have to follow such a convoluted process in
order to use certificate signing for authentication. Anyone who is considered acceptable as
an authority can sign a certificate. For example, if you want to determine whether a person
received a degree from a university, you would not contact the president or chancellor but
would instead go to the office of records or the registrar. To verify someone’s
employment, you might ask the personnel office or the director of human resources. And
to check if someone lives at a particular address, you might consult the office of public
records.

Sometimes, a particular person is designated to attest to the authenticity or validity of a
document or person. For example, a notary public attests to the validity of a (written)
signature on a document. Some companies have a security officer to verify that an
employee has appropriate security clearances to read a document or attend a meeting.
Many companies have a separate personnel office for each site or each plant location; the
personnel officer vouches for the employment status of the employees at that site. Any of
these officers or heads of offices could credibly sign certificates for people under their
purview. Natural hierarchies exist in society, and these same hierarchies can be used to
validate certificates.

The only problem with a hierarchy is the need for trust of the top level. The entire chain
of authenticity is secure because each certificate contains the key that decrypts the next
certificate, except for the top. Within a company, employees naturally trust the person at
the top. But if certificates are to become widely used in electronic commerce, people must
be able to exchange certificates securely across companies, organizations, and countries.

The Internet is a large federation of networks for interpersonal, intercompany,
interorganizational, and international (as well as intracompany, intraorganizational, and
intranational) communication. It is not a part of any government, nor is it a privately

owned company. It is governed by a board called the Internet Society. The Internet Society
has power only because its members, the governments and companies that make up the
Internet, agree to work together. But there really is no “top” for the Internet. Different
companies, such as C&W HKT, SecureNet, VeriSign, Baltimore Technologies, Deutsche
Telecom, Societa Interbancaria per I’Automatzione di Milano, Entrust, and Certiposte are
root certification authorities, which means each is a highest authority that signs
certificates. So, instead of one root and one top, there are many roots, largely structured
around national boundaries.

Distributing Keys and Certificates

Earlier in this chapter we introduced several approaches to key distribution, ranging
from direct exchange to distribution through a central distribution facility to certified
advance distribution. But no matter what approach is taken to key distribution, each has its
advantages and disadvantages. Points to keep in mind about any key distribution protocol
include the following:

* What operational restrictions are there? For example, does the protocol require
a continuously available facility, such as the key distribution center?

* What trust requirements are there? Who and what entities must be trusted to
act properly?

» What is the protection against failure? Can an outsider impersonate any of the

entities in the protocol and subvert security? Can any party of the protocol cheat
without detection?

» How efficient is the protocol? A protocol requiring several steps to establish an
encryption key that will be used many times is one thing; it is quite another to
go through several time-consuming steps for a one-time use.

* How easy is the protocol to implement? Notice that complexity in computer
implementation may be different from manual use.

Digital Signatures—All the Pieces

Putting these pieces together we can now outline a complete digital signature scheme.
Assume user S wants to apply a digital signature to a file (or other data object), meeting
the four objectives of a digital signature: unforgeable, authentic, unalterable, and not
reusable.

A digital signature consists of
* a file
* demonstration that the file has not been altered
* indication of who applied the signature
« validation that the signature is authentic, that is, that it belongs to the signer
» connection of the signature to the file

With these five components we can construct a digital signature.

We start with the file. If we use a secure hash code of the file to compute a message
digest and include that hash code in the signature, the code demonstrates that the file has

not been changed. A recipient of the signed file can recompute the hash function and, if
the hash values match, conclude with reasonable trust that the received file is the same one
that was signed. So far, our digital signature looks like the object in Figure 2-33.

M
Encrypted for
authenticity
|
|

Hash

function

Message
digest

FIGURE 2-33 Hash Code to Detect Changes

Next, we apply the signer’s private encryption key to encrypt the message digest.
Because only the signer knows that key, the signer is the only one who could have applied
it. Now the signed object looks like Figure 2-34.

(-- ﬁ .'-—
E(M, KF'JR”"-S} < M Enc IL_YPICd for
authenticity
e
Message
digest

FIGURE 2-34 Encryption to Show Authenticity

The only other piece to add is an indication of who the signer was, so that the receiver

knows which public key to use to unlock the encryption, as shown in Figure 2-35. The
signer’s identity has to be outside the encryption because if it were inside, the identity
could not be extracted.

E(M, KPE.’V—_‘;] M EﬂCf}"piCd for
authenticity
[
|
Message
digest
Signer

FIGURE 2-35 Indication of Signer

Two extra flourishes remain to be added. First, depending on the file’s size, this object
can be large, and asymmetric encryption is slow, not suited to encrypting large things.
However, S’s authenticating encryption needs to cover only the secure hash code, not the
entire file itself. If the file were modified, it would no longer match the hash code, so the
recipient would know not to trust the object as authentic from S. And if the hash code
were broken off and attached to a different file, it would not match there, either. So for
efficiency we need encrypt only the hash value with S’s private key, as shown in Figure 2-
36.

I

Message
digest
Signer

Encrypted for

E(MD, Kpgyy.s) {
authenticity

FIGURE 2-36 Asymmetric Encryption Covering the Hash Value

Second, the file, the data portion of the object, is exposed for anyone to read. If S wants
confidentiality, that is, so that only one recipient can see the file contents, S can select a
symmetric encryption key, encrypt the file, and store the key under user U’s asymmetric
public encryption key. This final addition is shown in Figure 2-37.

E(M, Sym) < M Encrypted for

confidentiality

Mess: '
E(MD, Kppv.s) d?gifc Encrypted for
.g authenticity
Signer
FIGURE 2-37 Digitally Signed Object Protected for Both Integrity and
Confidentiality

In conclusion, a digital signature can indicate the authenticity of a file, especially a
piece of code. When you attempt to install a piece of signed code, the operating system
will inspect the certificate and file and notify you if the certificate and hash are not
acceptable. Digital signatures, coupled with strong hash functions and symmetric
encryption, are an effective way to ensure that a file is precisely what the originator stored
for download.

This description of digital signatures concludes our section on tools from cryptography.
We summarize the tools in Table 2-15. In this section we have introduced important pieces
we call upon later in this book.

Tool

Uses

Secret key (svmmetric)
encryption

Protecting confidentiality and integrity of data at rest or in transit

Public key (asymmetric)
encryption

Exchanging (symmetric) encryption keys
Signing data to show authenticity and proof of origin

Error detection codes

Detect changes in data

Hash codes and functions
{forms of error detection codes)

Detect changes in data

Cryptographic hash functions

Detect changes in data, using a function that only the data owner
can compute (50 an outsider cannot change both data and the hash
code result to conceal the fact of the change)

Error correction codes

Detect and repair errors in data

Diigital signatures

Attest to the authenticity of data

Digital certificates

Allow parties to exchange cryptographic keys with confidence of
the identities of both parties

TABLE 2-15 Tools Derived from Cryptography

Our point in this chapter is not to train a new corps of cryptographers or cryptologists;
to do that would require far more material than this book can contain. Rather, we want you
to know and understand the basic concepts of cryptography so in later chapters you can
appreciate the difficulty, strengths, and weaknesses of, for example, securing a wireless

network signal or establishing a protected communication between a browser user and a
website.

In the next chapter we put the three tools of this chapter to use in dealing with security
problems in programs and programming.

2.4 Exercises

1. Describe each of the following four kinds of access control mechanisms in
terms of (a) ease of determining authorized access during execution, (b) ease of
adding access for a new subject, (c) ease of deleting access by a subject, and (d)
ease of creating a new object to which all subjects by default have access.

* per-subject access control list (that is, one list for each subject tells
all the objects to which that subject has access)

» per-object access control list (that is, one list for each object tells all
the subjects who have access to that object)

* access control matrix

* capability
2. Suppose a per-subject access control list is used. Deleting an object in such a
system is inconvenient because all changes must be made to the control lists of

all subjects who did have access to the object. Suggest an alternative, less costly
means of handling deletion.

3. File access control relates largely to the secrecy dimension of security. What
is the relationship between an access control matrix and the integrity of the
objects to which access is being controlled?

4. One feature of a capability-based protection system is the ability of one
process to transfer a copy of a capability to another process. Describe a situation
in which one process should be able to transfer a capability to another.

5. Suggest an efficient scheme for maintaining a per-user protection scheme.
That is, the system maintains one directory per user, and that directory lists all
the objects to which the user is allowed access. Your design should address the
needs of a system with 1000 users, of whom no more than 20 are active at any
time. Each user has an average of 200 permitted objects; there are 50,000 total
objects in the system.

6. Calculate the timing of password-guessing attacks:

(a) If passwords are three uppercase alphabetic characters long, how much
time would it take to determine a particular password, assuming that testing
an individual password requires 5 seconds? How much time if testing
requires 0.001 seconds?

(b) Argue for a particular amount of time as the starting point for “secure.”
That is, suppose an attacker plans to use a brute-force attack to determine a
password. For what value of x (the total amount of time to try as many
passwords as necessary) would the attacker find this attack prohibitively
long?

(o) If the cutoff between “insecure” and “secure” were x amount of time,

how long would a secure password have to be? State and justify your
assumptions regarding the character set from which the password is
selected and the amount of time required to test a single password.

7. Design a protocol by which two mutually suspicious parties can authenticate
each other. Your protocol should be usable the first time these parties try to
authenticate each other.

8. List three reasons people might be reluctant to use biometrics for
authentication. Can you think of ways to counter those objections?

9. False positive and false negative rates can be adjusted, and they are often
complementary: Lowering one raises the other. List two situations in which false
negatives are significantly more serious than false positives.

10. In a typical office, biometric authentication might be used to control access to
employees and registered visitors only. We know the system will have some false
negatives, some employees falsely denied access, so we need a human override,
someone who can examine the employee and allow access in spite of the failed
authentication. Thus, we need a human guard at the door to handle problems, as well
as the authentication device; without biometrics we would have had just the guard.
Consequently, we have the same number of personnel with or without biometrics,
plus we have the added cost to acquire and maintain the biometrics system. Explain
the security advantage in this situation that justifies the extra expense.

11. Outline the design of an authentication scheme that “learns.” The authentication
scheme would start with certain primitive information about a user, such as name and
password. As the use of the computing system continued, the authentication system
would gather such information as commonly used programming languages; dates,
times, and lengths of computing sessions; and use of distinctive resources. The
authentication challenges would become more individualized as the system learned
more information about the user.

* Your design should include a list of many pieces of information
about a user that the system could collect. It is permissible for the
system to ask an authenticated user for certain additional information,
such as a favorite book, to use in subsequent challenges.

* Your design should also consider the problem of presenting and
validating these challenges: Does the would-be user answer a true-
false or a multiple-choice question? Does the system interpret natural
language prose?

12. How are passwords stored on your personal computer?

13. Describe a situation in which a weak but easy-to-use password may be adequate.

14. List three authentication questions (but not the answers) your credit card
company could ask to authenticate you over the phone. Your questions should be
ones to which an imposter could not readily obtain the answers. How difficult would
it be for you to provide the correct answer (for example, you would have to look
something up or you would have to do a quick arithmetical calculation)?

15. If you forget your password for a website and you click [Forgot my password],
sometimes the company sends you a new password by email but sometimes it sends

you your old password by email. Compare these two cases in terms of vulnerability
of the website owner.

16. Defeating authentication follows the method—opportunity—motive paradigm
described in Chapter 1. Discuss how these three factors apply to an attack on
authentication.

17. Suggest a source of some very long unpredictable numbers. Your source must be
something that both the sender and receiver can readily access but that is not obvious
to outsiders and not transmitted directly from sender to receiver.

18. What are the risks of having the United States government select a cryptosystem
for widespread commercial use (both inside and outside the United States). How
could users from outside the United States overcome some or all of these risks?

19. If the useful life of DES was about 20 years (1977-1999), how long do you
predict the useful life of AES will be? Justify your answer.

20. Humans are said to be the weakest link in any security system. Give an example
for each of the following:

(a) a situation in which human failure could lead to a compromise of
encrypted data

(b) a situation in which human failure could lead to a compromise of
identification and authentication

(c) a situation in which human failure could lead to a compromise of access
control

21. Why do cryptologists recommend changing the encryption key from time to
time? Is it the same reason security experts recommend changing a password from
time to time? How can one determine how frequently to change keys or passwords?

22. Explain why hash collisions occur. That is, why must there always be two
different plaintexts that have the same hash value?

23. What property of a hash function means that collisions are not a security
problem? That is, why can an attacker not capitalize on collisions and change the
underlying plaintext to another form whose value collides with the hash value of the
original plaintext?

24. Does a PKI perform encryption? Explain your answer.

25. Does a PKI use symmetric or asymmetric encryption? Explain your answer.

26. Should a PKI be supported on a firewall (meaning that the certificates would be
stored on the firewall and the firewall would distribute certificates on demand)?
Explain your answer.

27. Why does a PKI need a means to cancel or invalidate certificates? Why is it not
sufficient for the PKI to stop distributing a certificate after it becomes invalid?

28. Some people think the certificate authority for a PKI should be the government,
but others think certificate authorities should be private entities, such as banks,
corporations, or schools. What are the advantages and disadvantages of each
approach?

29. If you live in country A and receive a certificate signed by a government

certificate authority in country B, what conditions would cause you to trust that
signature as authentic?

30. A certificate contains an identity, a public key, and signatures attesting that the
public key belongs to the identity. Other fields that may be present include the
organization (for example, university, company, or government) to which that
identity belongs and perhaps suborganizations (college, department, program, branch,
office). What security purpose do these other fields serve, if any? Explain your
answer.

3. Programs and Programming

In this chapter:

* Programming oversights: buffer overflows, off-by-one errors, incomplete
mediation, time-of-check to time-of-use errors

» Malicious code: viruses, worms, Trojan horses

* Developer countermeasures: program development techniques, security
principles
* Ineffective countermeasures

Programs are simple things but they can wield mighty power. Think about them for a
minute: Programs are just strings of Os and 1s, representing elementary machine
commands such as move one data item, compare two data items, or branch to a different
command. Those primitive machine commands implement higher-level programming
language constructs such as conditionals, repeat loops, case selection, and arithmetic and
string operations. And those programming language constructs give us pacemaker
functions, satellite control, smart-home technology, traffic management, and digital
photography, not to mention streaming video and social networks. The Intel 32- and 64-bit
instruction set has about 30 basic primitives (such as move, compare, branch, increment
and decrement, logical operations, arithmetic operations, trigger I/O, generate and service
interrupts, push, pop, call, and return) and specialized instructions to improve performance
on computations such as floating point operations or cryptography. These few machine
commands are sufficient to implement the vast range of programs we know today.

Most programs are written in higher-level languages such as Java, C, C++, Perl, or
Python; programmers often use libraries of code to build complex programs from pieces
written by others. But most people are not programmers; instead, they use already written
applications for word processing, web browsing, graphics design, accounting, and the like
without knowing anything about the underlying program code. People do not expect to
need to understand how power plants operate in order to turn on an electric light. But if
the light does not work, the problem could be anywhere from the power plant to the light
bulb, and suddenly the user needs to trace potential problems from one end to the other.
Although the user does not need to become a physicist or electrical engineer, a general
understanding of electricity helps determine how to overcome the problem, or at least how
to isolate faults under the user’s control (burned out bulb, unplugged lamp).

In this chapter we describe security problems in programs and programming. As with
the light, a problem can reside anywhere between the machine hardware and the user
interface. Two or more problems may combine in negative ways, some problems can be
intermittent or occur only when some other condition is present, and the impact of
problems can range from annoying (perhaps not even perceptible) to catastrophic.

Security failures can result from intentional or nonmalicious causes; both
can cause harm.

In Chapter 1 we introduce the notion of motive, observing that some security problems
result from nonmalicious oversights or blunders, but others are intentional. A malicious
attacker can exploit a nonmalicious flaw to cause real harm. Thus, we now study several
common program failings to show how simple errors during programming can lead to
large-scale problems during execution. Along the way we describe real attacks that have
been caused by program flaws. (We use the term flaw because many security professionals
use that term or the more evocative term bug. However, as you can see in Sidebar 3-1, the
language for describing program problems is not universal.)

Sidebar 3-1 The Terminology of (Lack of) Quality

Thanks to Admiral Grace Murray Hopper, we casually call a software problem a
“bug.” [KID98] But that term can mean different things depending on context: a
mistake in interpreting a requirement, a syntax error in a piece of code, or the
(as-yet-unknown) cause of a system crash. The Institute of Electronics and
Electrical Engineers (IEEE) suggests using a standard terminology (in IEEE
Standard 729) for describing bugs in our software products [[EE83].

When a human makes a mistake, called an error, in performing some
software activity, the error may lead to a fault, or an incorrect step, command,
process, or data definition in a computer program, design, or documentation. For
example, a designer may misunderstand a requirement and create a design that
does not match the actual intent of the requirements analyst and the user. This
design fault is an encoding of the error, and it can lead to other faults, such as
incorrect code and an incorrect description in a user manual. Thus, a single error
can generate many faults, and a fault can reside in any development or
maintenance product.

A failure is a departure from the system’s required behavior. It can be
discovered before or after system delivery, during testing, or during operation
and maintenance. Since the requirements documents can contain faults, a failure
indicates that the system is not performing as required, even though it may be
performing as specified.

Thus, a fault is an inside view of the system, as seen by the eyes of the
developers, whereas a failure is an outside view: a problem that the user sees.
Every failure has at least one fault as its root cause. But not every fault
corresponds to a failure; for example, if faulty code is never executed or a
particular state is never entered, the fault will never cause the code to fail.

Although software engineers usually pay careful attention to the distinction
between faults and failures, security engineers rarely do. Instead, security
engineers use flaw to describe both faults and failures. In this book, we use the
security terminology; we try to provide enough context so that you can
understand whether we mean fault or failure.

3.1 Unintentional (Nonmalicious) Programming Oversights

Programs and their computer code are the basis of computing. Without a program to

guide its activity, a computer is pretty useless. Because the early days of computing
offered few programs for general use, early computer users had to be programmers too—
they wrote the code and then ran it to accomplish some task. Today’s computer users
sometimes write their own code, but more often they buy programs off the shelf; they even
buy or share code components and then modify them for their own uses. And all users
gladly run programs all the time: spreadsheets, music players, word processors, browsers,
email handlers, games, simulators, and more. Indeed, code is initiated in myriad ways,
from turning on a mobile phone to pressing “start” on a coffee-maker or microwave oven.
But as the programs have become more numerous and complex, users are more frequently
unable to know what the program is really doing or how.

More importantly, users seldom know whether the program they are using is producing
correct results. If a program stops abruptly, text disappears from a document, or music
suddenly skips passages, code may not be working properly. (Sometimes these
interruptions are intentional, as when a CD player skips because the disk is damaged or a
medical device program stops in order to prevent an injury.) But if a spreadsheet produces
a result that is off by a small amount or an automated drawing package doesn’t align
objects exactly, you might not notice—or you notice but blame yourself instead of the
program for the discrepancy.

These flaws, seen and unseen, can be cause for concern in several ways. As we all
know, programs are written by fallible humans, and program flaws can range from
insignificant to catastrophic. Despite significant testing, the flaws may appear regularly or
sporadically, perhaps depending on many unknown and unanticipated conditions.

Program flaws can have two kinds of security implications: They can cause integrity
problems leading to harmful output or action, and they offer an opportunity for
exploitation by a malicious actor. We discuss each one in turn.

* A program flaw can be a fault affecting the correctness of the program’s result
—that is, a fault can lead to a failure. Incorrect operation is an integrity failing.
As we saw in Chapter 1, integrity is one of the three fundamental security
properties of the C-I-A triad. Integrity involves not only correctness but also
accuracy, precision, and consistency. A faulty program can also inappropriately
modify previously correct data, sometimes by overwriting or deleting the
original data. Even though the flaw may not have been inserted maliciously, the
outcomes of a flawed program can lead to serious harm.

* On the other hand, even a flaw from a benign cause can be exploited by
someone malicious. If an attacker learns of a flaw and can use it to manipulate
the program’s behavior, a simple and nonmalicious flaw can become part of a
malicious attack.

Benign flaws can be—often are—exploited for malicious impact.

Thus, in both ways, program correctness becomes a security issue as well as a general
quality problem. In this chapter we examine several programming flaws that have security
implications. We also show what activities during program design, development, and
deployment can improve program security.

Buffer Overflow

We start with a particularly well known flaw, the buffer overflow. Although the basic
problem is easy to describe, locating and preventing such difficulties is challenging.
Furthermore, the impact of an overflow can be subtle and disproportionate to the
underlying oversight. This outsized effect is due in part to the exploits that people have
achieved using overflows. Indeed, a buffer overflow is often the initial toehold for
mounting a more damaging strike. Most buffer overflows are simple programming
oversights, but they can be used for malicious ends. See Sidebar 3-2 for the story of a
search for a buffer overflow.

Buffer overflows often come from innocent programmer oversights or
failures to document and check for excessive data.

This example was not the first buffer overflow, and in the intervening time—
approaching two decades—far more buffer overflows have been discovered. However,
this example shows clearly the mind of an attacker. In this case, David was trying to
improve security—he happened to be working for one of this book’s authors at the time—
but attackers work to defeat security for reasons such as those listed in Chapter 1. We now
investigate sources of buffer overflow attacks, their consequences, and some
countermeasures.

Anatomy of Buffer Overflows

A string overruns its assigned space or one extra element is shoved into an array; what’s
the big deal, you ask? To understand why buffer overflows are a major security issue, you
need to understand how an operating system stores code and data.

As noted above, buffer overflows have existed almost as long as higher-level
programming languages with arrays. Early overflows were simply a minor annoyance to
programmers and users, a cause of errors and sometimes even system crashes. More
recently, however, attackers have used them as vehicles to cause first a system crash and
then a controlled failure with a serious security implication. The large number of security
vulnerabilities based on buffer overflows shows that developers must pay more attention
now to what had previously been thought to be just a minor annoyance.

Sidebar 3-2 My Phone Number is 5656 4545 7890 1234 2929 2929 2929 ...

In 1999, security analyst David Litchfield [LIT99] was intrigued by buffer
overflows. He had both an uncanny sense for the kind of program that would
contain overflows and the patience to search for them diligently. He happened
onto the Microsoft Dialer program, dialer.exe.

Dialer was a program for dialing a telephone. Before cell phones, WiFi,
broadband, and DSL, computers were equipped with modems by which they
could connect to the land-based telephone network; a user would dial an Internet
service provider and establish a connection across a standard voice telephone
line. Many people shared one line between voice and computer (data)
communication. You could look up a contact’s phone number, reach for the
telephone, dial the number, and converse; but the computer’s modem could dial

the same line, so you could feed the number to the modem from an electronic
contacts list, let the modem dial your number, and pick up the receiver when
your called party answered. Thus, Microsoft provided Dialer, a simple utility
program to dial a number with the modem. (As of 2014, dialer.exe was still part
of Windows 10, although the buffer overflow described here was patched
shortly after David reported it.)

David reasoned that Dialer had to accept phone numbers of different lengths,
given country variations, outgoing access codes, and remote signals (for
example, to enter an extension number). But he also suspected there would be an
upper limit. So he tried dialer.exe with a 20-digit phone number and everything
worked fine. He tried 25 and 50, and the program still worked fine. When he
tried a 100-digit phone number, the program crashed. The programmer had
probably made an undocumented and untested decision that nobody would ever
try to dial a 100-digit phone number ... except David.

Having found a breaking point, David then began the interesting part of his
work: Crashing a program demonstrates a fault, but exploiting that flaw shows
how serious the fault is. By more experimentation, David found that the number
to dial was written into the stack, the data structure that stores parameters and
return addresses for embedded program calls. The dialer.exe program is treated
as a program call by the operating system, so by controlling what dialer.exe
overwrote, David could redirect execution to continue anywhere with any
instructions he wanted. The full details of his exploitation are given in [LIT99].

Memory Allocation

Memory is a limited but flexible resource; any memory location can hold any piece of
code or data. To make managing computer memory efficient, operating systems jam one

data element next to another, without regard for data type, size, content, or purpose.! Users
and programmers seldom know, much less have any need to know, precisely which
memory location a code or data item occupies.
1. Some operating systems do separate executable code from nonexecutable data, and some hardware can provide
different protection to memory addresses containing code as opposed to data. Unfortunately, however, for reasons
including simple design and performance, most operating systems and hardware do not implement such
separation. We ignore the few exceptions in this chapter because the security issue of buffer overflow applies even

within a more constrained system. Designers and programmers need to be aware of buffer overflows, because a
program designed for use in one environment is sometimes transported to another less protected one.

Computers use a pointer or register known as a program counter that indicates the next
instruction. As long as program flow is sequential, hardware bumps up the value in the
program counter to point just after the current instruction as part of performing that
instruction. Conditional instructions such as IF(), branch instructions such as loops
(WHILE, FOR) and unconditional transfers such as GOTO or CALL divert the flow of
execution, causing the hardware to put a new destination address into the program counter.
Changing the program counter causes execution to transfer from the bottom of a loop back
to its top for another iteration. Hardware simply fetches the byte (or bytes) at the address
pointed to by the program counter and executes it as an instruction.

Instructions and data are all binary strings; only the context of use says a byte, for

example, 0x41 represents the letter A, the number 65, or the instruction to move the
contents of register 1 to the stack pointer. If you happen to put the data string “A” in the
path of execution, it will be executed as if it were an instruction. In Figure 3-1 we show a
typical arrangement of the contents of memory, showing code, local data, the heap
(storage for dynamically created data), and the stack (storage for subtask call and return
data). As you can see, instructions move from the bottom (low addresses) of memory up;
left unchecked, execution would proceed through the local data area and into the heap and
stack. Of course, execution typically stays within the area assigned to program code.

High addresses
Stack

v

a

Heap

Static data

Code

Low addresses
FIGURE 3-1 Typical Memory Organization

Not all binary data items represent valid instructions. Some do not correspond to any
defined operation, for example, operation 0x78 on a machine whose instructions are all
numbers between 0x01 and 0x6f. Other invalid forms attempt to use nonexistent hardware
features, such as a reference to register 9 on a machine with only eight hardware registers.

To help operating systems implement security, some hardware recognizes more than
one mode of instruction: so-called privileged instructions that can be executed only when
the processor is running in a protected mode. Trying to execute something that does not
correspond to a valid instruction or trying to execute a privileged instruction when not in
the proper mode will cause a program fault. When hardware generates a program fault, it
stops the current thread of execution and transfers control to code that will take recovery
action, such as halting the current process and returning control to the supervisor.

Code and Data

Before we can explain the real impact of buffer overflows, we need to clarify one point:
Code, data, instructions, the operating system, complex data structures, user programs,
strings, downloaded utility routines, hexadecimal data, decimal data, character strings,
code libraries, photos, and everything else in memory are just strings of Os and 1s; think of

it all as bytes, each containing a number. The computer pays no attention to how the bytes
were produced or where they came from. Each computer instruction determines how data
values are interpreted: An Add instruction implies the data item is interpreted as a number,
a Move instruction applies to any string of bits of arbitrary form, and a Jump instruction
assumes the target is an instruction. But at the machine level, nothing prevents a Jump
instruction from transferring into a data field or an Add command operating on an
instruction, although the results may be unpleasant. Code and data are bit strings
interpreted in a particular way.

In memory, code is indistinguishable from data. The origin of code
(respected source or attacker) is also not visible.

You do not usually try to execute data values or perform arithmetic on instructions. But
if 0x1C is the operation code for a Jump instruction, and the form of a Jump instruction is
1C displ, meaning execute the instruction at the address displ bytes ahead of this
instruction, the string 0x1COA is interpreted as jump forward 10 bytes. But, as shown in
Figure 3-2, that same bit pattern represents the two-byte decimal integer 7178. So storing
the number 7178 in a series of instructions is the same as having programmed a Jump.
Most higher-level-language programmers do not care about the representation of
instructions in memory, but curious investigators can readily find the correspondence.
Manufacturers publish references specifying precisely the behavior of their chips, and
utility programs such as compilers, assemblers, and disassemblers help interested
programmers develop and interpret machine instructions.

Store sum = 7178

:>n.>< ICOA |

Execute instruction
“Jump forward 10
bytes”

Memory
FIGURE 3-2 Bit Patterns Can Represent Data or Instructions

Usually we do not treat code as data, or vice versa; attackers sometimes do, however,
especially in memory overflow attacks. The attacker’s trick is to cause data to spill over

into executable code and then to select the data values such that they are interpreted as
valid instructions to perform the attacker’s goal. For some attackers this is a two-step goal:
First cause the overflow and then experiment with the ensuing action to cause a desired,
predictable result, just as David did.

Harm from an Overflow

Let us suppose a malicious person understands the damage that can be done by a buffer
overflow; that is, we are dealing with more than simply a normal, bumbling programmer.
The malicious programmer thinks deviously: What data values could I insert to cause
mischief or damage, and what planned instruction codes could I force the system to
execute? There are many possible answers, some of which are more malevolent than
others. Here, we present two buffer overflow attacks that are used frequently. (See
[ALE96] for more details.)

First, the attacker may replace code in the system space. As shown in Figure 3-3,
memory organization is not as simple as shown in Figure 3-1. The operating system’s code
and data coexist with a user’s code and data. The heavy line between system and user
space is only to indicate a logical separation between those two areas; in practice, the
distinction is not so solid.

: High addresses
Stack 2

v

Heap ‘

Local Data

Program Code

System Data

System Code

Low addresses

FIGURE 3-3 Memory Organization with User and System Areas

Remember that every program is invoked by an operating system that may run with
higher privileges than those of a regular program. Thus, if the attacker can gain control by
masquerading as the operating system, the attacker can execute commands in a powerful
role. Therefore, by replacing a few instructions right after returning from his or her own
procedure, the attacker regains control from the operating system, possibly with raised
privileges. This technique is called privilege escalation. If the buffer overflows into
system code space, the attacker merely inserts overflow data that correspond to the
machine code for instructions.

In the other kind of attack, the intruder may wander into an area called the stack and
heap. Subprocedure calls are handled with a stack, a data structure in which the most
recent item inserted is the next one removed (last arrived, first served). This structure
works well because procedure calls can be nested, with each return causing control to
transfer back to the immediately preceding routine at its point of execution. Each time a
procedure is called, its parameters, the return address (the address immediately after its
call), and other local values are pushed onto a stack. An old stack pointer is also pushed
onto the stack, and a stack pointer register is reloaded with the address of these new
values. Control is then transferred to the subprocedure.

As the subprocedure executes, it fetches parameters that it finds by using the address
pointed to by the stack pointer. Typically, the stack pointer is a register in the processor.
Therefore, by causing an overflow into the stack, the attacker can change either the old
stack pointer (changing the context for the calling procedure) or the return address
(causing control to transfer where the attacker intends when the subprocedure returns).
Changing the context or return address allows the attacker to redirect execution to code
written by the attacker.

In both these cases, the assailant must experiment a little to determine where the
overflow is and how to control it. But the work to be done is relatively small—probably a
day or two for a competent analyst. These buffer overflows are carefully explained in a
paper by Mudge [MUD95] (real name, Pieter Zatko) of the famed 10pht computer security
group. Pincus and Baker [PIN04] reviewed buffer overflows ten years after Mudge and
found that, far from being a minor aspect of attack, buffer overflows had been a significant
attack vector and had spawned several other new attack types. That pattern continues
today.

An alternative style of buffer overflow occurs when parameter values are passed into a
routine, especially when the parameters are passed to a web server on the Internet.
Parameters are passed in the URL line, with a syntax similar to

Click here to view code image
http://www.somesite.com/subpage/userinput.asp?
parml=(808)555-1212
In this example, the application script userinput receives one parameter, parm1l with
value (808)555-1212 (perhaps a U.S. telephone number). The web browser on the caller’s
machine will accept values from a user who probably completes fields on a form. The
browser encodes those values and transmits them back to the server’s web site.

The attacker might question what the server would do with a really long telephone
number, say, one with 500 or 1000 digits. This is precisely the question David asked in the
example we described in Sidebar 3-2. Passing a very long string to a web server is a slight
variation on the classic buffer overflow, but no less effective.

Overwriting Memory

Now think about a buffer overflow. If you write an element past the end of an array or
you store an 11-byte string in a 10-byte area, that extra data has to go somewhere; often it
goes immediately after the last assigned space for the data.

A buffer (or array or string) is a space in which data can be held. A buffer resides in

memory. Because memory is finite, a buffer’s capacity is finite. For this reason, in many
programming languages the programmer must declare the buffer’s maximum size so that
the compiler can set aside that amount of space.

Let us look at an example to see how buffer overflows can happen. Suppose a C
language program contains the declaration

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for each of the 10
elements of the array, denoted sample[0] through sample[9]. Now we execute the
statement

sample[10] = ‘B’;

The subscript is out of bounds (that is, it does not fall between 0 and 9), so we have a
problem. The nicest outcome (from a security perspective) is for the compiler to detect the
problem and mark the error during compilation, which the compiler could do in this case.
However, if the statement were

sample[i] = ‘B’;

then the compiler could not identify the problem until i was set during execution either
to a proper value (between 0 and 9) or to an out-of-bounds subscript (less than 0 or greater
than 9). It would be useful if, during execution, the system produced an error message
warning of a subscript exception. Unfortunately, in some languages, buffer sizes do not
have to be predefined, so there is no way to detect an out-of-bounds error. More
importantly, the code needed to check each subscript against its potential maximum value
takes time and space during execution, and resources are applied to catch a problem that
occurs relatively infrequently. Even if the compiler were careful in analyzing the buffer
declaration and use, this same problem can be caused with pointers, for which there is no
reasonable way to define a proper limit. Thus, some compilers do not generate the code to
check for exceeding bounds.

Implications of Overwriting Memory

Let us more closely examine the problem of overwriting memory. Be sure to recognize
that the potential overflow causes a serious problem only in some instances. The
problem’s occurrence depends on what is adjacent to the array sample. For example,
suppose each of the ten elements of the array sample is filled with the letter A and the
erroneous reference uses the letter B, as follows:

Click here to view code image
for (i=0; i<=9; i++)
sample[i] = ‘A’;
sample[10] = ‘B’

All program and data elements are in memory during execution, sharing space with the
operating system, other code, and resident routines. So four cases must be considered in
deciding where the ‘B’ goes, as shown in Figure 3-4. If the extra character overflows into
the user’s data space, it simply overwrites an existing variable value (or it may be written
into an as-yet unused location), perhaps affecting the program’s result but affecting no
other program or data.

User's Data

Memory AlAJAJAIAJAJAIAIALALB

(a) Affects user’s data

User's Data User's Program Code

>

F 3

Memory AlAJAJAIAIAIALALALAIB

(b) Affects user's code

User's Data System Data

f'u.'h;]mjr}f AlATAIAIAIAIAJALAIAIB

(c) Affects system data

User’s Data System Program Code
- L

Memory AlAlAIAIAIAIAJAJALAIB

(d) Affects system code
FIGURE 3-4 One-Character Overflow

In the second case, the ‘B’ goes into the user’s program area. If it overlays an already
executed instruction (which will not be executed again), the user should perceive no
effect. If it overlays an instruction that is not yet executed, the machine will try to execute
an instruction with operation code 0x42, the internal code for the character ‘B’. If there is
no instruction with operation code 0x42, the system will halt on an illegal instruction
exception. Otherwise, the machine will use subsequent bytes as if they were the rest of the
instruction, with success or failure depending on the meaning of the contents. Again, only
the user is likely to experience an effect.

The most interesting cases (from a security perspective) occur when the system owns
the space immediately after the array that overflows. Spilling over into system data or
code areas produces results similar to those for the user’s space: computing with a faulty
value or trying to execute an operation.

Program procedures use both local data, data used strictly within one procedure, and
shared or common or global data, which are shared between two or more procedures.
Memory organization can be complicated, but we simplify the layout as in Figure 3-5. In
that picture, local data are stored adjacent to the code of a procedure. Thus, as you can see,
a data overflow either falls strictly within a data space or it spills over into an adjacent
code area. The data end up on top of one of

« another piece of your data
* an instruction of yours

* data or code belonging to another program
* data or code belonging to the operating system

We consider each of these cases separately.

User 1’s
code & Proc M
data
Proc M data
User 2’s Proc A
code &
data Proc A data
Operating Al
system’s Proc B data
code &
data

FIGURE 3-5 Memory of Different Procedures for Different Users
Affecting Your Own Data

Modifying your own data, especially with an unintended value, will obviously affect
your computing. Perhaps a loop will repeat too many or too few times, a sum will be
compromised, or a date will become garbled. You can imagine these possibilities for
yourself. The error may be so egregious that you will easily recognize something is
wrong, but a more subtle failure may escape your notice, perhaps forever.

From a security standpoint, few system controls protect you from this kind of error: You
own your data space and anything you want to store there is your business. Some, but not
all, programming languages generate checking code for things like arrays to ensure that
you store elements only within the space allocated. For this reason, the defensive
programming technique (discussed later in this chapter) recommends that you always
check to ensure that array elements and strings are within their boundaries. As Sidebar 3-3
demonstrates, sometimes such an error lies dormant for a long time.

Sidebar 3-3 Too Many Computers

The ARPANET, precursor to today’s Internet, began operation in 1969. Stephen
Crocker and Mary Bernstein [CRO89] exhaustively studied the root causes of 17
catastrophic failures of the ARPANET, failures that brought down the entire
network or a significant portion of it.

As you might expect, many of these failures occurred during the early 1970s
as use of the network caused flaws to surface. The final one of their 17 causes
appeared only in 1988, nearly 20 years after the inception of the network. This
disruption was caused by an overflow.

The original ARPANET network comprised hosts that connected to

specialized communications processors called IMPs. Each interface message
processor (IMP) controlled an individual subnetwork, much like today’s routers;
the IMPs connected to other IMPs through dedicated communications lines. For
reliability, each IMP had at least two distinct paths to each other IMP. The IMP
connections were added to a table dynamically as communication between two
IMPs was required by network traffic.

In 1988, one subnetwork added a connection to a 348th IMP. The table for
IMP connections had been hard-coded in 1969 to only 347 entries, which
seemed wildly excessive at the time, and in the intervening years people had
forgotten that table size if, indeed, it had ever been publicized. (In 1967, 347
IMPs was far more than the designers ever envisioned the network would have.)
Software handling the IMP’s table detected this overflow but handled it by
causing the IMP to reboot; upon rebooting, the IMP’s table was cleared and
would be repopulated as it discovered other reachable subnetworks. Apparently
the authors of that software assumed such a table overflow would be a sporadic
mistake from another cause, so clearing and rebooting would rid the table of the
faulty data. Because the fault was due to a real situation, in 1989 the refreshed
IMP ran for a while until its table refilled and then it failed and rebooted again.

It took some time to determine the source and remedy of this flaw, because
twenty years had passed between coding and failing; everybody associated with
the original design or implementation had moved on to other projects.

As this example shows, buffer overflows—Ilike other program faults—can
remain unexploited and undetected for some time, but they are still present.

Affecting an Instruction of Yours

Again, the failure of one of your instructions affects you, and systems give wide latitude
to what you can do to yourself. If you store a string that does not represent a valid or
permitted instruction, your program may generate a fault and halt, returning control to the
operating system. However, the system will try to execute a string that accidentally does
represent a valid instruction, with effects depending on the actual value. Again, depending
on the nature of the error, this faulty instruction may have no effect (if it is not in the path
of execution or in a section that has already been executed), a null effect (if it happens not
to affect code or data, such as an instruction to move the contents of register 1 to itself), or
an unnoticed or readily noticed effect.

Destroying your own code or data is unpleasant, but at least you can say the harm was
your own fault. Unless, of course, it wasn’t your fault. One early flaw in Microsoft’s
Outlook involved the simple date field: A date is a few bytes long to represent a day,
month, year, and time in GMT (Greenwich Mean Time) format. In a former version of
Outlook, a message with a date of more than 1000 bytes exceeded the buffer space for
message headers and ran into reserved space. Simply downloading such a message from a
mail server would cause your system to crash, and each time you tried to restart, Outlook
would try to reload the same message and crash again. In this case, you suffered harm
from a buffer overflow involving only your memory area.

One program can accidentally modify code or data of another procedure that will not be

executed until much later, so the delayed impact can be almost as difficult to diagnose as if
the attack came from an unrelated, independent user. The most significant impact of a
buffer overflow occurs when the excess data affect the operating system’s code or data.

Modification of code and data for one user or another is significant, but it is not a major
computer security issue. However, as we show in the next section, buffer overflows
perpetrated on the operating system can have serious consequences.

Affecting the Operating System or a Critical Application

The same basic scenarios occur for operating system code or data as for users, although
again there are important variations. Exploring these differences also leads us to consider
motive, and so we shift from thinking of what are essentially accidents to intentional
malicious acts by an attacker.

Because the mix of programs changes continually on a computing system, there is little
opportunity to affect any one particular use. We now consider the case in which an
attacker who has already overtaken an ordinary user now wants to overtake the operating
system. Such an attack can let the attacker plant permanent code that is reactivated each
time a machine is restarted, for example. Or the attack may expose data, for example,
passwords or cryptographic keys that the operating system is entrusted to safeguard. So
now let us consider the impact a (compromised) user can have on the operating system.

Users’ code and data are placed essentially at random: wherever there is free memory of
an appropriate size. Only by tracing through system memory allocation tables can you
learn where your program and data appear in memory. However, certain portions of the
operating system are placed at particular fixed locations, and other data are located at
places that can easily be determined during execution. Fixed or easily determined location
distinguishes operating system routines, especially the most critical ones, from a user’s
code and data.

A second distinction between ordinary users and the operating system is that a user runs
without operating system privileges. The operating system invokes a user’s program as if
it were a subprocedure, and the operating system receives control back when the user’s
program exits. If the user can alter what the operating system does when it regains control,
the user can force the operating system to execute code the user wants to run, but with
elevated privileges (those of the operating system). Being able to modify operating system
code or data allows the user (that is, an attacker acting as the user) to obtain effective
privileged status.

Privilege escalation, executing attack code with higher system
permissions, is a bonus for the attacker.

The call and return sequence operates under a well-defined protocol using a data
structure called the stack. Aleph One (Elias Levy) describes how to use buffer overflows
to overwrite the call stack [ALES6]. In the next section we show how a programmer can
use an overflow to compromise a computer’s operation.

The Stack and the Heap

The stack is a key data structure necessary for interchange of data between procedures,

as we described earlier in this chapter. Executable code resides at one end of memory,
which we depict as the low end; above it are constants and data items whose size is known
at compile time; above that is the heap for data items whose size can change during
execution; and finally, the stack. Actually, as shown earlier in Figure 3-1, the heap and
stack are at opposite ends of the memory left over after code and local data.

When procedure A calls procedure B, A pushes onto the stack its return address (that is,
the current value of the program counter), the address at which execution should resume
when B exits, as well as calling parameter values. Such a sequence is shown in Figure 3-6.

Stack
: P3
Direction of P2
gru:wi.h Pl
v Prog Ctr

FIGURE 3-6 Parameters and Return Address

To help unwind stack data tangled because of a program that fails during execution, the
stack also contains the pointer to the logical bottom of this program’s section of the stack,
that is, to the point just before where this procedure pushed values onto the stack. This
data group of parameters, return address, and stack pointer is called a stack frame, as
shown in Figure 3-7.

Stack
P3
Dirucii on of P2
growth P]
Prog Ctr
v :
Stack Ptr

FIGURE 3-7 A Stack Frame

When one procedure calls another, the stack frame is pushed onto the stack to allow the
two procedures to exchange data and transfer control; an example of the stack after
procedure A calls B is shown in Figure 3-8.

Procedure B
Stack <
Procedure A P3
P2
call B Pl
Prog Ctr
Stack Ptr

FIGURE 3-8 The Stack after a Procedure Call

Now let us consider a slightly deeper example: Suppose procedure A calls B that in turn
calls C. After these two calls the stack will look as shown in Figure 3-7, with the return
address to A on the bottom, then parameters from A to B, the return address from C to B,
and parameters from B to C, in that order. After procedure C returns to B, the second stack
frame is popped off the stack and it looks again like Figure 3-9.

Procedure B

Stack < 1
Procedure A P3 CLE C
. P2

call B Pl

Prog Cir
= 3 Sk i Procedure C
P2

1
Prog Ctr
Stack Ptr

FIGURE 3-9 The Stack after Nested Procedure Calls

The important thing to notice in these figures is the program counter: If the attacker can
overwrite the program counter, doing so will redirect program execution after the
procedure returns, and that redirection is, in fact, a frequently seen step in exploiting a
buffer overflow.

Overflow into system space can redirect execution immediately or on exit
from the current called procedure.

Refer again to Figure 3-1 and notice that the stack is at the top of memory, growing
downward, and something else, called the heap, is at the bottom growing up. As you have
just seen, the stack is mainly used for nested calls to procedures. The heap provides space
for dynamic data, that is, data items whose size is not known when a program is compiled.

If you declare an array of ten elements in the source code of a routine, the compiler
allocates enough space for those ten elements, as well as space for constants and
individual variables. But suppose you are writing a general-purpose sort routine that works
on any data, for example, tables with arbitrarily many rows and columns of any kind of
data. You might process an array of 100 integers, a table of 20,000 telephone numbers, or
a structure of 2,000 bibliographic references with names, titles, and sources. Even if the
table itself is passed as a parameter so that you do not need space to store it within your
program, you will need some temporary space, for example, for variables to hold the
values of two rows as you compare them and perhaps exchange their positions. Because
you cannot know when you write your code how large a row will be, modern
programming languages let you defer declaring the size of these variables until the
program executes. During execution, code inserted by the compiler into your program

determines the sizes and asks the operating system to allocate dynamic memory, which the
operating system gets from the heap. The heap grows and shrinks as memory is allocated
and freed for dynamic data structures.

As you can see in Figure 3-1, the stack and heap grow toward each other, and you can
predict that at some point they might collide. Ordinarily, the operating system monitors
their sizes and prevents such a collision, except that the operating system cannot know that
you will write 15,000 bytes into a dynamic heap space for which you requested only 15
bytes, or 8 bytes into a 4-byte parameter, or four return parameter values into three
parameter spaces.

The attacker wants to overwrite stack memory, sometimes called stack smashing, in a
purposeful manner: Arbitrary data in the wrong place causes strange behavior, but
particular data in a predictable location causes a planned impact. Here are some ways the
attacker can produce effects from an overflow attack:

* Overwrite the program counter stored in the stack so that when this routine
exits, control transfers to the address pointed at by the modified program counter
address.

* Overwrite part of the code in low memory, substituting the attacker’s
instructions for previous program statements.

* Overwrite the program counter and data in the stack so that the program
counter now points into the stack, causing the data overwritten into the stack to
be executed.

The common feature of these attack methods is that the attacker uses overflow data as
code the victim will execute. Because this code runs under the authority of the victim, it
carries the victim’s privileges, and it can destroy the victim’s data by overwriting it or can
perform any actions the victim could, for example, sending email as if from the victim. If
the overflow occurs during a system call, that is, when the system is running with elevated
privileges, the attacker’s code also executes with those privileges; thus, an attack that
transfers control to the attacker by invoking one of the attacker’s routines activates the
attacker’s code and leaves the attacker in control with privileges. And for many attackers
the goal is not simply to destroy data by overwriting memory but also to gain control of
the system as a first step in a more complex and empowering attack.

Buffer overflow attacks are interesting because they are the first example of a class of
problems called data driven attacks. In a data driven attack the harm occurs by the data
the attacker sends. Think of such an attack this way: A buffer overflows when someone
stuffs too much into it. Most people accidentally put one more element in an array or
append an additional character into a string. The data inserted relate to the application
being computed. However, with a malicious buffer overflow the attacker, like David the
nonmalicious researcher, carefully chooses data that will cause specific action, to make the
program fail in a planned way. In this way, the selected data drive the impact of the attack.

Data driven attacks are directed by specially chosen data the attacker
feeds a program as input.

Malicious exploitation of buffer overflows also exhibit one more important
characteristic: They are examples of a multistep approach. Not only does the attacker
overrun allocated space, but the attacker also uses the overrun to execute instructions to
achieve the next step in the attack. The overflow is not a goal but a stepping stone to a
larger purpose.

Buffer overflows can occur with many kinds of data, ranging from arrays to parameters
to individual data items, and although some of them are easy to prevent (such as checking
an array’s dimension before storing), others are not so easy. Human mistakes will never be
eliminated, which means overflow conditions are likely to remain. In the next section we
present a selection of controls that can detect and block various kinds of overflow faults.

Overflow Countermeasures

It would seem as if the countermeasure for a buffer overflow is simple: Check before
you write. Unfortunately, that is not quite so easy because some buffer overflow situations
are not directly under the programmer’s control, and an overflow can occur in several
ways.

Although buffer overflows are easy to program, no single countermeasure will prevent
them. However, because of the prevalence and seriousness of overflows, several kinds of
protection have evolved.

The most obvious countermeasure to overwriting memory is to stay within bounds.
Maintaining boundaries is a shared responsibility of the programmer, operating system,
compiler, and hardware. All should do the following:

* Check lengths before writing.

+ Confirm that array subscripts are within limits.

* Double-check boundary condition code to catch possible off-by-one errors.

* Monitor input and accept only as many characters as can be handled.

» Use string utilities that transfer only a bounded amount of data.

* Check procedures that might overrun their space.

+ Limit programs’ privileges, so if a piece of code is overtaken maliciously, the

violator does not acquire elevated system privileges as part of the compromise.
Programming Controls

Later in this chapter we study programming controls in general. You may already have
encountered these principles of software engineering in other places. Techniques such as
code reviews (in which people other than the programmer inspect code for implementation
oversights) and independent testing (in which dedicated testers hypothesize points at
which a program could fail) can catch overflow situations before they become problems.

Language Features

Two features you may have noticed about attacks involving buffer overflows are that
the attacker can write directly to particular memory addresses and that the language or
compiler allows inappropriate operations on certain data types.

Anthony (C.A.R.) Hoare [HOA81] comments on the relationship between language and

design:

Programmers are always surrounded by complexity; we cannot avoid it.
Our applications are complex because we are ambitious to use our
computers in ever more sophisticated ways. Programming is complex
because of the large number of conflicting objectives for each of our
programming projects. If our basic tool, the language in which we design
and code our programs, is also complicated, the language itself becomes
part of the problem rather than part of its solution.

Some programming languages have features that preclude overflows. For example,
languages such as Java, .NET, Perl, and Python generate code to check bounds before
storing data. The unchecked languages C, C++, and assembler language allow largely
unlimited program access. To counter the openness of these languages, compiler writers
have developed extensions and libraries that generate code to keep programs in check.

Code Analyzers

Software developers hope for a simple tool to find security errors in programs. Such a
tool, called a static code analyzer, analyzes source code to detect unsafe conditions.
Although such tools are not, and can never be, perfect, several good ones exist. Kendra
Kratkiewicz and Richard Lippmann [KRAOS] and the US-CERT Build Security In website
at https://buildsecurityin.us-cert.gov/ contain lists of static code analyzers.

Separation

Another direction for protecting against buffer overflows is to enforce containment:
separating sensitive areas from the running code and its buffers and data space. To a
certain degree, hardware can separate code from data areas and the operating system.

Stumbling Blocks

Because overwriting the stack is such a common and powerful point of attack,
protecting it becomes a priority.

Refer again to Figure 3-8, and notice that each procedure call adds a new stack frame
that becomes a distinct slice of the stack. If our goal is to protect the stack, we can do that
by wrapping each stack frame in a protective layer. Such a layer is sometimes called a
canary, in reference to canary birds that were formerly taken into underground mines; the
canary was more sensitive to limited oxygen, so the miners could notice the canary
reacting before they were affected, giving the miners time to leave safely.

In this section we show how some manufacturers have developed cushions to guard
against benign or malicious damage to the stack.

In a common buffer overflow stack modification, the program counter is reset to point
into the stack to the attack code that has overwritten stack data. In Figure 3-10, the two
parameters P1 and P2 have been overwritten with code to which the program counter has
been redirected. (Two instructions is too short a set for many stack overflow attacks, so a
real buffer overflow attack would involve more data in the stack, but the concept is easier
to see with a small stack.)

https://buildsecurityin.us-cert.gov/

Procedure B

P3 call C
P2
C-'.'L” B Pl

| Prog Ctr

> Stack Ptr Procedure C
code <
code

Prog Ctr

Stack Ptr

Procedure A

FIGURE 3-10 Compromised Stack

StackGuard is an approach proposed by Crispin Cowan et al. [COW98] The attacker
usually cannot tell exactly where the saved program counter is in the stack, only that there
is one at an approximate address. Thus, the attacker has to rewrite not just the stack
pointer but also some words around it to be sure of changing the true stack pointer, but this
uncertainty to the attacker allows StackGuard to detect likely changes to the program
counter. Each procedure includes a prolog code to push values on the stack, set the
remainder of the stack frame, and pass control to the called return; then on return, some
termination code cleans up the stack, reloads registers, and returns. Just below the
program counter, StackGuard inserts a canary value to signal modification; if the attacker
rewrites the program counter and the added value, StackGuard augments the termination
code to detect the modified added value and signal an error before returning. Thus, each
canary value serves as a protective insert to protect the program counter. These protective
inserts are shown in Figure 3-11. The idea of surrounding the return address with a
tamper-detecting value is sound, as long as only the defender can generate and verify that
value.

Procedure B

Stack P
Procedure A P3 Eﬂ;]‘ G
P2

call B Pl
‘—I Prog Ctr
Canary
Stack Ptr
P2
Pl
Prog Ctr
Canary
Stack Ptr

Procedure C

FIGURE 3-11 Canary Values to Signal Modification

Alas, the attack—countermeasure tennis match was played here, as we have seen in other
situations such as password guessing: The attacker serves, the defender responds with a
countermeasure, the attacker returns the ball with an enhanced attack, and so on. The
protective canary value has to be something to which the termination code can detect a
change, for example, the recognizable pattern 0x0fle2d3c, which is a number the attacker
is unlikely to write naturally (although not impossible). As soon as the attacker discovers
that a commercial product looks for a pad of exactly that value, we know what value the
attacker is likely to write near the return address. Countering again, to add variety the
defender picks random patterns that follow some sequence, such as 0x0fle2d3c,
0x0f1e2d3d, and so on. In response, the attacker monitors the stack over time to try to
predict the sequence pattern. The two sides continue to volley modifications until, as in
tennis, one side fails.

Next we consider a programming flaw that is similar to an overflow: a failure to check
and control access completely and consistently.

Incomplete Mediation

Mediation means checking: the process of intervening to confirm an actor’s
authorization before it takes an intended action. In the last chapter we discussed the steps
and actors in the authentication process: the access control triple that describes what
subject can perform what operation on what object. Verifying that the subject is authorized
to perform the operation on an object is called mediation. Incomplete mediation is a
security problem that has been with us for decades: Forgetting to ask “Who goes there?”
before allowing the knight across the castle drawbridge is just asking for trouble. In the
same way, attackers exploit incomplete mediation to cause security problems.

Definition

Consider the following URL. In addition to a web address, it contains two parameters,

so you can think of it as input to a program:

Click here to view code image

http://www.somesite.com/subpage/userinput.asp?

parml=(808)555-1212&parm2=2015Janl7

As a security professional trying to find and fix problems before they occur, you might

examine the various parts of the URL to determine what they mean and how they might be
exploited. For instance, the parameters parm1 and parm2 look like a telephone number
and a date, respectively. Probably the client’s (user’s) web browser enters those two values
in their specified format for easy processing on the server’s side.

But what would happen if parm2 were submitted as 1800Jan01? Or 1800Feb30? Or
2048Min32? Or 1Aardvark2Many? Something in the program or the system with which it
communicates would likely fail. As with other kinds of programming errors, one
possibility is that the system would fail catastrophically, with a routine’s failing on a data
type error as it tried to handle a month named “Min” or even a year (like 1800) that was
out of expected range. Another possibility is that the receiving program would continue to
execute but would generate a very wrong result. (For example, imagine the amount of
interest due today on a billing error with a start date of 1 Jan 1800.) Then again, the
processing server might have a default condition, deciding to treat 1Aardvark2Many as 21
July 1951. The possibilities are endless.

A programmer typically dismisses considering bad input, asking why anyone would
enter such numbers. Everybody knows there is no 30th of February and, for certain
applications, a date in the 1800s is ridiculous. True. But ridiculousness does not alter
human behavior. A person can type 1800 if fingers slip or the typist is momentarily
distracted, or the number might have been corrupted during transmission. Worse, just
because something is senseless, stupid, or wrong doesn’t prevent people from doing it.
And if a malicious person does it accidentally and finds a security weakness, other people
may well hear of it. Security scoundrels maintain a robust exchange of findings. Thus,
programmers should not assume data will be proper; instead, programs should validate
that all data values are reasonable before using them.

Users make errors from ignorance, misunderstanding, distraction; user
errors should not cause program failures.

Validate All Input

One way to address potential problems is to try to anticipate them. For instance, the
programmer in the examples above may have written code to check for correctness on the
client’s side (that is, the user’s browser). The client program can search for and screen out
errors. Or, to prevent the use of nonsense data, the program can restrict choices to valid
ones only. For example, the program supplying the parameters might have solicited them
by using a drop-down box or choice list from which only the twelve conventional months
could have been selected. Similarly, the year could have been tested to ensure a reasonable
value (for example, between 2000 and 2050, according to the application) and date
numbers would have to be appropriate for the months in which they occur (no 30th of
February, for example). Using such verification, the programmer may have felt well

insulated from the possible problems a careless or malicious user could cause.
Guard Against Users’ Fingers

However, the application is still vulnerable. By packing the result into the return URL,
the programmer left these data fields in a place where the user can access (and modify)
them. In particular, the user can edit the URL line, change any parameter values, and send
the revised line. On the server side, the server has no way to tell if the response line came
from the client’s browser or as a result of the user’s editing the URL directly. We say in
this case that the data values are not completely mediated: The sensitive data (namely, the
parameter values) are in an exposed, uncontrolled condition.

Unchecked data values represent a serious potential vulnerability. To demonstrate this
flaw’s security implications, we use a real example; only the name of the vendor has been
changed to protect the guilty. Things, Inc., was a very large, international vendor of
consumer products, called Objects. The company was ready to sell its Objects through a
web site, using what appeared to be a standard e-commerce application. The management
at Things decided to let some of its in-house developers produce a web site with which its
customers could order Objects directly from the web.

To accompany the web site, Things developed a complete price list of its Objects,
including pictures, descriptions, and drop-down menus for size, shape, color, scent, and
any other properties. For example, a customer on the web could choose to buy 20 of part
number 555A Objects. If the price of one such part were $10, the web server would
correctly compute the price of the 20 parts to be $200. Then the customer could decide
whether to have the Objects shipped by boat, by ground transportation, or sent
electronically. If the customer were to choose boat delivery, the customer’s web browser
would complete a form with parameters like these:

Click here to view code image
http://www.things.com/order.asp?custID=101&part=555A
&qy=20&price=10&ship=boat&shipcost=5&total=205
So far, so good; everything in the parameter passing looks correct. But this procedure
leaves the parameter statement open for malicious tampering. Things should not need to
pass the price of the items back to itself as an input parameter. Things presumably knows
how much its Objects cost, and they are unlikely to change dramatically since the time the
price was quoted a few screens earlier.

There is no reason to leave sensitive data under control of an untrusted
user.

A malicious attacker may decide to exploit this peculiarity by supplying instead the
following URL, where the price has been reduced from $205 to $25:
Click here to view code image

http://www.things.com/order.asp?custID=101&part=555A
&Qqy=20&price=1&ship=boat&shipcost=5&total=25

Surprise! It worked. The attacker could have ordered Objects from Things in any
quantity at any price. And yes, this code was running on the web site for a while before

the problem was detected.

From a security perspective, the most serious concern about this flaw was the length of
time that it could have run undetected. Had the whole world suddenly made a rush to
Things’ web site and bought Objects at a fraction of their actual price, Things probably
would have noticed. But Things is large enough that it would never have detected a few
customers a day choosing prices that were similar to (but smaller than) the real price, say,
30 percent off. The e-commerce division would have shown a slightly smaller profit than
other divisions, but the difference probably would not have been enough to raise anyone’s
eyebrows; the vulnerability could have gone unnoticed for years. Fortunately, Things hired
a consultant to do a routine review of its code, and the consultant quickly found the error.

The vulnerability in this situation is that the customer (computer user) has unmediated
access to sensitive data. An application running on the user’s browser maintained the order
details but allowed the user to change those details at will. In fact, few of these values
should have been exposed in the URL sent from the client’s browser to the server. The
client’s application should have specified part number and quantity, but an application on
the server’s side should have returned the price per unit and total price.

If data can be changed, assume they have been.

This web program design flaw is easy to imagine in other settings. Those of us
interested in security must ask ourselves, How many similar problems are in running code
today? And how will those vulnerabilities ever be found? And if found, by whom?

Complete Mediation

Because the problem here is incomplete mediation, the solution is complete mediation.
Remember from Chapter 2 that one of our standard security tools is access control,
sometimes implemented according to the reference monitor concept. The three properties
of a reference monitor are (1) small and simple enough to give confidence of correctness,
(2) unbypassable, and (3) always invoked. These three properties combine to give us solid,
complete mediation.

Time-of-Check to Time-of-Use

The third programming flaw we describe also involves synchronization. To improve
efficiency, modern processors and operating systems usually change the order in which
instructions and procedures are executed. In particular, instructions that appear to be
adjacent may not actually be executed immediately after each other, either because of
intentionally changed order or because of the effects of other processes in concurrent
execution.

Definition

Access control is a fundamental part of computer security; we want to make sure that
only those subjects who should access an object are allowed that access. Every requested
access must be governed by an access policy stating who is allowed access to what; then
the request must be mediated by an access-policy-enforcement agent. But an incomplete
mediation problem occurs when access is not checked universally. The time-of-check to

time-of-use (TOCTTOU) flaw concerns mediation that is performed with a “bait and
switch” in the middle.

Between access check and use, data must be protected against change.

To understand the nature of this flaw, consider a person’s buying a sculpture that costs
$100. The buyer takes out five $20 bills, carefully counts them in front of the seller, and
lays them on the table. Then the seller turns around to write a receipt. While the seller’s
back is turned, the buyer takes back one $20 bill. When the seller turns around, the buyer
hands over the stack of bills, takes the receipt, and leaves with the sculpture. Between the
time the security was checked (counting the bills) and the access occurred (exchanging the
sculpture for the bills), a condition changed: What was checked is no longer valid when
the object (that is, the sculpture) is accessed.

A similar situation can occur with computing systems. Suppose a request to access a file
were presented as a data structure, with the name of the file and the mode of access
presented in the structure. An example of such a structure is shown in Figure 3-12.

File: Action:
my_file Change byte 4 to A

FIGURE 3-12 File Access Data Structure

The data structure is essentially a work ticket, requiring a stamp of authorization; once
authorized, it is put on a queue of things to be done. Normally the access control mediator
process receives the data structure, determines whether the access should be allowed, and
either rejects the access and stops processing or allows the access and forwards the data
structure to the file handler for processing.

To carry out this authorization sequence, the access control mediator would have to
look up the file name (and the user identity and any other relevant parameters) in tables.
The mediator could compare the names in the table to the file name in the data structure to
determine whether access is appropriate. More likely, the mediator would copy the file
name into its own local storage area and compare from there. Comparing from the copy
leaves the data structure in the user’s area, under the user’s control.

At this point the incomplete mediation flaw can be exploited. While the mediator is
checking access rights for the file my_file, the user could change the file name descriptor
to your_file, the value shown in Figure 3-13. Having read the work ticket once, the
mediator would not be expected to reread the ticket before approving it; the mediator
would approve the access and send the now-modified descriptor to the file handler.

File: Action:
my_file Change byte 4 to A

File: Action:

your_file Delete file

FIGURE 3-13 Unchecked Change to Work Descriptor

The problem is called a time-of-check to time-of-use flaw because it exploits the delay
between the two actions: check and use. That is, between the time the access was checked
and the time the result of the check was used, a change occurred, invalidating the result of
the check.

Security Implication

The security implication here is clear: Checking one action and performing another is
an example of ineffective access control, leading to confidentiality failure or integrity
failure or both. We must be wary whenever a time lag or loss of control occurs, making
sure that there is no way to corrupt the check’s results during that interval.

Countermeasures

Fortunately, there are ways to prevent exploitation of the time lag, again depending on
our security tool, access control. Critical parameters are not exposed during any loss of
control. The access-checking software must own the request data until the requested action
is complete. Another protection technique is to ensure serial integrity, that is, to allow no
interruption (loss of control) during the validation. Or the validation routine can initially
copy data from the user’s space to the routine’s area—out of the user’s reach—and
perform validation checks on the copy. Finally, the validation routine can seal the request
data to detect modification. Really, all these protection methods are expansions on the
tamperproof criterion for a reference monitor: Data on which the access control decision is
based and the result of the decision must be outside the domain of the program whose
access is being controlled.

Undocumented Access Point

Next we describe a common programming situation. During program development and
testing, the programmer needs a way to access the internals of a module. Perhaps a result
is not being computed correctly so the programmer wants a way to interrogate data values
during execution. Maybe flow of control is not proceeding as it should and the
programmer needs to feed test values into a routine. It could be that the programmer wants
a special debug mode to test conditions. For whatever reason the programmer creates an
undocumented entry point or execution mode.

These situations are understandable during program development. Sometimes, however,
the programmer forgets to remove these entry points when the program moves from
development to product. Or the programmer decides to leave them in to facilitate program

maintenance later; the programmer may believe that nobody will find the special entry.
Programmers can be naive, because if there is a hole, someone is likely to find it. See
Sidebar 3-4 for a description of an especially intricate backdoor.

Sidebar 3-4 Oh Look: The Easter Bunny!

Microsoft’s Excel spreadsheet program, in an old version, Excel 97, had the
following feature.

* Open a new worksheet

* Press F5

» Type X97:L97 and press Enter

* Press Tab

* Hold <Citrl-Shift> and click the Chart Wizard

A user who did that suddenly found that the spreadsheet disappeared and the
screen filled with the image of an airplane cockpit! Using the arrow keys, the
user could fly a simulated plane through space. With a few more keystrokes the
user’s screen seemed to follow down a corridor with panels on the sides, and on
the panels were inscribed the names of the developers of that version of Excel.

Such a piece of code is called an Easter egg, for chocolate candy eggs filled
with toys for children. This is not the only product with an Easter egg. An old
version of Internet Explorer had something similar, and other examples can be
found with an Internet search. Although most Easter eggs do not appear to be
harmful, they raise a serious question: If such complex functionality can be
embedded in commercial software products without being stopped by a
company’s quality control group, are there other holes, potentially with security
vulnerabilities?

Backdoor

An undocumented access point is called a backdoor or trapdoor. Such an entry can
transfer control to any point with any privileges the programmer wanted.

Few things remain secret on the web for long; someone finds an opening and exploits it.
Thus, coding a supposedly secret entry point is an opening for unannounced visitors.

Secret backdoors are eventually found. Security cannot depend on such
secrecy.

Another example of backdoors is used once an outsider has compromised a machine. In
many cases an intruder who obtains access to a machine wants to return later, either to
extend the raid on the one machine or to use the machine as a jumping-off point for strikes
against other machines to which the first machine has access. Sometimes the first machine
has privileged access to other machines so the intruder can get enhanced rights when
exploring capabilities on these new machines. To facilitate return, the attacker can create a
new account on the compromised machine, under a user name and password that only the
attacker knows.

Protecting Against Unauthorized Entry

Undocumented entry points are a poor programming practice (but they will still be
used). They should be found during rigorous code reviews in a software development
process. Unfortunately, two factors work against that ideal.

First, being undocumented, these entry points will not be clearly labeled in source code
or any of the development documentation. Thus, code reviewers might fail to recognize
them during review.

Second, such backdoors are often added after ordinary code development, during testing
or even maintenance, so even the scrutiny of skilled reviewers will not find them.
Maintenance people who add such code are seldom security engineers, so they are not
used to thinking of vulnerabilities and failure modes. For example, as reported by security
writer Brian Krebs in his blog Krebs on Security, 24 January 2013, security researcher
Stefan Viehbock of SEC Consult Vulnerability Labs in Vienna, Austria found that some
products from Barracuda Networks (maker of firewalls and other network devices)
accepted remote (network) logins from user name “product” and no password. The
engineer who inserted the backdoor probably thought the activity was protected by
restricting the address range from which the logins would be accepted: Only logins from
the range of addresses assigned to Barracuda would succeed. However, the engineer failed
to consider (and a good security engineer would have caught) that the specified range also
included hundreds of other companies.

Thus, preventing or locking these vulnerable doorways is difficult, especially because
the people who write them may not appreciate their security implications.

Off-by-One Error

When learning to program, neophytes can easily fail with the off-by-one error:
miscalculating the condition to end a loop (repeat while i< = n or i<n? repeat until i=n or
i>n?) or overlooking that an array of A[0] through A[n] contains n+1 elements.

Usually the programmer is at fault for failing to think correctly about when a loop
should stop. Other times the problem is merging actual data with control data (sometimes
called metadata or data about the data). For example, a program may manage a list that
increases and decreases. Think of a list of unresolved problems in a customer service
department: Today there are five open issues, numbered 10, 47, 38, 82, and 55; during the
day, issue 82 is resolved but issues 93 and 64 are added to the list. A programmer may
create a simple data structure, an array, to hold these issue numbers and may reasonably
specify no more than 100 numbers. But to help with managing the numbers, the
programmer may also reserve the first position in the array for the count of open issues.
Thus, in the first case the array really holds six elements, 5 (the count), 10, 47, 38, 82, and
55; and in the second case there are seven, 6, 10, 47, 38, 93, 55, 64, as shown in Figure 3-
14. A 100-element array will clearly not hold 100 data items plus one count.

[A
10 [47|38 | 82 |55

L |

(a) First open issues list

6

A
[2\

6 |10 (47|38 (935564

(b) Second open issues list
FIGURE 3-14 Both Data and Number of Used Cells in an Array

In this simple example, the program may run correctly for a long time, as long as no
more than 99 issues are open at any time, but adding the 100th issue will cause the
program to fail. A similar problem occurs when a procedure edits or reformats input,
perhaps changing a one-character sequence into two or more characters (as for example,
when the one-character ellipsis symbol “...” available in some fonts is converted by a
word processor into three successive periods to account for more limited fonts.) These
unanticipated changes in size can cause changed data to no longer fit in the space where it
was originally stored. Worse, the error will appear to be sporadic, occurring only when the
amount of data exceeds the size of the allocated space.

Alas, the only control against these errors is correct programming: always checking to
ensure that a container is large enough for the amount of data it is to contain.

Integer Overflow

An integer overflow is a peculiar type of overflow, in that its outcome is somewhat
different from that of the other types of overflows. An integer overflow occurs because a
storage location is of fixed, finite size and therefore can contain only integers up to a
certain limit. The overflow depends on whether the data values are signed (that is, whether
one bit is reserved for indicating whether the number is positive or negative). Table 3-1
gives the range of signed and unsigned values for several memory location (word) sizes.

Word Size Signed Values Unsigned Values
8 bits —128to +127 0to 255 (28— 1)
16 bits —32,768 to +32,767 0to 65,535 (26 — 1)
32 bits —2.147 483,648 to +2,147,483,647 | 0104,294,.967,296 (232 — 1)

TABLE 3-1 Value Range by Word Size

When a computation causes a value to exceed one of the limits in Table 3-1, the extra
data does not spill over to affect adjacent data items. That’s because the arithmetic is
performed in a hardware register of the processor, not in memory. Instead, either a
hardware program exception or fault condition is signaled, which causes transfer to an
error handling routine, or the excess digits on the most significant end of the data item are
lost. Thus, with 8-bit unsigned integers, 255 + 1 = 0. If a program uses an 8-bit unsigned
integer for a loop counter and the stopping condition for the loop is count = 256, then the
condition will never be true.

Checking for this type of overflow is difficult, because only when a result overflows
can the program determine an overflow occurs. Using 8-bit unsigned values, for example,
a program could determine that the first operand was 147 and then check whether the
second was greater than 108. Such a test requires double work: First determine the
maximum second operand that will be in range and then compute the sum. Some
compilers generate code to test for an integer overflow and raise an exception.

Unterminated Null-Terminated String

Long strings are the source of many buffer overflows. Sometimes an attacker
intentionally feeds an overly long string into a processing program to see if and how the
program will fail, as was true with the Dialer program. Other times the vulnerability has
an accidental cause: A program mistakenly overwrites part of a string, causing the string to
be interpreted as longer than it really is. How these errors actually occur depends on how
the strings are stored, which is a function of the programming language, application
program, and operating system involved.

Variable-length character (text) strings are delimited in three ways, as shown in Figure
3-15. The easiest way, used by Basic and Java, is to allocate space for the declared
maximum string length and store the current length in a table separate from the string’s
data, as shown in Figure 3-15(a).

Max. len. | Curr. len.
20 A

H{E|L|{L]O

(a) Separate length

S{HIE|L|L|O

(b) Length precedes string

H|E|L|L|O|®

(¢) String ends with null
FIGURE 3-15 Variable-Length String Representations

Some systems and languages, particularly Pascal, precede a string with an integer that
tells the string’s length, as shown in Figure 3-15(b). In this representation, the string
“Hello” would be represented as 0x0548656c6c6f because 0x48, 0x65, 0x6¢, and 0x6f are

the internal representation of the characters “H,” “e,” “1,” and “0,” respectively. The length
of the string is the first byte, 0x05. With this representation, string buffer overflows are
uncommon because the processing program receives the length first and can verify that
adequate space exists for the string. (This representation is vulnerable to the problem we
described earlier of failing to include the length element when planning space for a string.)
Even if the length field is accidentally overwritten, the application reading the string will
read only as many characters as written into the length field. But the limit for a string’s
length thus becomes the maximum number that will fit in the length field, which can reach
255 for a 1-byte length and 65,535 for a 2-byte length.

The last mode of representing a string, typically used in C, is called null terminated,
meaning that the end of the string is denoted by a null byte, or 0x00, as shown in Figure 3-
15(c). In this form the string “Hello” would be 0x48656c6c6f00. Representing strings this
way can lead to buffer overflows because the processing program determines the end of
the string, and hence its length, only after having received the entire string. This format is
prone to misinterpretation. Suppose an erroneous process happens to overwrite the end of
the string and its terminating null character; in that case, the application reading the string
will continue reading memory until a null byte happens to appear (from some other data
value), at any distance beyond the end of the string. Thus, the application can read 1, 100
to 100,000 extra bytes or more until it encounters a null.

The problem of buffer overflow arises in computation, as well. Functions to move and
copy a string may cause overflows in the stack or heap as parameters are passed to these
functions.

Parameter Length, Type, and Number

Another source of data-length errors is procedure parameters, from web or conventional
applications. Among the sources of problems are these:

 Too many parameters. Even though an application receives only three
incoming parameters, for example, that application can incorrectly write four
outgoing result parameters by using stray data adjacent to the legitimate
parameters passed in the calling stack frame. (The opposite problem, more
inputs than the application expects, is less of a problem because the called
applications’ outputs will stay within the caller’s allotted space.)

* Wrong output type or size. A calling and called procedure need to agree on the
type and size of data values exchanged. If the caller provides space for a two-
byte integer but the called routine produces a four-byte result, those extra two
bytes will go somewhere. Or a caller may expect a date result as a number of
days after 1 January 1970 but the result produced is a string of the form “dd-

mmm-yyyy.”

* Too-long string. A procedure can receive as input a string longer than it can
handle, or it can produce a too-long string on output, each of which will also
cause an overflow condition.

Procedures often have or allocate temporary space in which to manipulate parameters,
so temporary space has to be large enough to contain the parameter’s value. If the
parameter being passed is a null-terminated string, the procedure cannot know how long

the string will be until it finds the trailing null, so a very long string will exhaust the
buffer.

Unsafe Utility Program

Programming languages, especially C, provide a library of utility routines to assist with
common activities, such as moving and copying strings. In C the function strcpy(dest,
src) copies a string from src to dest, stopping on a null, with the potential to overrun
allocated memory. A safer function is strncpy(dest, src, max), which copies up to the
null delimiter or max characters, whichever comes first.

Although there are other sources of overflow problems, from these descriptions you can
readily see why so many problems with buffer overflows occur. Next, we describe several
classic and significant exploits that have had a buffer overflow as a significant
contributing cause. From these examples you can see the amount of harm that a seemingly
insignificant program fault can produce.

Race Condition

As the name implies, a race condition means that two processes are competing within
the same time interval, and the race affects the integrity or correctness of the computing
tasks. For instance, two devices may submit competing requests to the operating system
for a given chunk of memory at the same time. In the two-step request process, each
device first asks if the size chunk is available, and if the answer is yes, then reserves that
chunk for itself. Depending on the timing of the steps, the first device could ask for the
chunk, get a “yes” answer, but then not get the chunk because it has already been assigned
to the second device. In cases like this, the two requesters “race” to obtain a resource. A
race condition occurs most often in an operating system, but it can also occur in
multithreaded or cooperating processes.

Unsynchronized Activity

In a race condition or serialization flaw two processes execute concurrently, and the
outcome of the computation depends on the order in which instructions of the processes
execute.

Race condition: situation in which program behavior depends on the
order in which two procedures execute

Imagine an airline reservation system. Each of two agents, A and B, simultaneously
tries to book a seat for a passenger on flight 45 on 10 January, for which there is exactly
one seat available. If agent A completes the booking before that for B begins, A gets the
seat and B is informed that no seats are available. In Figure 3-16 we show a timeline for
this situation.

A Seat available? Book seat

Reservation system

B Seat available? A

Time

FIGURE 3-16 Seat Request and Reservation Example

However, you can imagine a situation in which A asks if a seat is available, is told yes,
and proceeds to complete the purchase of that seat. Meanwhile, between the time A asks
and then tries to complete the purchase, agent B asks if a seat is available. The system
designers knew that sometimes agents inquire about seats but never complete the booking;
their clients often choose different itineraries once they explore their options. For later
reference, however, the booking software gives each agent a reference number to make it
easy for the server to associate a booking with a particular flight. Because A has not
completed the transaction before the system gets a request from B, the system tells B that
the seat is available. If the system is not designed properly, both agents can complete their
transactions, and two passengers will be confirmed for that one seat (which will be
uncomfortable, to say the least). We show this timeline in Figure 3-17.

A Seat available? e Book seat

Reservation system

B Seat available? Book seat

Time

FIGURE 3-17 Overbooking Example

A race condition is difficult to detect because it depends on the order in which two
processes execute. But the execution order of the processes can depend on many other
things, such as the total load on the system, the amount of available memory space, the
priority of each process, or the number and timing of system interrupts to the processes.
During testing, and even for a long period of execution, conditions may never cause this
particular overload condition to occur. Given these difficulties, programmers can have
trouble devising test cases for all the possible conditions under which races can occur.
Indeed, the problem may occur with two independent programs that happen to access
certain shared resources, something the programmers of each program never envisioned.

Most of today’s computers are configured with applications selected by their owners,
tailored specifically for the owner’s activities and needs. These applications, as well as the
operating system and device drivers, are likely to be produced by different vendors with
different design strategies, development philosophies, and testing protocols. The
likelihood of a race condition increases with this increasing system heterogeneity.

Security Implication

The security implication of race conditions is evident from the airline reservation
example. A race condition between two processes can cause inconsistent, undesired and
therefore wrong, outcomes—a failure of integrity.

A race condition also raised another security issue when it occurred in an old version of
the Tripwire program. Tripwire is a utility for preserving the integrity of files, introduced
in Chapter 2. As part of its operation it creates a temporary file to which it writes a log of
its activity. In the old version, Tripwire (1) chose a name for the temporary file, (2)
checked the file system to ensure that no file of that name already existed, (3) created a
file by that name, and (4) later opened the file and wrote results. Wheeler [WHEQ4]
describes how a malicious process can subvert Tripwire’s steps by changing the newly
created temporary file to a pointer to any other system file the process wants Tripwire to
destroy by overwriting.

In this example, the security implication is clear: Any file can be compromised by a
carefully timed use of the inherent race condition between steps 2 and 3, as shown in
Figure 3-18. Overwriting a file may seem rather futile or self-destructive, but an attacker
gains a strong benefit. Suppose, for example, the attacker wants to conceal which other
processes were active when an attack occurred (so a security analyst will not know what
program caused the attack). A great gift to the attacker is that of allowing an innocent but
privileged utility program to obliterate the system log file of process activations. Usually
that file is well protected by the system, but in this case, all the attacker has to do is point
to it and let the Tripwire program do the dirty work.

(a) Normal Operation

““==~Unprotected -~~~

(b) Overwriting Filename Other Than One Checked

FIGURE 3-18 File Name Race Condition

Race conditions depend on the order and timing of two different
processes, making these errors hard to find (and test for).

If the malicious programmer acts too early, no temporary file has yet been created, and
if the programmer acts too late, the file has been created and is already in use. But if the
programmer’s timing is between too early and too late, Tripwire will innocently write its
temporary data over whatever file is pointed at. Although this timing may seem to be a
serious constraint, the attacker has an advantage: If the attacker is too early, the attacker
can try again and again until either the attack succeeds or is too late.

Thus, race conditions can be hard to detect; testers are challenged to set up exactly the
necessary conditions of system load and timing. For the same reason, race condition
threats are hard for the attacker to execute. Nevertheless, if race condition vulnerabilities
exist, they can also be exploited.

The vulnerabilities we have presented here—incomplete mediation, race conditions,
time-of-check to time-of-use, and undocumented access points—are flaws that can be
exploited to cause a failure of security. Throughout this book we describe other sources of
failures because programmers have many process points to exploit and opportunities to
create program flaws. Most of these flaws may have been created because the programmer
failed to think clearly and carefully: simple human errors. Occasionally, however, the
programmer maliciously planted an intentional flaw. Or, more likely, the assailant found
one of these innocent program errors and exploited it for malicious purpose. In the
descriptions of program flaws we have pointed out how an attacker could capitalize on the
error. In the next section we explain in more detail the harm that malicious code can cause.

3.2 Malicious Code—Malware

In May 2010, researcher Roger Thompson of the antivirus firm AVG detected malicious
code at the web site of the U.S. Bureau of Engraving and Printing, a part of the Treasury
Department [MCM10]. The site has two particularly popular sections: a description of the
design of the newly redesigned U.S. $100 bill and a set of steps for identifying counterfeit
currency.

The altered web site contained a hidden call to a web site in the Ukraine, which then

attempted to exploit known vulnerabilities in the web site to lodge malicious code on
unsuspecting users’ machines. Visitors to the site would download pictures and text, as
expected; what visitors couldn’t see, and probably did not expect, was that they also
downloaded an additional web code script that invoked code at the Ukrainian site.

The source of the exploit is unknown; some researchers think it was slipped into the
site’s tracking tool that tallies and displays the number of visits to a web page. Other
researchers think it was introduced in a configuration flaw from the company acting as the
Treasury Department’s web site provider.

Two features of this attack are significant. First, U.S. government sites are seldom
unwitting propagators of code attacks because administrators strongly defend the sites and
make them resistant to attackers. But precisely those characteristics make users more
willing to trust these sites to be free of malicious code, so users readily open their
windows and download their content, which makes such sites attractive to attackers.

Second, this attack seems to have used the Eleonore attack toolkit [FIS10]. The kit is a
package of attacks against known vulnerabilities, some from as long ago as 2005,
combined into a ready-to-run package. A kind of “click and run” application, the $2000 kit
has been around in different versions since 2009. Each kit sold is preconfigured for use
against only one web site address (although customers can buy additional addresses), so
the attacker who bought the kit intended to dispatch the attack specifically through the
Treasury web site, perhaps because of its high credibility with users.

As malicious code attacks go, this one was not the most sophisticated, complicated, or
devastating, but it illustrates several important features we explore as we analyze
malicious code, the topic of this chapter. We also describe some other malicious code
attacks that have had a far more serious impact.

Malicious code comes in many forms under many names. In this chapter we explore
three of the most popular forms: viruses, Trojan horses, and worms. The distinctions
among them are small, and we do not need to classify any piece of code precisely. More
important is to learn about the nature of attacks from these three: how they can spread,
what harm they can cause, and how they can be controlled. We can then apply this
knowledge to other types of malicious code, including code forms that do not yet have
popular names.

Malware—YViruses, Trojan Horses, and Worms

Malicious code or rogue programs or malware (short for MALicious soft WARE) is
the general name for programs or program parts planted by an agent with malicious intent
to cause unanticipated or undesired effects. The agent is the program’s writer or
distributor. Malicious intent distinguishes this type of code from unintentional errors, even
though both kinds can certainly have similar and serious negative effects. This definition
also excludes coincidence, in which minor flaws in two benign programs combine for a
negative effect. Most faults found in software inspections, reviews, and testing do not
qualify as malicious code; their cause is usually unintentional. However, unintentional
faults can in fact invoke the same responses as intentional malevolence; a benign cause
can still lead to a disastrous effect.

Malicious code can be directed at a specific user or class of users, or it
can be for anyone.

You may have been affected by malware at one time or another, either because your
computer was infected or because you could not access an infected system while its
administrators were cleaning up the mess caused by the infection. The malware may have
been caused by a worm or a virus or neither; the infection metaphor often seems apt, but
the terminology of malicious code is sometimes used imprecisely. Here we distinguish
names applied to certain types of malware, but you should focus on methods and impacts,
instead of names. That which we call a virus by any other name would smell as vile.

A virus is a program that can replicate itself and pass on malicious code to other
nonmalicious programs by modifying them. The term “virus” was coined because the
affected program acts like a biological virus: It infects other healthy subjects by attaching
itself to the program and either destroying the program or coexisting with it. Because
viruses are insidious, we cannot assume that a clean program yesterday is still clean today.
Moreover, a good program can be modified to include a copy of the virus program, so the
infected good program itself begins to act as a virus, infecting other programs. The
infection usually spreads at a geometric rate, eventually overtaking an entire computing
system and spreading to other connected systems.

Virus: code with malicious purpose; intended to spread

A virus can be either transient or resident. A transient virus has a life span that depends
on the life of its host; the virus runs when the program to which it is attached executes,
and it terminates when the attached program ends. (During its execution, the transient
virus may spread its infection to other programs.) A resident virus locates itself in
memory; it can then remain active or be activated as a stand-alone program, even after its
attached program ends.

The terms worm and virus are often used interchangeably, but they actually refer to
different things. A worm is a program that spreads copies of itself through a network.
(John Shoch and Jon Hupp [SHO82] are apparently the first to describe a worm, which,
interestingly, was created for nonmalicious purposes. Researchers at the Xerox Palo Alto
Research Center, Shoch and Hupp wrote the first program as an experiment in distributed
computing.) The primary difference between a worm and a virus is that a worm operates
through networks, and a virus can spread through any medium (but usually uses a copied
program or data files). Additionally, the worm spreads copies of itself as a stand-alone
program, whereas the virus spreads copies of itself as a program that attaches to or embeds
in other programs.

Worm: program that spreads copies of itself through a network

Spreading copies of yourself seems boring and perhaps narcissistic. But worms do have
a common, useful purpose. How big is the Internet? What addresses are in use? Worm
programs, sometimes called “crawlers” seek out machines on which they can install small
pieces of code to gather such data. The code items report back to collection points